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Abstract—We develop a framework for minimizing the communication overhead of monitoring global system parameters in IP networks
and sensor networks. A global system parameter is defined as a function of local properties of different network elements. Identifying
when the total amount of interface out traffic from an organization’s sub-network exceeds some threshold is an example parameter to
monitor. Our main idea is to optimize the scheduling of local event reporting across network elements for a given network traffic load
and local event frequencies. Our system architecture consists of N distributed network elements coordinated by a central monitoring
station. Each network element monitors a set of local properties, and the central station is responsible for identifying the status of global
parameters registered in the system. We design an optimal algorithm when the local events are independent; whereas, when they are
dependent, we show that the problem is NP-complete and develop two efficient heuristics: the SPA (Sample, Partition, and Aggregate),
and Ada (Adaptive) algorithms which adapt well to changing network conditions, and outperform the current state of the art techniques
in terms of communication cost.
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1 INTRODUCTION

Reactive network monitoring consists of measuring the prop-
erties of the network to ensure that the system operates with
desirable parameters. The management station queries the state
of the network in order to react to alarm conditions that may
develop in the network [7]. Information about the network state
is collected using two different techniques: event reporting
and polling. In event reporting, network elements distributed
across the network push alarms and detailed event reports to
the station. In polling, the station sends requests to obtain
the status of network elements. Typically, polling is done
periodically with a fixed frequency, determined by a critical
time window within which the alarm condition has to be
detected.

In many situations, there is a need to monitor a global
system parameter, which is defined as a function of local
properties of different network elements. In such cases, after
detecting local changes, each network element has to continu-
ously emit alarms in order to ensure that global parameters
are not violated. In sensor networks, a typical example is
a monitoring system which determines whether the average
temperature of a particular region exceeds a certain threshold.
In IP networks, consider the monitoring of the amount of
traffic from an organization subnetwork to the Internet. A
subnetwork is connected to the outer world via a number of
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interfaces. The goal is to determine whether the total outbound
traffic exceeds a predefined threshold. One solution to this
problem, referred to as all-pull scheme, is to poll the status
of network elements continuously. As long as the cumulative
sum is below the threshold, no alarms are generated. Another
approach to the same problem is to allocate a fixed budget
(a small proportion of the threshold) to each node. Each
time the amount of local traffic exceeds the local budget, a
report containing event details and some application specific
information is sent to the station. We refer to this solution
instance as all-push.

Given a set of n network elements, where the decision
at each element is either “to push” or “to pull”, one can
observe that the solution space of schedules is exponential
in the number of elements (2n), and the all-push and all-pull
schemes correspond to two specific solutions in this space. The
major disadvantage of the all-pull and all-push schemes is that
they are oblivious to the environment characteristics. All-pull
scheme does not take local event frequencies into account, and
incurs cost continuously especially if the transmission network
is congested. All-push scheme considers this aspect, but since
it functions on local information only, there is no global
coordination. An efficient approach to tackle this problem is to
combine event reporting with aperiodic polling such that only
a subset of elements are chosen as watch-dogs for monitoring a
given global parameter. When reports from all watch-dogs are
received, then the status of remaining elements are obtained
using polling. Therefore, the problem of interest becomes how
to select the set of elements that will push. A simple greedy
heuristic, which selects to push from elements with a low event
frequency, performs very well in practice. One has to identify
the top-k least frequent event set continuously.

Our main idea is to formulate the cost of monitoring
multiple parameters using the information about the statistical
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characterization of the whole set of network elements, e.g,
the frequency of occurrence p(e) associated with each local
event e, and the cost of a message containing event details or
pull requests. For each event, the binary scheduling decision
is either push or pull. We have three types of messages in the
system: (1) push message, (2) pull request, and (3) answer
to a pull request. The cost of each message may depend on
many parameters such as the size of the message and the
load on the specific network the message traverses. In order
to model communication cost in the most general scenario,
we use different costs (Cj) for each message type in our
framework. This offers the ability to experimentally study the
relative tradeoffs. Our algorithms compute the cost of each
schedule as a function of p(e)’s and C’s. The schedule with
the least cost is selected for the current environment. However
in reality, system characteristics are dynamic and change over
time. Therefore, the least costly schedule is also expected to
change. In that sense, our techniques perform a continuous
optimization in the solution space, and adapt to the current
environment.

Our contributions in this paper are:
1) We formulate the problem of minimizing the communi-

cation cost of monitoring a global aggregate over a set
of local events as an optimization problem.

2) We design an optimal solution when the events are inde-
pendent and show that the optimization problem is NP-
complete when dependencies are introduced between
events.

3) When correlations exist within the event set, we pro-
pose two efficient algorithms, the SPA and the Ada
algorithms. The SPA algorithm performs an off-line
summarization of schedules using partial costs, and thus
determines low-cost schedules on the fly with negligible
computational cost; whereas Ada performs a greedy
search for the optimal in an efficient manner and re-
optimizes in the dynamic case only when thresholds are
violated.

4) We perform experiments on both real-world and syn-
thetic data sets and show that both Ada and SPA
algorithms outperform the competing techniques by two
orders of magnitude in communication costs with a
tolerable computational overhead.

1.1 Outline of the Paper

The remainder of the paper is structured as follows: we
first introduce preliminaries for our monitoring framework in
Section 2. We derive a cost model for scheduling a set of
events, and analyze statistical characteristics of the system and
their implications on the cost formulation. In Section 3, we
discuss the hardness of the optimization problem in different
network settings. In Section 4, we consider various optimiza-
tion techniques to solve our problem, and present algorithms
to realize them in our setting . In Section 5, we present the
results of an extensive set of experiments in order to study the
effectiveness of our approaches. Finally, we discuss avenues
for future work and conclude in Section 7.

2 FORMAL MODEL
2.1 Event model
Consider a network with n elements. Let Ni denote the ith

network element. In our monitoring framework, each network
element Ni monitors a function f over its stream of data.
Time t is an integer, beginning at t = 1. Let the stream of
data inspected by Ni until time t be x1

i , . . . , x
t−1
i , xt

i . The
window of the k most recently seen data values on a stream
is denoted by wi : (xt−k+1

i , . . . , xt
i). Function f is defined

over such a window wi. At time t, if the value of the function
f(wi) exceeds the threshold τi, a corresponding local event
occurs. The function f we use is an application specific input
parameter. Aggregates such as sum, spread , i.e., max − min ,
and count are some example functions.

The threshold values τi of each network element Ni can
either be specified as part of the input, or they can be
determined using historical data. For example, in a networking
application scenario a router can specify tolerance levels for
packet drops; such levels constitute a threshold value. By
definition, an event at some window wi occurs if the aggregate
value computed on that window deviates significantly from
most of the aggregate values computed on windows of the
same size. One way of setting the threshold τi is gi(µ,σ),
where gi is a linear function of the mean µ and the standard
deviation σ of historical f(wi) values.
Definition 2.1: A local event at network element Ni is a

random variable ri such that

ri =

{

1 if f(wi) ≥ τi

0 otherwise

}

(1)

Definition 2.2: The probability of occurrence p(ri) of a
local event ri corresponds to the likelihood of the event
occurring in the window wi.

At the monitoring station, global parameters are defined in
terms of a subset of the local events. An alarm on the global
parameter is generated if all of the respective events occur.
Definition 2.3: A set of local events together defines a

global parameter, and is referred as a “query” in the rest of
the paper.
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Fig. 1. Event-driven monitoring framework for a network
consisting of one monitoring station and a set of network
elements.

Figure 1 shows our framework. Each network element Ni

monitors a local event ri. At the monitoring station N0, users
register queries that are defined in terms of a set of local
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events. The communication between the monitoring station
and the network elements are messages that contain event
reports or pull requests, i.e., status checks. This paper is
targeted towards optimizing the communication cost in the
case of a single query. Optimization over multiple queries is
addressed in [?].

2.2 Communication cost model
The events are propagated between the monitoring station and
the network elements in two modes: The network element
can either push the event to the station incurring a cost of
C1. The monitoring station can also poll (pull) a network
element for the existence of an event ri incurring a cost of
C2. If the event has occurred, the network element replies
back incurring a cost of C3. As noted earlier, the cost of
each message can vary across applications. Therefore, we use
different costs for generality and to study tradeoffs. We assume
reliable communication and global time synchronization. In
the rest of the paper, we simply use “event” to refer to a
local event. We illustrate all of our concepts with an example
configuration below.
Example 1: Assume three network elements N1, N2, and

N3 each monitoring a single event r1, r2, and r3 respectively.
Let the associated probabilities be p(r1), p(r2), and p(r3) re-
spectively. There is a single query Q1, a conjunctive predicate
on events r1, r2 and r3 registered at the monitoring station.
Since for each event we can have two possible ways
of communication (push or pull), there are 2n sched-
ules for n events. Assuming 1 is a push and 0 a pull,
we have eight possible schedules for n = 3 events
as 000, 001, 010, 011, 100, 101, 110, and 111. Among these
schedules, S = 000 corresponds to all-pull, while S = 111
corresponds to all-push.

Let R denote the set of all local events. We use R+ to
denote the set of events in Q1 that are pushed, and R− to
denote the set of events that are pulled in a given schedule S.
Each event r in R− is pulled only if all events in R+ occur,
which happens with probability p(∩ri∈R+ri)=p(R+). The
answer to this pull request occurs with probability p(r|R+),
which is the conditional probability of occurrence for r given
that all push events occurred. For example, let the schedule
S be 010. Then, the sets for query Q1 are R+ = {r2} and
R− = {r1, r3}. We can formulate the cost C(S) of S in terms
of the probabilities p(ri)’s, and the cost parameters C1, C2,
and C3 as follows:

C(S) =

pushcost
︷ ︸︸ ︷

p(r2)C1 +

pullcost for r1
︷ ︸︸ ︷

p(r2)(C2 + p(r1|r2)C3)

+ p(r2)(C2 + p(r3|r2)C3)
︸ ︷︷ ︸

pullcost for r3

where each individual term denotes the expected cost:

p(r2)C1 an event report (push) on r2

p(r2)C2 a pull request initiated as a result of r2

p(r1|r2)C3 an answer r1 conditioned on r2

p(r3|r2)C3 an answer r3 conditioned on r2

We are interested in minimizing the total communication cost
required to detect alarm conditions (queries) specified by users.
Therefore, we mainly consider communication complexity. We
state the main optimization problem we consider within the
scope of this paper as follows:
Problem 1: Given the event probabilities p(ri)’s that are

functions of time, and the communication cost parameters C1,
C2, and C3, identify at all times the optimal schedule in terms
of communication cost.

2.3 Cost model for event scheduling
The cost of a schedule is the sum of the total push cost and the
total pull cost. We first consider the case of assuming statistical
independence.

2.3.1 Independence Case
If all the events are mutually independent, an answer to a
pull request for an event r in R− occurs with probability
p(r|R+) = p(r). Then, the cost C(S) for schedule S can be
expressed as:

∑

ri∈R+

p(ri)C1 +
∏

ri∈R+

p(ri) ∗

(

∑

r∈R−

C2 + p(r)C3

)

where the first term is the total push cost, and the second term
is the total pull cost. Ideally, the cost model should take into
account all dependencies between the events being monitored.
The dependencies can either be intra-dependencies that arise
at a given network element due to the nature of the aggregate
function used [10], [15], or they can be inter-dependencies that
arise due to the structure of the network being monitored.

2.3.2 Conditional dependence
When we take statistical dependencies into account, the
threshold computation becomes more complicated than that
of assuming statistical independence. For a given schedule S,
the cost C(S) is equal to:

∑

ri∈R+

p(ri)C1 + p(R+) ∗

(

∑

r∈R−

C2 + p(r|R+)C3

)

Example 2: The cost C(S) of S = 1100 for the query
configuration Q2 : {r1, r2, r3, r4} is:

=

pushcost of R
+

︷ ︸︸ ︷

p(r1)C1 + p(r2)C1 +

pulling for r−

3
︷ ︸︸ ︷

p(r1, r2)(C2 + p(r3|r1, r2)C3)
+ p(r1, r2)(C2 + p(r4|r1, r2)C3)

︸ ︷︷ ︸

pulling for r−

4

where we have some cost terms involving multivariate proba-
bilities.

The storage space required for representing a multivariate
probability distribution p(q) of n discrete random variables
is enormous. In our case, each event ri is a binary random
variable; therefore, the random vector q = (r1, r2, . . . , rn) can
take as many as 2n values. Assuming that p(q) is unknown
and that s independent samples q1, q2, . . . , qs are available,
the complete specification of p(q) can be expressed in Θ(2n)
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space [20]. However, the amount of space allowed for storage
is limited, and the number of available independent samples
is usually small. Therefore, the best one can do is to ap-
proximate p(q) with some simplifying assumptions. A method
for optimal approximation of an n-variate discrete probability
distribution using first order dependence relationship, was
considered by Chow and Liu [3]. For the rest of the paper,
we assume that the probability distribution is defined by a
first-order dependence tree; such a tree is a specific case of a
Bayesian network [11]. The approximation method by Chow
and Liu is discussed in Appendix A. Given such a dependence
tree, the following example shows the probability computation
for a set of events in different cases.
Example 3: Consider Figure 2. The probability distribution

over the events r1, . . . , r6 is approximated by two disjoint
first-order dependence trees. Therefore, an event belonging
to the set {r1, r2, r3} is independent of any event in the
set {r4, r5, r6}. Now consider the first tree. The event r2 is
conditionally independent of r3, given r1, i.e., p(r2|r1, r3) =
p(r2|r1).

From the figure, we notice that the prior probability at
the root r1 is p(r1) = 0.4, and the conditional probability
of event r2 given the event r1 is p(r2|r1) = 0.3; whereas,
the conditional probability of event r2 given the event r̄1 is
p(r2|r̄1) = 0.2. We can compute the probability of event r2,
p(r2) by employing the principle of Mutual Exclusion (ME)
followed by the Bayes rule [?]:

p(r2) = p(r1, r2) + p(r̄1, r2)
= p(r1)p(r2|r1) + p(r̄1)p(r2|r̄1)
= 0.4 × 0.3 + 0.6 × 0.2 = 0.24

The joint probability of a set of events (r2, r3), p(r2, r3)
is calculated using the the notion of conditional independence
along with the ME and Bayes principles:

p(r2, r3) = p(r1, r2, r3) + p(r̄1, r2, r3)
= p(r1)p(r2|r1)p(r3|r1, r2)

+p(r̄1)p(r2|r̄1)p(r3|r̄1, r2)
= p(r1)p(r2|r1)p(r3|r1) + p(r̄1)p(r2|r̄1)p(r3|r̄1)
= 0.4 × 0.3 × 0.1 + 0.6 × 0.2 × 0.4 = 0.06

Since r4 is independent of r2 and r3, the joint probability
of the set of events (r2, r3, r4), p(r2, r3, r4) is:

= p(r2, r3)p(r4)
= 0.06 × 0.3 = 0.018

When the dependency graph has cycles, the above prob-
ability computations are NP-hard [20]. However, for first-
order dependence trees, any marginal probability, i.e., p(ri)
can be computed in O(n) time, using Pearl’s message passing
algorithm [20].

3 SCHEDULING PROBLEM: OPTIMALITY AND
COMPLEXITY
In this section, we present techniques to solve the optimization
problem in two different settings. When the events at each
node are independent, we design a polynomial time optimal
solution; whereas when the events are dependent, the problem
is shown to be NP-complete.

.3 .7  

.2  .8  
.1 .9  
.4  .6  

1 0
.4  .6

1 0 
.3 .7

.9 .1 

.5  .5  
.2 .8  
.4  .6  

r r2

r1

3

r4

r6r5

Fig. 2. An example of first-order dependence trees.

3.1 Independence case
We assume a priori knowledge on p(ri)’s and that the events
are mutually independent of each other. Assuming that such
probabilities are fixed, our algorithm first partitions the 2n

schedules, into n + 1 disjoint classes. For each class, we
identify the schedule that achieves the minimum cost, and then
find the optimal over all classes.

The whole space of schedules S is partitioned into n + 1
classes χ0 . . .χn. A schedule s ∈ χk has exactly k pushes.
Consider Example 1 in Section 2.2. Assume for simplicity that
C1 = C2 = C3 = 1. Let p(r1), p(r2), and p(r3) be equal to
0.5, 0.3, and 0.4 respectively. The costs associated with each
possible schedule and their corresponding classes are shown
in Table 1.

S Cost Expression C(S)

χ0

000 (1+0.5)+(1+0.3)+(1+0.4) 4.20

χ1

001 0.4+0.4(1+0.5)+0.4(1+0.3) 1.52
100 0.5+0.5*(1+0.3)+0.5*(1+0.4) 1.85
010 0.3+0.3*(1+0.5)+0.3*(1+0.4) 1.19

χ2

101 0.5+0.4+0.5*0.4(1+0.3) 1.16
110 0.5+0.3+0.5*0.3(1+0.4) 1.01
011 0.3+0.4+0.3*0.4(1+0.5) 0.88

χ3

111 0.5+0.3+0.4 1.20

TABLE 1
Partitioning of schedules and corresponding costs for the

scenario in Example 1.

Notice that the winner in class χ1 is schedule 010, where
the event r2 with the smallest probability (0.3) is set to push.
Similarly, the winner in class χ2 is 011 which corresponds to
the two events with the smallest probability being set to push.
The minimum over all classes is calculated as 011.

Our algorithm functions as follows: Given the set of input
probabilities over events rj , for j = 1 to n, we first sort the
probabilities in a non-descending order, and rename the events
r1 . . . rn such that p(r1) ≤ p(r2) ≤ p(r3) . . . p(rn−1) ≤
p(rn). In each class χk, the set of k events with the minimum
probability, i.e., the events corresponding to r1 . . . rk are set
to push. Theorem 3.1 shows that this schedule is indeed the
minimum over class χk. Then the optimal is calculated as the
minimum over the n + 1 classes. In the case of independent
events, the cost of computing a schedule is O(n). Therefore,
the computational complexity of the algorithm is O(n2).
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Theorem 3.1: Given the costs C1, C2 and C3 and (sorted)
events r1 . . . rn such that p(r1) ≤ p(r2) ≤ p(r3) . . . ≤ p(rn),
the schedule s∗ ∈ χk in which the events corresponding to
r1 . . . rk are set to push is the optimal schedule in class χk.

Proof: Consider schedule s∗ and an arbitrary schedule
s1 ∈ χk with the k push bits permuted. For simplifying the
discussion, assume that there is a disparity of two bits between
s∗ and s1. The proof can easily be generalized for any s1 ∈
χk. The cost of the schedule s∗

=

cost of R
+

︷ ︸︸ ︷

C1

k
∑

i=1

p(ri)+

pulling for R−

︷ ︸︸ ︷

p(r1)...p(rk)
n

∑

j=k+1

(C2 + p(rj)C3)

The above expression can be decomposed into three parts:
costs involving the C1 term, the C2 term and the C3 term.
Similarly, we can split the costs of s1. First, we compare the
C1 costs of s∗ and s1. Since, s∗ selects the k smallest p(ri)’s,
the total C1 costs of s∗ is at most the cost of s1. Similarly, we
can show that the total C2 cost of s∗ is at most the cost of s1.
While comparing C3 costs, we can show that each individual
term of s∗ is smaller than the corresponding term of s1.

3.2 Conditional Dependence
In this section, we formally show that this problem becomes
computationally intractable when joint dependencies are intro-
duced between pairs of nodes.
Theorem 3.2: Given a joint distribution represented by a

first-order dependence (Bayesian) tree, the decision problem:
“Does there exist a schedule s ∈ χk with cost at most c ?” is
NP-complete.

Proof: We outline the proof here. Our problem can
be reduced from the 0-1 Integer Programming problem [9],
with a variable set to 1 if the corresponding event is set
to push, and 0 otherwise. The minimization function is a
polynomial of degree n, with the constraint that the sum of
the n variables adds to k. Interested readers can refer to the
technical report [?] for details. Unfortunately, the problem
remains intractable even when the Bayesian tree degenerates
to a forest of edges.

4 SCHEDULING ALGORITHMS
The hardness results in the previous section indicate that a
polynomial time algorithm is unlikely. In this section, we
present efficient algorithms which not only generate sched-
ules with small cost but are also designed to minimize the
computational complexity in the dynamic case.

A simple solution to the optimization problem is to draw
a large set of schedule samples, compute the cost of each
schedule, and ascertain the schedule with the minimum cost.
But, when the event probabilities change, such a solution
would necessitate an expensive recomputation of the costs of
each schedule in the huge sample space. The first technique,
the SPA algorithm is primarily designed to overcome the above
computational burden of recomputing a solution, by computing
several partial costs for a schedule which can be reused in the
dynamic case.

The second technique, Ada starts with a schedule, and pro-
gressively generates schedules with a smaller cost in a greedy
manner; finally, resulting in a schedule with minimal cost.
When the underlying data distribution changes, Ada identifies
potentially beneficial time instances for re-optimization, and
follows an adaptive optimization procedure.
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Fig. 3. SPA algorithm: Ranked list for each combination
of root values. The root priors shown in Figure 2 are
employed to calculate the weights Wi of each list.

4.1 SPA: Algorithm
The SPA algorithm is targeted for optimization over a specific
class of applications, in which the first-order dependence
network is decomposed into a disjoint set of trees. A justi-
fying case is the recent work in sensor networks [4], which
decomposes the sensor network into a disjoint set of spatial
clusters and maintains a probabilistic model for each cluster of
correlated nodes. In IP networks, a group of routers observing
similar traffic patterns might be characterized by a single tree;
and hence the whole network can be represented by a set
of disjoint trees. In the dynamic case, we exploit the strong
intra-cluster correlations in such settings, and assume that only
the prior probabilities at the roots of each tree change, while
the conditional probability tables at each internal edge remain
intact. This fact is exploited to pre-process a large amount of
data, and only recompute when necessary.

Unlike the simple solution, the SPA algorithm precomputes
several reusable partial costs for each schedule; a partial
cost corresponding to each combination of root values, and
then calculates the total cost of a schedule as the weighted
sum of partial costs, where the weight corresponds to the
probability of occurrence of underlying combination of root
values. Hence, when the priors at the root change, only the
weights are altered leaving the partial costs unchanged.

Consider the example of such a total cost computation as
shown in Figure 3. Assume that the probabilistic network is as
shown in Figure 2. Each list shown in Figure 3 corresponds to
a particular combination of root values. Consider the schedule
s5 : 100100. While computing its partial cost in list A), we
assume that roots r1 and r4, each take the binary value 0 with a
probability 1. The weight of list A) is W1 = p(r1 = 0)p(r4 =
0) = (0.6)(0.7) = 0.42.
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Algorithm 1 SPA(m sorted sources, Weight of sources)
begin procedure

Do sorted access across m sources simultaneously;
current = ∞;
If a schedule s is seen under a source, do a random seek
in other sources and compute the total cost T (s);
current := min(current, T (s));
threshold := 0;
for each source i do

xi := the last partial cost seen under sorted access;
threshold + = Wi ∗ xi; // Wi is weight of source i

end for
if current ≤ threshold then

Halt and output the current best schedule;
end if
Continue sorted access and repeat the procedure;
end procedure

Similarly, each schedule’s partial cost is calculated in every
list. Further, the lists are sorted to aid the computation of the
minimum cost schedule. The total cost of schedule s5 can
be computed as (0.42)(0.0) + (0.18)(1.0) + (0.28)(1.0) +
(0.12)(7.5) = 1.36. This cost will be always equal to the value
obtained from the straightforward computation in Section 2.3.2
(0.4 + 0.3 + 0.12 ∗ 5.5 = 1.36).

Henceforth, we refer to each list corresponding to a par-
ticular combination of root values as a source. Now, the
schedule with the minimum cost is obtained by a modified
adaptation of the Fagin et al. [8]’s algorithm as shown in
Algorithm 1. The Threshold algorithm aggregates the cost over
all sources, and is proved to be instance optimal in inspecting a
small number of candidates while determining the minimum
cost schedule. While accessing each list simultaneously, the
algorithm computes the total cost of a schedule appearing at
the top of each list, and retains the current minimum. Further,
it computes a threshold, or a lower bound on the minimum
cost schedule, and halts list traversal if the current minimum
is smaller than threshold.

However, memory becomes a bottleneck when we attempt
to store the entire set of samples —(schedule, partial cost)
tuples— for each source. Hence, further summarization of the
samples at each source is required. Given a memory constraint
of D tuples per source, we resort to partitioning the set of
samples into Mutually Exclusive and Collectively Exhaustive
(MECE) classes. Each class is summarized by a mean cost and
the classes are selected such that they minimize the global
mean squared error resulting from all the classes. We next
explain the class selection.

4.2 Class Partitioning
Partitioning the set of samples into different classes offers a
major benefit of reducing the memory allocation, and conse-
quently resulting in small online computation time. However,
this does come at the slight expense of decrease in quality of
the resulting answer set. Therefore, this technique can be seen
as a memory-quality or time-quality tradeoff.
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Fig. 4. Each source is partitioned into MECE classes.

Every source partitions the set of schedules into MECE
classes. Consider source A in the example depicted in Figure 4.
Each class represents a regular expression. Here, the partial
cost refers to the mean cost of samples belonging to that class.
For example, schedule 100100 belongs to the class 10∗. Cost
aggregation across sources is now carried over classes rather
than on schedules. Threshold algorithm is invoked to ascertain
the minimum cost class, and outputs a random schedule from
this class. Throughout this explanation, we assume that all the
sources have the same regular expression classes1 and present
a technique to determine such a partitioning.

Given a set of samples across s sources, and a total memory
budget B, we employ a decision tree based classification of
samples into D = B/s classes. The quality of the tree gener-
ated is measured by the global mean squared errors (GMSE)
present over the D leaf classes. Realizing that building the
optimal decision tree is NP-complete [11], we employ a greedy
algorithm. The algorithm follows an iterative procedure, and
in each iteration greedily grows the tree to maximize the
reduction in the GMSE of the current tree. Next, we explain
the algorithm.

Initially the decision tree has a single node (class), the reg-
ular expression ∗ representing the whole space of schedules.
Assume that the algorithm is run for K steps resulting in a
tree with K leaf nodes. We describe the next step involved in
this iterative procedure. Each leaf node is evaluated to find
the locally optimal binary split point, i.e., the split which
minimizes the sum of least squared errors in the resulting
child nodes. Note that each leaf node evaluated in the split
is a regular expression. Each variable rj in the LHS of the
expression below is either unassigned ′′.′′, or is assigned a
definite value in {0, 1} because of splits at the higher levels
of the tree.

GreedySplit(r1, .., ri, .., rn) =

min
unassigned i

(MSE(r1, .., 0, .., rn) + MSE(r1, .., 1, .., rn))

Finally, among all the K nodes, that node whose split maxi-
mizes the difference in the current MSE error at the node and
the sum of MSE errors of children is selected for partitioning.
This procedure is initialized with K = 1 and is iterated until
K = D. The L∞ error metric can also be employed while

1. However, if that were not the case, we conjecture that the aggregation of
schedules over multiple sources, each with a different class partitioning is NP-
hard. The complexity arises due to the combinatorial explosion involved in
the intersection of a set of regular expressions generated from each source to
determine a common schedule. Therefore, we adhere to uniform partitioning
across all sources.
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building the decision tree, but it discards the error from every
sample except for the maximum deviation. On the other hand,
the L2 error takes into account the error contribution from
each sample.

4.3 Ada: Algorithm
In this section, we employ a different greedy algorithm Ada
which trades computational power for huge savings in commu-
nication costs. Ada performs a greedy search for the optimal
solution sin the schedule space, employing a hill-climbing [11]
based technique. It also incorporates an efficient thresholding
scheme to avoid the expensive process of re-optimizing the
solution in the dynamic case. Next, we describe Ada’s search
algorithm.

Initially, a schedule is randomly chosen and its cost is
measured. If by toggling an event from push to pull (or vice-
versa) in the current schedule, a better cost is realized then the
resulting schedule is chosen as a candidate. Over all the events,
a set of candidates is generated for the next step. The candidate
with the smallest cost in the set is chosen as the current
schedule. This process is iterated until the solution cannot be
improved any further; or, the algorithm has reached a locally
optimal state. The algorithm is repeated with different seed
schedules, and the solution with the smallest cost is output.
The greater the number of runs the higher the probability of
convergence to the globally optimal solution. This algorithm
can be seen as a trade-off between the computational cost and
the quality of the solution.

When the underlying data distribution changes, the current
operating schedule may become sub-optimal and might neces-
sitate an expensive re-optimization procedure. In this section,
we discuss how to avoid such expensive online computational
costs by introducing thresholds on each parameter.

At a given state of operation, we maintain estimates for
each p(ri). Bits (push/pull events) are toggled by changes in
p(ri)’s associated with events. For this purpose, we identify
thresholds βri

for each p(ri) at the current schedule state, such
that if a p(ri) goes above or below its threshold, we change
the mode of operation from push to pull or vice versa. We
obtain these thresholds by analytically deriving equations on
p(ri)’s between the current schedule and a set of neighboring
schedules which differ in a single bit.

4.4 Threshold Setting
We first explain threshold setting when the events are mutually
independent. Consider Example 1 shown in Table 1. The opti-
mal schedule s1 = 011. Then the schedule change to s2 = 111
is conditioned on r1, and is triggered if C(s1) = C(s2) when
p(r1) = βr1 .

C(s1) = p(r2) + p(r3) + p(r2)p(r3)[1 + p(r1)]

= 0.3 + 0.4 + 0.3 × 0.4(1 + βr1)

C(s2) = p(r1) + p(r2) + p(r3)

= βr1 + 0.3 + 0.4

∴ βr1 =
0.3 × 0.4

1 − 0.3 × 0.4
≈ 0.14

We can generalize the above threshold setting scheme, for the
case when the events are conditionally dependent. Again, we
allow only the priors at the root of each dependence tree to
change. Even though the conditional probability tables remain
intact, the marginal probability of any other child (event) is
altered by updates to priors. The following example describes
the thresholding scheme.
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Fig. 5. Communication cost as a function of root proba-
bility p(r1). Thresholds β1 and β2 are set on p(r1) in order
to toggle the mode of the operation.

Consider a query with three events r1, r2 and r3. Let their
joint distribution be as shown in Figure 2. Assume that the
current optimal schedule is s1 = 011. All the thresholds
are set on root r1’s prior p(r1) since it is the only free
variable. Assuming that the rest of probabilities do not change,
a transition from schedule s1 = 011 to schedule s2 = 111 is
conditioned on r1, and is triggered if C(s1) = C(s2) when
p(r1) = βr1 .

C(s1) = p(r2) + p(r3) + p(r2, r3)[1 + p(r1|r2, r3)]

= p(r2) + p(r3) + p(r2, r3) + p(r1, r2, r3)

= p(r1)[p(r2|r1) + p(r3|r1) + 2p(r2|r1)p(r3|r1)]

+ p(r̄1)[p(r2|r̄1) + p(r3|r̄1) + p(r2|r̄1)p(r3|r̄1)]

= βr1 [0.3 + 0.1 + 2(0.3)(0.1)]

+ (1 − βr1)[0.2 + 0.4 + (0.2)(0.4)]

C(s2) = p(r1) + p(r2) + p(r3)

= p(r1)[1 + p(r2|r1) + p(r3|r1)]

+ p(r̄1)[p(r2|r̄1) + p(r3|r̄1)]

= βr1 [1 + 0.3 + 0.1] + (1 − βr1)[0.2 + 0.4]

∴ βr1 ≈ 0.08

For this transition, we denote βr1 = β1; similarly, for the
trigger on schedule s1 to schedule s3 = 001, the threshold β2

can be set. The threshold setting for this example is illustrated
in Figure 5. The cost of each schedule is a linear function of
the probability of the root variable r1. This can be validated
by the equations described above. At the current state of
operation p(r1) = 0.4, and the best schedule is s1. When
p(r1) decreases below βr1 = 0.08, the schedule s2 = 111
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becomes the optimal. Similarly, when p(r1) increases above
βr2 = 0.97, the best schedule changes to s3 = 001.

Algorithm 2 Dynamic Ada(S, p, thresholds, iter)
S := current schedule;
p := current probability vector of the k roots;
(β1,β2) := bounding threshold vectors on k roots;
iter := number of iterations for Ada to run;
begin procedure
status := β1 < p & p < β2; // k logical values
if status is not true then
while iter > 0 do

// until Ada runs into a local optimal
while S′ is not null do

S′:=changeSchedule(S′, p); // Greedy search
I:=S′;

end while
record optimal over all iterations G:=min(I, G);
S′: a new seed schedule;
iter:= iter-1;

end while
(β1,β2):= compute new thresholds on (G, p);
status := β1 < p & p < β2;
S := G;

end if
end procedure

Algorithm 3 changeSchedule(S, p)
begin procedure
mincost := scheduleCost(S, p);
initialize MIN to null;
for i = 1 : n do

S′:=Toggle ith bit of S;
C(S′) = scheduleCost(S′, p);
if C(S′) < mincost then

mincost := C(S′);
MIN := S′;

end if
end for
return MIN
end procedure

Threshold setting employing such analytical equations can
be extended to multiple roots. In the case of multiple roots,
Ada assumes that the probabilities of the remaining roots
remain unchanged while setting the threshold at a single root.
Note that irrespective of the depth of the tree, the probability
of any term p(ri, ..., rj) will be linear in the root prior p(r1),
since the conditional probability tables remain unchanged.
Hence, the total cost of a schedule, and consequently the
derived analytical equations for thresholds will always be
linear functions of root probabilities and therefore easy to
solve.

The complete technique to search for optimum is given
in Algorithms 2 and 3. In Algorithm 2, we use an array of
logical values status in order to detect threshold violations in

the current state S. When any of the thresholds is violated,
status changes; therefore, we need to re-optimize and run
the Ada algorithm. In every iteration, the changeSchedule
function (in Algorithm 3) is invoked to realize a better cost.
This algorithm is iterated until it reaches a local optimum, in
which all neighbors impose a larger communication cost. The
Ada algorithm is iterated over different seed schedules and the
optimal over all the iterations is output.

5 EXPERIMENTAL EVALUATION
In this section, we present a performance study demonstrating
the features of our system. We used synthetic and real data
in our experiments. The synthetic data set generates streams
using b-model data generation that will be explained below.
The real data contains an hour’s worth of all wide-area traffic
between the Lawrence Berkeley Laboratory and the rest of
the world. The trace captured 1.3 million TCP packets on
the Ethernet DMZ network, dropping about 0.0007 of the
total [19]. We first describe our simulation environment.

5.1 Simulation environment
In order to study our techniques empirically, we built a discrete
event simulator consisting of multiple data streams. We sched-
uled periodic tasks to initiate data arrivals for each stream.
Measurements were collected on machines with dual AMD
Athlon MP 1600+ processors, 2 GB of RAM, and running
Linux 2.4.19. In our experiments, we varied four different
system properties: the data characteristics, the network load,
the memory budget, and the number of events monitored.

5.2 Synthetic data generation
Network traffic tends to be bursty. For example, we may
observe a network router losing packets in bursts that are
sudden and short lived. In order to model bursty nature of
most real world data, Wang et al. [22] proposed an algorithm
for generating a bursty time series of length L = 2k in space
O(log L) and in time O(L). The time series consists of Y data
points, which is the number of total packets that arrives at the
subnetwork.

5.2.1 Bursty time-series
The technique starts with an appropriate value for the param-
eter b, 0.5 ≤ b ≤ 1, which determines the irregularity in the
data. For example, b = 0.5 means uniformity, and b = 1
means extreme irregularity. Out of all Y data points, Y ∗ b
of them are assigned to the first half of the series, and the
remaining Y ∗ (1 − b) data points are assigned to the second
half. This process continues recursively until L time points are
generated.

5.2.2 Data characteristics
Routers that are at widely dispersed locations generate possi-
bly independent events. In order to capture this environment
characteristic, we used randomization in data generation for
determining which half of the series gets the most number of
data points. In case of a security attack, routers in a specific
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region may start generating correlated events, i.e., there may
be a temporal correlation between the packet arrival rates. We
model such attacks in the network by injecting a randomly
chosen subset of pairwise correlations in the data. Assume
that we decide to incur a pairwise correlation between router
Ni and router Nj . We generate a time series for router Ni

using the above bursty model. We generate router Nj’s data
using router Ni’s values as seeds.

We also generated another dataset in which the correlations
were captured using first-order dependence trees. The whole
network was broken down into multiple disjoint trees. In
each tree, an internal node ri with parent rj samples the
conditional probability values p(ri|rj) and p(ri|r̄j) from a
uniform distribution. Correlated binary data streams were
generated using the above dependence trees. Experiments were
conducted with the height of each tree ranging between 2 and
5, and the total number of nodes ranging between 10 and 40.
In the dynamic case, updates to the priors at the root of each
tree were sampled from a uniform random distribution.

5.3 Network setup
The largest number of nodes n we use is 100 for the case
of independent streams, and 40 for correlated streams. As we
pointed out earlier, different networks might have different
traffic loads. Therefore, we experiment with a range of cost
parameters to study the effect of network load. Table 2 shows
the values of the parameters C1 and C2. Unless otherwise
stated, we use C2 = C3.

C1 10−3 10−2 10−1 1 1 1 1

C2 1 1 1 1 10−1 10−2 10−3

ratio 10−3 10−2 10−1 1 10 102 103

TABLE 2
Push/Pull ratios used in the experiments.

5.4 Competing Techniques
In our experiments, we measure the communication cost,
which is the sum of the push cost and the poll cost. The poll
cost consists of the pull cost and the ensuing answer cost. We
measure the computational complexity in terms of execution
time. We compared our algorithms SPA and Ada with three
other techniques:

1) all-push scheme: if a router detects an event, it imme-
diately reports the event to the monitoring station.

2) all-pull scheme: routers wait for explicit pull requests
from the monitoring station.

3) improved-value: a value based monitoring algorithm by
Raz et al. [7]. We explain the algorithm in Section 5.6.1.

5.5 Adaptivity to network conditions
In order to demonstrate the effect of network load on opti-
mization, we compare the performance of the SPA and Ada
with the other two non-adaptive algorithms, i.e., with all-push
and all-pull.
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Fig. 6. Communication cost with varying push/pull ratio
on a network of n = 40 events.

This experiment was performed on the synthetic data set
with n = 40 events. Figure 6 shows the results. Our al-
gorithms, especially Ada, adapts to the changing network
conditions by favoring push over pull for small ratios, and
vice versa for large ratios. This adaptivity in responding to
changes in the network is a key benefit of our algorithms,
since they can be applied over any range of network traffic
conditions.

5.6 Event Independence
In this section, we assume that the query registered at the
monitoring station involves all n events which are independent
of each other.

5.6.1 Case study: monitoring network traffic
In this section, we look at detecting an alarm condition on
n real-valued variables x1, . . . , xn. Let xt

i denote the value
of interface out traffic xi at node Ni at time t. Our goal is
to detect when

∑n
i=1 xt

i > T . The naive solution, i.e., all-
push, for this problem is as follows: at time t, if the current
local value xt

i exceeds the budget T/n, then send the value xt
i

to the station. At time t, if the station received one or more
event reports, then it polls all other nodes for their current
values. If the total sum exceeds T , then we generate an alarm.
This simple algorithm has a clear disadvantage when n is big,
since its expected cost ratio compared to all-pull (global poll)
goes to one [7]. The authors improve this simple value-based
algorithm by reducing the “budget” given to each local node,
in a way that a single event driven report will not force the
initiation of a global poll. For this purpose, they assume an
upper bound D (hypothetically the interface speed) on the
value of xi, and they issue a global poll only when l (1 ≤
l ≤ n) or more local variables exceed a threshold τ , which
is smaller than T/n: to ensure correctness we should have
(l − 1) ∗ D + (n − (l − 1)) ∗ τ ≤ T , which implies

τ ≤
T − (l − 1) ∗ D

n − (l − 1)
(2)

Note that for l = 1, this reduces to the naive solution above.
Our key observation here is that our optimizer can schedule l



10

nodes to push. The remaining n− l nodes are scheduled to be
conditionally pulled, which happens when there is a possibility
of an alarm condition: let rt

i denote the binomial event xt
i ≥ τ .

If ∀ ri ∈ R+such that rt
i = 1, then we issue a global poll.

Our optimal algorithm mentioned in Section 3.1 identifies the
top-l least probable event set and schedules them for push.

The authors assumed the communication cost of polling is
the same as the communication cost of pushing. Therefore,
we set C1 = 1, C2 = 1 and C3 = 0. We use WAN-traffic data
averaged with a moving window of size 256. We partition
the data into 50 small streams of size 10000, one for each
of n = 50 nodes (events). We set the global threshold T to
0.8nD, where n is the number of nodes and D is the maximum
value achievable. In this experimental setting D was equal to
1.003 × 104.

Figure 7 shows the results. Our algorithm which monitors
top-l least frequent events, incurs minimal communication cost
for 1 ≤ l ≤ 40. Each node in our scheme pushes its probability
value aperiodically to the station, if the current probability
value deviates by more than a slack of 0.1 from the last
reported value. Even though improved-value issues a global
poll only when l nodes exceed τ , it is highly likely to find a
set of l high-frequency events that fire at the same time. Since
our algorithm monitors the l low-frequency events, there is a
very low likelihood of a global poll. This results in substantial
cost savings.

As the value l increases, the threshold τ decreases and
hence, the probability of occurrence of local events in-
creases. This leads to higher communication costs for both
the schemes. When l reaches 41 the threshold drops to 0 since
((l − 1)D = 40 ∗ D = 0.8 ∗ n ∗ D = T )), and every event
starts firing. At this point, both the schemes push 41 events
and poll the remaining 9 events. When l reaches 45, both the
schemes push 45 events and poll the remaining 5 events. Since
C1 = C2 = 1, and C3 = 0, the cost of pushing and pulling are
equal. Hence, the total cost attains the maximum and remains
a constant after l = 41.
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Figure 8 shows the communication costs of the scheme with
varying slack parameter δ on monitoring event probabilities.
Updates to the probability values at each node are sent to
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Fig. 8. Total Communication cost with varying slack
parameter δ on WAN-traffic (w = 256) for n = 50.

the Base Station, only if they exceed the slack value δ. The
test configuration is identical to the previous experiment with
l set to 30. The total cost of the improved value scheme is
independent of the slack term and hence is a constant. On the
other hand, the total cost of the top-k scheme composes of two
terms: a)the cost of monitoring the event probabilities and b)
the incurred push/pull costs. The first term, i.e., the cost in-
volved in monitoring the probabilities is inversely proportional
to the slack value. Hence, at slack values smaller than 0.1 the
monitoring costs are quite high and offset the optimization
benefits of the top-k scheme; whereas, at large slack values
the monitoring costs are quite low, but the performance of the
top-k scheme is also lowered, as the optimizer operates on
stale event probabilities.

5.6.2 Scalability with number of events

We use WAN-traffic data with a moving average window
of size 64. We compare the performance of our algorithm
with the all-push and the improved value schemes in the cost
configuration C1 = 1, C2 = 1 and C3 = 1. The threshold τ
is calculated using Equation 2. For the All-Push scheme, any
local value that exceeds τ is caught by local traps. We measure
the scalability of our optimizer with the number of events.
Figure 9 shows the results. All-push incurs a monitoring cost
that is up to two orders of magnitude more than our optimizer.
The performance of our technique is commendable and is the
result of considering the low frequency events. However, this
improvement comes at the cost of computational overhead at
the station. Figure 10 shows the total time the algorithms take
to run to completion. Even though our total computational
costs are higher than the competing schemes, the average
computational cost for optimization, as seen later, is within
the tolerable limit.

5.7 Conditional Dependence

In this section, we first consider the scalability of our algo-
rithms with varying number of events and then measure the
memory and computational overheads of each algorithm.
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5.7.1 Scalability with events

Figure 11 plots the communication costs of the SPA and Ada
algorithms with the competing techniques. The plot shows that
our algorithms outperform the competing algorithms by almost
two-orders of magnitude. The SPA algorithm was alloted a
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synthetic data.
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memory budget B of size 400KB. Since C1 = C2 = C3 = 1,
the cost of the All-pull scheme is always higher than the cost
of the All-push scheme. As the SPA algorithm evaluates the
minimum cost schedule over a large set of samples (104) it
incurs a smaller communication cost compared to the other
two techniques. Similarly, Ada is quite successful in executing
a greedy search for the optimal. It either ascertains the optimal
schedules for small event sizes or schedules with a very small
cost for large event sizes.

Figure 12 compares the communication costs of the SPA
and Ada algorithms with a static optimizer which generates
the optimal schedules. The optimizer enumerates schedules
to calculate the minimum cost schedule. The figure depicts
that Ada’s performance is (almost) optimal in most of the
cases. This experiment could be performed only at small event
sizes because i) evaluating the cost of all the schedules is
a computationally expensive procedure and ii) recalculating
the optimal for each update to the event distribution makes it
infeasible to employ the static optimizer.

Figure 13 illustrates the average computational response
times of all the schemes. Evaluating the cost of a schedule
took around 3 milliseconds (on the average) for event size
n = 10 and around 30 milliseconds for n = 40. The SPA
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algorithm bypasses the expensive computation of online cost
computation by a) reusing the partial costs evaluated a priori to
compute the total cost and b) employing the threshold-based
pruning on the sorted set of lists to evaluate a small set of
candidates.

For small event sizes, we observed that the threshold-
settings of Ada result in large savings. Further, even if the
thresholds are violated, the number of iterations to reach the
optimal were small. Hence up to a network size of n = 30
Ada provides good response times of 0.5 seconds. However,
for large event sizes, Ada has to iterate over a large seed size
(of up to 100) in order to find a schedule with a small cost as
the search space explodes exponentially in n. As a result, we
noticed that Ada has high computational costs.

4KB 40KB 400KB
0

0.5

1

1.5

2

2.5

memory allocated (B)

co
m

m
un

ica
tio

n 
co

st
 (x

 10
4 )

 

Fig. 14. SPA algorithm: Communication cost with varying
memory budget size on synthetic data.

 

Fig. 15. Preprocessing cost with varying memory budget
for the SPA algorithm on the synthetic-data set.

5.7.2 Memory and Computational Overhead

Figure 14 plots the communication costs of the SPA algorithm
with varying memory budget (B) for n = 20. When the
memory budget increases, the SPA algorithm searches for
the optimal over a larger space of regular expression classes
and hence computes schedules with smaller cost. Figure 15
illustrates the preprocessing overhead involved in maintaining

different memory budgets for a fixed sample size of 104

samples. We have decomposed the computational cost into
the different components involved in sampling, building the
decision tree, sorting the lists and maintaining a hash table
for providing a random access into each list. The predominant
cost as seen from the figure lies in building the decision
tree, since the GreedySplit algorithm is invoked at each step
to classify the samples into D classes. For all the memory
sizes, we have omitted the computational time involved in
evaluating the schedule cost over the large set of samples.
This cost evaluation is independent of B and was measured
to be approximately 210.23 seconds for this sample set.

 

Fig. 16. Convergence of Ada to the optimal cost in
number of iterations, for n = 10 events.

5.7.3 Convergence of Ada

Figure 16 depicts the convergence rate of Ada. The figure plots
the number of iterations required by Ada in order to converge
to the optimal schedule for a network of size n = 10. The
optimal solution was determined by enumerating the costs of
all schedules. The experiment was performed for 100 runs. The
histogram plot shows that in 90% of the runs, Ada converged
to the optimal within 2 iterations.

5.8 Summary of experimental results
We summarize our experimental results and the corresponding
tradeoffs as follows:

• In the case of independent streams, our optimal algo-
rithm which monitors the top-k least frequent event set
outperforms the competing schemes by up to two-orders
of magnitude.

• In the case of correlated streams, our algorithms Ada and
SPA outperform the all-push, improved-value and all-pull
schemes; further, they adapt well to changing network
conditions.

• If communication cost is the only over-riding concern,
then Ada algorithm is the best scheme.

• If computational response times of less than 0.5 seconds
are required, then for network sizes of up to 30 nodes,
Ada is preferred over SPA. Beyond 30 nodes, the SPA
algorithm is preferred.
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6 RELATED WORK

Olston et al. [1], [18] show how to trade precision for
performance using approximations in a distributed system. A
central station coordinates a number of distributed sites, and
installs individual constraints in each site. These constraints
specify the amount of deviation that a site value can have
from its last reported value to the station without violating
the query invariants. As long as the invariants hold at each
site, no message communication is necessary. This work is
complementary to our work, where we need to identify the
top-k least frequent event set continuously. Chu et al. [4]
extend the above work to a sensor network setting, and
exploit the spatial-correlations among the attributes to further
reduce communication costs. This work can be considered to
be optimization over strategies which employ only the push
mechanism. Jain et al. [12] consider the resource management
problem as a filtering problem, where the objective is to filter
out as much data as possible to conserve system resources, and
at the same time to meet users’ precision requirements. For
this purpose, they employ a dual Kalman filter approach where
a filter at the central server mimics the filter at the remote
source in order to predict the source values for conserving
communication resources.

Deshpande et al. [6] propose a new framework for identify-
ing correlations among attributes in order to reduce commu-
nication cost in acquisitional query processing. When execut-
ing queries with several predicates over attributes with high
acquisition costs, it is often times beneficial to re-write the
query by introducing correlated attributes with relatively lower
acquisition cost in order to filter out non-potential candidates
early in the query stage with minimal cost. Their cost model is
similar to our cost model in this paper, except that they focus
on producing a sequential-pull query plan which determines
greedily the next attribute to pull given the set of already pulled
attributes. Unlike our paper, they do not consider the push
strategy during optimization.

Zhu et al. [23] consider techniques for disseminating erratic
data streams stored in a server to interested clients. Erratic data
such as sensor streams, stock prices, and more importantly
network statistics, change frequently and unpredictably. There-
fore, a linear change model does not capture the source data
characteristics adequately. Instead, a Brownian motion model
(non-linear change model) is shown to achieve a higher fidelity
on erratic data, compared to other simpler change models as in
the above case. In our monitoring system, rather than caching
and consistency issues due to local erratic data changes, we are
mainly interested in those times when the current data profile
over a relatively short time period do not conform to the long
running base profiles over larger time periods. Furthermore,
the communication in our model is between the erratic data
source and the server; therefore, an adaptive push-pull model
is more adequate in our settings.

More recently, Kifer et al. [14] proposed a change-detection
model in a streaming context, where base-line normal activity
profiles are compared against running activity profiles. Non-
parametric statistics are computed and used in thresholding
for alarms. Each network element in our monitoring system

can use this scheme to decide when to push, and reduce
communication with the server considerably. This approach
corresponds to modeling the stream, and transmitting the
model itself. The model gets updated in case of a “major”
shift in data distribution.

Dilman and Raz [7] proposed the original reactive net-
work monitoring problem of achieving significant reduction
in management overhead by combining global polling with
local event driven reporting. Their solution does not exploit
the correlations across events nor the frequency of occurrence
of events. By modeling the correlations across events as a
Bayesian Network, and designing algorithms which exploit
such dependencies, we further reduce communication costs.

Massie et al. [17] consider a distributed and hierarchical
system “Ganglia” that monitors a large number of clusters.
Each cluster is maintained as a single entity, and all nodes
within the same cluster always have an approximate view of
the entire cluster state. This approach is feasible under frequent
failures, which is typical of clusters. Meta nodes at higher
levels of the hierarchy federate multiple clusters using point-
to-point connections with representative nodes of its children
clusters. The monitoring system is currently being used in
clusters, Grids, and planetary-scale systems. We can deploy
our framework on top of Ganglia, which will provide a fault
tolerant and resilient communication medium.

Ramamritham et al. [5], [21] consider adaptive data dis-
semination techniques for dynamic data. In their approach,
users specify individual coherence requirements over data
values, and the system tries to guarantee that users’ view of
the data is never out-of-sync by more than their coherence
requirements. The scheme applies a linear change model on
source objects. The degree to which coherence requirements
are met defines the system’s fidelity. There are two different
ways of communication in the system: “servers” can push
the data to “proxies”, which in turn can push the data to
interested “clients”. Or, proxies can pull the data from the
servers. Given the resource constraints at the server and the
available bandwidth, the system adaptively chooses between
push and pull for each existing data connection to increase the
fidelity in the face of data source crashes. Our work is different
than this model, since we look at optimizing the schedule
of pushes and pulls from a number of data sources given an
arbitrary query workload, rather than locally optimizing each
data connection.

7 CONCLUSIONS
In this paper, we presented a framework for monitoring global
system parameters as a function of local properties of network
elements. We considered the scheduling of network elements
for a given probability of occurrence of events such that the
monitoring cost in terms of message exchanges is minimal.
We designed an optimal algorithm when the events are in-
dependent and proved that optimal solution is NP-complete
when the events are conditionally dependent. We proposed
two efficient solutions, the SPA and the Ada algorithms which
employ greedy techniques in the search for schedules with
low costs. The SPA technique precomputes partial costs, and



14

the Ada algorithm employs a threshold-setting scheme in
order to decrease the reoptimization cost as the environment
characteristics change over time. Our extensive evaluation on
both the real-world and synthetic data sets show that our
algorithms outperform the competing techniques by two orders
of magnitude.

8 FUTURE WORK
There are several avenues for future work: if we consider
dependencies regarding pull events by employing a sequential
pull strategy, we can decrease the total cost of a schedule.
However in this case, the probability formula is more complex
than just a product term. Furthermore, the tradeoff between the
accuracy and the computational cost in case of using higher
order components for approximating multivariate distributions
is an open issue to explore. Currently, the paper considers
the conjunctive query (an and operator) only; however, the
problem becomes more interesting and complex if we intro-
duce the disjunction (the or operator). Cost optimization over
a predicate involving both the operators, expressed in a CNF
or DNF [9] form is an interesting direction of research.

Extending Ada’s analytical thresholding scheme to the set-
ting where the priors at each tree are allowed to change si-
multaneously is an interesting direction of our future research.
Since the priors evolve at a slow rate, we can assume that all
updates to the priors are bounded within a slack of δ. If we
remove the slack assumption, then the analytical equations are
transformed to polynomials of order k, where k is the number
of roots. This corresponds to setting the threshold in the k-
dimensional space of root priors.
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APPENDIX A
APPROXIMATING THE PROBABILITY DISTRIBU-
TION
A method for optimal approximation of an n-variate discrete
probability distribution by a set of n − 1 second order com-
ponent distributions using first order dependence relationships
was considered by Chow and Liu [3]. Out of a possible

(
n
2

)

second-order component distributions, the authors approxi-
mate a multivariate probability p(q) using at most n − 1 of
these lower order component distributions as

pa(q) =
n

∏

i=1

p(rmi
|rmj(i)

), 0 ≤ j(i) ≤ i (3)

where m1, . . . , mn is an unknown permutation of the inte-
gers 1, . . . , n. By definition, p(ri|r0) is equal to p(ri). Each
variable is conditioned on at most one other variable, and
the dependence relationships can be represented by a tree
called first-order dependence tree. If j(i) is 0 for exactly
one variable, the tree is connected and has n − 1 branches.
Otherwise, it is a forest of trees.

The goodness of approximation pa(q) is defined in terms
of the discrimination information as

I(p, pa) =
∑

q

p(q) log
p(q)

pa(q)
(4)

Minimizing this closeness measure I(p, pa) is equivalent to
maximizing the total branch weight in the dependence tree
representation [3]. The weight on a given tree edge between
ri and rj(i) expresses the mutual information between ri and
rj(i), which is equal to

I(ri, rj(i)) =
∑

ri,rj(i)

p(ri, rj(i)) log
p(ri, rj(i))

p(ri)p(rj(i))
(5)

where we use a maximum likelihood estimator computed on
the available samples to approximate the joint probability.

The tree representation of maximum branch weight can
be constructed using Kruskal’s spanning tree algorithm after
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we compute and sort all
(

n
2

)

mutual information measures
in descending order. The whole operation takes O(n2 log n)
time. Edges are selected in the given order, and tested for
inclusion into the on-going tree representation. An edge is
chosen to be in the representation if the addition of the edge
does not create a cycle in the tree. We compute this tree
periodically. Therefore, the computational cost is amortized.

In order to get better approximations, one can also use
more than n− 1 second order components or possibly higher
order components (higher than two); however this comes at
a higher computation cost: a convergent iterative procedure
may need as many as

(
n
i

)

i-th order components to obtain the
optimal approximation. This amounts to maintaining O(n2)
second order components for i = 2, and O(n3) third order
components for i = 3, which also equals to the time and space
complexity of the procedure. The details of this scheme can
be found in [16]. Due to its overheads, we do not explore this
scheme any further; we restrict ourselves to n−1 second order
components. This has the effect of (a) keeping the state space
small in size and (b) allows us to utilize algorithmic techniques
(as opposed to iterative) to obtain the best approximation.

APPENDIX B
HARDNESS OF OPTIMIZATION IN THE CONDI-
TIONAL DEPENDENCE CASE

In this section, we show that the optimization problem is in-
tractable for the case of conditional dependence. Given a joint
distribution represented by a first-order dependence (Bayesian)
tree, the problem resolves to ascertaining the minimum cost
schedule in the class χk, i.e., the class composing of schedules
with k pushes. In fact, we prove a stronger result and show
that problem is an instance of the 0-1 Integer Programming
problem even when the first-order dependence tree degenerates
to a forest of edges. Consider the formulation of the problem
in 6, where |R+| = k.

∑

ri∈R+

p(ri) + p(R+) ∗

(

∑

r∈R−

C2 + p(r|R+)C3

)

Assume that the dependence tree is of the following form,
where network element r2 is dependent only on event r1, and
event r4 is dependent only on event r3, and so on. In the
general case, ri+1 is dependent on ri for all i’s which are odd.
Hence the probabilities p(ri+1|ri) and p(ri+1|r̄i) are given by
the conditional probability tables (known a priori) if i is odd.
All other pairs of events are conditional independent.

Now, we can transform the above problem expressed above
into an equivalent 0-1 Integer Programming formulation as
follows. The Integer Programming formulation was shown
to be NP-hard [9]. Assume that for each ri, there is a
corresponding variable yi which is set to 1 if ri is set to push
and 0 otherwise. Then, Equation shown in 6 can be formulated
as the following problem:

Minimize C1 ∗ S1 + C2 ∗ S2 + C3 ∗ S3, where

S1 =
n

∑

i=1

yi ∗ p(ri) // push costs

S2 = J ∗ (n − k) // pull costs

S3 = J ∗
∑

all (rj ,rj+1) dependencies

Fj // answer costs

J =
∏

all (rj ,rj+1) dependencies

Dj

Dj = yjyj+1p(rj , rj+1) + yj(1 − yj+1)p(rj)

+ (1 − yj)yj+1p(rj+1) + (1 − yj)(1 − yj+1)

Fj = (1 − yj)(1 − yj+1)[p(rj) + p(rj+1)]+

= yj(1 − yj+1)p(rj+1|rj) + (1 − yj)yj+1p(rj |rj+1)

subject to constraints
n

∑

i=1

yi = k

The above formulation splits up the total costs into push
costs, the S1 term, the costs involving the conditional pull
requests, the S2 term, and the costs involving the answers to
the requests, the S3 term. J denotes the probability of pull,
i.e., p(R+). Each term in J , Dj denotes the contribution of
events rj and rj+1 to p(R+) under all possible combinations:
1) if both the events are present in the push set 2) if only one
of them is present in the push set or 3) if none of them is
present in the push set. Each term Fj denotes the conditional
probability of answering the query. It can also decomposed
into the three cases as above.

APPENDIX C
EXPERIMENTS CAPTURING DATA CHARACTER-
ISTICS
Finally, we study the effect of data characteristics on perfor-
mance of Ada while varying push/pull ratio. We use indepen-
dent and correlated streams that are generated synthetically
(see Section 5.2). Figures 17(a) and 17(b) show the results
for independent streams and correlated streams respectively.
For each ratio value, the first column shows the result for Ada
assuming independent events and the second for Ada assuming
joint-dependence on events. Since push cost is modeled in the
same manner for both schemes, the pull cost will be important
in differentiating the overall performance. First, consider the
case of independent streams. Answers with regards to pull
requests are not likely when the underlying data streams
generate independent events. This implies that the pull cost
will be small compared to the push cost. Therefore, we expect
both schemes to perform similarly. As shown in Figure 17(a),
the overall performance of both schemes are comparable for
all ratios.

However, when we consider correlated streams, the pull
cost starts to dominate due to the increased likelihood of co-
occurrence. For small ratios, the pull requests and answers
have a larger cost compared to the push messages. Therefore,
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(b) Correlated streams

Fig. 17. Effect of data characteristics on performance of Ada on a network of n = 15 events. We measure
communication cost vs. varying push/pull ratio. For each ratio, the first column shows the result of Ada assuming
independent events and the second for Ada assuming dependence on events.

Ada (dependent) scheme outperforms its counterpart by up to
five times as shown in Figure 17(b). For large ratios, the push
messages are far more expensive than the pull requests and
answers, and drive the trend in the overall cost. Therefore, the
performance of both schemes are similar.

The decrease in the total cost for the ratios 1, 10 and 100
in case of both independent and correlated streams is due to
the decreasing number of events that are pushed.

APPENDIX D
MULTIPLE QUERIES

In this section, we extend the optimization problem of mon-
itoring a single query to multiple queries. The problem for-
mulation allows for cost reduction across multiple queries by
allowing the sharing of push events across multiple queries.

Let R denote the set of all local events. We use R+ to
denote the set of events that are pushed, and R− to denote
the set of events that are pulled in a given schedule S. Let Q
with cardinality m denote the set of queries registered at the
monitoring station. For each query Qj ∈ Q, where 1 ≤ j ≤ m,
we define two sets:

Q+
j = {ri|ri ∈ Qj ∩R+}

Q−
j = {ri|ri ∈ Qj ∩R−}

Each event r in Q−
j is pulled only if all events in Q+

j occur,
which happens with probability p(∩ri∈Q+

j
ri)=p(Q+

j ). The
answer to this pull request occurs with probability p(r|Q+

j ),
which is the conditional probability of occurrence for r given
that all push events occurred. For example, let the schedule
S be 010. Then, the sets for query Q1 are Q+

1 = {r2}
and Q−

1 = {r1, r3}, and for query Q2 are Q+
2 = {r2} and

Q−
2 = {r1}. We assume no sharing of pull events between

queries at the station. We can formulate the cost C(S) of S
in terms of the probabilities p(ri)’s, and the cost parameters

C1, C2, and C3 as follows:

=

push
︷ ︸︸ ︷

p(r2)C1 +

pulling for Q−

2
︷ ︸︸ ︷

p(r2)(C2 + p(r1|r2)C3)+
pulling for Q−

1
︷ ︸︸ ︷

p(r2)(C2 + p(r1|r2)C3) + p(r2)(C2 + p(r3|r2)C3)

where each individual term denotes the expected cost.

D.0.1 Scalability with number of queries

Ada has a linear time dependency in the number of queries
registered at the station. In order to validate our analytical
expectation, we measured the execution time while increasing
the number of queries m. Our experiments were run on a
test network of size n = 40, with unit message costs and for
various query workloads. Table 3 summarizes the results we
obtained and confirmed that the time dependency is in fact
linear in terms of the number of queries m.

m 1 5 10 15 20 25 30 35

time 20 49 82 112 155 198 235 263

TABLE 3
Execution time of Ada (in seconds) with varying number

of queries m on n = 40 events.

APPENDIX E
ADA’S REACHABILITY OF OPTIMAL STATE
A monitoring algorithm that decides which variables to mea-
sure based up on values obtained in the past is optimal, if there
is no other correct algorithm with less cost. Jiao et al. shows
that optimal monitoring algorithms may not exist [13]. One
can create scenarios where the neighborhood of the current
operating state, which was previously optimal, and is currently
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a suboptimal state, does not allow any transitions, because
each neighbor state imposes a larger communication cost. If
the number of variables is large, reaching a global optimum
would require a random jump of some sort and we show that
this jump is more than a constant number of edges:
Theorem E.1: Let S0 denote the optimal solution for some

initial configuration. We show that there exists an execution
scenario in which

• There will be a T -step neighbor Sopt of S0, and it will
have the smallest cost.

• All the other K-step neighbors of S0, where 1 ≤ K ≤ T ,
will have larger costs than Sopt.

A T -step neighbor being the global optimum for an arbitrary
T implies that a very large neighborhood needs to be searched
for finding the global optimum.

Proof: The proof follows from a series of lemmas which
we will show next.

We will show the proof in the generalized setting of multiple
queries as defined above. Assume that we have T queries
such that each query Qi for 3 ≤ i ≤ T + 2 is expressed
as Qi : {r1, r2, ri}. Therefore, the ranges r1 and r2 are the
only common elements among the queries. Let each p(ri) be
equal to δ where 0 ≤ δ ≤ 1. In the ensuing development, we
will assume that the events are independent, and the message
costs are C1 = C2 = C3 = 1.

For a specific set of initial values of δ and T , the optimal
schedule is S0 = 1100 . . .0, which pushes from r1 and r2,
and pulls from all the other ranges. With all other system
variables constant, we will keep increasing p(r2), and prove
that at some point in time for a specific value of p(r2), the
optimal schedule will be Sopt = 1011 . . .1, which pushes from
all ranges except r2. Furthermore, Sopt cannot be reached from
S0 since its immediate neighbors will have larger costs than
itself. For reaching global optimum Sopt, a random jump that
involves T +1 steps is required. This also proves that a very
large neighborhood needs to be searched to find the global
optimum, since T is arbitrary.

In order to prove our claim, we will consider the schedules
that start with 11, 01, or 10. Each of these schedules are
followed by any combination of 0s and 1s for the remaining
T ranges. There is only one viable schedule that starts with
00, which is followed by T 1s, since we need to have at
least one push for each query. We enumerate the commu-
nication cost for the set of schedules as follows: we use
(i) = cost(11 . . .), (ii) = cost(01 . . .), (iii) = cost(10 . . .)
and (iv) = cost(001 . . .1),

i) (T − K)δp(r2)(1 + δ) + Kδ + p(r2) + δ
ii) 2(T − K)p(r2)(1 + δ) + p(r2) + Kδ + Kδp(r2)(1 + δ)

iii) (T − K)δ(1 + p(r2)) + (T − K)δ(1 + δ)+
Kδ2(1 + p(r2)) + Kδ + δ

iv) T δ(2 + δ + p(r2)) + T δ

where K ≤ T denotes the number of pushes among the ranges
ri for 3 ≤ i ≤ T +2. The schedule S0 is in set (i) for K = 0.
Immediate neighbors of S0 are the schedules for K = 1 in (i),
the schedule for K = 0 in (ii), and the schedule for K = 0
in (iii). We will proceed step by step to prove our claim. We
start off by showing that:

Lemma E.1: For all schedules in (i), the cost increases with
increasing K .

Proof:

−Kδp(r2)(1 + δ) + Kδ
−K(δp(r2) + δ2p(r2)) + Kδ
K(δ − δp(r2) − δ2p(r2))
K(1 − p(r2)(1 + δ))

where if p(r2)(1 + δ) < 1, the cost increases with increasing
K .
Lemma E.2: For all schedules in (ii), the cost decreases

with increasing K .
Proof:

−2Kp(r2)(1 + δ) + Kδ + Kδp(r2)(1 + δ)
−2Kp(r2) − 2Kδp(r2) + Kδ + Kδp(r2) + Kδ2p(r2)
−2Kp(r2) − Kδp(r2) + Kδ + Kδ2p(r2)
K(δ2p(r2) − δp(r2) − 2p(r2) + δ)
K(p(r2)(δ2 − δ − 2) + δ)

where p(r2)(δ2 − δ − 2) + δ < 0 since δ ≤ p(r2) and the
polynomial δ2−δ−2 is less than or equal to −2 for 0 ≤ δ ≤ 1.

Lemma E.3: For all schedules in (iii), the cost decreases
with increasing K .

Proof:

−Kδ(1 + p(r2)) − Kδ(1 + δ) + Kδ2(1 + p(r2)) + Kδ
−Kδ − Kδp(r2) − Kδ − Kδ2 + Kδ2 + Kδ2p(r2) + Kδ
−Kδp(r2) − Kδ + Kδ2p(r2)
K(δ2p(r2) − δp(r2) − δ)

where δ2p(r2)− δp(r2)− δ < 0, since δ2− δ is less than zero
for 0 ≤ δ ≤ 1.

Consider the schedules that are one step away from S0: the
schedule S1 that pushes only from r2, the schedule S2 that
pushes only from r1, and the schedule S3 that push from r1,
r2, and any one of the remaining ranges. According to the
above formulation, from (i) we get S0 for K = 0 and S3

for K = 1, from (ii) we get S1 for K = 0, and from (iii)
we get S2 for K = 0. Note that from (iv) we cannot get a
schedule that is one step away from S0. Among the schedules
in sets (i), (ii), (iii), and (iv), the least costly schedule is S0

in (i), S4 for K = T in (ii), S5 for K = T in (iii), and the
singleton S6 in (iv).

We illustrate all these concepts with an example. For T = 2,
we have four ranges as r1, r2, r3, and r4, and two queries
as Q3 : {r1, r2, r3} and Q4 : {r1, r2, r4}. We denote the
schedule 1100 as S0. The neighbors of S0 are S1 = 0100,
S2 = 1000, and the set {1101, 1110}. The schedules S we
consider altogether are: S0 = 1100, S1 = 0100, S2 = 1000,
S3 = 1101 or S3 = 1110, S4 = 0111, S5 = 1011, and
S6 = 0011. We first show that S0 is the least costly schedule
for p(r2) = δ. The costs associated with each schedule ∈ S
are:
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cost(S0) = T δp(r2)(1 + δ) + p(r2) + δ
cost(S1) = 2Tp(r2)(1 + δ) + p(r2)
cost(S2) = T δ(1 + p(r2)) + T δ(1 + δ) + δ
cost(S3) = (T − 1)δp(r2)(1 + δ) + δ + p(r2) + δ
cost(S4) = p(r2) + T δ + T δp(r2)(1 + δ)
cost(S5) = T δ2(1 + p(r2)) + T δ + δ
cost(S6) = T δ(2 + δ + p(r2)) + T δ

The schedule S3 is in the same group (i) with S0. Therefore, it
has a larger cost because of a larger K . Consider the schedule
S4. Certainly, cost(S0) ≤ cost(S4) since δ < T δ for 1 < T .
Note that this inequality is independent of the value of p(r2).
Since S4 is the least costly in (ii), all other schedules including
S1 in (ii) have a larger cost than S0. Among schedules in (iii),
S5 is the least costly schedule.

cost(S0) cost(S5)
T δp(r2)(1 + δ) + p(r2) + δ T δ2(1 + p(r2)) + T δ + δ
T δ2(1 + δ) + δ T δ2(1 + δ) + T δ
δ T δ

where RHS is always larger for 1 < T . This implies that S2

in (iii) also has a larger cost than S0. The schedule S5 has a
smaller cost than the schedule S6, which is the only member
in (iv) as shown below:

cost(S5) cost(S6)
T δ2(1 + p(r2)) + T δ + δ T δ(2 + δ + p(r2)) + T δ
T δ(1 + p(r2)) + T + 1 T (2 + δ + p(r2)) + T
T δ + T δp(r2) + T + 1 2T + T δ + Tp(r2) + T
T δp(r2) + 1 2T + Tp(r2)

since δ ≤ 1 and 1 ≤ T , RHS is larger than LHS. This implies
that S0 has a smaller cost than the schedule S6. Also note that
the inequality between S5 and S6 does not depend on p(r2).

Up to now, we have shown that S0 can always stay larger
than its immediate neighbors for a specific system configu-
ration. Next we will show that the schedule S5 will have a
smaller cost than S0 for some value of p(r2). In order to find
this cut-off point for p(r2), we compare the schedules S0 and
S5 as follows:

cost(S0) cost(S5)
T δp(r2)(1 + δ) + p(r2) + δ T δ2(1 + p(r2)) + T δ + δ
δTp(r2) + p(r2) δ2T + δT
p(r2)(1 + δT ) δ2T + δT

p(r2) = δ2T+δT
1+δT

For example, let δ be 0.1. For T = 2, we have the cut-off point
at 0.22/1.2, which is 0.1833. So, when we keep increasing
p(r2), starting from p(r2) = δ = 0.1, we will have the least
costly schedule S5 when p(r2) = 0.1833, but all schedules in
the neighborhood of S0 will have larger costs than S5.


