
UNIVERSITY OF CALIFORNIA
Santa Barbara

Analysis, Detection, and Exploitation of Phase
Behavior in Java Programs

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Priya Nagpurkar

Committee in Charge:

Professor Chandra Krintz, Chair

Professor Timothy Sherwood

Professor Tobias Hollerer

September 2007

The Dissertation of
Priya Nagpurkar is approved:

Professor Timothy Sherwood

Professor Tobias Hollerer

Professor Chandra Krintz, Committee Chairperson

August 2007

Analysis, Detection, and Exploitation of Phase Behavior in Java Programs

Copyright © 2007

by

Priya Nagpurkar

iii

Dedication and Gratitude

I dedicate this dissertation to my parents, Ashok and Rekha Nagpurkar, who never
cease to amaze me with the perfect balance between independence and guidance that
they have always struck in influencing my life. Their faith, encouragement and support,
further reinforced by that of my brother, Ravindra, has played an important role in my
decision to pursue, and in successfully completing this work.

My advisor, Chandra Krintz, played an equally important role, by recognizing and
bringing out my potential for research. Her energy and enthusiasm for both research,
and teaching were, and will continue to be, a constant inspiration. She has been a
model guru, by being a good friend, philosopher, and guide. Many thanks also to
Tim Sherwood, and Tobias Hoellerer for their guidance as members of my dissertation
committee, and to our collaborators from the I.B.M. T.J. Watson Research Center for
their valuable advice. Michael Hind, Peter Sweeney, Trey Cain, Mauricio Serrano, and
Jong-Deok Choi were all excellent mentors.

I would like to express deep gratitude towards all my friends, old and new. Special
thanks to my close friends, Rekha, Shilpa, Puja, Nicole, and Martina for being my
extremely reliable support structure in times of need; to Lingli and Ye, for being great
colleagues and neighbors; to Selim for great evenings in the climbing gym; and to
Hussam for all the cups of tea; These and other members of the RACE lab made it a
great place to work or to hang out. Visits to the CS office were always pleasant, thanks
to Amanda, Greta, Julia, Beejay, and the rest of our very cheerful office staff. Finally,
playing ultimate with the CS team was always something to look forward to – thanks
to all of you on the ultimate team for your camaraderie!

iv

Acknowledgements

The text of Chapter 3 is in part a reprint of the material as it appears in the proceedings
of Elsevier Science of Computer Programming – Special Issue on Principles Practices
and Programming in Java, Vol. 59. The dissertation author was the primary researcher
and author and the co-author listed on this publication ([82]) directed and supervised
the research which forms the basis for Chapter 3.

The text of Chapter 4 is in part a reprint of the material as it appears in the pro-
ceedings of the Fourth Annual International Symposium on Code Generation and Opti-
mization (CGO). The dissertation author was the primary researcher and the co-authors
listed on this publication ([80]) directed and supervised the research which forms the
basis for Chapter 4.

The text of Chapter 6 is in part a reprint of the material as it appears in the pro-
ceedings of ACM Transactions on Architecture and Code Optimization (TACO),Vol.
3, Number 1. The dissertation author was the primary researcher and author with sig-
nificant contribution from one of the co-authors, Hussam Mousa. The remaining co-
authors listed on this publication ([84]) directed and supervised the research which
forms the basis for Chapter 6.

The text of Chapter 7 is in part a reprint of the material as it appears in the proceed-
ings of the Sixteenth International Conference on Parallel Architectures and Compila-
tion Techniques (PACT). The dissertation author was the primary researcher and author
and the co-authors listed on this publication ([79]) directed and supervised the research
which forms the basis for Chapter 7.

v

Curriculum Vitæ

Priya Nagpurkar

Education

2007 Doctor of Philosophy in Computer Science,
University of California, Santa Barbara.

2007 Master of Science in Computer Science,
University of California, Santa Barbara.

2001 Bachelor of Engineering in Computer Engineering,
Pune University.

Professional Experience

2006 Summer Intern,
I.B.M. T.J. Watson Research Center.

2003 – 2007 Graduate Research Assistant,
University of California, Santa Barbara.

2001 – 2003 Graduate Teaching Assistant,
University of California, Santa Barbara.

2000 Intern,
VERITAS Software India Ltd. (now Symantec), Pune, India.

Professional Activities

2007 Program Committee Member, International Conference on Prin-
ciples and Practices of Programming in Java

2006 Program Committee Member, UCSB Graduate Student Re-
search Conference

2006 Submissions Chair, International Conference on Principles and
Practices of Programming in Java

2006-2007 Graduate Student Representative, Colloquium Committee
2005-2006 Graduate Student Representative, Graduate Admissions Com-

mittee

vi

Publications

Priya Nagpurkar, Harold W. Cain, Mauricio Serrano, Jong-Deok Choi and Chandra
Krintz: “Call-chain Software Instruction Prefetching in J2EE Server Applications,” In
the Proceedings of the International Conference on Parallel Architectures and Compi-
lation Techniques (PACT07)

Lingli Zhang, Chandra Krintz, and Priya Nagpurkar: “Language and Virtual Machine
Support for Efficient Fine-Grained Futures in Java,” In the Proceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT07)

Lingli Zhang, Chandra Krintz, and Priya Nagpurkar: “Supporting Exception Handling
for Futures in Java,” In the Proceedings of the International Conference on the Princi-
ples and Practice on Programming in Java (PPPJ07)

Priya Nagpurkar, Harold W. Cain, Mauricio Serrano, Jong-Deok Choi and Chandra
Krintz: “A Study of Instruction Cache Performance and the Potential for Instruction
Prefetching in J2EE Server Applications,” Tenth Workshop on Computer Architecture
Evaluation Using Commercial Workloads (CAECW-10)

Priya Nagpurkar, Michael Hind, Chandra Krintz, Peter Sweeney, and V.T. Rajan: “On-
line Phase Detection Algorithms,” In the Proceedings of the International Symposium
on Code Generation and Optimization (CGO06)

Priya Nagpurkar, Chandra Krintz, and Timothy Sherwood: “Phase-aware Remote Pro-
filing,” In the Proceedings of the International Symposium on Code Generation and
Optimization (CGO05)

Priya Nagpurkar and Chandra Krintz: “Visualization and Analysis of Phased Behavior
in Java Programs,” In the Proceedings of the International Conference on the Principles
and Practice of Programming in Java (PPPJ04)

Priya Nagpurkar, Hussam Mousa, Chandra Krintz, and Timothy Sherwood: “Effi-
cient Remote Profiling for Resource-Constrained Devices,” In the Proceedings of ACM
Transactions on Architecture and Code Optimization (TACO),Vol. 3, Number 1, March,
2006, pages 1-32

vii

Priya Nagpurkar, and Chandra Krintz: “Phase-Based Visualization and Analysis of
Java Programs,” In the Proceedings of Elsevier Science of Computer Programming –
Special Issue on Principles Practices and Programming in Java, Vol. 59, Number 1-2,
January 2006, pages 64-81

Selim Gurun, Priya Nagpurkar and Ben Zhao: “Energy Consumption and Conservation
in Mobile Peer-to-peer Systems,” The first International Workshop on Decentralized
Resource Sharing in Mobile Computing and Networking (MobiShare06)

Field of Study: Computer Science

viii

Abstract

Analysis, Detection, and Exploitation of Phase Behavior in
Java Programs

Priya Nagpurkar

The Java programming language offers developers many productivity enhancing

features, including high-level abstractions, extensive libraries, architecture-independent

execution, and type safety. These features are enabled by an intelligent execution en-

vironment that, incrementally and dynamically, compiles and executes compact rep-

resentations of Java programs encoded for a virtual machine. While this necessarily

adds overhead, the ability to compile (and recompile) code at runtime also enables

the execution environment to perform dynamic, performance-enhancing optimizations

based on the runtime behavior of the executing program. There are three primary steps

in developing effective adaptive optimizations for these systems: (1) Development of

a thorough analysis, understanding, and characterization of the performance of Java

programs; (2) Extracting accurate data from programs efficiently at runtime; and (3)

Guiding optimizations using feedback from the extracted performance data.

We address each of these steps in our research by focusing on techniques that cap-

ture and exploit the repeating patterns in program behavior (phases) within virtual ex-

ecution environments, and in particular, those for Java programs. This dissertation can

ix

be decomposed into two foci: phase analysis and detection tools and techniques and

phase-aware techniques for efficient program analysis and optimization. We first study

the time varying behavior of Java programs, show that Java programs do exhibit phase

behavior, and present tools to extract and analyze this phase behavior. We then in-

vestigate the problem of accurate online phase detection for Java programs, within a

Java virtual machine, the parameters that impact doing so effectively, and evaluate nu-

merous online phase detectors. Finally we demonstrate the potential of phase-based

optimizations by designing and evaluating two phase-based runtime techniques. The

first technique is an accurate, low-overhead profiling scheme for resource-constrained

devices that uses phases to drive when to sample the execution of a program. The sec-

ond technique is a software instruction prefetching mechanism that uses method-level

phase behavior to identify, predict, and prefetch methods that incur a large number of

instruction cache misses for emerging Java workloads like database- and application

servers. These two techniques span two extremes of execution environments used for

Java applications: software for resource-constrained devices at the low end and appli-

cation servers at the high-end.

x

Contents

Acknowledgements v

Curriculum Vitæ vi

Abstract ix

List of Figures xiv

List of Tables xvi

1 Introduction 1

2 Background 6
2.1 Phase Characterization, Detection, and Prediction Techniques 7
2.2 Applications of Phase Analysis . 16
2.3 Dynamic Compilation and Adaptive Optimization in Java 20

3 Phase Behavior in Java Programs 23
3.1 Phase Analysis Framework . 25

3.1.1 Data Generation . 26
3.1.2 Data Processing . 29

3.2 Phase Analysis Toolkit . 31
3.2.1 Phase Visualizer . 31
3.2.2 Phase Finder . 33
3.2.3 Phase Analyzer and Code Extractor 36

3.3 Analysis . 37
3.3.1 Visual Analysis . 38
3.3.2 Efficient Identification of Optimization Opportunities 44

xi

3.3.3 Cross-Input Analysis . 49
3.3.4 Other Opportunities for Exploiting Phase Behavior 51

3.4 Summary . 53

4 Phase Detection for Java Programs 55
4.1 Online Phase Detection Framework 56

4.1.1 Window Policy . 61
4.1.2 Model Policy . 63
4.1.3 Analyzer Policy . 64

4.2 Evaluating Phase Detectors . 65
4.2.1 Phase Detection Baseline 66
4.2.2 Accuracy Scoring Metric 69

4.3 Analysis . 71
4.3.1 Methodology . 73
4.3.2 Window Policy . 77
4.3.3 Model Policy . 81
4.3.4 Analyzer Policy . 84
4.3.5 Additional Analysis . 85

4.4 Summary . 90

5 Phase-based Runtime Techniques 91
5.1 Phase-aware Profiling . 92
5.2 Instruction Prefetching . 94

6 Phase-aware Remote Profiling 97
6.1 Phase-aware Sampling: Deciding When to Sample 101
6.2 Profiling Support for Toggling Profile Collection 106

6.2.1 Dynamic Instruction Stream Editing (DISE) 108
6.2.2 Hybrid Profiling Support using DISE 110

6.3 Evaluation . 118
6.3.1 Phase-aware Profiling for General-purpose Programs 119
6.3.2 Phase-aware Profiling for Embedded Devices 133

6.4 Extending Phase-aware Profiling to Multiple Users 139
6.5 Related Work . 143

6.5.1 Efficient Profiling . 143
6.5.2 Monitoring Program Behavior for Bug Isolation and Test Cov-
erage . 145

6.6 Summary . 147

xii

7 Phase-based Instruction Prefetching 149
7.1 Characterization of Instruction Cache Behavior 150

7.1.1 Methodology . 151
7.1.2 Stall Cycles . 152
7.1.3 Method-level Analysis . 154

7.2 Method-level Phase Behavior . 158
7.3 Call-chain Instruction Prefetching 161

7.3.1 Design and Implementation 161
7.3.2 Experimental Methodology 165
7.3.3 Evaluation . 167
7.3.4 Discussion: Potential Improvements 174

7.4 Related Work . 175
7.5 Summary . 178

8 Conclusion 179
8.1 Dissertation Summary . 180
8.2 Impact and Future Directions . 187

Bibliography 191

xiii

List of Figures

1.1 Programming Language Usage Trends. 2

3.1 JVM phase analysis framework and toolkit 25
3.2 Architecture of the data generation framework 27
3.3 Phase Visualizer . 32
3.4 Similarity graph for Mtrt input size 10. 39
3.5 Phases for Mtrt with similarity threshold 0.8 40
3.6 Similarity graphs for the SpecJVM benchmarks with input size 100 . . 42
3.7 Similarity graphs for the SpecJVM benchmarks with input size 10 . . 43
3.8 Code extracted using the phase framework and toolkit 47
3.9 Hand-optimized basic block exposed via phase analysis 48
3.10 Analysis of cross-input similarity 50

4.1 Illustrated view of the phase detection framework 57
4.2 Basic operation of the phase detection framework 58
4.3 Online phase detection framework 62
4.4 Evaluation of skip factor and Fixed versus Adaptive windowing 80
4.5 Unweighted vs. Weighted similarity models 82
4.6 Constant vs. Adaptive window policy 84
4.7 Slide vs. Move resizing . 88
4.8 Accurate detection of phase boundaries 89

6.1 Run-time power usage . 98
6.2 System overview . 100
6.3 Overview of the phase-aware profiling scheme 102
6.4 The Hybrid Profiling Support (HPS) system 107
6.5 HPS extensions to DISE . 112
6.6 HPS pattern and replacement specification grammar 113

xiv

6.7 Pattern and replacement productions for different profile types 118
6.8 DISE vs. HPS for performance sampling 122
6.9 Evaluation of representative selection policies 125
6.10 Average error in code region profiling 127
6.11 Efficacy across profile types . 130
6.12 Evaluation of phase-aware sampling using the StrongARM environ-
ment and benchmarks . 136
6.13 Distributed profiling across multiple executions 140

7.1 Commit Stall Cycle Categorization 152
7.2 Icache misses per 100 committed instructions 153
7.3 Per-method Contribution to Total icache Misses (cumulative distribution) 154
7.4 Method-level phases in WebSphere (running specjAppServer2001) . . 157
7.5 Correlation between method-level phases and phases in icache misses. 159
7.6 Overview of phase-based prefetching in a JVM. 160
7.7 Example call chain . 162
7.8 Trace-based Analysis Methodology 166
7.9 Prefetch accuracy . 170
7.10 Effect of miss distance on coverage and interference 172

xv

List of Tables

3.1 Description of the benchmarks used. 38

4.1 Benchmark Characteristics . 72
4.2 Window size comparison . 74

6.1 Select benchmark statistics relevant to the profiles collected 120
6.2 Sampling overhead at 5% error . 132
6.3 StrongARM methodology . 134

7.1 Prefetch Target Characteristics. 156
7.2 Coverage achieved . 171
7.3 Improvement in IPC . 173

xvi

Chapter 1

Introduction

The greatest happiness for the thinking person is to have explored the ex-
plorable and to venerate in equanimity that which cannot be explored.

Johann Wolfgang von Goethe (1749-1832)

The Java programming language, and similarly C# and the Microsoft .Net lan-

guages, offer many benefits to programmers such as portability, programmer productiv-

ity through high-level abstractions and extensive libraries, type and memory safety, and

dynamic loading. These features make it easier, not only to develop software, but also

to debug and maintain it. As a result, these languages are very popular with software

developers. Java, in particular, has seen tremendous growth since its inception, a little

over a decade ago, and the trend is predicted to continue [27]. It is estimated that Java

today drives a $100 billion a year software industry, and is deployed on a wide variety

of devices, including millions of desktops, billions of embedded devices (from smart

phones to car navigation systems), and enterprise servers [101, 1].

1

Chapter 1. Introduction

Year
1993 1998 2003 2008

P
e
rc

e
n

t
o

f
re

sp
o

n
d

e
n

ts

Figure 1.1: Programming Language Usage Trends. This figure from [27] uses historic
data, gathered from real users, as well as prediction based on this data to show the long
term trend in programming language popularity.

To enable these features, especially portability (the write-once, run-anywhere model),

these programs are compiled into an architecture-independent intermediate format and

executed within a virtual execution environment on the target host. The execution en-

vironment, a Java virtual machine or .Net runtime, implements a compilation system

that converts the intermediate code to the native format of the underlying machine.

This dynamic compilation necessarily introduces runtime overhead, but at the same

time also exposes opportunities for adaptation – optimizations that we can customize

according to the behavior of the executing program. State of the art Java Virtual Ma-

chines (JVMs) [71, 28, 102, 5, 53] employ adaptive optimization techniques based on

2

Chapter 1. Introduction

information gathered while the program is executing (feedback-directed optimization).

Monitoring, analyzing, and predicting runtime program behavior are vital to feedback-

directed optimization.

Recent research has shown, for non-Java programs, that program behavior varies

over time, and exhibits repeating patterns [93, 41], and has focused on automatically

characterizing this behavior [94, 95, 66, 35]. Phase analysis of programs is one such

characterization, which isolates distinct behaviors in a program’s execution by group-

ing periods of execution that are similar together in a phase. A program’s execution

can then be seen as a series of phases that might repeat themselves several times. Re-

searchers have used phase behavior to improve program performance via hardware and

software optimization [38, 96, 92, 72] and to reduce simulation time [94, 95] and gen-

erate cycle-close traces [88]. The ability to detect and predict phases at runtime has the

potential of uncovering new opportunities in performing proactive adaptive optimiza-

tions for Java programs. With the ultimate aim of enabling better performance for Java

programs, the thesis question that we explore is this work is:

How can we efficiently detect, track, predict, and exploit repeating pat-
terns in program behavior (phases) in a Java virtual machine to facilitate
runtime analysis and feedback-directed optimization in Java programs?

To answer this question, we focus our efforts on phase characterization and detec-

tion in Java programs, and exploiting repetitions that phases manifest, using optimiza-

3

Chapter 1. Introduction

tion for a range of devices for which Java Virtual Machines are available. In particular,

we

• investigate and develop offline mechanisms and tools that enable the characteri-

zation, visualization, and manipulation of phase behavior in Java programs,

• develop a modular, pluggable framework for implementing and investigating on-

line phase detection algorithms within a Java Virtual Machine,

• devise and investigate a phase-aware approach to collecting accurate online exe-

cution profiles

• devise and investigate a prefetching scheme (a dynamic optimization) that ex-

ploits repeating patterns in Java server execution.

We take an empirical and implementation-oriented approach to developing phase

detection and exploitation techniques in this thesis. We implement and empirically

evaluate our techniques using a wide range of real programs and open-source Java

virtual machine technologies. From this effort, we have produced a set of tools that

significantly facilitate analysis of repeating patterns in the behavior of Java programs,

and we have designed and evaluated novel techniques for exploiting phases to improve

program profiling and execution performance.

The dissertation is organized as follows. We begin with a discussion of the relevant

background in Chapter 2. This chapter includes techniques that we use in our work, as

4

Chapter 1. Introduction

well as the state of the art for phase analysis and its uses. We present our framework

and toolkit for understanding and analyzing phase behavior in Java programs in Chap-

ter 3, followed by our framework for the design and analysis of online phase detection

algorithms within a JVM, in Chapter 4. Chapters 5, 6, and 7 focus on the use of phase

behavior to enable two phase-based runtime techniques; Chapter 5 introduces these

techniques and provides an overview, while the following Chapters provide details of

each technique. We end with a summary of the dissertation and a discussion of future

directions in Chapter 8.

5

Chapter 2

Background

The focus of this dissertation is understanding, analyzing, and exploiting the repeat-

ing patterns, or phases, in the time varying behavior of Java programs. Of particular

interest to us, is the possibility of incorporating phase-awareness in virtual execution

environments, like Java virtual machines, to drive adaptive, feedback-directed opti-

mization of dynamically compiled programs.

Much research has already gone into the characterization, detection, prediction, and

exploitation of phase behavior, especially in the area of computer architecture. In this

Chapter, we present an overview of extant work on phase behavior, and also briefly

describe the process of dynamic compilation for Java.

6

Chapter 2. Background

2.1 Phase Characterization, Detection, and Prediction

Techniques

Program behavior has commonly been abstracted in the form of profiles gathered

over the program’s execution. Recently, there has been a lot of interest in studying

program behavior during different parts of execution. Many researchers have observed,

through detailed simulations and temporal profiles, that programs exhibit widely vary-

ing behavior during different parts of execution [93, 94, 41]. Program behavior, how-

ever, is not entirely random and often shows significant structure. In [94] and [41], the

authors periodically gathered various hardware metrics, like IPC, cache misses, branch

misprediction rate with the aim of studying low-level program behavior over time and

finding any possible correlation between the metrics. Their findings indicate that, not

only does program behavior change, but it also has periods of stable execution inter-

spersed with transitions. During periods of stable execution, the architectural metrics

measured are relatively stable. What is more interesting is the fact that the metrics

transition in unison, though the nature of the transition might be different (that is the

instruction cache miss rate might go up, whereas the IPC might go down). Recognizing

the importance of automatically characterizing this behavior in order to exploit it for

various purposes (like reducing simulation time, aiding prediction and proactive opti-

mization), various techniques were developed at different levels in the system stack –

7

Chapter 2. Background

techniques using hardware performance counters, instruction working set signatures,

basic blocks, and program structure (calls and loops) have been proposed to charac-

terize, detect, and predict program phases. This section describes these techniques.

Applications of phase behavior are discussed in Section 2.2.

Basic Block Distribution Analysis (BBDA)

Sherwood et al [94, 95] observe that program behavior is directly related to the

code that is being executed. They therefore use profiles of a program’s code structure,

basic block frequencies, to capture phases and show that the periodicity captured by

basic block profiles is shared by low-level architectural metrics. Basic block profiles

gather frequencies of individual basic blocks based on how often they were executed.

(a basic block is a straight-line piece of code with a single entry and exit point) Basic

block profiles thus present an architecture-independent and relatively easy to generate

method of capturing program behavior.

To extract time varying behavior, Sherwood et al. collect basic block footprints

over fixed intervals, measured in terms of number of instructions executed, and compare

footprints for different intervals. The footprint consists of a single n-dimensional vector

with n counts of individual basic block frequencies. The dimensionality of the vector,

n, is equal to the number of static basic blocks in the program. To accommodate the

fact that larger basic blocks account for larger parts of the execution, the frequencies are

8

Chapter 2. Background

weighted by number of instructions in the basic block. Further, since absolute values

are not necessary (proportions are), each value in the vector is normalized by dividing

it with the sum of all elements in the vector.

To catch changes and repeating patterns, basic block vectors are compared using

the basic block vector distance similarity measure. More specifically, the Manhattan

distance is used. The Manhattan distance is calculated as the sum of absolute values of

elementwise differences and represents the distance between the two compared vectors

if the only paths you can take are parallel to the x and y axes. The calculation generates

a value between 0 and 2, where 0 indicates complete similarity and 2 indicates com-

plete dissimilarity. The authors use clustering to group similar intervals together to

break the program’s execution into phases. A phase thus consists of intervals of similar

behavior, irrespective of temporal adjacency. Note here that the interval size controls

the granularity at which phases can be detected.

Sherwood et al also introduce similarity matrices as a means of graphically repre-

senting phase behavior as captured by basic block distribution analysis [94]. A sim-

ilarity matrix is the upper triangular N X N matrix, where a point (x,y) represents the

similarity between intervals x and y, and N indicates the number of intervals of fixed

duration generated.

Basic block distribution analysis thus presents an architecture-independent and ef-

fective way of capturing phase behavior. It is intended to be used offline and was first

9

Chapter 2. Background

introduced to find simulation points. In Chapter 3, we employ BBDA to analyze phase

behavior in Java programs.

Following earlier work on time varying behavior of programs [93] and its char-

acterization using basic block distribution analysis [94], Sherwood et al presented an

efficient run-time phase tracking and prediction mechanism. Since tracking and com-

paring basic block vectors imposes a high overhead, an approximation of basic block

vectors is used to track and detect changes in the proportions of code being executed.

To approximate basic block vectors, branch PCs and the number of instructions exe-

cuted between branches is captured. (Note that this can be done entirely in hardware

and does not need any compiler support). As in BBDA, the program’s execution is bro-

ken up into intervals of fixed size. During every interval, each branch PC is hashed and

the corresponding counter is incremented with the number of instructions since the last

branch. At the end of an interval, the table of counters is compressed to form a smaller

footprint, which then represents program execution during the last interval. This foot-

print is compared with previously generated footprints and stored if it is found to be

unique.(that is, if this interval is similar to a previous one, it belongs to that phase and

its footprint need not be stored) Thus only one footprint per phase is stored.

To exploit repeating patterns in the program’s behavior, the authors present a pre-

diction scheme that predicts what phase the next interval will belong to. They observe

that the set of phases seen recently and the duration of those phases are important in-

10

Chapter 2. Background

dicators of the next phase. The authors use a run length encoding Markov predictor to

predict the phase of the next interval. The predictor uses a run-length encoded version

of the history to index into a prediction table and is able to predict with a misprediction

rate of 14% on average. Both tracking and prediction can be completely implemented

in hardware and require less than 500 bytes of memory. While the authors used this

dedicated, phase tracking and prediction hardware to evaluate dynamic architectural

optimizations described briefly in Section 2.2, we used it in our efficient phase-based

profiling scheme described in Chapter 6.

Instruction Working Set Signatures

Working sets were first introduced in the context of virtual memory pages [37] and

represent the collection of pages that the process is working with. Dhodapkar et al.

state that phase changes are manifestations of changes in working sets [38]. They keep

track of the executing program using instruction working set signatures defined over

a fixed window size. The working set signature is a lossy compressed representation

of the working set, and consists of an n-bit vector formed by mapping working set

elements into buckets using a random hash function. To detect a phase change, working

set signatures defined over non-overlapping windows, are compared using the relative

signature distance. A value of 1 indicates similarity and 0 indicates dissimilarity. A

phase change is said to be detected if the distance is more than a certain threshold.

11

Chapter 2. Background

A phase is then defined as the maximum interval over which the working set remains

constant (within the defined threshold). The size of the window controls the granularity

at which phases can be detected.

Hardware Performance Counters

Most modern processor architectures include hardware performance counters that

efficiently record various microarchitectural events, without interfering with the exe-

cuting programs. Information gathered from these counters provides easy access to

dynamic program execution characteristics.

Duesterwald et al. use hardware performance counter measurements to character-

ize the time varying behavior of programs, and to design online predictors [41]. They

periodically gather various architectural metrics for the IBM Power3 and Power4 mi-

croarchitectures, using a timer-based interrupt to enable the recording of metrics after

every 10ms. The characterization obtained is in the form of the low-level behavior

of the program, as captured by hardware performance counters. Variability over time

is measured in terms of average absolute distance between metric values at adjacent

points in the time series. The authors make the following three observations:

• Program behavior varies significantly over time

• Program behavior is periodic

12

Chapter 2. Background

• Periodicity of metric behavior is shared across all metrics

As seen earlier in this Section, Sherwood et al also arrive at the same conclusions

through detailed simulations, and design an architecture-independent way of character-

izing program behavior. Duesterwald et al, on the other hand, use low-level metrics to

characterize behavior, but exploit the fact that the periodicity is shared across metrics

to design cross-metric predictors. The idea behind cross-metric predictors is that the

history of a single metric can be used to predict one or more other metrics. The authors

design and evaluate both statistical and table-based history predictors based on the ac-

curacy with which values of metrics are predicted. Prediction accuracy is measured

in terms of mean absolute prediction error, that is the mean absolute distance between

the predicted and actual value. The conclusion drawn is that table-based predictors

outperform statistical predictors.

Isci et al. combine several performance counter measurements to form a power

vector that is a fine grained representation of the runtime power behavior of the pro-

cessor [56, 57]. They then use a methodology similar to BBDA, using power vectors

instead of basic block vectors, to identify power phases in programs. Power phases

group together execution intervals with similar total, and ratio-wise power dissipation

of processor components. In more recent work [55], the authors describe a runtime

phase characterization and prediction methodology using only two hardware perfor-

mance counters (since only two counters can be simultaneously monitored). The phase

13

Chapter 2. Background

classification is based on the ”memory-boundedness” of the program, which is com-

puted by tracking the number of memory bus transactions and micro-ops retired in

a particular execution interval. Thus a phase groups together intervals with similar

memory-boundedness characteristics. Their prediction mechanism uses a global his-

tory based phase predictor, similar to a global history based branch predictor, to predict

the next phase.

Program Structure

Recent approaches have used a coarser granularity of program elements than basic

blocks, namely function and loop boundaries, to characterize phase behavior [66, 46].

Moreover, these approaches align phase boundaries with function or loop boundaries,

rather than using an interval-based approach that techniques described above have

used; in doing so, these approaches eliminate alignment problems associated with fixed

length intervals, and simplify parameters associated with phase behavior characteriza-

tion. Using high-level program elements also provides more semantic information that

can simplify analysis and program-level optimization.

Lau et al. build a hierarchical function call- and loop graph from the execution trace

of a program, and find function or loop boundaries that identify phases by tracking the

execution variability along paths in the graph [66]. Execution variability is quantified

by computing the variance in number of instructions executed (hierarchical) along a cer-

14

Chapter 2. Background

tain path across different invocations. Edges with variance lower than a certain thresh-

old are chosen as phase identifiers. This is an offline approach, and the results of the

analysis are used to insert phase markers into the program. The instrumented program

can then exploit phase information as it executes. A somewhat similar approach was

proposed by Shen at al. to identify and exploit phases in data reuse patterns [92]. The

similarity is not in the use of program structure to perform phase characterization, but

in the use of software phase markers. Phase characterization in this case is performed

by using complex wavelet analysis to isolate data reuse patterns from a sampled data

access trace.

Georges et al. study method-level behavior of Java programs [46]. They define

methods, in which a substantial amount of time is spent, as interesting phases and

gather metrics using hardware performance counters for these methods. They compute

the coefficient of variance for each metric, to show that variance within a phase is

low, and use the ANOVA technique to show that the variance across different phases

is relatively higher. This, in turn, shows that method-level phases are correlated with

low-level behavior.

15

Chapter 2. Background

2.2 Applications of Phase Analysis

In the previous section, we saw that it it possible to capture, characterize, and pre-

dict program phase behavior [94, 95, 96, 42, 92, 39, 81]. Moreover, existing systems

use phase behavior to guide effective hardware reconfiguration [38, 96, 92], hardware-

based value profiling [96], program and system analysis [74], efficient simulation [94],

and cycle-close trace generation [88]. This section describes the prominent uses of

phase behavior so far.

Architectural Simulation

One of the very first uses of phase behavior was in reducing the time and effort re-

quired for detailed and accurate architectural simulations. Sherwood et al. used BBDA

based phase classification, described in the previous section, to find simulation points

for a program. These simulation points correspond to different phases exhibited by

the program, and as such mark distinct behaviors in the programs execution, which

together generate an accurate representation of the whole program. The amount of de-

tailed simulation required is far less, compared to simulating the whole program, since

only sections of execution following the chosen simulation points need to be simulated.

The authors report that using BBDA to choose a single simulation point reduces the

average IPC (instructions per cycle) error to 18% as compared to 80% error obtained

16

Chapter 2. Background

for an arbitrarily chosen point (blind fast forwarding). This error is further reduced to

3% by choosing multiple simulation points.

Tuning Reconfigurable Hardware

For reconfigurable hardware components, like reconfigurable caches, one of multi-

ple configurations can be chosen at runtime to optimize performance, either in terms of

execution time or power consumption. Phase information can be used both in making

reconfiguration decisions, and in choosing configurations.

Instruction working set analysis, described in the previous section, was used to

enable dynamic reconfiguration of a multi-configuration instruction cache [38]. In ad-

dition to using working set signatures to track phase changes (and to trigger recon-

figuration), the authors also used repeating working sets to reduce retuning time. They

enhanced an existing dynamic reconfiguration algorithm [15] with working set analysis.

The algorithm computes the relative signature difference with respect to the previous

signature at the end of each window. On detecting a phase change, it waits till the phase

stabilizes before retuning and installing an optimal configuration. Finding an optimal

configuration is easy if the working set signature has been seen before, since a table of

such signatures and optimal configurations is maintained.

Runtime phase detection coupled with prediction is a powerful combination that en-

ables proactive optimization decisions. Sherwood et al. used their phase tracking and

17

Chapter 2. Background

prediction hardware, described earlier, to drive two reconfiguration decisions: setting

the size and associativity of a resizable cache, and adjusting processor width (number

of instructions entering the processor pipeline every cycle). Both optimizations aim

to reduce energy consumption while still maintaining performance. On seeing a new

phase, some time is spent in finding out whether a particular configuration will be bene-

ficial during this phase, so that this configuration can be chosen when the predictor next

predicts this phase. For example, in their evaluation, Sherwood et al. experiment with

reducing the processor width for phases with low IPC (Instructions per cycle). The au-

thors report that their adaptive, phase-guided cache resizing optimization yields results

at least as good as, or better than, voltage scaling. For the processor width optimization,

the authors report average energy savings of 19.6% at the cost of 4% slowdown. Isci et

al. apply their runtime phase characterization and prediction methodology to dynamic

voltage and frequency scaling. Different phases are mapped to different voltage and

frequency levels, depending on how memory-bound they are, and depending on the

potential for concurrent execution.

Dynamic Optimization Software Systems

Papers on runtime optimizers in execution environments [5, 53, 3] and binary trans-

lators [14, 43] have also discussed the benefit of considering phase behavior [29].

Arnold et al. mention the use of phase-shift detection to trigger re-gathering of profiles

18

Chapter 2. Background

that drive dynamic optimizations in the JikesRVM [11]. Dynamo [14] uses phase-shift

detection in its code cache policy. However, none of these systems currently use the

various characteristics of phase behavior, namely periodicity and repetition, to drive

dynamic optimizations.

In [60], Kistler and Franz use online phase-shift detection to trigger re-optimization

in their continuous optimizing system for Oberon System 3. Change in program be-

havior is detected by observing whether the footprint of the profile has changed signif-

icantly in the last two consecutive time intervals. They use a similarity measure based

on the geometric angle between the two profile-vectors.

Lu et al. [72] employ online phase detection to drive data cache prefetching in a dy-

namic binary optimization system. Specifically, they compare the average PC address

from the most recent 4K samples to a range of values, which is created from the average

and standard deviation of the previous seven 4K samples of the PC address. If the new

average is sufficiently outside this interval for two consecutive 4K sample windows, a

phase has ended.

19

Chapter 2. Background

2.3 Dynamic Compilation and Adaptive Optimization

in Java

To enable productivity enhancing features like portability, type- and memory-safety,

Java programs are first compiled into an architecture- independent format, called byte-

code, transferred to the target machine, and executed inside a virtual machine. The

Virtual Machine often employs dynamic program analysis and optimization, in the pro-

cess of converting architecture-independent bytecode into native code, to improve per-

formance. This process takes place as the program is executing, and is called dynamic

compilation. Although dynamic compilation imposes a runtime overhead, the dynamic

compilation system can identify and implement profitable optimizations that cannot be

determined clearly to be beneficial statically, using information gathered at run time.

In particular, input-dependent behavior can be optimized after a program is initiated if

the execution delay associated with running the optimizer can be amortized by faster

overall execution. Due to the wide spread use of Java for Internet-computing applica-

tions and to the portability and dynamism enabled by the language, such techniques are

becoming increasingly important to enable the high-performance that users have come

to expect.

Java Virtual Machines usually employ a light-weight interpreter along with an op-

timizing compiler, which is invoked only for frequently executing portions of the pro-

20

Chapter 2. Background

gram, so as to ensure that optimization effort is invested profitably. The optimizing

compiler often distributes optimizations across different optimization levels, which are

progressively applied. For example, when the JVM learns that a method is hot (because

it has been invoked repeatedly), it is optimized. If it continues to be hot, it is optimized

further. Similarly, some JVMs can further exploit repetition in the behavioral patterns

that they learn via profiling to specialize a method for a specific behavior [45, 106].

To make their optimization decisions, current adaptive techniques observe potentially

optimizable behavior and then optimize under the assumption that the behavior will

continue. That is, they optimize future execution based on past observation. Past obser-

vations are made based on profiles gathered by the runtime measurement system. Ex-

amples of profiles commonly gathered include: time spent in methods, edge invocation

counts, method call-pair counts. Recent efforts have also focused on efficiently gath-

ering more complex profiles like call-chains and execution paths [40, 10, 110] within

Java Virtual Machines. Both, efficiently gathering information (profiling), and making

use of it (optimization), are important aspects of feedback-directed optimization.

Phase behavior, if present in Java programs, has great potential for improving es-

timates about future program behavior, and in performing phase-aware, specializing

optimizations. However, as seen earlier in this chapter, there has not been much re-

search on the analysis, detection, and use of phase behavior in Java programs. As a

result, no extant VM for Java uses phase behavior to drive adaptive optimization. In the

21

Chapter 2. Background

following chapters, we address each of these issues, with the aim of enabling phase-

aware, adaptive optimizations for Java programs.

22

Chapter 3

Phase Behavior in Java Programs

To enable the study of phase behavior in Java programs, and the potential for phase-

based adaptive optimizations, we developed a framework for automatic phase identifi-

cation and analysis. Specifically, we implemented a set of tools (both JVM-internal and

external) that can be used offline to collect and analyze dynamic phase behavior in Java

programs. The framework unifies all of the steps necessary for dynamic phase analysis.

To enable this, we couple existing techniques into a single system.

To perform phase analysis within a JVM context, an effective system must

• Collect time-varying behavior during program execution (profiling)

• Take snapshots of this behavior over time (interval collection)

• Compare intervals to identify similarities and form (possibly non-contiguous)

phases from interval similarity data

23

Chapter 3. Phase Behavior in Java Programs

• Provide a visualization capability to lend insight to researchers developing new

optimization techniques

• Extract important code regions from phase (or interval) data, e.g., frequently ex-

ecuted instructions, basic blocks, methods, etc.

The framework we describe in this chapter unifies these functionalities into a single

tool for adaptive optimization development. It simplifies dynamic analysis since both

phases and their relative similarities are automatically identified. Such a framework is

necessary to enable new adaptive optimizations not currently available and to under-

stand how current optimizations may be improved.

To demonstrate our approach, we use the framework to visualize and analyze phase

behavior in SpecJVM Java benchmark suite [98]. Based on the identified phases, we

describe new optimization opportunities for Java programs. We also use the phase

information to analyze program behavior across inputs, thereby improving the value

of online and offline profiling techniques [64]. Finally, we show how using phase

behavior reveals optimization opportunities that are not apparent without considering

time-varying behavior. By unifying the necessary phase identification, analysis, and

visualization capabilities, our framework enables these results.

In the following section, we describe our JVM framework for the analysis of dy-

namic phase behavior in Java programs. In Sections 3.1 and 3.2 , we provide imple-

24

Chapter 3. Phase Behavior in Java Programs

� � � � � � � �
� � � 	 �

 � � �
� � � � � � � � �

 � � �
� � � � � �

 � � �
� � � � � � � �

� � � �
� � � � � � � � �

 ! � 	 " � # � $
% & ' �

� � � � � � � �
� � � 	 (� �

) � & * # � �
+ � � � � � � # & �

Figure 3.1: JVM framework and toolkit for the analysis of phase behavior in Java
programs.

mentation details about the framework and the phase analysis toolkit. In Section 3.3,

we discuss how the framework and toolkit can be employed to simplify analysis, to en-

able optimization, and to evaluate the efficacy of using phase behavior to guide adaptive

optimization.

3.1 Phase Analysis Framework

We designed and implemented the phase analysis framework shown in Figure 3.1,

to enable analysis and visualization of phase behavior in Java programs, and to facilitate

optimization development. The framework consists of a Data Generation Framework

and a Data Processing Toolkit described next.

25

Chapter 3. Phase Behavior in Java Programs

3.1.1 Data Generation

The data generation framework is part of the Java Virtual Machine and generates

a temporal trace of the Java application running in the virtual machine. This section

describes the data generation framework and its implementation.

Overview

The goal of our work is to characterize the time-varying behavior of programs in

terms of phases. As such, we must relate two points in a program’s execution with

respect to the execution characteristics of each. To enable this, we use basic block

vectors [94] to capture a program execution characteristics. A basic block vector is

an array of counters; its length is equal to the number of static basic blocks in the

program. Each time a basic block is executed, its entry in the vector is incremented. As

such, basic block vectors efficiently and effectively capture the behavior of executing

code.

To study phase behavior, we need snapshots of basic block vectors, at different

points during the program’s execution. To enable this, we break the program’s execu-

tion up into intervals of fixed length and dump the basic block vectors to disk at every

interval. This snapshot represents the execution behavior of the program during that

interval. The data generation framework produces an interval trace basic block vectors

for every interval of execution.

26

Chapter 3. Phase Behavior in Java Programs

� � � � � � � �
� � � � � � 	 �
 � �

� �
 � � �

� � � � �
� � 	 � � �
� � � � � �

�
 � � � � � � � � � � �

�
 � � � � 	 �
 � � �
� � � �

� � � � �
 � � � �

� � � � �

 ! � � " # " ! �

�
 � � � � � �
� � � � �

 ! � " � $ � % & " ! '

Figure 3.2: Architecture of the data generation framework. The instrumented appli-
cation updates counters for the current snapshot (profile) interval in an interval queue.
When the hardware performance monitors (HPMs) indicate that the interval granularity
has been reached, a background dumper thread is signalled. The dumper thread expels
all past snapshots to an interval trace on disk. The HPMs collect hardware data on a
per-thread data; we monitor only application threads.

Implementation

We implemented the data generation framework within the optimizing compiler

system in JikesRVM, an adaptive optimization Java Virtual Machine from IBM T.J. Wat-

son Research Center [9]. As shown in Figure 3.2, we extended this VM to generate per-

interval profiles, track intervals, and expel an execution snapshot at regular intervals.

To generate the profile, we extended JikesRVM to insert instrumentation into every

basic block. We instrument only application methods and library methods used by the

application. However, this can be easily extended to include VM methods (since this

27

Chapter 3. Phase Behavior in Java Programs

VM is written in Java). The instrumentation consists of a counter identified by a unique

identifier consisting of a method and basic block id 1. To ensure that every method is

instrumented, we force the JikesRVM to use the optimizing compiler (with the highest

level of optimization – L2) to compile every method. The counters then collect basic

block frequencies as the instrumented code executes. The basic block vector consisting

of frequencies of all instrumented basic blocks forms the profile.

Periodically, we output a snapshot of the basic block counters into an interval trace

on disk. The period with which we perform the dump is dictated by a granularity

parameter, i.e., interval size. We identify interval boundaries (in terms of number of

dynamic instructions specified by the interval size) using Hardware Performance Mon-

itors (HPMs). Our version of JikesRVM is equipped with an interface to Papi [22] a

C-interface to the underlying Pentium HPM registers. JikesRVM communicates with

Papi via an interface developed by Thu Nguyen and the PANIC Laboratory at Rutgers

University group at Rutgers University [85]. This interface enables us to collect per-

thread HPM data to track hardware events for each thread in the system. As such, we

monitor only those HPM events for application threads.

Each time a (timer-based) thread switch occurs for an application thread, compute

the total number of instructions (reported by the HPMs) executed by all application

threads. When this value exceeds the specified interval granularity, the counter values

1We must include the method identifier since basic block ids are not unique across methods.

28

Chapter 3. Phase Behavior in Java Programs

are placed in an Interval Queue. When the interval queue exceeds a certain threshold,

the application thread signals a background trace dumper thread. This thread copies

all past intervals (snapshots) from the queue to a disk file. Once the dumper thread is

scheduled, it remains scheduled until it completes the dump of all past intervals.

We currently use the framework offline since the overhead required for block-level

profiling and trace dumping is large. For each of the benchmarks we evaluated using the

framework, we experienced a 10-20x slowdown in execution performance, depending

on interval size. However, we can extend the framework to reduce this overhead. For

example, we can reduce profiling overhead by instrumenting only branching blocks [96,

50] or by using efficient sample-based profiling [11]. In addition, for an online system,

we can avoid trace dumping and instead efficiently encode and cache phase information

in a way that is similar to that used in online hardware-based systems [96]. We plan to

evaluate the tradeoffs of such mechanisms as part of future work.

3.1.2 Data Processing

Given profiles for every interval in the program’s execution, generated by the data

generation framework, we need to compare them to see how execution in one interval

relates to that in another. The similarity measure we use to compare two basic block

vectors is the vector distance. Basic block vectors can be considered to be points in

d-dimensional space, where d is the length of the vector. The more similar the basic

29

Chapter 3. Phase Behavior in Java Programs

block vectors, the smaller the distance is between them. Basic block vectors that are

similar represent periods of repeated execution behavior, as such, we group them into

the same phase. Thus, a phase consists of all snapshots during program execution with

similar execution characteristics. Note also that a phase does not necessarily consist of

temporally contiguous intervals of execution.

To generate phases from the data produced by the data generation framework, we

classify each interval as belonging to a certain phase depending on the relative distances

(similarity) between basic block vectors. Thus, a phase can be as short as the size of

an interval and as long as the entire execution. This also means that it is not possible

to capture phase behavior within an interval. As such, the granularity of the interval

affects observed phase behavior. In addition, the degree to which two intervals are

similar, i.e., the similarity threshold, also affects observed phase behavior.

The framework can be used to evaluate both granularity and similarity thresholds.

It is important that users be able to evaluate the effects of these parameters as it has

been shown by other researchers that these parameters significantly impact phase-shift

detection [50]. The choice of both interval size and similarity threshold can be gov-

erned by several factors, e.g., the application being analyzed, the intended use of phase

information, etc. For example, if the phase information is to be used in dynamic opti-

mization by the JVM, the similarity threshold ensures that the execution characteristics

30

Chapter 3. Phase Behavior in Java Programs

within that phase are similar enough for the intended optimization to be applicable to

the entire phase.

The data analysis toolkit consists of four primary tools: an image generator and

visualizer, a phase finder, a phase analyzer, and a code extractor. The tools are written

in either Perl or Java, available as open source, and easily extensible. These tools

together constitute the Phase Analysis Toolkit that we have built, and are described in

the next section.

3.2 Phase Analysis Toolkit

We next describe the various tools that we have developed to aid researchers in the

analysis of phase data generated by our framework. Our toolkit consists of four primary

tools: an image generator and visualizer, a phase finder, a phase analyzer, and a code

extractor. The tools are written in either Perl or Java, available as open source, and

easily extensible.

3.2.1 Phase Visualizer

The phase visualizer consumes the phase trace and from it generates a portable

gray-map image. This image can be viewed using any image viewer; however, we

developed our own Java-based viewer that enables users to point (using the mouse) to a

31

Chapter 3. Phase Behavior in Java Programs

Figure 3.3: Phase Visualizer. The visualizers is a Java program the displays interval
data in the portable gray-map format. The axes are interval id; intervals for this run are
5 million instructions. There are a total of 1312 intervals (x- and y- axis entries). The
program is the compress SpecJVM benchmark executed with input size 100.

pixel on the image and view the interval coordinates. These coordinates allow the user

to identify intervals within a visualized phase.

An image produced by the phase analyzer is shown in Figure 3.3. Each image is a

similarity matrix [95]; the x-axis and y-axis are increasing interval id’s. An interval is a

period in time in the programs execution – in this figure we use an interval period of 5

million instructions. The visualizer omits data in the lower triangle since it is symmetric

with the upper triangle. One reads the figure by selecting a point on the the diagonal;

32

Chapter 3. Phase Behavior in Java Programs

each point on the diagonal is an interval. By then traversing the row, one can visualize

how similar the row interval is compared to all others that follow it during execution.

The box at the mouse arrow in the figure identifies the interval coordinates that are

represented by the pixel being pointed to. Black pixels indicate that the column interval

is very similar to the row interval; white intervals indicate no similarity between inter-

vals. The use of grayscale enables one to visualize the degree to which two intervals

are similar. We discuss how we compute interval similarity in the next section.

In addition, the grayscale depiction of similarity enables identification of phases,

phases boundaries, and repeating phases over time. The data in the figure was taken

from the phase trace of SpecJVM benchmark 201 compress using input size 100.

There are 1312 intervals for this program. There are many repeating blocks of black

pixels; this indicates that there is phase behavior in compress and that the same phase

is repeated over time. In addition, there are clear phase boundaries.

3.2.2 Phase Finder

To determine which intervals are similar (and thus, the pixel color displayed by the

visualizer), the second tool that we developed is the Phase Finder. The tool consists of

two components that compute the similarity between intervals and cluster intervals into

phases.

33

Chapter 3. Phase Behavior in Java Programs

The similarity component is a pluggable component that compares two intervals

and generates a value that indicates how similar the two intervals are in terms of their

execution behavior. As mentioned before, the similarity measure we use is the vector

distance between the basic block vectors representing the two intervals. Specifically,

we use the Manhattan distance to compute similarity. The Manhattan distance, also

called the city-block distance, is the distance between two points measured along axes

at right angles as against the Euclidean or straight-line distance. The Manhattan dis-

tance weighs differences in each dimension more heavily than the straight line distance

and is therefore more suitable for data with high dimensionality (which in our case is

the number of static basic blocks). The Manhattan distance is computed as the sum

of the element-wise absolute differences between two vectors and is a value between

0 and 2. A difference value of zero implies that the two vectors are entirely similar

and 2 denotes complete dissimilarity. Before computing the Manhattan distance, the

basic block vectors are weighted with instruction counts by multiplying the frequency

of each basic block with number of instructions in the basic block, since larger basic

blocks account for more execution time. The weighted frequencies are then normalized

by dividing them by the sum of all weighted frequencies in the vector – we perform this

step since we are not interested in absolute values.

Other similarity metrics can be plugged into this component to enable evaluation of

the efficacy of different techniques. For example, we could use other distance metrics

34

Chapter 3. Phase Behavior in Java Programs

or use the vector angle instead [61]. Once we compute interval similarity, we map

the similarity value to one of 65536 different grayscale values to generate the portable

gray-map image.

The clustering component, uses interval similarity to determine which intervals

should be included in a phase. This component is also pluggable, i.e., any cluster-

ing algorithm can be inserted, experimented with, and evaluated in terms of its efficacy

for phase discovery.

For this component, we implemented a simple threshold-based mechanism that

identifies similar intervals. The user provides a Manhattan distance threshold (between

0 and 2 in which 0 means perfectly similar and 2 means completely dissimilar). We

then find intervals with Manhattan distances below the threshold given. This simple

mechanism enables users to adjust the threshold value to vary the number of intervals

in each phase. As such, it enables researchers to evaluate the degree to which similarity

is important in exploiting relationships between intervals.

Another way in which phases can be generated is by using a conventional clustering

algorithm like k-means clustering or minimum spanning tree clustering. A variation of

k-means is used successfully in [95] to cluster intervals into phases using hardware.

Under this scheme, the dimensionality of the data (basic block vectors) is first reduced

using random linear projection, then the k-means clustering algorithm is applied. This

35

Chapter 3. Phase Behavior in Java Programs

and similar techniques can be implemented as a clustering component and plugged into

our infrastructure.

3.2.3 Phase Analyzer and Code Extractor

We also developed two tools enable users to extract statistics as well as code from

each phase or interval: The Phase Analyzer and the Code Extractor. The phase analyzer

generates and filters data to aid in the analysis of phases and individual intervals. This

tool lists the intervals in each phase as well as how often the phase occurs and in what

durations over the execution of the program.

The phase analyzer extracts details about the behavior of individual intervals or

entire phases. For example, it reports the number of phases found, the number of

instructions in each phase (over time), and how many instructions occur in dissimilar

intervals that interrupt the different phases. Moreover, it lists sorted basic block and

method frequencies. This data can be reported as weighted or unweighted counts. An

unweighted count is the number of times a basic block or method executes during the

phase or interval. A weighted count is this same number multiplied by the number of

instructions in each block.

For all the data reported by the phase analyzer, we include a number of filters that

significantly simplify analysis of the possibly vast amounts of data generated for a

program. For example, a user can specify a threshold count below which data is not re-

36

Chapter 3. Phase Behavior in Java Programs

ported. This enables users to analyze only the most frequent data. In addition, data can

be combined into cumulative counts or into a number of categories, e.g., instructions,

basic blocks, methods, and types of instructions.

Finally, to analyze the program code that makes up a phase, we developed a code

extraction tool. By inputting intervals identified by the visualizer and statistics gen-

erated by the phase analyzer, users can use the code extractor to dump code blocks of

interest. The granularity of the dump can be specified to be a single basic block, a series

of basic blocks, or an entire method. We show how we employ all of the tools in the

toolkit in the next section.

3.3 Analysis

In this section, we describe different ways in which our JVM phase framework can

be used to guide adaptive optimization. The data we present in this section was gathered

by executing Java benchmarks on a 1.13Ghz x86-based single-processor Pentium III

machine running Redhat Linux v2.4.5 patched with perfctr for performance monitoring

counters support. We used JikesRVM version 2.2.2 build 4-22-03 with an extension for

Hardware Performance Monitoring support for x86 provided by the PANIC group at

Rutgers University [85]. The benchmarks we examined are described in Table 3.1.

37

Chapter 3. Phase Behavior in Java Programs

Program Description
Compress SpecJVM (201) Compression utility
DB SpecJVM (209) Database access program
Jack SpecJVM (228) Java parser generator based

on the Purdue Compiler Construction Tool set
Javac SpecJVM (213) Java to bytecode compiler
Jess SpecJVM (202) Expert system shell:

Computes solutions to rule based puzzles
Mpegaudio SpecJVM (222) Audio file decompressor

Conforms to ISO MPEG Layer-3 spec.
Mtrt SpecJVM (227) Multi-threaded

ray tracing implementation

Table 3.1: Description of the benchmarks used.

3.3.1 Visual Analysis

As mentioned previously, we visualized program phase behavior using an N x N

similarity matrix, where N is the number of intervals in the program’s execution. Each

entry in a row or column represents an interval. Intervals are listed in each row or col-

umn in the order in which they occur in the program. An entry in the matrix at position

(x,y) is a pixel colored to represent the similarity between interval x and interval y. The

diagonal is black since an interval is entirely similar to itself. In addition, we color the

lower triangle of the matrix white to avoid confusion since it is symmetric to the upper

triangle. To see how an interval relates to the remaining program execution, we locate

the interval of interest, say x, on the diagonal and move right along the row. Dark areas

in the row identify intervals that are similar in behavior to interval x.

38

Chapter 3. Phase Behavior in Java Programs

For example consider the similarity matrix for the benchmark Mtrt when we execute

it with input size 10 (Figure 3.4).

I-33--

I-65--

I-49--

I-16--

Figure 3.4: Similarity graph for Mtrt input size 10.

Mtrt executes for 65 intervals of approximately 5 million instructions each. We

start at the top left corner of the matrix and move right along the x-axis. As we move

right, we encounter dark pixels till we reach interval 15. That is, the initial phase,

phase-1, begins at interval 0 and continues through interval 15. Interval 15 is entirely

dissimilar and therefore belongs to another phase, which we call phase-2. After interval

15, the intervals alternate between phase-1 and phase-2 until we reach interval 44. From

39

Chapter 3. Phase Behavior in Java Programs

interval 44 until the end of the execution, the intervals are completely dissimilar to

phase-1.

To this point, we have visually discerned two phases. We have concluded that

the intervals in phase-2 and intervals 44 through 65 are completely different from the

intervals in phase-1. Now, we must investigate how intervals from interval 44 through

64 relate to each other. We do this by locating interval 44 on the diagonal and evaluating

its row in the same way. We can observe two different phases in this row. It is important

to note here that the dark intervals we encounter in row 44 are in no way related to

the dark intervals in phase-1 even though the color may be the same. That is, a row

in a similarity matrix identifies the similarity between the row interval and all future

intervals.

0 14 26 64

Phase 1 Phase 2 Phase 3

Figure 3.5: Phases for Mtrt with similarity threshold 0.8. The x-axis represents the
interval identifier. The program’s execution has been broken down into 65 intervals of
5 million instructions each. The pattern of each interval indicates the phase it belongs
to.

Figure 3.5 shows the phases found by our phase-finder using a similarity threshold

of 0.8 for Mtrt. We use a figure to depict the output of the phase finder. Each pattern

40

Chapter 3. Phase Behavior in Java Programs

indicates a different interval; there were 3 phase detected. Using the phase analyzer, we

can further evaluate each phase by analyzing the commonly executing methods. The

most frequently executed methods in phase-1 are ReadPoly in class Scene and <init>

in class PolyTypeObj. In phase-2 the most frequently executed methods are CreateChil-

dren and CreateFaces in class OctNode. phase-3 then renders the scene by frequently

executing Intersect from class OctNode, Combine from class Point, and RenderScene

from class Scene.

Figures 3.6 and 3.7 show the interval similarity matrices for all of the benchmarks;

we have omitted Compress since we include it in a later discussion. The first page

matrices show the phase behavior the the programs when they are executed using input

size 100; the second page shows the matrices for input size 10. Visual analysis of the

benchmarks provides insight into the phase behavior in the programs and also enables

us to target our efforts for further analysis using the other tools as we did above for

Mtrt. We can see that each of the benchmark programs exhibits very different patterns.

In DB, Javac, Jess, and Mtrt there is a clear startup phase. Existing adaptive sys-

tems have shown that it can be profitable to consider startup behavior separately from

the remaining execution [109, 106]. This phase in these three benchmarks is noticeably

different from the rest of the execution. This is particularly evident in case of Javac in-

put size 100. Using further analysis of the number of instructions executed by different

methods (using the phase analyzer), we find that the most popular methods are read,

41

Chapter 3. Phase Behavior in Java Programs

I-444--

I-887--

I-666--

I-222--

I-122--

I-243--

I-183--

I-61--

DB Jack

I-61--

I-122--

I-92--

I-31--

I-229--

I-458--

I-344--f

I-115--

Javac Jess

I-958--

I-719--

I-240--

I-479-- I-234--

I-468--

I-351--

I-127--

Mpegaudio Mtrt

Figure 3.6: Similarity graphs for the SpecJVM benchmarks with input size 100.

42

Chapter 3. Phase Behavior in Java Programs

I-15--

I-29--

I-22--

I-7--

I-28--

I-56--

I-42--

I-14--

DB Jack

I-15--

I-30--

I-23--

I-8--

I-17--

I-33--

I-25--

I-8--

Javac Jess

I-63--

I-126--

I-104--

I-41--

I-33--

I-65--

I-49--

I-16--

Mpegaudio Mtrt

Figure 3.7: Similarity graphs for the SpecJVM benchmarks with input size 10.

43

Chapter 3. Phase Behavior in Java Programs

scanIdentifier, and xscan during the first 90 intervals. They are again the most popular

methods during intervals 202-212, depicted by the dark vertical bar in the right part

of the startup phase. They are rarely executed in all other phases. For input size 10,

the same benchmarks exhibit startup phases in varying sizes. For example, for DB and

Mtrt, both input size 10 and size 100 have the same length startup phase; The duration

of the startup phase for Javac and Jess are different across inputs. All other benchmarks,

exhibit no perceivable startup phase.

Other programs exhibit other interesting phase features. Mpegaudio for both input

sizes shows no apparent phase behavior. That is, each intervals is very similar to every

other. Mtrt for input size 100 shows very dark intervals also, however there is a perceiv-

able pattern that traverses the matrix. Jack exhibits a very regular pattern: 16 rows of

almost perfect squares. Output from our phase analyzer for Jack reveals that the code

does repeat itself 16 times for input size 100 and twice for input size 10. The reason for

this is because this benchmark is a parser generator that generates the same parser 16

times for input size 100 and twice for input size 10. Our framework correctly identifies

this repeating phase behavior.

3.3.2 Efficient Identification of Optimization Opportunities

Automatic visualization and extraction of phase behavior from programs greatly

simplifies dynamic program analysis since the analysis of a single interval is the same as

44

Chapter 3. Phase Behavior in Java Programs

that for all intervals in the phase. In addition, phase behavior can indicate the potential

of optimizations. An optimization for an interval within a frequently occurring phase

containing a large number of intervals has the potential for significantly improving

execution performance.

To demonstrate our approach, we used the framework to analyze and optimize a fre-

quently occurring phase in the SpecJVM Compress benchmark. For this experiment,

we collected phase data using an interval size of 5 million instructions. We then em-

ployed the phase finder to extract highly similar intervals (using a Manhattan-distance

difference threshold of 0.01). The phase we selected includes 11 intervals distributed

across the execution of the program. We used the phase analyzer to filter weighted basic

block counts so that we could immediately identify the most frequently executed basic

block in the phase. Finally, we passed this basic block into the code extractor which

dumped the register-based, low-level intermediate code (that uses the JikesRVM object

model [5]) shown in Figure 3.8. We prefix this code in the figure with source code of

equivalent semantics and include comments for clarity.

The basic block is the fourth block from the decompress()V virtual method in the

class Decompressor. The block contains a single loop and the code has been fully

optimized at the highest level available by the JikesRVM (L2) optimization system.

Despite the level of optimization, this block contains many optimization opportu-

nities; three primary ones are (1) registers can be allocated more efficiently to avoid

45

Chapter 3. Phase Behavior in Java Programs

spillage; (2) memory accesses can be reduced, and (3) invariant code can be removed

from the block (and out of the loop). We performed the optimizations by hand to gen-

erate the code shown in Figure 3.9.

In the original code, BB4 has 19 instructions and 18 memory accesses. When hand-

optimized, BB4 has 8 instructions and 4 memory accesses. We queried the phase an-

alyzer to extract the number of times this basic block is executed during the phase.

BB4 is executed 5.1 million times in the phase. By optimizing this single basic block,

we eliminate over 56 million instructions and over 20 million memory accesses. BB4

is executed 46.7 million times throughout the program. As such, our total potential

savings amount to over 513 million instructions and 186 million memory references.

In addition, further optimization is possible. For example, the loop can be unrolled to

eliminate compare, branch, and array bounds check instructions.

It is true that this type of analysis can be performed by simply collecting and ana-

lyzing basic block profiles. However, the framework enables us to significantly reduce

the effort required for such analysis and to understand to potential impact of our op-

timization: We analyze and optimize a single block within interval and yet impact all

intervals within the repeating phase. In addition, the framework significantly reduces

analysis: this experiment required less than an 30 minutes to complete.

46

Chapter 3. Phase Behavior in Java Programs

/∗
do {

a = y.obj2.ary[- - y.obj2.index];
y.obj1.ary[y.obj1.counter++] = a;
} while (index != 0)
∗/

LABEL BB4 //start of BB4
R1 = R2(-52) //y.obj1
R4 = R2(-72) //y.obj2
R4(-20)- - //y.obj2.index- -
R3 = R4(-16) //y.obj2.ary[]
R6 = R4(-20) //y.obj2.index
array bounds check(R6,R3(-4)) //R6: y.obj2.index

//R3(-4): y.obj2.ary.length
R5 = R1(-16) //y.obj1.counter (old)
FP(-20) = R5 //spill R5
FP(-20)++ //y.obj1.counter++ (new)
FP(-36) = R4 //spill R4 (=y.obj2)
R4 = FP(-20) //new y.obj1.counter
R1(-16) = R4 //y.obj1.counter = new
R1 = R1(-20) //y.obj1.ary[]
array bounds check(R5,R1(-4)) //R5: old y.obj1.counter

// R1(-4): y.obj1.ary.length
R3 = R3(+R6) //y.obj2.ary[y.obj2.index]
R1(+R5) = R3 //y.obj1.ary[old y.obj1.counter]
R4 = FP(-36) //restore R4 (=y.obj2)
cmp R4(-20), 0 //compare y.obj2.index, 0
jne BB4 //goto LABEL BB4 if !=

Figure 3.8: Code extracted using the phase framework and toolkit for SpecJVM bench-
mark executed using input size 100. The code is contained in the most frequently ex-
ecuted basic block in the phase being analyzed. We prefix the low-level intermediate
code dumped by the code extractor with the source code equivalent.

47

Chapter 3. Phase Behavior in Java Programs

LABEL BB3
...
R1 = R2(-52) //y.obj1
R2 = R1(-20) //y.obj1.ary[]
R4 = R2(-72) //y.obj2
R3 = R4(-16) //y.obj2.ary[]
R4(-20)- - //y.obj2.index- -
R6 = R4(-20) //y.obj2.index
array bounds check(R6,R3(-4)) //R6: y.obj2.index

//R3(-4): y.obj2.ary.length

LABEL BB4
R5 = R1(-16) //R1.counter
array bounds check(R5,R2(-4)) //R5: R1.counter

//R2(-4): y.obj1.ary.length
R4 = R3(+R6) //y.obj2.ary[y.obj2.index]
R2(+R5) = R4 //y.obj1.ary[R1.counter] = R4
R1(-16) ++ //R1.counter++
R6- - //y.obj2.index- -
cmp R6, 0 //compare y.obj2.index, 0
jne BB4 //goto LABEL BB4 if !=

LABEL BB5
R4 = R2(-72) //if necessary: restore R4
R4(-20) = R6 //and store y.obj2.index
...

Figure 3.9: Hand-optimized basic block exposed via phase analysis (original code in
Figure 3.8).

48

Chapter 3. Phase Behavior in Java Programs

3.3.3 Cross-Input Analysis

Commonly, offline profiling techniques are limited since they are dependent upon

the input used [64]. When a different input is used, the assumptions about the execution

change and hence, optimizations performed based on a cross-input, offline profile may

be incorrect and impose needless overhead. As such, we are interested in when offline

profiling techniques are likely to be effective. We can use our analysis framework to

perform such cross-input analysis.

Figure 3.10, in graphs (a) and (b), shows the similarity matrices for the Compress

SpecJVM benchmark for input size 100 and size 10, respectively. The total number of

intervals is 1312 for size 100 and 125 for size 10. The interval size in both graphs is 5

million instructions. The two graphs appear very different at first glance.

Figure 3.10 (c) shows the similarity matrix across the two Compress inputs. We

compute this matrix using the phase finder to identify similarities across to different

runs of the same program. Since the static number of basic blocks are the same, we can

compare the two vectors as if they were from the same program. Now, however, the

similarity matrix is not square. The rows are from input 10 and the columns are from

input 100.

The matrix indicates that there may be potential for cross-input optimization. Two

different alternating (non-contiguous) patterns are visible through out the entire execu-

tion of input 10. This is much like the pattern that occurs for input 100 alone. We also

49

Chapter 3. Phase Behavior in Java Programs

I-656--

I-1312--

I-984--

I-328--

I-125--

I-63--

I-125--

I-94--

I-31--

(a) Compress Size 100 (b) Compress Size 10

I-125--

I-0--
Size

10

Size 100I-0 I-1312

(c) Cross-Input Similarity for Compress

I-126--

I-0--
Size

10

I-0 Size 100 I-958

(d) Cross-Input Similarity for Mpegaudio

Figure 3.10: Analysis of cross-input similarity. Matrix (a) is for Compress and input
size 100, matrix (b) is Compress and input size 10, matrix (c) is cross-input similarity
for Compress, and matrix (d) is cross-input similarity for Mpegaudio.

50

Chapter 3. Phase Behavior in Java Programs

analyzed Mpegaudio in a similar way to evaluate whether the lack of phase behavior

that occurs in both inputs is the same behavior across inputs. The data is shown in Fig-

ure 3.10(d) and indicates that the same basic blocks are executing at the same frequency

and duration for both input 10 (126 intervals) and input 100 (958 intervals). The matrix

indicates that it is.

3.3.4 Other Opportunities for Exploiting Phase Behavior

There are many other ways in which we and other researchers can use this phase

analysis framework to enable efficient analysis and optimization development. For ex-

ample, we can use phases to identify opportunities to unload unneeded native code from

the system to avoid unnecessary garbage collection [109], to perform dynamic voltage

scaling to reduce power consumption [63, 107, 54], and to identify opportunities for

code specialization.

Code specialization is the process of generating different versions of optimized code

that each assume different behavioral patterns. For example, if we know that a particu-

lar value is frequently used as an argument to a method, we can generate a specialized

version of the code that assumes that that value is a constant. Another form of special-

ization is deferred compilation [45, 106, 26] in which only part of a method is compiled

and optimized. The remainder of the code is assumed to be unused and is omitted. If

the code is executed in a different way from that assumed by the specializer, the system

51

Chapter 3. Phase Behavior in Java Programs

must make amends via dynamic re-compilation and possibly on-stack-replacement, or

invoke a different version of the code to handle the unexpected case.

We can use phase information to identify opportunities for these and other types

of specialization. For example, consider the first two rows of repeating patterns, de-

marked with arrows, in Compress (input size 100), in Figure 3.10(a). We can consider

each black region in the first row as a single, noncontiguous phase. Likewise, we can

consider the set of black regions in the second row as a single, noncontiguous phase.

Notice that these two phases are completely dissimilar; the black intervals in the first

row map to white intervals in the second row and vice versa.

We used the framework to investigate the methods in these two phases. We em-

ployed the phase analyzer to identify the most popular methods in terms of instructions

executed. In both cases (for both phases), they were the same five methods: com-

press()V, output(I)V, and cl block()V from the class Compressor and decompress()V,

and getcode()I from the class Decompressor (all are virtual methods). The JikesRVM

adaptive optimization system correctly identifies these methods as hot and optimizes

them.

However, using the framework, we are able to visualize and analyze the phase be-

havior in Compress. As can be seen in the figure and is described above, the execution

behavior alternates between two different phases. That is, two completely different sets

of basic blocks are being executed during each phase. By considering this phased be-

52

Chapter 3. Phase Behavior in Java Programs

havior, we can specialize the code using deferred compilation in two different ways:

In each version, we optimize only those blocks that are used during the phase. Alter-

nately, we can reorganize the code across the 5 methods to exploit the phased behavior.

We also can explore other types of specialization, e.g., based on parameter values, if

inputs to the 5 methods dictate which phase the program is in. As such, by coupling the

analysis available via our framework with an adaptive optimization system, we are able

to identify and exploit an opportunity for specialization and code reorganization that is

not apparent without considering time-varying behavior.

3.4 Summary

This chapter described the phase visualization and analysis framework we devel-

oped to enable the study of time-varying behavior, i.e., phase behavior in Java pro-

grams. The framework couples existing techniques from other research domains (ar-

chitecture and binary optimization) into a unifying set of tools for data collection, pro-

cessing, and analysis of dynamic phase behavior in Java programs. The framework is

highly extensible and can be used by ourselves and others to investigate currently open

questions about phase behavior analysis and exploitation in Java programs.

In summary, the contributions that we make with this work are

53

Chapter 3. Phase Behavior in Java Programs

• The definition and implementation of a framework and toolkit for phase-aware

dynamic analysis of Java programs.

• Visualization and analysis of phase behavior in the SpecJVM Java benchmark

suite.

• Examples that demonstrate how the framework aids optimization researchers in

the identification of optimization opportunities.

• A set of tools that are easily extensible that enable the experimentation with a

number of phase parameters, e.g., interval size (granularity), interval similarity,

and phase finding algorithms.

54

Chapter 4

Phase Detection for Java Programs

Using the phase analysis and visualization framework described in chapter 3, we

were able to ascertain that Java programs do exhibit phase behavior, which could be

exploited by dynamic optimization systems, like Java Virtual Machines, to perform

specializing optimizations. Unfortunately, extant approaches for detection and predic-

tion of phase behavior rely on either offline profiling [66, 92, 46, 88], hardware support

[94, 95, 96, 42, 16, 76, 38], or are targeted toward a particular optimization (client), e.g.,

dynamic hardware reconfiguration. Programs that execute on virtual machines, such as

programs written in the Java programming language, are compiled dynamically, ex-

ecuted on any hardware for which a VM is available, and optimized in a variety of

different ways. As a result, it is desirable for a phase detection solution not to de-

pend on 1) offline profile information, 2) specialized hardware, 3) architecture-specific

metrics, or 4) a specific optimization client.

55

Chapter 4. Phase Detection for Java Programs

Vital to the efficacy of phase-guided optimizations is the accuracy of online phase

detection algorithms [51]. By defining a large class of online phase detectors and eval-

uating their accuracy, we take a necessary initial step in the understanding of online

phase detector accuracy for dynamic optimization systems.

To facilitate the design and implementation of online phase detection algorithms,

we define a parameterizable framework; a phase detector is an instantiation of the

framework. Section 4.1 describes this framework, its components, and parameters.

To evaluate the accuracy of these algorithms, Section 4.2 defines a new client- and

machine-independent empirical methodology. Section 4.3 employs this methodology

to assess the accuracy of our online phase detectors.

4.1 Online Phase Detection Framework

An online phase detector accepts a continuous sequence of profile elements, such

as methods, basic blocks, memory addresses, or values loaded from memory, and pro-

duces a state for each element. Each state signifies whether, after seeing the most recent

profile element, the detector feels the application is in a phase, P , or transitioning be-

tween phases, T . The length of a phase is the number of consecutive P states. The

detector can include optional features, such as a level of confidence in the current state,

or whether a detected phase is similar to a previously known phase [96].

56

Chapter 4. Phase Detection for Java Programs

Similarity
 Model

Similarity
 Analyzer

similarity valueprofile
elements

Online Phase Detector Framework

states

Figure 4.1: Illustrated view of the phase detection framework

The main difference between an online and offline phase detector is that an online

detector does not have the complete profile available before identifying phases. Be-

cause an online detector will run alongside the program, it should be efficient in time

and space. This work focuses on the accuracy of online phase detection algorithms; we

defer investigation of the efficiency and use of these algorithms to future work.

This section presents our framework for online phase detection algorithms. Fig-

ure 4.1 presents a component view of this framework. The input to the framework is a

sequence of profile elements, i.e., an execution profile. The first component, a similarity

model, consumes the profile elements and transforms them into a sequence of similar-

ity values that represents the degree of similarity between recent profile elements. The

model passes the similarity value in an online manner to the second component, the

similarity analyzer. The analyzer determines whether the similarity is sufficient to sig-

nify the execution is in phase, P , or in transition between phases, T . The output from

the framework is a series of states, one per input element. From this output, we can

57

Chapter 4. Phase Detection for Java Programs

x18 x19

x9 x10 x11 x12 x13 x14 x15 x16 x17 x18

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

…

…

TW CW

Detector
Output

(A)

(B) T…T

(D) P

(E) P…P

(F) T

(G) T

(C) T

x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18

x18 x19

TW CW

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

…

…

(a) (b)

Figure 4.2: Example of the basic operation of the framework using the Constant TW
policy (a) and the Adaptive TW policy (b). Both policies use a skipFactor of 1.

identify phase boundaries at points in the output at which there is a T followed by a P

state or a P followed by a T state.

The detector can include optional features, such as a level of confidence in the cur-

rent state, or whether a detected phase is similar to a previously known phase [96].

Unlike an offline phase detector, our online detectors do not have the complete profile

available from which it identifies phases. Because an online detector executes concur-

rently with the program, it must be efficient in both time and space. Moreover, because

the clients of the framework make decisions based on phase boundaries, the algorithms

that the framework instantiates must output phase boundaries accurately. This paper

focuses on this latter constraint: phase detector accuracy.

The model and analyzer components can be implemented in many ways. For ex-

ample, the model can differ in how it consumes, internally represents, and computes

58

Chapter 4. Phase Detection for Java Programs

the similarity of the profile. Many extant phase detection approaches compute sim-

ilarity using unweighted sets [38] and weighted sets [62, 61, 94, 95, 96]. A simple

analyzer reports a P state when the similarity value exceeds a predetermined fixed

threshold [62, 61, 94, 95, 96, 38, 39]. By varying the implementation and parame-

terization of these components, the framework can be used to investigate, compare, and

evaluate both extant and novel algorithms.

In our online phase detectors, a model represents the most recently consumed profile

elements with a current window (CW), and represents the next most recently consumed

profile elements with a trailing window (TW). A similarity value captures the similarity

of the elements in the two windows. A window policy of the model determines, for

example, the CW size, the TW size, and the number of profile elements consumed at

a time, which we refer to as skipFactor. A significant amount of prior work [62, 61,

94, 95, 96, 38, 39] sets the size of the CW, TW, and skipFactor to the same value. We

investigate the efficacy of such a parameterization as part of our analysis.

Figure 4.2 illustrates the basic operation of the framework using two different trail-

ing window policies: Constant (a) and Adaptive (b). Each row illustrates a different

point in time as reflected in the contents of the TW and CW. Profile elements are num-

bered in the order in which they are consumed. Initially, both the CW and TW are

empty (row A). As the program executes, the windows fill skipFactor profile elements

at a time (skipFactor equals 1 in this example). Until the windows fill (row B), the de-

59

Chapter 4. Phase Detection for Java Programs

tector outputs T . Once the windows are full, the model computes the similarity between

the two windows and the analyzer produces a P or T state. At row C this computation

results in a T state. The computation at row D results in a new phase being detected,

which continues for a series of profile elements in row E.

When the phase ends at row F, we see the difference between the two policies.

With the Constant TW, the TW size remains the same (length five in this example).

The Adaptive TW policy grows the TW to include all elements in the phase. When the

phase ends, the algorithm flushes the TW and initializes the CW with the last skipFactor

profile elements. Row G illustrates the CW after it consumes the next profile element.

Figure 4.3 presents a high-level description of our framework’s internal process. A

detection client invokes processProfile with the most recent skipFactor profile

elements. The model consumes the new profile elements, updates the CW and TW, and

computes a similarity value for the updated windows. The analyzer uses this value to

determine the new state, P or T . If the output state begins a new phase, the model can

optionally anchor the TW at the start of the phase. While in phase, the analyzer tracks

the statistics of the phase. If the output state ends a phase, the model clears the CW

and TW and the analyzer can optionally reset any phase-specific statistics. Finally, the

framework returns the output state to the detector client.

Our abstract representation of an input allows a wide variety of inputs, such as the

methods invoked, basic blocks, branches, addresses loaded, or instructions executed

60

Chapter 4. Phase Detection for Java Programs

to be considered. This work considers dynamic branch traces. Prior work has shown

that such control-flow based profiles can effectively summarize both control- and data-

centric execution as well as micro-architectural behavior [96, 68].

In practice, the profile elements may form a hierarchy of phases [67], such as what

one might expect from a nested-loop structure. Ideally, an online phase detector will

find this hierarchy so that the detector’s client can exploit it. However, because ex-

tant online clients currently do not make use of this phase hierarchy, we present phase

detectors that produce flat (not nested) phase structures.

Three orthogonal design choices must be made to instantiate the framework into

a concrete online phase detection algorithm. The choices are the window policy, the

model policy, and the analyzer policy.

4.1.1 Window Policy

The window policy specifies the skipFactor, window sizes, and how to manage

the TW. The value of skipFactor impacts both the overhead of the algorithm and its

sensitivity to changes in the profile. A smaller skipFactor results in more frequent

similarity computations. These comparisons may increase overhead, but result in a

more accurate detector.

The size of the CW impacts the granularity at which the algorithm detects phases.

A phase that is smaller than the CW may not be detected.

61

Chapter 4. Phase Detection for Java Programs

class PhaseDetector {

Model model;

Analyzer analyzer;

PhaseState state, newState; // initialize to T

public PhaseState processProfile(profileElements) {

model.updateWindows(profileElements);

similarityValue = model.computeSimilarity();

newState = analyzer.processValue(similarityValue);

if (state.isTrans() && newState.isPhase()){

// start phase

model.anchorTrailingWindow();

analyzer.resetStats();

} else if (state.isPhase() && newState.isTrans()) {

// end phase

model.clearWindows();

} else if (state.isPhase()) { // in phase

analyzer.updateStats(similarityValue);

}

state = newState;

return state;

}

}

Figure 4.3: Online phase detection framework

62

Chapter 4. Phase Detection for Java Programs

The window policy also dictates the behavior of the TW. Many previous method-

ologies partition a profile into fixed intervals and then compute the similarity between

intervals. In addition to modeling this approach online, i.e., TW size = CW size and

computing the similarity between adjacent intervals, we also consider a novel adap-

tive alternative (that we describe above) for which the TW grows to accommodate the

current phase once the algorithm detects that the program is in phase. Because a TW

contains a representation of profile elements, such as a set that contains only unique, but

not necessarily all, elements, we expect the size of the Adaptive TW to be manageable.

As we describe for the example in Figure 4.2, when a phase ends, the model empties

the TW and resets it to its original size.

4.1.2 Model Policy

The manner in which a phase detection algorithm models the similarity of pro-

file elements impacts both the accuracy and efficiency of a phase detector [39, 96].

We investigate both unweighted set (also called working set) models and weighted set

models.

For the unweighted set model, we consider asymmetric weighting, which com-

putes the percentage of elements in the CW that are also in the TW. This model is

biased toward the elements in the CW – which may be effective in combination with

the Adaptive TW policy that we describe above. For example, if all elements in the

63

Chapter 4. Phase Detection for Java Programs

CW are present in the TW, regardless of their frequency, a similarity value of 1.0 re-

sults. Likewise, if the CW contains {a, b} and the TW contains {a, c}, a score of 0.5

results regardless of how often a appears in the two windows.

For the weighted set model, we consider symmetric weighting, which treats both

sets equally. It first computes the relative weight of each profile element in each set

(TW and CW) independently. The relative weight is the percentage of a window

for which a particular element accounts. The model then takes the sum of the mini-

mum of the weights for each element in both windows, producing a number between

0 and 1. For example, assume CW contains {(a, 5), (b, 3), (c, 2)} and the TW contains

{(a, 25), (b, 15), (c, 10), (d, 50)}, then a accounts for 25% of TW (50% of CW); b ac-

counts for 15% of TW (30% of CW); c accounts for 10% of TW (20% of CW); and

d accounts for 50% of TW (0% of CW). By summing the minimum of these values

across windows TW and CW, we produce a similarity value of 0.5 (= .25 + .15 + .10).

4.1.3 Analyzer Policy

Given a similarity value, the analyzer determines whether this value represents suf-

ficient similarity to indicate a P state. In addition to exploring a wide range of fixed

thresholds, as other researchers have done, we explore analyzers that adapt their thresh-

old based on past similarity values in this phase. The average analyzer computes a run-

ning average of the similarity values for the current phase, and uses a threshold that is a

64

Chapter 4. Phase Detection for Java Programs

delta below this average. For example, if the running average of the similarity values of

the current phase is 0.88 and the delta parameter is 0.02, the analyzer reports a P state

for values of 0.86 or higher.

The standard deviation analyzer computes a running average and standard deviation

of the similarity values of the current phase and uses a threshold that is a multiple of

the current standard deviation below the average. For example, if the running average

of the similarity values of the current phase is .88, the standard deviation is .05, and the

multiple is 1.0, a similarity value of (.88− (1.0 ∗ .05) =) .83 or higher will be reported

as a P state.

4.2 Evaluating Phase Detectors

We next focus on evaluating the accuracy of online phase detectors. Extant method-

ologies evaluate accuracy by using a particular phase detector client, such as a feedback-

directed optimization, or by using an architecture-specific metric, such as variance in

the number of cycles per instruction (CPI). Our methodology computes the accuracy

of phase detection algorithms independent of the phase detection client and indepen-

dent of any architecture-specific information. The methodology consists of two parts:

a baseline solution (Section 4.2.1) and an accuracy scoring metric (Section 4.2.2).

65

Chapter 4. Phase Detection for Java Programs

4.2.1 Phase Detection Baseline

Our baseline solution implements an intuitively “correct” solution to phase bound-

ary identification for a particular program’s execution, that can be used to compare on-

line phase detectors. The baseline solution is not an online detection algorithm. Instead,

it employs a global view of a program’s execution trace and makes multiple passes over

the trace to identify periods of repetition. The baseline solution identifies periods of the

execution as in phase and all other parts as in transition. We use the baseline solution

as an oracle to evaluate online phase detection algorithms.

To identify periods of repetition, we consider two source constructs: loops and re-

peated method invocations, where repeated method invocations are recursive or tempo-

rally adjacent sequential invocations. We record the entrance and exit of each repetition

construct with a unique identifier.

To determine the duration of a particular period of repetition, we correlate these

events with the “time” of the latest dynamic branch, such as the loop was entered after

the kth branch occurred. From the profile elements and source constructs, we construct

a dynamic call-loop trace that we use to identify phase boundaries. Our approach is

similar to the ones described by Lau et al. [66] to find software phase markers, and by

Georges et al. [46] to find method-level phases. Their techniques summarize the exe-

cution of these repetitive events in a graph that is tied to the program’s static structure

and that is augmented with dynamic execution-time profile information. In contrast,

66

Chapter 4. Phase Detection for Java Programs

our approach tracks individual executions of such events in a trace that allows us to dis-

tinguish different executions of a loop body as being in phase or not if their execution

lengths differ significantly.

Our baseline solution requires a minimum phase length (MPL) parameter, which

specifies the minimum length that a period of repetition must be before it will be con-

sidered a phase. A client would specify the MPL to ensure that the phases identified

have sufficient duration to amortize the client’s costs. For example, if a client’s phase-

based optimization requires an approximate cost of 100,000 branches, then employing

this action for a phase that is only 50,000 branches long will result in a net loss. Sec-

tion 4.3 shows how the MPL value used in our framework impacts accuracy.

All phases identified by our baseline solution are complete repetitive instances

(CRI’s), i.e., a set of profile elements within an entire loop execution (all iterations)

or within a recursive execution. We consider a recursive execution to start upon invo-

cation of a method (which the program later invokes recursively) for which there is no

other execution instance on the stack. For example, if a program makes the following

method calls without returning: main→ foo→ bar→ foo, then the root of the re-

cursive execution starts and ends at the invocation and return, respectively, of the foo

instance called by main. Although it is possible for different iterations of a loop or dif-

ferent recursive executions of a method to have different branch behavior, we assume

that these differences are small, and thus, we consider them part of the same phase.

67

Chapter 4. Phase Detection for Java Programs

If a CRI is smaller than the client-specified MPL, we attempt to combine the CRI

with temporally adjacent CRI’s with the same static identifier (e.g., method name or

loop number) into a single phase. We do so if the distance (in terms of number of

profile elements) between them is one. This enables us to combine perfectly nested

loops and temporally adjacent, repeated invocations of the same method into a single

phase.

We view nested loops either as one large phase consisting of the outer loop, or as

smaller phases represented by executions of one or more nested loops. We employ

MPL to decide between these two choices. If the number of profile elements (dynamic

branches in our case) in an execution of a nested loop is at least MPL and there is

more than one profile element between executions of the nested loop, we consider this

execution of the nested loop a phase. If the number of profile elements in an execution

of a nested loop is smaller than MPL or there is only one profile element between

executions of the nested loop (as in a perfect loop nest), this execution of the nested

loop is not viewed as a phase, and we consider the execution of the next outer loop.

We repeat this process until the number of profiling elements exceeds MPL. When this

occurs, we select the nest as the representative for the phase.

To validate this approach, we collected branch coverage data (percent of branches

that are considered part of some “phase”) in the baseline solutions. Our empirical study

shows that MPL-based selection enables more control over phase size than specifying

68

Chapter 4. Phase Detection for Java Programs

a loop nest level. For example, using only outer loops to identify phases results in a

very small number of large, coarse-grained phases that cannot be readily subdivided.

Each baseline solution identifies the state (P or T) of each profile element, from

which we can extract the phase boundaries that represent the actual repeated execution

of the program. We use the extracted phase boundaries to compare and evaluate online

phase detection algorithms. We quantify this comparison using the accuracy scoring

metric that we describe in the next subsection.

4.2.2 Accuracy Scoring Metric

To compare the efficacy of a phase detection algorithm against the baseline solu-

tion, we introduce a novel accuracy scoring metric that has two components. The first

assesses how well the states identified (P or T) by the detector match those of the

baseline solution. We refer to this property as correlation in the spirit of the work by

Dhodapkar and Smith [38]. We define correlation as bothInPhase+bothInTransition
totalEvents

, where

bothInPhase is the total number of profile elements for which both the detector

and the baseline solution output P . Similarly, bothInTransition is the number

of events that the detector and baseline solution both output T . totalEvents is the

total number of profile elements. This component of the score measures the extent to

which the decisions of the detector and the baseline solution correlate.

69

Chapter 4. Phase Detection for Java Programs

The second component of the score measures how often the detected phase bound-

aries match those of the baseline solution, using two values: sensitivity and false pos-

itives. Sensitivity quantifies how often the detector and the baseline solution agree on

phase boundaries. It is defined as numMatchedBoundaries
numBaselineBoundaries

, where numMatchedBoundaries

is the number of detected phase boundaries that match the baseline solution and numBaseline-

Boundaries is the number of phase boundaries identified by the baseline solution.

The false positives value quantifies how often the detector identifies a phase bound-

ary that the baseline solution does not. It is defined as numUnmatchedBoundaries
numDetectedBoundaries

, where

numUnmatchedBoundaries is the number of detected phases boundaries not iden-

tified by the baseline solution and numDetectedBoundaries is the number of

phase boundaries identified by the detector.

Phase boundaries identified by the detector and baseline solution match when the

following constraints are satisfied. First, the start of the detected phase must occur at,

or after, the start and before the end of the identified phase in the baseline solution.

Second, the end of the detected phase must occur at, or after, the end of the current

phase and before the start of the next phase in the baseline solution. Third, the closest

detected boundary to an identified boundary in the baseline solution that satisfies the

first two constraints matches the identified boundary.

Correlation, sensitivity, and false positives are combined into a single weighted

sum, called score, which we define as

70

Chapter 4. Phase Detection for Java Programs

Correlation
2

+
(
Sensitivity

4
+ (1−FalsePositives)

4

)
.

We weigh Correlation and matching (Sensitivity and FalsePositives) equally and

split the matching weight evenly between Sensitivity and FalsePositives. Thus, Corre-

lation accounts for 50%, Sensitivity accounts for 25%, and FalsePositives accounts for

25% of the score. Scores fall into the range [0, 1] with higher scores signifying more

accurate detectors. Achieving a perfect score in the correlation component, and thus, in

the overall score, would require reporting a change in phase state as soon as it occurred

in the baseline solution. This may be impossible for an online detector. For example, in

our framework the windows must be full for the algorithm to make an evaluation (com-

pare similarity) and to detect a state change. As a result, the algorithms will always

detect a phase after it has started. The degree to which an algorithm is late depends on

the window size and is reflected in the correlation portion of the score.

4.3 Analysis

This section presents the empirical evaluation of instantiations of the framework de-

scribed in Section 4.1. After briefly describing our methodology, we present a detailed

analysis of different dimensions of the framework.

71

Chapter 4. Phase Detection for Java Programs

Table 4.1: Benchmark Characteristics
(a)

_201_compress 62,808,794 3,980,731 2,407,272 0
_202_jess 15,525,021 140,268 1,558,571 5,984
_205_raytrace 5,801,454 82,556 337,133 6,811
_209_db 3,374,648 317,397 13,621 0
_213_javac 2,770,921 200,121 995,992 10,786
_222_mpegaudio 37,099,265 1,906,483 2,831,987 0
_228_jack 5,926,061 593,135 514,923 4,471
Jlex 2,779,996 146,716 199,868 16

 Loop
Executions

 Method
Invocations

Recursion
Roots

Dynamic
Branches

Benchmark

(b)

� � � � � � � � � � 	

 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � 	

 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � �� � � � � � � 	 � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � 	 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
! " # $ % & & '() *" + , - . - " / 0 1 2" + , - .! " # $ 3 4 '() *" + , - . - " / 0 1 2" + , - . ! " # $ 4 & '() *" + , - . - " / 0 1 2" + , - .! " # $ % ' ! " # $ 4 ' ! " # $ % & '5 . 2 / + * , 6 ' () *" + , - . - " / 0 1 2" + , - . () *" + , - . - " / 0 1 2" + , - . () *" + , - . - " / 0 1 2" + , - .

72

Chapter 4. Phase Detection for Java Programs

4.3.1 Methodology

Our profile is a conditional branch trace of Java programs, which we obtained by

modifying JikesRVM [58, 5] to produce a profile element for each branch executed.

Each profile element represents a unique location in the source code as an integer value

that encodes a unique method ID, a bytecode offset in the method where the branch

is located, and a bit that represents whether the branch was taken. Our framework,

however, is not Java or JikesRVM specific; it consumes profile elements generated by

any toolset for profile extraction, e.g., we can also generate such profiles using the

Phoenix instrumentation and compilation framework [90] from Microsoft Research.

We derived baseline solution phase structures from a call-loop trace by instrument-

ing loop and method entries and exits (both normal and exceptional). We record the

unique loop or method identifier and the offset in the profile trace at that point. This

allows us to correlate baseline and detected phase boundaries.

We evaluate our phase detection algorithms using eight Java benchmarks, seven

from the SPECjvm98 [104] benchmark suite, and JLex [19] (a lexical analyzer gen-

erator for Java). We currently consider single-threaded applications only, though the

framework can be extended to handle multi-threaded applications. We use input size

10 for the SPEC benchmarks and the default input for JLex. We optimize all applica-

tion and library methods upon first invocation and extend the optimizing compiler of

JikesRVM to add branch, method, and loop tracing instrumentation.

73

Chapter 4. Phase Detection for Java Programs

Table 4.2: Window size comparison. (a) shows average percent improvement in best
score across all framework parameters when we use a CW size smaller or equal to the
MPL as compared to a CW larger than MPL for three TW policies: Adaptive, Constant,
and Fixed Interval. (b) is the average of best scores across all benchmarks when the size
of CW is smaller than, equal to, and half of MPL.

(a)� �	
 � � 	 � � � � � � �
 � � � � � � � � � � � �
 �

 � � � �
 � � �
 � � � �	
 �
 	 � � � � � � � � � � � � � � � � � � �
 � �
 � � � � � � � �	
 � � 	 � � � � � � � � �
 � � � �
 � � � � � � � �
 � �
 � � � �
 � � �	
 � � 	 ! "
 � � � � � � �
 �
 � �
 � � � � � � � � � � � � � �	
 � � 	 � � # � � � � � � � � � � �
 � � � � � � � � �
 � � � � � � � � �	

 	 � � � $ � % ! & � �
 � � �

 � � � � �
 � � � � � �
 � � � �
 � � � �	

 � 	 � � '

 � � � � � �
 �
 � � � �
 � � � �

 �
 � � � � � �() � * �
+ # � � � $ � � � � �
 �
 �

, - � . / 0 1 � 2 0 3 � - 4 � 5 �4 � 6 7 8 � � � 9

(b)� � � � � � � � � � � � 	
 � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � ! � " � � � � � # � � � � � � � � � �

74

Chapter 4. Phase Detection for Java Programs

Table 4.1(a) lists each benchmark and its dynamic execution characteristics. Col-

umn 2 gives the number of dynamic branches in a trace. Column 3 gives the number

of loops executed. Column 4 gives the number of method invocations; and column 5

is the number of method invocations that are the root of recursion. Both Loop Execu-

tions and Recursion Roots represent the frequency of code structures that can give rise

to repetition of program behavior. Although loop executions dominate, we must also

consider recursion when identifying phases.

For our baseline solutions, we consider the following MPL values: 1000, 5000,

10000, 25000, 50000, and 100000 (henceforth abbreviated to 1K, 5K, 10K, 25K, 50K,

100K). Table 4.1(b) provides information about the phases found by the baseline solu-

tion for different MPL values. For a given MPL value, the column to the left lists the

number of phases found (# Phases) and the column to the right shows the percentage

of profile elements (dynamic branches in this case) that are in phase (% in Phase). The

number of phases found varies significantly across benchmarks and across MPL val-

ues. For example, with an MPL value of 1K, compress has only 46 phases whereas

mpegaudio has 7,594. However, with an MPL value of 100K, mpegaudio has only

two phases.

The table illustrates the trend that as MPL values increase the number of phases

decreases. This is expected, since as the MPL value increases, our baseline solution

identifies larger loops (and recursive chains) as phases.

75

Chapter 4. Phase Detection for Java Programs

Counter to intuition, the percentage of profile elements in phase does not correlate

with the MPL value. This is an artifact of how the baseline solution selects which loop

in a loop nest to identify as a phase (Section 4.2). With a small MPL value, an inner

loop may be considered a phase while the containing loop is not. When the MPL is

increased, the nested loop may no longer be bigger than the new MPL value, but the

containing loop will be large enough to be a phase. When the containing loop becomes

a phase, all the profile elements of the inner loop and containing loop are now part of

the phase, and thus, increase the percentage in phase value compared to just the profile

elements from the inner loop.

However, the percentage in phase value can also decrease when the MPL value is

increased. For example, consider a simple loop that has sufficient profile elements to

satisfy the MPL value, and thus, is identified as a phase. However, if the number of

profile elements is not enough for a larger MPL value, none of these profile elements

will be consider in phase with this larger MPL value.

We used our framework to instantiate a large number of phase detection algorithms.

Given the various combinations of parameterizations possible (skipFactor, current win-

dow size, trailing window policy, model policy, and analyzer policy), we generated over

10,000 different algorithms, which we then compared against our baseline solutions.

We computed a score for each detector using our accuracy scoring metric from Sec-

tion 4.2. In the subsections that follow, we summarize and analyze this data in a way

76

Chapter 4. Phase Detection for Java Programs

that indicates the general trends in accuracy. In particular, we use the data to investigate

the various framework parameters discussed in Section 4.1.

4.3.2 Window Policy

We first evaluate the impact of the current window (CW) size on detector accuracy.

Intuitively, CW size should be related to the MPL parameter that is used by the baseline

solution to find the actual phases in a program.

For our phase detection algorithms, we considered CW sizes of 500, 1K, 5K, 10K,

25K, 50K, and 100K. We computed scores for each CW size and MPL value combina-

tion, across all other parameters that we considered: skip factor, TW size, and model

and analyzer policies. We then extracted the best score across all combinations and

evaluated, for each benchmark, the average when the CW size was smaller, equal to,

and larger than the MPL value. Table 4.2(a) shows the results. We present three sets of

data (pairs of columns) for each benchmark. The first set is data for detectors that use

the Adaptive TW policy and a skip factor of 1.1 The second set is data for the Constant

TW policy and a skip factor of 1. The final set, Fixed Interval, is data for a Constant

TW policy with a skip factor equal to the CW size. This last policy is the one most

1The other Adaptive TW policy parameters that we used for this data set and those that follow include
an anchor policy of RN (rightmost noisy + 1) and the sliding window resizing policy. We define and
support these choices empirically in Section 4.3.5.

77

Chapter 4. Phase Detection for Java Programs

commonly used by extant approaches to phase detection, in which the skipFactor, TW

size, and CW size are all the same value [62, 61, 94, 95, 96, 38, 39, 72, 35].

Each pair of columns under each policy is the percent improvement in score when

we use a CW that is smaller than (first column) or equal to (second column) the base-

line’s MPL, over using a CW size that is larger than the MPL. We cannot compare this

data across sets (Adaptive, Constant, and Fixed Interval), because each column is rel-

ative to the base case of that set, i.e., the score when CW size is larger than the MPL

value. We compare these configurations using other data in the next subsection.

The data shows that, on average, the highest accuracy occurs with detectors that

employ a CW size that is smaller than the MPL value. Although using a CW size that

is equal to the MPL value also enables higher accuracy than using one that is larger,

the improvement is not as great as for a CW size smaller than the MPL. One reason for

this is that the detectors employ two windows, the size of which totals at least twice the

CW; this total size is similar to MPL.

Table 4.2(b) shows the average of best scores across all benchmarks and MPL val-

ues, for each TW policy (Adaptive, Constant, and Fixed Interval). We show data for a

CW size that is smaller than an MPL value (column 2) for a CW size that is equal to an

MPL value (column 3), and for a CW size that is 1/2 the MPL value or smaller (column

4).

78

Chapter 4. Phase Detection for Java Programs

The scores that result from using a CW size smaller than MPL are similar to those

for a CW of 1/2 the MPL. If the CW is 1/2 MPL or smaller, then the size of TW and

CW together is at least MPL; thus, the detector is able to accurately identify the same

phases as our baseline solution (for that MPL value). The data also shows that a CW

smaller than MPL in some cases outperforms a CW of 1/2 the MPL. The reason for this

is that the particular CW size that produces the best score for the smaller CW case varies

across benchmarks. There is no single CW size smaller than 1/2 MPL that outperforms

a CW of 1/2 MPL across all benchmarks on average. We therefore, use 1/2 the MPL

as our CW size for the remainder of the paper in an effort to focus our analysis of the

remaining dimensions of our algorithms.

We next evaluate the impact of skip factor on detector accuracy for the three TW

policies (Adaptive, Constant, and Fixed Interval) and consider all other parameteriza-

tions of the model and analyzer policies. We again consider the best score across these

configurations.

Figure 4.4 compares the three TW policies. The x-axis is MPL and the y-axis is

the average of best scores across all configurations and benchmarks. A higher score is

better. We consider two values of skip factor: one and CW size. The former enables

high responsiveness by the detector to detect fine-grain changes in phase behavior. We

evaluate the accuracy enabled by two different skipFactor values by comparing the

Fixed Interval bars (skipFactor = CW size) against the remaining two (skipFactor =

79

Chapter 4. Phase Detection for Java Programs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1K 5K 10K 25K 50K 100K 200K

Minimum Phase Length (MPL)

S
co

re

Fixed Intervals (skipFactor = CW size, Constant TW)
Constant TW (skipFactor = 1)
Adaptive TW (skipFactor = 1)

Figure 4.4: Evaluation of skip factor and Fixed versus Adaptive windowing. The data
is the average of best scores across all benchmarks, models, and analyzers. The CW
size is less than 1/2 the MPL.

80

Chapter 4. Phase Detection for Java Programs

1). The data shows that on average, the approach commonly used in existing systems

(skipFactor = CW size) is significantly less accurate than both the Constant TW and

Adaptive TW policies when skipFactor is one. Thus, the remaining evaluations use a

skipFactor = 1.

When we compare Constant TW and Adaptive TW, the results are less clear. In

general, our experiments show that for small MPLs, Constant TW does somewhat bet-

ter than the Adaptive TW. However, this is not the case for all benchmarks when we

consider them individually. For larger MPLs, Adaptive TW is consistently more accu-

rate than a Constant TW. We added MPL 200K to this data set to evaluate whether the

trend continues, and it does. For larger MPLs, some of the shorter running benchmarks

exhibited a very small number (1 or 2) of very large phases, which were not useful or

fair to include in a comparison (all detectors achieve very high scores since there are so

few phases to match against).

The remainder of the paper presents results for MPL values of size 1K, 10K, 50K,

and 100K. We continue to include data for both Constant TW and the Adaptive TW

policies in our subsequent comparisons.

4.3.3 Model Policy

Figures 4.5 presents an empirical comparison between two models described in

Section 4.1: weighted and unweighted. The x-axis shows MPL values and the y-axis

81

Chapter 4. Phase Detection for Java Programs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11

MPL

Sc
or

e

All Benchmarks

Without _201_compress
Constant

TW
Adaptive

TW

 Weighted Model

 Unweighted Model
 Weighted Model w/o _201_compress
 Unweighted Model w/o _201_compress

1K 10K 50K 100K

Figure 4.5: The average of best score across all benchmarks for two models. There are
two sets of bars per MPL group for the Constant TW and Adaptive TW policies. For
each policy, weighted and unweighted model scores are shown with and without the
compress benchmark.

82

Chapter 4. Phase Detection for Java Programs

shows the average of best score across all benchmarks. For each MPL, there are two

groups, each with four bars. The first group is for the Constant TW policy and the

second group is for the Adaptive TW policy. Within each group, there are two pairs

of bars. In each pair, the left bar is the weighted model results and the right bar is the

unweighted model results.

The first pair of bars in each group shows the average of best score across all

benchmarks. These results show that the unweighted model is more accurate than the

weighted model in all but the 50K MPL case. When we consider the individual bench-

mark data, however, unweighted is significantly more accurate in a majority of cases for

all benchmarks except one: 201 compress (compress hereafter). For this benchmark,

the detectors that employ the weighted model are almost 50% better in many cases (we

omit this data due to space constraints).

To show the average accuracy of detectors without considering the compress bench-

mark, we include a second pair of bars in each group of four in the graph. This pair

shows the average of best scores for detectors that employ the weighted and unweighted

models, respectively, on average across all of our benchmarks, except compress. From

this data, we can conclude that, in general, the unweighted model is more accurate than

weighted model for all MPLs and trailing window policies. As a result, we consider

only the unweighted model for our analysis of similarity analyzers in the next section.

83

Chapter 4. Phase Detection for Java Programs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MPL
Analyzer Values: Threshold .5, .6, .7, .8, Average .01, .05, .1, .2, .3, .4

S
co

re

1K 10K 50K 100K
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MPL
Analyzer Values: Threshold .5, .6, .7, .8, Average .01, .05, .1, .2, .3, .4

S
co

re

1K 10K 50K 100K

(a) Constant TW (b) Adaptive TW

Figure 4.6: Constant vs. Adaptive window policy. This Figure shows the average of
best scores across all benchmarks for the Constant TW (a) and the Adaptive TW (b).
Each chart is grouped into four sets of bars, one for each MPL value. Each MPL cate-
gory has ten analyzers corresponding to (from left to right) the four Threshold analyzers
(darker bars) with increasing threshold (0.5, 0.6, 0.7, 0.8) and the six Average analyzers
(lighter bars) with increasing deltas (0.01, 0.05, 0.1, 0.2, 0.3, 0.4).

4.3.4 Analyzer Policy

Figure 4.6 shows a comparison between two categories of analyzers: Threshold and

Average, each with different parameters. The figure contains two subgraphs. The left

graph (a) presents the data for the Constant TW policy and the right graph (b) presents

the data for the Adaptive TW policy. In each graph, the x-axis presents MPL values and

the y-axis presents the average of best scores across all benchmarks. For each MPL,

there are ten bars. Within the ten bars, the first four bars, which are darker, represent the

Threshold analyzers with values of 0.5, 0.6, 0.7, and 0.8; and the last six bars represent

the Average analyzers with values 0.01, 0.05, 0.1, 0.2, 0.3 and 0.4.

84

Chapter 4. Phase Detection for Java Programs

The data presents mixed results. Neither the Threshold nor the Average analyzers

are clear winners for all MPL values and all benchmarks. However, if one were to pick

a particular analyzer, certain values seem to be a better choice for a specific trailing

window policy. In particular, if the Threshold analyzer is chosen, a threshold value of

0.6 wins in three out of four of the MPL values for the Constant TW policy, whereas the

threshold value of 0.8 wins in three out of four of the MPL values for the Adaptive TW

policy. If the Average analyzer is chosen, there is not a clear trend for the Constant TW

policy; however, a value of 0.05 wins for three out of four of the MPL values for the

Adaptive TW policy. A more comprehensive analysis of the data is required to better

understand these trends.

4.3.5 Additional Analysis

This section analyzes other parameters of our phase detection framework. The first

parameter specifies how window resizing and anchoring is performed when an algo-

rithm using the Adaptive TW policy detects the start of a phase. This parameter im-

pacts the detection of phase-start boundaries, and therefore, can produce a more accu-

rate representation of the phase. It is also important for an Adaptive TW policy because

it serves as a signature of the entire phase.

Before discussing this parameter fully, we discuss other properties that can also

impact the accurate identification of phase start boundaries. First, as mentioned in

85

Chapter 4. Phase Detection for Java Programs

Section 4.2, an online algorithm will have a delay in profile elements before it can

detect the beginning of a phase. Second, phase boundaries may not always align with

skipFactor values. Third, phases often exhibit startup periods where the behavior is less

stable (but is not considered a transition) than the steady state of a phase [83].

The anchor point is the position in the TW at which a new phase starts. We explore

two options to determine where to place the anchor point. The first option places the

anchor point one element to the right of the rightmost noisy element in the window

(RN). Noisy elements are those that are in the TW and not in the CW. The second op-

tion places the anchor point at the leftmost non-noisy element (LNN). Both techniques

attempt to eliminate instability during the start of a phase to enable more accurate de-

tection of T or P states thereafter. RN is more aggressive at doing so. For example, if

the TW contains elements a, b, and, c and the CW contains a, a, and c, then b is a noisy

element. The RN policy selects the position of c in the TW and the LNN policy selects

the position of a in the TW, as the start of the phase. Both policies attempt to eliminate

profile elements that are part of the warm-up period [83] of the phase that may not be

as stable as the steady state of the phase.

Once we identify the starting position of the new phase, we have two options for

window resizing. We can slide the TW right, so that the left boundary of the TW is at

the anchor point, thus reducing the size of the CW:

86

Chapter 4. Phase Detection for Java Programs

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

Anchor
point

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

CWTW

Alternatively, we can move the left boundary of the TW to the right and leave the CW

unaffected:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

Anchor
point

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

TW CW

By sliding, we reduce the size of the CW; however, we continue to compare the two

windows for similarity while the CW fills in this case. This enables the TW to hold as

much of the phase as possible (our original goal with the trailing window policy). By

moving the TW, we shrink its size as opposed to the CW.

Figure 4.7 evaluates these two policies across benchmarks for each of the MPLs

(x-axis). Graph (a) shows percent improvement in score for Sliding over Moving of the

TW (we use the RN anchoring strategy here). Graph (b) shows the percent improve-

ment in score due to the use of RN over LNN to select an anchor point (for the Sliding

resizing policy). On average, Sliding is more accurate than Moving and as such, is a

87

Chapter 4. Phase Detection for Java Programs

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

1K 5K 10K 25K 50K 100K
MPL

P
e
rc

e
n

t
Im

p
ro

v
e
m

e
n

t
in

 S
co

re
Sliding the TW vs Moving Its Leftmost Boundary

(a)

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

1K 5K 10K 25K 50K 100K
MPL

P
e
rc

e
n

t
Im

p
ro

v
e
m

e
n

t
in

 S
co

re

Rightmost Noisy + 1 versus Leftmost Non-noisy

(b)

Figure 4.7: Percent improvement in score for Slide over Move resizing, using the
RN anchoring strategy (a). Percent improvement in score for RN over LNN anchoring,
using the Sliding resizing policy, (b).

88

Chapter 4. Phase Detection for Java Programs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1K 10K 50K 100K 200K
MPL

S
co

re

Constant TW

Adaptive TW

Figure 4.8: Accurate detection of phase boundaries. Average of best scores across all
benchmarks, models, and analyzers for the Constant and Adaptive TW policies using
the anchoring policy for detecting the beginning of a phase.

better resizing policy. It also seems intuitively correct for an Adaptive TW to include

most of the recently detected phase before evaluating subsequent profile elements. In

addition, RN is more accurate than LNN, on average. We use the Sliding and RN

policies for the results in the previous sections and below.

Our last set of results compares the best scores for the Adaptive and Constant TW

policies using a modified technique for finding the beginning of a phase. As discussed

previously, an online algorithm detects a phase after some initial part of the phase has

been seen. However, once a phase is detected, such an algorithm can identify where the

phase began using the anchoring policy discussed above. This information can be used

to accurately identify phase signatures [66, 92] and their repetition online. Figure 4.8

89

Chapter 4. Phase Detection for Java Programs

compare these new phase boundaries against those of the baseline solution. The results

indicate that for every MPL, the Adaptive TW policy is significantly more accurate than

the Constant TW policy, showing promise for its use in online detection of recurring

phases.

4.4 Summary

In this chapter, we described our framework for developing a wide range of online

phase detection algorithms. We also described a novel client- and machine-independent

methodology for evaluating the accuracy of these algorithms, and performed a detailed

empirical study of numerous algorithms using this methodology. Our conclusions are

that the current window size should be smaller than the desired minimum phase length

and that a skip factor of 1 has better accuracy than the standard practice of setting the

skip factor to the current window size. We also find that an adaptive trailing window

policy can be more accurate than a constant trailing window policy. Finally, our results

for models tend to favor the unweighted model, although the results for analyzers are

mixed.

90

Chapter 5

Phase-based Runtime Techniques

Chapters 3 and 4 dealt with analyzing, and detecting phase behavior in Java pro-

grams. The work presented in these Chapters addresses the question of whether Java

programs exhibit phase behavior that can be captured and detected at runtime within

a virtual execution environment. Another important question, and the focus of the

remaining part of this thesis, is whether this phase behavior can be used to enable

more efficient runtime techniques. From the discussion on extant, prominent appli-

cations in Section 2.2, it is evident that applications of phase behavior in the realm

of software-level, feedback-directed optimization, are preliminary and limited. This

Chapter presents an overview of the two phase-based runtime techniques that we inves-

tigated; the following two Chapters delve into the details of each. The first technique is

an accurate, low-overhead profiling scheme that uses phases to drive when to sample the

execution of a program. We employed this technique to perform efficient profiling on

embedded devices. The second technique is a software instruction prefetching mecha-

91

Chapter 5. Phase-based Runtime Techniques

nism that uses method-level phase behavior to identify, predict, and prefetch methods

that incur a large number of instruction cache misses for emerging Java workloads like

database- and application servers. These two techniques span two extremes of execu-

tion environments used for Java applications: software for resource-constrained devices

at the low end and application servers at the high-end.

5.1 Phase-aware Profiling

With this work, we present a novel approach to program profiling that achieves

efficiency and accuracy through the exploitation of program phases. Using program

phase behavior, we can summarize a software system as a minimal but diverse set of

program behaviors in a manner that is dynamic, efficient, and that accurately reflects

overall program behavior. We propose a hardware-software method for general-purpose

program profiling. The hardware efficiently monitors program execution behavior and

makes predictions about what phase will occur next. The software system samples

the program for only previously unseen phases, significantly reducing the overhead of

program profiling.

As mentioned before, efficient profiling is one of the important aspects of feedback-

directed optimization. Feedback-directed optimization can be either online, as in case

of adaptive optimization in Java Virtual Machines, or offline, where information gath-

92

Chapter 5. Phase-based Runtime Techniques

ered from one run of a program is used to optimize subsequent runs. As such, our

phase-aware profiling mechanism can be extremely beneficial in any situation that de-

mands efficient, but accurate profiles. We employ phase-aware profiling in performing

remote, post-deployment profiling to enable feedback-directed performance optimiza-

tion and software evolution via a distributed optimization system. The platforms that

we are targeting are those that have emerged as new access points to the world’s digi-

tal infrastructure: mobile, resource-constrained, battery-powered devices, e.g. personal

digital assistants (PDA) and web-enabled cellular phones devices and their software

continue to grow in complexity and capability, techniques are needed to ensure effi-

cient execution, user satisfaction, and minimal power consumption. Feedback-based

optimization and software evolution offers potential for such systems since such tech-

niques gather information about a program while it is executing, once it has been de-

ployed in the wild.

Since mobile devices typically have neither the extra space for compilers and opti-

mizers, nor the resources to execute them on-the-fly, a distributed optimization system

offers a good alternative. Such a system would gather information about a running

program, transmit this information to an optimization center for analysis, possible re-

coding, and re-compilation using feedback-based optimization, and then update the

code on the end-user system when the opportunity or need arises. Key to the success

of such an approach, is a highly efficient remote performance profiling system that is

93

Chapter 5. Phase-based Runtime Techniques

transparent and unobtrusive, i.e., that consumes only minimal device resources. This

latter requirement is a significant challenge since profiles are commonly collected by

executing instrumented versions of the software. Moreover, for deployed software,

we must also communicate this information back to optimization center for analysis.

This problem of overhead introduction is exacerbated for mobile devices with limited

resources as this performance degradation can translate into significant battery drain.

We present the details of phase-aware profiling in Chapter 6, including the eval-

uation of its efficiency (in terms of computation, communication, and battery power)

as well as the accuracy for a number of different profiles types that have been shown

previously to be important for feedback-based optimization.

5.2 Instruction Prefetching

The goal of phase-based instruction prefetching is to use the ability of extracting

and predicting repeating patterns in a programs behavior in tuning one aspect of the

instruction cache – which instructions it contains. Modern processors demand a high-

bandwidth supply of instructions from the pipeline, given current processor speeds,

multi-core architectures, and techniques to exploit instruction level parallelism. If an

instruction needed by the processor cannot be supplied in time (icache miss), the pro-

cessor has to stall until the instruction can be made available. Higher memory access

94

Chapter 5. Phase-based Runtime Techniques

latencies, together with the high capacity of executing instructions, exacerbates the im-

pact of an icache miss. Prefetching is a technique that attempts to alleviate this problem

by speculatively fetching instructions that will be required in the near future in advance.

Despite an abundance of research over the years, instruction cache (icache) miss

stalls remain a source of performance degradation for many commercial applications [4,

17, 24, 25, 59, 75, 100]. Due to the relatively larger performance cost of data cache

misses in most applications, research and development has largely focused on the data

cache miss problem instead. As evidence, only a few architectures (IA-64, PA-RISC,

and SPARC v9) include instruction cache prefetch instructions, while many architec-

tures (e.g. IA-32, x86-64, and PowerPC), include no support for instruction prefetching.

In contrast, all major architectures include support for software-directed data prefetch-

ing.

In theory, the icache miss problem is an easier problem to solve, because choosing

blocks for instruction prefetching is solely a function of predicting control flow, while a

data prefetching mechanism must also solve the considerably more difficult problem of

predicting the data address that will be touched. In addition, control flow, through both

branch prediction and phase behavior [96, 80], has been shown to be highly predictable.

Consequently, given hardware support for software-directed instruction cache prefetch-

ing, we believe that it should be possible to significantly reduce instruction cache miss

stalls for all applications (large and small).

95

Chapter 5. Phase-based Runtime Techniques

We propose phase-based instruction prefetching as an adaptive optimization that

can be performed within a Java Virtual Machine. Our target platform for this optimiza-

tion is enterprise servers running commercial applications like database-, or application-

servers. As a first step towards this end, we have developed a method-level instruction

prefetching scheme that chooses prefetch points for methods with a high number of

misses, from the call-chain for that method. This call-chain based prefetching scheme

does not currently incorporate phase detection and prediction at runtime; however, we

present an analysis of the method-level phase behavior in our target application, and

discuss the feasibility of phase-based instruction prefetching. Chapter 7 presents the

details.

96

Chapter 6

Phase-aware Remote Profiling

In this Chapter, we present phase-aware remote profiling, which employs program

phase behavior in a novel way: to identify intelligently a representative set of profiling

points. The advantage we gain by using phase information is that we only need to

gather information about part of the phase and then use that information to approximate

overall program behavior. By carefully selecting a representative from each phase, we

can drastically reduce the number of times that we need to sample and the amount of

total communication required for profile transmission to the optimization center. Since

an interval will be similar to all other intervals in a phase, it can serve as a representative

of the entire phase. As such, only select intervals of the program’s phases need to be

collected (instrumented, communicated, and analyzed) in order to capture the behavior

of the entire program. This will make more efficient use of those limited resources

available on mobile devices. Furthermore, these low-overhead profiles will be highly

accurate (very similar to exhaustive profiles of the same program).

97

Chapter 6. Phase-aware Remote Profiling

0 1 2 3 4 5
Instructions Executed (Billions)

0.0
0.1
0.2
0.3
0.4

u
J/

In
st

r

Figure 6.1: The figure shows the run-time power usage of the full execution of the
program mpeg encode.The program exhibits different phases, marked by periods of
high and low power. A random or periodic sampling method (the white triangles) will
continue to take samples over the full execution of the program. A more intelligent
sampling technique based on phase information (shown as black triangles) can achieve
the same profile accuracy, by taking fewer key samples from each phase.

Figure 6.1 exemplifies our approach using actual energy data gathered from the

execution of the mpeg encoding utility. The execution of mpeg exhibits a small number

of distinct phases during execution that repeat multiple times. A random or periodic

sampling method will continue to take samples over the full execution of the program

regardless of any repeating behavior. In Figure 6.1, the white triangles show where

samples would be taken if sampling is done periodically to achieve an accuracy error of

5% (i.e. the resulting basic block count profile is within 5% of the exhaustive profile).

This has the unfortunate drawback that most of the samples will not provide any new

information because they are so similar to samples seen in the past. A more intelligent

sampling technique based on phase information (shown as black triangles) can achieve

the same error rate with significantly fewer samples. This is done by taking only key

samples from each phase.

We propose a hybrid method for general-purpose program profiling that consists of

phase-aware sampler and a profiler. The phase-aware sampler is based on the phase-

98

Chapter 6. Phase-aware Remote Profiling

tracking hardware proposed by Sherwood et al. described in Section 2.2 [96],and effi-

ciently monitors program execution behavior and makes predictions about what phase

will occur next. The profiling system is asked to sample the program for only previ-

ously unseen phases, significantly reducing the overhead. The profiling system is one,

in which, profiling can be turned on and off. Such a system can be implemented in ei-

ther hardware or software. [12, 52, 48] are examples of software profiling schemes that

switch between instrumented and non-instrumented versions of the code depending on

whether a particular part of the execution is to be profiled or not. Although our design

does not depend on any particular profiling system, we incorporate a hardware based

profiling approach based on the DISE dynamic expansion of microprocessor instruc-

tions [32]. More specifically, the profiling system that we propose consists of two main

components: Phase-Aware Sampling and Hybrid Profiling Support(HPS). Phase-aware

sampling uses phase information to guide its sampling decision, and HPS employs dy-

namic instruction stream editing [32] to toggle profile collection, i.e., to sample the

executing instruction stream, whenever a decision to sample is made.

Figure 6.2 provides an overview of the interactions among the primary components

of our system.

The phase-aware sampler consists of a hardware phase tracker that monitors the

execution stream and predicts, for each interval in the program, whether the interval

is in a previously seen or unseen phase. A software profiling daemon triggers profile

99

Chapter 6. Phase-aware Remote Profiling

Execution Pipeline

OS

Profile
data

Profile data
storage and
aggregation

Code

HPS
Hybrid system to toggle
the dynamically insertion

pf profiling code

Extended
DISE

Profiling
Productions

Phase-Aware
Sampling

Hybrid system to track
recurring program phases
to decide when to profile

Phase
Tracker

Profiling
Daemon

Profiling Control

S/W

H/W

Figure 6.2: Overview of the main components of our efficient profiling system for
remote embedded devices. The HPS system (section 6.2) is responsible for the dynamic
insertion and toggling of profiling instructions. The phase tracking system (section 6.1)
is responsible for deciding when to gather profile information.

collection by the hybrid profiling support (HPS) system for representative intervals

from as-yet-unsampled phases. We can also trigger collection directly via a connection

between the phase tracker and HPS; we avoid this approach since it restricts flexibility

and system modularity.

HPS intercepts the instruction stream to dynamically insert instrumentation code for

instructions of interest (those to be profiled) when its sampling flag is set by the phase-

aware sampler. At the end of an interval, the profiling daemon clears the HPS sampling

flag and all instructions execute unimpeded. The system stores samples locally for

100

Chapter 6. Phase-aware Remote Profiling

aggregation and transmission by the profiling daemon to the optimization center, as

needed.

In the sections that follow, we first present phase-aware sampling (section 6.1) and

then detail the HPS system (section 6.2). We evaluate both the efficiency (in terms

of computation, communication, and battery power) as well as the accuracy of our

approach for a number of different profiles types that have been shown previously to

be important for feedback-based optimization, e.g., hot methods, hot call pairs, and hot

paths. We present results for a set of general-purpose benchmarks, as well as for a

set of benchmarks for embedded devices in Section 6.3, followed by a discussion on

extending phase-aware remote profiling to multiple users in Section 6.4.

6.1 Phase-aware Sampling: Deciding When to Sample

Figure 6.3 depicts our implementation of Phase-Aware Profiling. The system con-

siders individual, fixed-length periods of program execution at at time. We use an

interval length of 10 million instructions in this paper. To predict the phase in which a

future interval will be, we employ the Phase Tracker hardware that we proposed in prior

work [96]. The Phase Tracker is a small, low area, low overhead hardware resource that

consumes approximately 4 picojoule of energy per dynamic branch (this means that on

a high speed machine that executes 1 branch every 2ns, it will consume around 2 mW).

101

Chapter 6. Phase-aware Remote Profiling

Phase Tracker

ID Sam ple? Count

#inst

PC

P
h
a
se
 I
D

Wireless
Network
Interface

A

B E

Hybrid Profiling
Support (HPS)

OS

Code

C

Profile Buffer

P
h
ase T

race
D

Figure 6.3: Overview of the phase-aware profiling scheme. Phases are tracked in
hardware (A) and the results are fed to a small table that tracks the state of each phase
(B). When a phase is deemed to be important, the profiler (HPS) is notified and a sample
is taken (C). The sample is stored in a small profile buffer (D). This information is then
transmitted back to a trace aggregation center (E).

The Phase Tracker (figure 6.3:A) collects the dynamic branch behavior of a program

into intervals and segregates the intervals into phases according to a similarity threshold

computed from the interval execution characteristics.

The Phase Tracker uses a similarity threshold to govern the number of phases gen-

erated from the set of intervals executed by the program. A higher threshold value will

generate fewer phases, each consisting of more intervals, but with a higher similarity

variance across the intervals of any single phase. The threshold can therefore be ad-

justed according to the desired sampling rate, and the resulting profile will represent

the most diverse and relevant sets of dynamic behavior.

The Phase Tracker uses the program counter value of branch instructions, along

with the number of executed instructions between branches, to produce a prediction

for the phase of the next interval (the complete details on the prediction process can

102

Chapter 6. Phase-aware Remote Profiling

be found in [96]). Prior work has shown the accuracy of the Phase Tracker phase

prediction to be 85-90% [96]. We assume a prediction accuracy of 100% in this work;

as such, our results indicate an upper bound on the potential of phase-aware profiling

performance. [88] use a similar methodology to our phase-aware sampling system to

significantly reduce the overhead of cycle-accurate architectural simulation. The phase

tracker in this work identifies and simulates intervals that represent unique (per-phase)

execution behaviors. This prior work does not assume perfect Phase Tracker prediction

and achieves a 3.2% error in cycle count on average over exhaustive simulation.

Since the Phase Tracker is in hardware, it monitors the entire system, i.e. it is shared

by multiple processes (much like hardware performance monitors (HPMs)). In our

system we use the Phase Tracker to monitor a single process at a time. To distinguish

per-process phase data, the operating system toggles phase tracking, via a register in

the Phase Tracker hardware, upon a context switch. We only consider single-process

phase tracking in this work; we plan to consider concurrent phase tracking as part of

future work.

The Phase Tracker outputs a phase ID, which is a unique identifier for the behavior

likely to be observed in the next interval. We store the phase IDs in a small table which

tracks each phase and identifies when a sample should be taken. We have found that a

fully associative table of size 20 is sufficient to minimize the number of misses using

random replacement. In general, the worst case is one in which two similar behaviors

103

Chapter 6. Phase-aware Remote Profiling

are sampled more than once as a result of a table miss. The performance effects from

such misses, however, are negligible for tables of this size. The table tracks a list

of phase IDs and stores a “sampled bit” that indicates if the phase has already been

sampled. Additionally, we record a count of the number of times this phase has been

seen in the past.

When the Phase Tracker predicts that the next interval is one from a previously un-

seen phase, it signals a lightweight profiling daemon (background thread). The daemon

tracks the number of intervals encountered for newly executed phases and selects the

most appropriate one for sampling.

Ideally, the most representative interval - i.e. most similar to the phase’s other

intervals - should be selected for profiling. Doing so online, however, is a challenge

because we are not aware of the occurrence of future phase intervals. Therefore, we

use a heuristic that quickly identifies a representative interval so that we do not miss

the profiling of important phases. In our evaluation section, we consider using one of

the first initial intervals encountered for a new phase and compare this policy to oracle-

based approaches (centroid and random) that use future knowledge to identify the best

representative interval of a phase. In general, we find that the first interval encountered

is not a good representative since it commonly contains execution behaviors from the

previous phase or a phase transition. The third interval is commonly sufficient to avoid

this “warm-up” period.

104

Chapter 6. Phase-aware Remote Profiling

Once the daemon identifies an interval to sample, it executes a special profile-

toggling instruction. This instruction is equivalent to a no-op (it performs no work and

imposes a single cycle pipeline performance penalty). Only authorized agents (pro-

cesses that are granted such permission by the Operating System, e.g. the profiling

daemon) may execute this instruction. Consuming this instruction causes HPS to set

the sampling flag (figure 6.3:C). This is the external trigger scenario described in sec-

tion 6.2.2. This simple mechanism is implemented using a single HPS-private counter

and requires a single instruction to turn profiling on and off.

Once the profile has been generated, the profile daemon stores it in a specialized

profile buffer and tags the profile with the phase identifier (figure 6.3:D). In addition to

the profile data, the daemon records a trace of phase IDs from intervals in previously

seen phases. This enables us to reconstruct accurate a time-varying behavior of the

program if necessary.

Once the buffer fills, we must empty it via network transmission. At this point,

the profile daemon transfers the profile over a wireless network back to some data

center for further study and analysis (figure 6.3:E). In our embedded system study (sec-

tion 6.3.2), we evaluate the efficacy of transferring data intermittently while the pro-

gram is executing (e.g. when storage is limited) as well as transferring the complete

phase trace once the program terminates. Since communication consumes significant

battery power in mobile devices, we must ensure that we minimize the number of bytes

105

Chapter 6. Phase-aware Remote Profiling

transfered. As such, in addition to using phase behavior to reduce profile size, we also

incorporate compression of the trace prior to transmission. However, the application of

compression consumes computational resources. We include the effect of this tradeoff

(increased computation for decreased communication due to compression) as part of

the empirical evaluation of our approach. In general, we found that the benefit of com-

pression due to the reduced communication overhead far outweighs the computational

overhead we introduce in terms of battery power.

6.2 Profiling Support for Toggling Profile Collection

To efficiently toggle profile collection, our system employs HPS, a hardware/software

(hybrid) approach for dynamic profiling [77]. HPS is an application and extension of

Dynamic Instruction Stream Editing (DISE) [32]. DISE is a hardware mechanism that

dynamically and transparently inserts instructions into the execution stream thereby

enabling semantics similar to macro expansion in the C programming language.

Figure 6.4 is an overview of HPS design. HPS consists of an extension to DISE

(dark grey region in the hardware (H/W) section) that enables highly efficient, con-

ditional, dynamic profile collection. HPS supports the toggling of profile collection

via external triggers such as timer interrupts or periodic events. HPS also includes an

internal flexible, program driven, triggering mechanism based on the sampling frame-

106

Chapter 6. Phase-aware Remote Profiling

Execution Pipeline

Application

Sample
Trigger

Mechanism

DISE with HPS
extensions

Profile
Specifications

Profiling
Parameters

Profile
Consumer S/W

H/W

Figure 6.4: The Hybrid Profiling Support (HPS) system. HPS contains a hardware
component which is an extension of Dynamic Instruction Stream Editing(DISE). Soft-
ware level mechanisms control the profiling framework and provide facilities for the
profile consumer to define their profiling specifications (including instructions of in-
terest and actions to be taken). HPS allows the profile consumer to set the profiling
strategy (e.g. triggering policy – exhaustive, periodic, program driven, ...) and control
the profiling parameters.

work proposed by [12] and extended by [52]. Furthermore, HPS enables the profile

consumer to specify arbitrary instructions of interest and associate them with profile

collection actions via HPS and DISE based semantics. We next provide an overview

of the DISE system and then describe how we extend DISE and apply it for efficient

profiling in HPS.

107

Chapter 6. Phase-aware Remote Profiling

6.2.1 Dynamic Instruction Stream Editing (DISE)

Hardware architects implement dynamic instruction stream editing by extending the

decode stage of a processor pipeline. The extensions identify interesting instructions

and replace them with an alternate stream of instructions.

To enable this, DISE stores encoded instruction patterns and pre-decoded replace-

ment sequences in individual DISE-private SRAMs called the pattern table

(PT) and the replacement table (RT) respectively. The hardware com-

pares (in parallel) each instruction that enters the decode stage against the entries in

the PT. On a match, DISE replaces the original instruction with an alternate stream of

instructions that commonly includes the original instruction. DISE retrieves this stream

of instructions from the RT according to an index generated by the PT.

An Instantiation Logic (IL) unit is employed by DISE to parameterize

the replacement sequence according to specific information extracted from the origi-

nal matched instruction. DISE also supports a small number of DISE-private hardware

registers to enable efficient and transparent execution of the replacement sequence in-

structions without impacting the registers that an application uses.

The DISE mechanism operates within the single cycle bounds of the decode stage

and imposes no overhead on instructions that are not replaced. For instructions that are

replaced, DISE imposes a 1 cycle delay. DISE utilities operate concurrently with and

transparently to the executing program and avoid polluting the memory hierarchy in

108

Chapter 6. Phase-aware Remote Profiling

use by the program for instructions and data. Moreover, DISE is an abstract hardware

mechanism for general purpose instruction stream editing. Users of this mechanism can

customize the operational design parameters and components of DISE to fit the needs

and limitations of a particular architecture.

DISE users build utilities called Application Customization Functions(ACFs). Users

define ACFs by writing a set of DISE productions each of which consists of a pattern

specification and a parameterized replacement sequence. The pattern specification in-

cludes a binary function computed from the various instruction fields. The parameter-

ized replacement sequence is a list of instructions with fields that may contain either

precise values or directives for dynamically computing the value based on the matched

instruction. The IL unit processes the directives dynamically as it generates the replace-

ment sequence.

The progenitors of DISE have built DISE utilities for software fault isolation [32],

dynamic debugging [32, 33], and dynamic code decompression [31, 32]. The authors

also suggest and evaluate a preliminary utility that uses DISE for exhaustive path pro-

filing and code generation [30, 32].

The wide range of supported utilities makes DISE a prime candidate for consider-

ation in embedded architectures. By including a DISE mechanism, embedded system

designers can support a wide range of common runtime utilities simultaneously. This

can reduce the memory footprint of applications, since many of these utilities are other-

109

Chapter 6. Phase-aware Remote Profiling

wise supported through static software instrumentation. Such instrumentation increases

the code size of the application and can degrade performance. By building on the gen-

eral purpose framework of DISE, HPS brings efficient profiling support to embedded

systems with only incremental hardware requirements to the general purpose mecha-

nism provided by DISE.

6.2.2 Hybrid Profiling Support using DISE

To profile exhaustively, HPS dynamically replaces instructions to be profiled with

a replacement sequence consisting of the instrumentation, i.e., the profile collection

instructions (or procedure call that implements them), followed by the original instruc-

tion. To enable this, we define a DISE pattern/replacement production pair for each

profile type: The pattern is the instruction type of interest and the replacement is the

profiling instrumentation and original instruction.

We perform sample-based profiling by guarding the instrumentation in the replace-

ment sequence with a check that first verifies whether sampling is turned on or off, i.e.,

whether a sampling flag is set or not. The instrumentation is only executed when the

sampling flag is set.

A limitation of this implementation is that each time an instruction of interest is

executed, the instruction is replaced regardless of whether the sampling flag is set. This

is due to the fact that the replacement sequence itself checks the flag following replace-

110

Chapter 6. Phase-aware Remote Profiling

ment. This can result in a very large number of replacements being performed which

can introduce significant runtime overhead: a single cycle penalty for each replacement

and 2-5 additional instructions (and potentially a pipeline flush) per profiled instruction.

To reduce this overhead, we optimize and extend the DISE design.

Optimizing DISE for Efficient Sampling

To reduce the number of replacements that DISE performs, we extend DISE with

a new functionality called conditional control. Conditional control, in essence, moves

the check of the sampling flag out of the replacement sequence (software) and into

the DISE engine (hardware). Conditional control enables HPS to instrument profiled

instructions only while the sampling flag is set. To enable conditional control, we

modify the DISE engine and production specification.

Figure 6.5 shows the DISE extensions that enable our efficient implementation of

HPS. Instead of requiring that pattern specifications in the DISE ACF be implemented

using unconditional matches, we allow conditional pattern specification. We add a

masking layer which implements conditional matching based on the status flags of in-

ternal counters (we currently consider only overflow and zero status flags).

HPS manages internal counters using micro-instructions that are defined as part of

the DISE productions. HPS stores these microinstructions in an associative table that

we have defined called the Conditionals Table (CT). The CT is similar in structure (but

111

Chapter 6. Phase-aware Remote Profiling

Fetch ExecuteNative decoder

Extended PT

RT
I L

“Extended” DI SE Engine
For Hybrid Profiling

Support (HPS)

PT

Fetched
instructions

Original or
original & instrumented

instructions

Counters
Status Flags

Conditional
Controller

CT

Pipeline
Components

Base DISE
Components

Extended DISE
Components

Figure 6.5: HPS extensions to DISE. HPS moves conditional control of instrumenta-
tion out of the critical path and into a dedicated controller.

smaller in size) to the pattern table (PT) defined as part of the original DISE infrastruc-

ture. The RT is part of the original DISE implementation and holds the replacement

instruction sequences.

We define a set of lightweight micro-instructions to manage the internal counters

and extend the pattern specification language to allow for checking of the status bits.

The operations include only those that can be implemented with simple logic and exe-

cuted within the cycle bounds of the decode stage. These include increment, decrement,

checking of status (zero and overflow) flags, and copying a value from a HPS-internal

register to a counter.

Figure 6.6 shows the extended DISE production specification that enables condi-

tional control within a DISE ACF. We extend the root production, (DISE Production)

and the Pattern production to implement conditional control. We added Conditional Control

and Conditional productions that allow the ACF writer to specify simple conditional ex-

112

Chapter 6. Phase-aware Remote Profiling

Extended DISE Production Specifications

DISE_Production := Pattern � Replacement , Conditional_Control

Pattern := Instruction_Pattern && Conditional

Instruction_Pattern := [Original DISE Pattern Specifications]

Conditional := ([!] (overflow_N | zero_N)) [(|| | &&) Conditional]

Replacement := null | [Original DISE Replacement Specifications]
Conditional_Control := (null | inc_N | dec_N | set_N(dise_reg)) [,Conditional_Control]

Figure 6.6: HPS pattern and replacement specification grammar (extended from the
original DISE production specification grammar).

pressions. These expressions check the status flags for a particular counter for overflow

and zero. The microinstructions that we defined are inc N and dec N which increment

and decrement DISE counter N, respectively (where N varies between 0 and the num-

ber of DISE-private counters). The microinstruction set N (dise reg) sets counter N

with a value retrieved from the DISE-private register dise reg. A production can set the

Conditional Control section to null if no conditional microinstruction is required.

Although we allow for arbitrary logic expression on the status bits associated with

each counter, in actuality, the number of possible logic functions for a finite set of

counters is limited to:

(numberOfCounters ∗ numberOfStatusBits)2

We only consider two status bits: overflow and zero. The number of counters is a design

parameter, and can be as small as 2 (e.g., to implement bursty tracing), or some higher

number to allow for more elaborate profiling schemes or functionality. HPS designs

with a small number of counters can be efficiently implemented using a simple truth-

113

Chapter 6. Phase-aware Remote Profiling

table stored in a small n× 1 memory (n is 16 for our particular design instance). This

small lookup table implements the functionality of the CT and allows us to constrain

the processing delay to within the cycle bounds of the decode stage. The PT processing

delay is also within the single cycle bounds of the decode stage as described in the

original DISE architecture [32].

Another DISE extension that we make for HPS is to enable specification of pattern

productions without replacement sequences. This change is reflected in the optional

Replacement production: null. When HPS encounters a pattern production rule with

a null replacement specification, the pattern match fails upon completion. As a re-

sult, HPS simply forwards the current instruction through the decode stage unimpeded,

while still permitting local conditional microinstructions. This implementation (match

failure upon encountering a null replacement) is key to enabling low overhead in HPS,

since the 1-cycle penalty is imposed only when an instruction is replaced.

Taking Samples

HPS is flexible in that it can implement a number of different, existing or novel,

simple or complex, sample triggering strategies.

One of the two ways to trigger sampling is by using an external signal such as

a timer or randomly generated interrupt, or, in our case, an intelligent, phase-guided

trigger. To do so requires that authorized software be able to set and unset the sampling

114

Chapter 6. Phase-aware Remote Profiling

flag. To enable this, we use a variation of the Aware ACF described in [32]. We define

an HPS production that is matched by a special purpose no-op instruction (usually

one of the reserved instructions in the instruction set architecture (ISA)). We refer to

this instruction as on trig inst. The execution of this special instruction will cause the

sampling flag (in this instance the zero status flag of counter number 0) to be turned on.

P0 : T.OP == on trig inst → set 0(HPS R0), null (6.1)

This production specifies the pattern T.OP == trig inst as a successful match. T.OP

is an attribute of the instruction being decoded that identifies the operation code of the

instruction. On a match, HPS attempts to use the replacement (set 0(HPS R0), null).

set 0(HPS R0) is a conditional microinstruction which causes HPS to copy the con-

tents of the DISE-private register HPS-R0 to counter 0. HPS R0 holds the constant

0. Since the replacement also contains null, the production fails and the original in-

struction executes unimpeded. We can use a different special instruction to turn off the

sampling flag (in this case the HPS register HPS-R1 holds the value 1:

P0 : T.OP == off trig inst → set 0(HPS R1), null (6.2)

(We can also use the microinstruction inc 0 to increment the counter and implicitly

clear the zero flag causing sampling to stop).

Profile consumers make use of these status bits as part of their profiling (instrumen-

tation) productions. For example, if we are interested in profiling method invocations,

115

Chapter 6. Phase-aware Remote Profiling

we use the following production:

P0 : T.OPCLASS == proc call&&zero 0 → null, RO

R0 : call(HotMethod Handler); T.INSN

In the above example, whenever the instruction of interest is encountered (procedure

call) and if the zero flag of HPS counter number 0 (also referred to as the sampling flag)

is true (on), the replacement sequence R0 is streamed into the executions stream. R0

is simply a call to the profile handler and the original matched instruction (T.INSN).

When the sampling flag is off (i.e. zero 0 is false), the pattern of P0 will fail and the

original instruction is forwarded through the pipeline unimpeded.

HPS imposes no profiling overhead on the executing program, weather direct or

indirect, when the sampling flag is unset (i.e. sampling is turned off). The only source

of overhead HPS imposes on program execution is the profiling overhead. Profiling

overhead is the cost of executing additional instructions for profile collection. The

amount of profile overhead imposed by HPS depends on the duration of the sampling

period and the profile type. The profile type dictates which instructions are inserted into

the code and the points at which this code is inserted. We next describe how to specify

productions for different profile types.

116

Chapter 6. Phase-aware Remote Profiling

Specifying Profile Types in HPS

HPS is flexible in that it can implement any instruction-based profiling technique

by specifying an ACF for each profile type. We use HPS to implement three different

profile types: hot code region, hot call pair, and hot method. These profile types are

widely used in dynamic and adaptive optimization systems [9, 28, 53].

Code regions are profiles that estimate basic block behavior and are generally effi-

cient to collect. Each event in the profile is a dynamic branch; the data value for which

is the cumulative number of instructions since the previous dynamic branch. Method

profiles estimate the time spent in a method; for each method, we record the number of

invocations as well as the number of backward branches taken. Call pair profiles are

invocation counts for each caller-callee pair executed. We use the term “hot” to indicate

that we are interested in the events with the highest values (i.e. that are most frequently

occurring).

We show the HPS productions for each of these profile types in Figure 6.7. As

before, P identifies a pattern production and R identifies a replacement production.

These ACFs execute no conditional microinstructions. They do employ conditional

replacement however – only when the zero status register of HPS internal counter 0 is

set, will HPS replace a matched instruction. These productions are controlled by the

external trigger sampling strategy described above.

117

Chapter 6. Phase-aware Remote Profiling

Profile Type Productions

Hot Code Region Analysis
P1: T.OPCLASS == branch && zero_0 � R1, null
R1: call(Branch_handler,T.INSN);

T.INSN;

Hot Method Analysis
P2: T.OPCLASS == proc_call || (T.OPCLASS ==branch && T.PC < T.Target) && zero_0 � R2, null
R2: call(HotMethod_handler,T.INSN);

T.INSN;

Hot Call Pair Analysis
P3: T.OPCLASS == proc_call && zero_0 � R3, null
R3: call(CallPair_handler,T.INSN);

T.INSN;

Figure 6.7: Pattern and replacement productions for the three different profile types
that we investigated for remote performance profiling of deployed, embedded device
software: hot code region, hot method, and hot call pair profiling.

Currently we insert a call to the profile collection routine for each profile type. The

typical size of a profile handler is a few hundred bytes. As such, several profile types

can be implemented at once. We consider only a single profile type at a time in our

evaluation of HPS. The only additional change required to enable collection of multiple

profile types at once is to have multiple profile productions active simultaneously while

merging the pattern specifications and replacement sequences of overlapping profiles.

6.3 Evaluation

In this section, we evaluate the efficacy of our remote profiling system. We first

present an evaluation of our DISE extensions that enable HPS, and of the accuracy and

overhead of our system using a general-purpose benchmark suite and processor. In

118

Chapter 6. Phase-aware Remote Profiling

Section 6.3.2 we evaluate our system in the context of a resource-constrained device,

its applications, and its power consumption.

6.3.1 Phase-aware Profiling for General-purpose Programs

Methodology

We employ a cycle-accurate simulation platform and simulator parameterization

identical to that used in the original DISE studies [30, 31, 32, 33]. The platform is an

extension to SimpleScalar [23] for the Alpha processor instruction set and system call

definitions.

Our simulation environment models a 4-way superscalar MIPS R10000-like proces-

sor. It simulates a 12 stage pipeline with 128 entry reorder buffers and 80 reservation

stations. Aggressive branch and load speculation is performed and an on-chip memory

with 32KB instruction and data caches and a unified 1MB L2 cache is modeled. The

DISE mechanism (and HPS system) is configured with 32 PT entries and 2K RT entries

each occupying 8 bytes. We also modified the simulator to emulate the capture of phase

information as described in [96] with an interval size of 10 million instructions. We ex-

tend the DISE simulation engine to export the semantics of the conditional controls that

we define in Section 6.2.

To generate the instructions for profile collection using each of our three profile

types (section 6.2.2), we write the code using the C language and compile it for our

119

Chapter 6. Phase-aware Remote Profiling

Table 6.1: Select benchmark statistics relevant to the profiles collected

method
Count

Call
Sites

Call
Pairs

Call Count
(millions)

Dynamic
Branch Cnt
(millions)

Dynamic
Instructions

(millions)

bzip2 106 245 245 44.6 1,006 4,546
crafty 165 792 792 43.4 496 2,542
eon.cook 600 2,032 2,068 36.9 198 1,720
eon.kajiya 603 2,039 2,076 183.3 998 8,564
eon.rushmeier 603 2,049 2,086 54.3 296 2,497
gap 487 1,779 2,672 18.8 167 723
gcc 1,234 7,565 7,671 22.1 317 1,199
gzip 113 218 218 25.5 351 1,531
mcf 118 218 218 238.2 2,040 8,829
parser 338 1,149 1,151 82.0 690 2,798
twolf 238 1,120 1,120 104.3 1,663 12,442
vpr.place 180 627 627 13.9 169 1,466
vpr.route 264 1,055 1,055 84.5 1,152 10,238

Average 388 1,607 1,692 73 734 4,546

target platform (Alpha EV6). We hand-optimize the generated assembly to ensure com-

pactness. We also insert a no-op instruction to simulate the single cycle stall associated

with each replacement. The no-op instruction produces the desired result since the stall

due to DISE replacements only affects the decode stage (i.e. delays the propagation

of the single instruction that is macro-replaced) and does not impact the later pipeline

stages.

We evaluate the performance and profile quality of our system using the benchmarks

of the SPECINT2000. We compile the benchmarks for the Alpha EV6 platform using

GCC 3.2.2 with the -O4 optimization flag. We report results for complete runs on the

train input set. We considered other inputs and found the trends in our data to be the

same as that we present herein.

120

Chapter 6. Phase-aware Remote Profiling

Figure 6.1 shows some of the dynamic behavior metrics for the SPECINT2000

benchmarks used in our empirical studies. Method count is the number of unique meth-

ods in the benchmark while Call sites is the number of static call operations. Call Pairs

is the number of unique call site and target address pairing observed in the dynamic

execution of the benchmark. The extra number of call pairs beyond the number of call

sites indicates a number of indirect jumps. Call count is the number of dynamic calls

made during the benchmark’s execution. Dynamic Branch Count and Dynamic Instruc-

tions is the the number of branches and instructions executed, respectively. These dy-

namic metrics are relevant to the performance profiles we investigate: hot code region

(branches), hot method, and hot call pair profiles.

HPS Performance

We first evaluate the performance impact of our HPS extensions that enable condi-

tional control within the DISE engine. Figure ?? shows the overhead of sample-based

hot code region (top graph) and hot call pair (bottom graph)profiling using DISE with-

out conditional controls (left bar) and with our HPS optimizations (right bar). Each bar

is the execution time for each program normalized to execution without DISE and with-

out profiling. For this data, we use periodic sampling at a frequency of 1/100 events.

The data shows that HPS (i.e. DISE with conditional controls) significantly reduces

the overhead of a naive, DISE sampling strategy. The overhead that HPS introduces is

121

Chapter 6. Phase-aware Remote Profiling

Hot Code Region (Branch) Profiling

Hot Call Pair Profiling

Figure 6.8: DISE vs. HPS for performance sampling: The overhead introduced by
each of the individual profile types. The DISE data is the overhead of sampling without
our HPS extensions (i.e. moving sampling flag manipulation and checking into the
DISE engine).

122

Chapter 6. Phase-aware Remote Profiling

profiling overhead alone – the cost of executing the extra instrumentation instructions

for each event of interest. The DISE data includes this overhead as well as the basic

overhead for manipulating the sampling flag and the cost of checking that flag as part

of the unconditional replacement sequences.

On average, DISE sampling introduces a 120% increase in execution time for hot

code region (branch) profiling, while HPS only introduces a 24% increase. For hot call

pair profiling the overhead of DISE sampling is 18%, while HPS’s overhead is only

1.3%. Hot method profiling exhibits performance characteristics that are similar to hot

call pair profiling.

Phase-aware Profiling Efficacy

To evaluate the impact of remote profiling, we examine its accuracy versus its over-

head using four different profile collection strategies:

• Exhaustive - gather an exact profile for each interval. We use this strategy to

evaluate the accuracy of the other policies.

• Periodic Sampling - gather a profile every Nth interval, for N in [3,100].

• Random Sampling - gather a profile for interval i with a probability of 1/P for

some P

123

Chapter 6. Phase-aware Remote Profiling

• Phase-based - gather a profile for every interval that is dissimilar from all previ-

ously gathered intervals, given some threshold of similarity.

For the periodic and random strategies, we gather data for different sampling fre-

quencies. The number of intervals we profile, and therefore the percentage of total

execution that we profile, depends on the sampling period N. We perform experiments

for a range of sampling frequencies which correspond to a range of overheads and ac-

curacies. Because a truly random strategy is at the whim of chance as to whether or

not it performs well, we characterize two aspects of random profiling for each of the

different percent-sampled values: 1) we compute the average error across 10 runs (avg

random), and 2) we compute the maximum error seen across 10 runs (max random).

To get a range of accuracies and overheads, we adjust the parameter P and examine the

effect.

Selection of Phase Representatives For phase-aware profiling, as we have described

previously, we begin with an implementation of the phase prediction system that we

have developed in prior work [96]. We identify empirically, the best interval from each

phase to act as the representative from that phase. Figure 6.9 shows the percentage

error at 1% sampled for four different representative selection policies for phase-based

profiling. The y axis shows percentage error in basic block counts. The different po-

lices for representative selection that we evaluate are (a) first: select the first interval

124

Chapter 6. Phase-aware Remote Profiling

0%

5%

10%

15%

20%

25%

30%

35%

40%

phase: first phase:
centroid

phase: third phase:
random

random
sampling

P
er

ce
n

t
E

rr
o

r
in

 C
o

d
e

R
eg

io
n

 P
ro

fi
le

s

Figure 6.9: Evaluation of representative selection policies. The graph shows the av-
erage error in block counts at 1% sample rate for different representative selection
schemes. The black bar shows the performance of average random sampling (non-
phase-based).

as the representative, (b) centroid: select the centroid of the intervals in the phase

as the representative, (c) third: select the third interval as the representative. (d)

random: randomly select one representative from all intervals in the phase (we report

performance for this strategy as the average performance of 5 selections). For compar-

ison, we also show the error that the random sampling strategy, that we describe above,

produces. This strategy chooses random samples from the entire program (black bar on

far right).

As expected, the centroid method, centroid, performs the best: its error remains

low even when we sample very little of the program. First and random perform the

worst. This happens since the first is not representative of the steady state (the phase is

125

Chapter 6. Phase-aware Remote Profiling

just warming up) and because selecting randomly can result in selection of a represen-

tative that is dissimilar to all others. Third enables accuracy that is between that of

best and first/random. That is, third is able to select an interval that is more

representative of the steady state of the phase than first and random. Moreover,

third is simple and can be implemented without additional overhead. As such, we

use third for the rest of the results in the paper.

Profile Accuracy and Overhead Unlike the random and periodic sampling approaches,

there is no sampling frequency variable that we can vary to get different tradeoff points

between accuracy and overhead. Instead, we achieve a similar effect by dynamically

tuning the similarity threshold. The similarity threshold determines the cutoff point at

which two intervals are said to be similar and hence are part of the same phase. As we

lower the threshold, the system detects more unique phases, each with a fewer number

of intervals. As this occurs, the system takes more samples (since there are more unique

phases). This both increases the percentage of the program’s execution that the system

samples and improves the accuracy of the resulting profile.

To measure profile accuracy, we compare each sampled profile to the exhaustive

profile. We compute the percentage error in the code region profiles as our accuracy

metric. The code region profiles contain counts for each dynamic branch. We compute

the element-wise difference in branch counts between a sampled profile and the ex-

126

Chapter 6. Phase-aware Remote Profiling

0 5 10 15 20 25
% Program Sampled

0

5

10

15

20

%
 E

rr
o

r
in

 C
o

d
e

R
eg

io
n

 P
ro

fi
le

avg random
max random
periodic
phaseaware

Figure 6.10: Average error in code region profile for various sampling percentages.

haustive profile. We then divide this value by the total counts in the exhaustive profile

to produce the error percentage. The best sampling strategy is the one that produces the

least amount of error for the smallest percentage of the program that is sampled.

Figure 6.10 shows the average error across benchmarks using the third interval

of each phase as the phase representative. The graph compares the accuracy of each

of the different sampling strategies, avg random, max random, periodic, and

phase-aware. The y-axis is the error percentage in total branch counts (not just the

hot branches which we study later) and the x-axis is the percentage of the program that

was sampled for a given parameterization of each strategy.

127

Chapter 6. Phase-aware Remote Profiling

The data indicates that on average, phase-aware profiling achieves lower error for

small percent-sampled values than the other strategies. The errorfor periodic sampling

approaches that of phase-aware sampling for some percentages sampled – both ap-

proaches require 10% of the program to be sampled to achieve 5% or less error. The

random strategy requires that 20% of the program be sampled to achieve an error of

less than 5%. For lower percent sampled values, the benefits from our system increase

substantially.

Other Profile Types We next demonstrate that phase-aware sampling is not restricted

to any single profile type by showing that it performs well for others. We evaluate the

efficacy of each of the sampling strategies in identifying frequently executing parts of

the program. Profiles that capture frequently executing parts are commonly used for

feedback directed optimization, e.g., hot code regions, hot methods, and hot call-pairs,

and as such are important profile types for our distributed optimization system. We

measure the error produced by each of the profiling strategies for these profile types.

We define “hot” as the top 15% of the most frequently executed events.

Figure 6.11 shows the results. The x axis is the percent of the program that was

sampled, and the y axis is the percentage error in identifying hot branches, hot call-pairs

and hot methods, on average across benchmarks. We omit max random and average

random data from the hot call pair graph since both were in a range significantly larger

128

Chapter 6. Phase-aware Remote Profiling

than the other strategies. Average random ranges from 33-53% error and max random

ranges from 49-64% error.

The graphs show that the phase-aware strategy performs considerably better than

both random and periodic sampling for all three profile types. Assuming an error of 5%,

the phase aware strategy needs only to sample 5% for hot methods and hot branches,

and 20% for hot call pairs. Periodic sampling performs similarly to phase-aware sam-

pling for call pairs, but requires that we sample 10% of the program for hot methods

and 20% of the program for hot branches. Random sampling rarely achieves an error

of 5% or less; however, it does so for hot methods for which it requires that we sample

20% of the program.

In Figure 6.2, we quantify these overhead percentages (assuming 5% error) for

individual benchmarks using three tables. The top table is for hot code region (dynamic

branch) profiling, the middle table is for hot method profiling, and the bottom table is

for hot call-pairs. We chose 5% error as our cutoff arbitrarily; however, we selected a

value that we believe to be tolerable and amortized by commonly used, profile-based,

dynamic optimizations. For lower error values, the benefits of our system increase

significantly since phase aware profiling is able to extract unique and important program

behaviors by sampling only a very small portion of the execution.

Each table reports data for the three profiling strategies: phase-based, periodic, and

(averaged) random sampling. For average random, if the error does not reach 5% or

129

Chapter 6. Phase-aware Remote Profiling

0 5 10 15 20 25
% Program Sampled

0

5

10

15

20

25

%
 E

rr
o

r
in

 C
o

d
e

R
eg

io
n

 H
o

tn
es

s

avg random
max random
periodic
phaseaware

(1) Hot Code Region Profiling

0 5 10 15 20 25
% Program Sampled

0

5

10

15

20

25

%
 E

rr
o

r
in

 M
et

h
o

d
 H

o
tn

es
s

avg random
max random
periodic
phaseaware

0 5 10 15 20 25
% Program Sampled

0

5

10

15

20

25

%
 E

rr
o

r
in

 C
al

lp
ai

r
H

o
tn

es
s

periodic
phaseaware

(2) Hot Method Profiling (3) Hot Call-pair Profiling

Figure 6.11: Efficacy of different sampling strategies for different profile types. We
omit max random and average random data from the hot call pair graph since both were
in a range significantly larger than the other strategies. Average random ranges from
33-53% error and max random ranges from 49-64% error.

130

Chapter 6. Phase-aware Remote Profiling

less, we use a percent sampled value of 25%. The data in columns two, three, and five

show profiling overhead in millions of cycles for each of the benchmarks. Columns

four and six show the percent reduction in this overhead due to phase-aware sampling.

The final row in each table shows the average across benchmarks. For hot code re-

gions, phase-aware profiling reduces the overhead of periodic and random sampling by

76% and 80%, respectively, on average. This reduction is 50% and 76%, respectively,

for hot methods. The primary reasons for these benefits are two-fold: (1) Random

and periodic sampling collect redundant information (i.e. profiles of the execution that

they have already collected); and (2) random and periodic sampling techniques miss

important behaviors (which degrades accuracy) which phase-aware sampling is able to

capture.

For hot call pairs, phase-aware sampling reduces the overhead of random sampling

by 22% on average. However, as visible in the graphs in Figure 6.11, phase and peri-

odic sampling perform similarly for this profile type. For some benchmarks, periodic

sampling for hot call pairs outperforms phase-based sampling. One reason for this is

that the absolute number of hot call pairs is very small for most benchmarks. As a

result, one or two missed pairs can result in a significant increase in percentage error.

This is the case for bzip2.

131

Chapter 6. Phase-aware Remote Profiling

Table 6.2: Overhead of different sampling strategies for different profile types, assum-
ing a 5% error rate.

(1) Hot Code Region Profiling

(2) Hot Method Profiling

(3) Hot Call Pair Profiling

132

Chapter 6. Phase-aware Remote Profiling

6.3.2 Phase-aware Profiling for Embedded Devices

To investigate the efficacy of phase-aware remote profiling for embedded devices,

we also evaluate our approach for a popular hand-held device processor, the Intel Stron-

gARM.

Methodology

We employ SimpleScalar to emulate a StrongARM processor. As in the prior sec-

tion, we modify the simulator to emulate the capture of phase information as described

in [96] with an interval size of 10 million instructions. The authors in [67] explore the

overhead/accuracy tradeoffs and efficacy of using variable sized intervals. Our large,

fixed-size intervals are practical for resource constrained systems since they minimize

sample storage and maintenance overhead and simplify phase prediction. Since we

are interested in the efficacy of remote profiling for mobile devices, we estimate the

overhead of our system in terms of power consumption.

We evaluate our system using six benchmarks from the MediaBench benchmark

suite [69], a suite designed for the empirical evaluation of media applications. The

benchmarks we use include encoding and decoding programs for mpeg (movie), jpeg

(picture), and gsm (voice). We show the basic statistics for the programs and the inputs

we used in this study in table (a) of Figure 6.3. The second column in the table is

the number of static branches in the program, which correlates with the size of the

133

Chapter 6. Phase-aware Remote Profiling

Table 6.3: StrongARM methodology. (a) shows the general MediaBench benchmark
statistics. (b) shows the empirical data that we use to estimate energy consumption.
The second column is Joules per second and the final column is instructions per second
for the instruction types and bandwidth for wireless transmission.

���������
	 ���������	 ����	 ���
Average � �������������������	 �

Branches Instructions Cache Energy Time � ������������ �! "�#�$�% !�����
(Millions)

Benchmark Branches (Millions) (Millions) & 	 ���('�����!
(Joules) (seconds) IREG 0.865 204.790

gsmdecode 572 182.05 1610.05 0.000 29.93 16.35 IMEM-R 0.973 19.462
gsmencode 748 79.42 2562.29 0.000 29.38 19.93 IMEM-Rcache 0.000 137.510
jpegdecode 930 111.76 1421.33 0.006 46.50 21.87 IMEM-W 1.340 11.625
jpegencode 1175 433.70 4218.60 0.002 100.65 51.41 FPREG 0.965 0.439
mpegdecode 1104 309.95 3007.85 0.001 65.03 900.63
mpegencode 2216 244.25 4196.19 0.001 52.63 282.40 Wireless Specification Max
Average 1124 226.86 2836.05 0.002 54.02 215.43 Card 5V*0.285A Bandwidth

Transmit 1.425 11Mb/s

(a) (b)

branch profiles generated. The next five columns show the dynamic statistics: number

of branches executed (in millions), number of instructions executed (in millions), the

cache miss rate assuming a 64K, 4-way set associative, instruction and data cache,

the energy consumed by executing the program (in Joules), and the execution time

(in seconds). Since the inputs that are provided with MediaBench are very short, and

because these applications are typically used in a streaming fashion, it was necessary to

find more substantial inputs to analyze the realistic long term effects of profiling. We

plan to make these inputs available via our web page.

To compute energy consumption and execution time, we use a model that we gen-

erate from an actual hardware system. We compute the energy (Joules per second)

consumed per-instruction (including events such as cache misses), per-byte-transmitted

energy consumed, and instructions per second. We summarize the values in table (b)

of Figure 6.3. We generate these values using an HP iPAQ H3835 running Familiar

134

Chapter 6. Phase-aware Remote Profiling

Linux v0.6.1, a Lucent/Orinoco Gold wireless card, and hand-coded benchmarks. We

periodically (every 10 seconds) measure battery voltage and current levels from those

exported via the Linux /proc/battery interface. We calibrate our model and validate it

using a variety of benchmarks in [65].

In the table ((b) in Figure 6.3), we report the average Joules per second consumed

by each of these latter, single-instruction programs (IREG: integer register operations,

IMEM-R: load operations that miss in the L1 cache, IMEM-W: store operations that

miss in the L1 cache, and FPREG: floating point operations). We compute instructions

per second of each benchmark in a similar fashion using the instructions per second

measurement of each constituent instruction type (reported via simulation). To com-

pute the power consumption for transfer, we compute the number of Joules per byte

transfered (assuming 11Mb/s bandwidth) using the specifications of our wireless card.

We show the Joules per second of transfer in the final row of the table.

Profile Accuracy and Overhead

We first evaluate the accuracy of the different sampling techniques for the Stron-

gARM benchmarks and environment. Figure 6.12(a) shows the percentage error be-

tween the sample-based and exhaustive code region profiles for each of the profiling

strategies. As before, we calculate the error in branch counts for the different sampled

135

Chapter 6. Phase-aware Remote Profiling

0 5 10 15 20 25
% Program Sampled

0

10

20

30

40

%
 E

rr
o

r
in

 B
lo

ck
 C

o
u

n
ts

avg random
max random
periodic
phaseaware

Sampling Overhead For Accuracy Error of 5%
% Sampled: Periodic: 11% AvgRand: 20% Phase: 4%

 Energy
Joules Percent Reduction

Protocol Periodic AvgRandom vs Periodic vs ARand
At End 7.75 15.02 58.97 78.83
Interleaved 8.24 16.03 58.90 78.86

 Computation Overhead
 Instructions Executed
 (Millions) Percent Reduction

Protocol Periodic AvgRandom vs Periodic vs ARand
At End 265.61 514.20 58.84 78.74
Interleaved 280.48 545.46 57.58 78.190.00 0.00

 Communication Overhead (Compressed)
 Bytes Transfered Percent Reduction

Protocol Periodic AvgRandom vs Periodic vs ARand
At End 2217.83 2217.83 0.00 0.00
Interleaved 27095.50 51683.97 51.36 74.50

(a) (b)

Figure 6.12: Evaluation of phase-aware sampling using the StrongARM environment
and benchmarks. The graph in (a) shows the error in branch counts (code region profil-
ing) over the percentage of the program sampled for each of the four sampling strate-
gies. The table in (b) shows the impact of each of the sampling strategies (we omit max
random) on energy, computation, and communication when we transmit the samples
all at once at the end (At End) or intermittently during execution (Interleaved). On
average, phase aware sampling eliminates 51 to 79% of the overhead imposed by the
periodic and random strategies.

136

Chapter 6. Phase-aware Remote Profiling

percentages of program execution. The y-axis is error and the x-axis is percent of the

program that was sampled for a given parameterization of each technique.

The graph shows that on average, phase-aware profiling results in significantly

lower error for a very small sampled percentage than both random and periodic profil-

ing. The difference between the phase-aware and periodic strategies for this empirical

setup (embedded device) is more pronounced than it was for the general purpose ap-

plications (section 6.3.1). Phase aware sampling produces very high accuracy profiles,

e.g., less than 5% error, by sampling a very small amount of the program’s execution

(4%). To achieve the same accuracy, periodic sampling requires that 11% be sampled,

average random sampling requires that 20% be sampled, and max random is never able

to achieve an error of less than 5%.

Impact on Power

We next evaluate the overhead of our system in terms of power consumption for

each of the sampling strategies, assuming a maximum error of 5%. We omit max

random since it is unable to achieve an error of 5%. We calculate the overall power

consumption for each profiling strategy for all of the required remote profile collection

functions: computation overhead for instrumentation, communication overhead (using

compression), and computation overhead for applying compression.

137

Chapter 6. Phase-aware Remote Profiling

We present the results in Figure 6.12(b). We show how 5% error translates into

energy, computation, and communication overhead in the three sections of the table.

In each section, we show the average overhead for each metric across benchmarks for

periodic and average random sampling in columns 2 and 3. In column 4 and 5, we show

the percent reduction enabled by phase-based profiling over each of these techniques,

respectively.

Each section in the table contains two rows of data for the two different commu-

nication protocols that we studied. For “At End”, we combine the basic block vectors

of each profiled interval into a single vector; upon program termination, we compress

the vector and transmit it. Using this protocol, phase-aware profiling reduces energy

consumption by 75% over random sampling. Phase-aware profiling reduces compu-

tation overhead by requiring 72% fewer instructions for instrumentation over random

sampling.

Given this “At End” approach, the communication cost is the same across profiling

techniques since we are communicating a single profile vector in either case (though

the counts will be different). However, we investigated another protocol, one in which

we compress and transmit the basic block vector after each interval. This protocol

reduces the amount of device storage required (which may be highly constrained for

real devices); as such, it is a realistic alternative that we should consider. Using this

“Interleaved” protocol, phase-based remote profiling can also reduce communication

138

Chapter 6. Phase-aware Remote Profiling

overhead since fewer intervals are communicated to achieve the same 5% accuracy.

These results are shown in the second row of each section. The reductions in overhead

for energy and computation are similar to the “At End” protocol. However, phase-based

profiling requires less than 1/4 of the number of bytes be transmitted to communicate

the same information as the random approach.

In summary, our remote performance profiling achieves high accuracy with low

overhead by using an efficient hybrid profiling support system that toggles profile col-

lection and an intelligent phase-aware sampler that determines when samples should be

taken. Our data indicates that our techniques are effective in a general purpose setting

as well as for resource-constrained, battery-powered systems.

6.4 Extending Phase-aware Profiling to Multiple Users

Given a large connected user base, we can further reduce the overhead of phase-

based remote profiling by providing feedback to users about phase discovery. If a

user executes a program using the same input as that used by another user for which

phase data already has been collected, the second execution will provide us with no

new information, wasting resources needlessly. As part of our phase based remote

profiling system, we performed a preliminary investigation into the use of phase IDs

(those described in Section 6.1) as a feedback mechanism to other users so that they

139

Chapter 6. Phase-aware Remote Profiling

N
u

m
b

e
r

o
f

P
h

a
se

s
Id

e
n

ti
fi

e
d

0

5

10

15

20

25

30

Individual
Runs

Feedback
Profiling

Figure 6.13: Distributed profiling across multiple executions. Similarity matrix (left)
for the gsmencode MediaBench benchmark across 5 different executions using differ-
ent inputs. The right graph shows the number of phases identified if we profile this
benchmark with each input separately (left bar broken down by input). The right bar
graph shows the number of unique phases. Only unique phases need to be sampled
using our feedback-directed phase profiling technique.

may avoid unnecessary profiling. Such a technique requires that the Phase Tracker and

device architecture be homogeneous so that a phase ID identified by the Phase Tracker

for a particular program interval on one device is the same as that for the same interval

on another device.

To provide dynamic feedback to users, we communicate phase IDs periodically, in

the reverse direction. The remote profiling system on the user’s device adds these phase

IDs to the phase ID table in the Phase Tracker (if they are not already present) and sets

their “sampled bit”. As such, when a previously unseen phase is predicted, it is only

sampled if it also has not been provided by the feedback mechanism.

140

Chapter 6. Phase-aware Remote Profiling

By communicating phase IDs of known phases to users (so that their systems avoid

sampling them), we can reduce the overhead of phase-aware sampling when users ex-

ecute the same program with the same inputs. However, it may also be possible to use

this technique when the same phase occurs across inputs. A more realistic scenario is

one in which software is deployed and users execute it with a wide range of diverse in-

puts. Each input will cause the program to exhibit phased behavior; for some programs,

some phases may be the same across inputs.

To evaluate the potential of feedback-directed remote phase profiling, we analyzed

many different inputs for one of our benchmarks, gsmdecode. Figure 6.13 shows the

similarity matrix for this benchmark. A similarity matrix is a 2-dimensional array all

of the intervals in a program; each entry is the similarity value between two intervals

encoded as a gray-scale value with dark values identifying similar intervals (in the same

phase), e.g., the points on the diagonal are black since an interval is exactly the same

as itself. The x-axis and y-axis of figure are increasing interval id’s. We omit data in

the lower triangle for clarity, since it is symmetric with the upper triangle. We read

the figure by first selecting an interval on the the diagonal and then traversing the row.

By doing so, we can visualize how similar the row interval is compared to all others

that follow it during execution. By traversing the column above, we can visualize how

similar the row interval is compared to all other intervals that came before it during

execution.

141

Chapter 6. Phase-aware Remote Profiling

Commonly, similarity matrices are used to analyze the execution of a benchmark

running a single input [81, 96]. However, we use it here to visualize execution of five

different inputs. We concatenate the intervals from each input and then compute the

similarity between each interval in the entire set. The dark regions indicate that even

across inputs there are many intervals that are very similar, i.e., there are phases that

span inputs.

The graph on the right in the figure shows the number of total intervals in all five

executions of gsmdecode. The total height of the left bar is 28, indicating the number

of different phases identified if we were to execute the program with each input indi-

vidually. The left bar is broken up into pieces, indicating the number of phases found

for each input. The right bar shows the number of intervals that we must sample, across

all five inputs, to gather all of the unique phase behavior: 18 phases.

The data shows that there are 10 phases (36%) that overlap across all of the inputs.

This indicates that there is potential for reducing the overhead of phase-driven remote

profiling further using feedback-directed profile collection. For this benchmark, we

can communicate the phase IDs to the user base as each is discovered by individual

users. For programs that execute a phase that has already been identified, we can avoid

collection and communication of the profile.

142

Chapter 6. Phase-aware Remote Profiling

6.5 Related Work

Our work builds upon and extends a body of related research on program phase

behavior described in Chapter 2.1 [94, 95, 96, 38, 41, 39, 81, 50]. Our work is novel in

that it is the first, to our knowledge, to investigate the efficacy of remote performance

profiling. Moreover, we use program phase behavior to significantly improve the ef-

ficiency of remote profiling and as such, we make it feasible to gather performance

characteristics about software for mobile devices post-deployment.

The other areas of research related to our work include sample-based profiling tech-

niques, and post-deployment monitoring of software.

6.5.1 Efficient Profiling

Many other researchers have identified that an entire program need not be profiled

to extract accurate execution behavior information from it. Instead, many sample-based

approaches have been proposed [40, 105, 12, 9, 28]. Sample-based profiling is used to

gather performance statistics about a program for use on the same device (as opposed

to remotely), in compiler and runtime optimization.

Extant sample-based profiling techniques that couple hardware support for perfor-

mance profiling include those that employ hardware performance counters [6, 36], and

others that use special-purpose hardware to guide sampling [111, 91]. The work in [91]

143

Chapter 6. Phase-aware Remote Profiling

is somewhat related to the research herein in that it describes a performance profiling

approach that couples hardware and software in an attempt to reduce profiling over-

head by using programmable hardware to capture and compress profile information

before passing it on to software for analysis and exploitation. The generated profile is

in the form of a single or multiple event streams. Dedicated hardware performs lossy

compression on this stream, by using hardware-based low-cost sampling mechanisms,

thereby reducing the amount of information that the software profiler has to process.

This approach is completely orthogonal to ours, in that, it uses specialized hardware to

capture and pre-process profile information as dictated by the software profiler. We are

interested in using specialized hardware to drive our profiling policies.

There are many sample-based, software-only performance profiling techniques, e.g.,

[40, 105, 12, 9, 28]. These approaches are intended to be used within extant dynamic

optimization systems. Duesterwald et al [40] present online path profiling to enable hot

path prediction in dynamic optimization systems, and [105] examines several sampled

based techniques to gather profiles within a Java Virtual Machine to enable feedback-

directed dynamic optimization. In [12], the authors present an online, software only

mechanism for sampling executing code. They use code duplication (methods both

with and without instrumentation) and transfer execution between the two based on

method invocation and taken backward branch (backedges) counts. They show that for

sampling method call-pair frequencies and field accesses that their technique exhibits

144

Chapter 6. Phase-aware Remote Profiling

very low overhead. In our work, we show that phase-aware profiling can capture a

wide range of profile types, e.g., basic block frequencies, hot blocks, hot methods, hot

call-pairs, and hot paths, with high accuracy.

6.5.2 Monitoring Program Behavior for Bug Isolation and Test Cov-

erage

In addition to performance profiling, the focus of some related work has been on

efficient and effective distributed monitoring of remote software for the purposes of

error reporting, bug isolation, and code coverage. Using these techniques, informa-

tion about an executing program is collected at a user site (the point of execution) and

communicated to a centralized location for analysis, debugging, and further application

development. Two extant techniques that perform such application monitoring include

residual testing [87] and expectation-driven event monitoring (EDEM) [49]. Residual

testing is the process of continual program monitoring for fulfillment of test obligations

not satisfied prior to deployment. Residual testing does not address the issue of reduc-

ing the instrumentation required to monitor the residue. EDEM uses software agents

deployed over the Internet to collect application-usage data. This approach addresses

the problem of monitoring deployed software, but is limited in that it collects the same

information from every execution at every site visited and only gathers information

about certain events; it cannot collect general profile information.

145

Chapter 6. Phase-aware Remote Profiling

Another framework that performs remote post-deployment program monitoring that

attempts to reduce profiling overhead is software tomography in the GAMMA system

[86, 21]. Software tomography is the process of dividing an application into subtasks

then assigning instrumentation across subtasks in an effort to reduce the overhead im-

posed on any single task. The instrumented tasks are then distributed amongst a large

number of users. The technique significantly reduces the overhead per user since only

certain tasks are monitored. The process of assigning instrumented tasks to users is

iterative to enable testing the application for code coverage. The authors show in sim-

ulation, that there is potential for reducing monitoring overhead for branch coverage.

The authors in [70] describe a similar sampling infrastructure for bug isolation (as

opposed to code coverage) that distributes the overhead of remote profiling across many

users of a single application. The system collects samples in a single program instance

based on a geometric distribution that enables a statistically fair random sample. This

ensures that all events (including rare ones) are accurately represented. The authors

show that they are able to introduce a small amount of sampling overhead (instrumented

computation and profile communication) per user yet gather enough information to aid

in bug isolation.

146

Chapter 6. Phase-aware Remote Profiling

6.6 Summary

This Chapter described phase-aware profiling and its application to the problem of

efficient collection of remote profiles from resource-restricted devices. Our approach

combined phase-aware sampling with hybrid profiling support (HPS).

Phase-aware sampling exploits repeating patterns in program behavior, i.e., pro-

gram phase behavior, to intelligently identify execution intervals (fixed-length periods)

that represent each phase. By only sampling one interval for each unique phase in the

program, we can collect accurate sample-based profiles while introducing significantly

less overhead. HPS is able to gather runtime profiles without code duplication or any

overhead other than that of the profiling instrumentation.

We presented an extensive empirical evaluation of our approach using simulations

for a general-purpose benchmark suite and execution environment, as well as for a

popular embedded device. We evaluated the accuracy and the overhead of our system

in terms of computation, communication, and battery power for a number of different

profile types, including hot call-pairs, hot methods, and hot code regions. We compared

our system to popular random and periodic sampling strategies and showed that we are

able to reduce the overhead of these strategies in a general-purpose setting by 6-80%

on average and in an embedded device setting by 50-75%, assuming an error rate of

5%.

147

Chapter 6. Phase-aware Remote Profiling

The main contributions of the work presented in this Chapter are summarized be-

low:

• New architectural features that are useful for profiling and optimizing remote

connected devices such as IPAQs and cell phones. These hardware hooks, guide

flexible software profiling in selecting the most important parts of program exe-

cution.

• We show that these hardware guides for sampling can be built by exploiting the

concept of program phase behavior, and that profile communication can be re-

duced by up to a factor of 6 over random sampling (where both achieve an accu-

racy of 10%).

• A simple online policy for deciding when to profile that is almost as effective as

one with full trace knowledge

• A demonstration that phases can be used to accurately guide the profiling of

multiple different types of information (basic block profiles, hot methods, and

call-pair tracing

• An empirical evaluation of these techniques for all of the overheads associated

with remote profiling for resource-restricted devices (communication, computa-

tion, and power).

148

Chapter 7

Phase-based Instruction Prefetching

In this Chapter, we describe our work on instruction prefetching. We first present

a detailed characterization of instruction cache performance across three Java server

workloads running natively on an IBM Power5 multiprocessor, showing that instruction

misses are indeed still a problem for large-scale server applications. We follow this

characterization with a detailed study of the industry-standard SPECjAppServer2004

J2EE benchmark [34] running in a full-system simulator. We analyze the method-

level behavior and potential for a phase-based instruction prefetching mechanism. As a

first step towards phase-based prefetching in JVMs, we describe a simple algorithm for

inserting software instruction prefetches at points in the call-chain leading to specific

delinquent methods, that we call call-chain based instruction prefetching.

Prior work discussed a call-graph based software prefetch mechanism for instruc-

tion misses which uses caller-callee relationships, inserting prefetches for a callee at

the entrance of a caller [8]. In object-oriented programs which are characterized by

149

Chapter 7. Phase-based Instruction Prefetching

small method sizes (such as WebSphere), this may result in late prefetches due to the

short distance between the caller being invoked and its subsequent calls. We investi-

gate moving prefetches up the call chain, inserting them at a greater distance from the

callee. This leads to a trade off between prefetch coverage, accuracy, and timeliness.

Using this simple scheme for software prefetching, we show that coverage improves as

we move up the call chain, resulting in better performance improvements because of

more timely prefetches. However, hoisting prefetches too far can result in a decrease in

useful prefetches and increase cache pollution. Our results indicate that our call-chain

prefetching enables a 31% reduction in icache misses for Java code. This reduction

translates into a significant reduction of the stalls caused by instruction cache misses,

resulting in a 5% improvement in overall application server performance – a significant

portion of the estimated 12% performance penalty for instruction cache misses.

7.1 Characterization of Instruction Cache Behavior

This section shows that instruction cache misses are a significant source of stalls in

our J2EE applications. We also perform method-level analysis of miss behavior, and

examine the potential of method-level, phase-based prefetching algorithms.

150

Chapter 7. Phase-based Instruction Prefetching

7.1.1 Methodology

Our study uses a two-pronged experimental setup. We first experiment with Web-

Sphere performance running natively on a 2-socket, 4-way Power5 multiprocessor run-

ning AIX 5.3, configured with 16GB of DRAM. We use SPECjAppServer2004 and

Trade6 [18], a J2EE online brokerage benchmark internally developed by IBM. These

heavily-multithreaded applications run in a three-tier configuration with a DB2 8.2

back-end tier and a client/driver front-end tier. We report results for the middle-tier

only, which is running the WebSphere application server, running on top of IBM’s Java

virtual machine [47]. Performance counters are sampled after a 15 minute warmup pe-

riod, with three 30-second sampling intervals for each set of counters. We solely focus

on the L1 instruction cache in our study, which is 64KBytes, 2-way set-associative with

128-bytes cache lines.

For more detailed analysis (solely on SPECjAppServer2004), we use Mambo [20],

a full system simulator developed at the IBM Austin Research Lab. Mambo simu-

lates the underlying hardware in enough detail that it can run the entire software stack

used in our native system (AIX 5.3, J9 v2.3, WebSphere 6.1). Figure 7.8 illustrates

this experimental methodology. Using Mambo, we gather a method entry/exit trace

augmented with information about cache misses, and analyze it to select relevant meth-

ods for which prefetching will be useful, and points at which we will insert prefetches

(which we refer to as prefetch points) for these relevant methods. The trace is gath-

151

Chapter 7. Phase-based Instruction Prefetching

ered over the execution of 1 billion instructions (post-SPECjAppServer2004 warmup),

which is also the length of our simulations.

0%

20%

40%

60%

80%

100%

SPECjAppServer2004 Trade6 SPECjbb2000

%
 c

yc
le

s Other front-end stall
Br Mispred
I Cache
FPU Stall
FXU Stall
LSU basic latency
LSU Reject
DERAT
D Cache
Other back-end stall
Instr Completion

Figure 7.1: Commit Stall Cycle Categorization (icache miss stalls in striped bar).

7.1.2 Stall Cycles

The Power5 performance counter facility offers a set of counters that are incre-

mented at each stall of the processor’s commit stage, where each counter corresponds

to the cause of the stall. Figure 7.1 shows a breakdown of stall cycles created using

these counters, for SPECjAppServer2004 [34], Trade6 [18], and SPECjbb2000 [103].

Power5’s 2-way SMT feature does a relatively good job of keeping the pipeline busy,

however instruction cache misses still account for a significant fraction of stall cy-

152

Chapter 7. Phase-based Instruction Prefetching

cles (12%) for both of the WebSphere J2EE applications. It has been shown that the

Power5 counter mechanism actually underestimates the performance penalty of icache

misses [44]. Consequently, we consider this estimate a conservative lower bound.

SPECjbb2000 exhibits only a small (2%) instruction miss penalty; we have observed

similar results for SPECjbb2005.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

SPECjAppServer2004 Trade6 SPECjbb2000

L
1I

 c
ac

h
e

m
is

se
s

p
er

 1
00

 in
st

r

serviced by L2
serviced by L3

Figure 7.2: Icache misses per 100 committed instructions

Figure 7.2 shows the number of L1 icache misses per 100 committed instructions,

broken down by the location from which they are serviced. The vast majority of icache

misses (92% and 93% for SPECjAppServer2004 and Trade6, respectively) are satisfied

from the 1.8MB L2, and nearly all of the remaining misses are satisfied from the 36MB

153

Chapter 7. Phase-based Instruction Prefetching

L3. An insignificant fraction of misses (less than 1%) are satisfied from memory or

from another remote cache.

7.1.3 Method-level Analysis

Using our Mambo-based simulation methodology [20], we have also collected a

profile of these instruction cache misses for WebSphere running SPECjAppServer2004,

mapping each cache miss back to the individual method that caused it. In terms of

high-level software components, JITTED java code accounts for the majority of icache

misses (71%), followed by the AIX kernel (12%), and the J9 runtime system (7%). The

remaining 10% of misses are distributed over a large set of system libraries.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 250 500 750 1000 1250 1500 1750 2000

number of methods

%
 o

f
ic

ac
h

e
m

is
se

s

Java Code
All Code

Figure 7.3: Per-method Contribution to Total icache Misses (cumulative distribution)

154

Chapter 7. Phase-based Instruction Prefetching

When taking a closer look at the individual methods in this profile, we find that the

profile is extremely flat; no single method accounts for more than 2%, and the largest

contributor from the Java portion of code is merely 0.525%. Figure 7.3 shows the

contribution of total instruction cache misses by the number of methods causing those

misses. This chart includes data for all misses, and data for misses that are caused

by Java code. In both cases, 50% of all misses can be attributed to the 300 worst

offending methods. In order to cover 75% of all misses, more than 700 methods must

be considered. Obviously, in order for an instruction prefetching mechanism to be

beneficial, it must target a large number of methods.

We analyzed the top ten Java methods with the highest number of misses in more

detail. Table 7.1 summarizes this information. The columns list percentage icache

misses, average per-invocation miss count, number instruction cache blocks that are

ever actually touched, and the number of direct callers for each method. The last row

shows the average values, averaged across all Java methods. Note that the fourth col-

umn refers to the static number of used blocks for a method and is an indication of

method size. We observe that the number of callers for a method varies and is not al-

ways small. Consequently, code positioning schemes [89, 47] might not be effective

in addressing the cache miss problem, because each method often has many callers. In

addition, the IBM J9 JIT [47] already optimizes code layout by reordering basic blocks

155

Chapter 7. Phase-based Instruction Prefetching

Table 7.1: Prefetch Target Characteristics.

1 0.52 15024 4.4 20 2

2 0.47 14577 2.8 14 94

3 0.45 661 54.9 64 9

4 0.44 10834 2.7 16 3

5 0.38 20740 61.2 64 1

6 0.35 37646 0.8 3 7

7 0.28 862 16.4 16 1

8 0.28 20794 7.1 9 1

9 0.27 4453 1.2 21 1

10 0.26 14577 13.0 14 2
Average

(5068 total)
0.01 1439.6 3.1 4.2 2.2

Num.
Direct
Callers

Top Methods
ICache Misses
(% of Total)

Avg. Per-
invocation

Misses

Num. Used
Cache Blocks

(Static)

Num.
Invocations

(across trace)

such that the commonly executed code appears close in memory, thus we expect the

benefits of further code reordering to be small.

These results reflect many of the facts of large-scale applications written in object-

oriented styles:

• there are a large number of small methods

• each method contributes a small amount to the total execution time

• there is a substantial reuse of functionality, for example in the form of foundation

libraries

We also observe that in most cases, excluding method numbers 3 and 5, the average

per-invocation misses for a method is low. This bi-modal data suggests a bi-modal

optimization: for methods with a small number of blocks and small number of misses

per invocation, prefetches should be inserted for the entire method; for methods with a

156

Chapter 7. Phase-based Instruction Prefetching

Single transaction

Single Thread

Figure 7.4: Method-level phases in WebSphere (running specjAppServer2001)

large number of blocks or a large number of misses per invocation, some of the blocks

should be prefetched upon entry to the method, since there will be ample time to overlap

the prefetch latency within the method. We briefly discuss such a bi-modal scheme in

Section 7.3.4. For now, we adopt the all-or-nothing approach: at each prefetch point,

we perform prefetching for all of the blocks that have been identified as useful (i.e.

all of the method’s blocks, excluding those blocks that are never used during our one

billion instruction profile).

157

Chapter 7. Phase-based Instruction Prefetching

7.2 Method-level Phase Behavior

Our goal with phase-based instruction prefetching is to exploit the repeating pat-

terns in method invocations in deciding what and when to prefetch. From column three

of table 7.1, we can see that a single method is invoked numerous times, that is, it re-

peats numerous times, even within the short duration of our trace. To determine if this

repetition exhibits patterns that could be exploited, we performed method-level phase

analysis on parts of the program (we extracted transactions from the trace); we period-

ically gathered method vectors (similar to basic block vectors), consisting of method

invocation frequencies within an interval, and generated similarity matrices to visual-

ize the phase behavior. To compute similarity between method vectors for different

intervals, we used a percentage overlap metric, which is computed as follows: given

two method vectors, the percentage weight of each method is computed with respect

to each of the two vectors, and the minimum of the two is added to a score, which

is between 0 and 1. We chose an interval size of ten thousand instructions. All Java

methods were profiled, including those from SPECjAppServer, WebSphere, and Java

libraries. Figure 7.4 shows the similarity matrices for two different transactions. From

this analysis, we can infer that the application under study exhibits predictable repeat-

ing patterns.

158

Chapter 7. Phase-based Instruction Prefetching

0 500 1000 1500

Interval id

0

200

400

IC
ac

he
 M

is
se

s

Figure 7.5: Correlation between method-level phases and phases in icache misses.

159

Chapter 7. Phase-based Instruction Prefetching

Executing
Code

Adaptive
Optimization
& Compilers

Runtime
Services

(class loader,
linker, GC,

scheduler, …)
Phase Profiler

Runtime
Measurement

System
Phase-based
Prefetching

JVM

Figure 7.6: Overview of phase-based prefetching in a JVM.

An important aspect of the feasibility of a method-level scheme in driving an in-

struction cache optimization, is the correlation between method-level behavior and

icache miss behavior. As shown in Figure 7.5, we studied this relationship by com-

paring the method-level similarity matrix with a similarity matrix generated using an

icache miss trace for the same part of the program’s execution. The icache-miss sim-

ilarity matrix uses a single measurement: the number of icache misses in an interval,

and computes similarity as the distance between the number of icache misses in two

different intervals. In addition to the similarity matrix, the graph at the bottom of the

figure plots the actual value of the number of misses. This gives us further insight into

which phases suffered more icache misses.

Figure 7.6 illustrates our idea of phase-based prefetching as an adaptive optimiza-

tion within a JVM. We plan to leverage existing profiling mechanisms like profiling for

method invocation counts, or the recently proposed call-chain sampling technique [110]

to track method-level phases, and build phase signatures. Phase signatures, along with

160

Chapter 7. Phase-based Instruction Prefetching

information about delinquent methods in that phase will be stored in a table, and used

to predict, and initiate prefetching for, repeating instances of that phase.

7.3 Call-chain Instruction Prefetching

This Section describes the offline, trace-driven, method-level prefetching mecha-

nism that we designed as a precursor to an online scheme that makes use of repeating

patterns.

7.3.1 Design and Implementation

Call-chain based prefetching is an all-software profile-driven prefetching mecha-

nism which individually targets methods that cause significant icache misses. It can

be utilized in both dynamic compilation environments and statically compiled appli-

cations. Beginning with an instruction cache miss profile for a particular application,

delinquent methods are first chosen as prefetch targets, based on applying a thresh-

old value. For each target method, one or more predecessor methods in the call chain

are chosen as prefetch points, where we define the call chain as the set of methods on

the execution stack when the target method is invoked. The method prologue of each

selected prefetch point is augmented with instruction cache prefetch instructions for

161

Chapter 7. Phase-based Instruction Prefetching

B

A
100

X

Method to be Prefetched

Potential Prefetch Point

Miss Distance
(number of misses)

80

80

20

Figure 7.7: Example call chain. Edges are labeled with the number of calls from parent
to child.

one or more target methods. These prefetch points are selected using the algorithm

described here.

A prefetch must meet several criteria: it must be timely enough to overlap the la-

tency of the prefetch request with other work before the prefetched block’s use, but not

so far in advance that the prefetch request is evicted from the cache prior to its use.

The confidence of the request must also be high to reduce the risk of cache pollution

with data that will never be used. In order to maximize confidence and timeliness, our

profiling mechanism includes a means of approximating each.

162

Chapter 7. Phase-based Instruction Prefetching

Confidence

When a method is invoked, the control flow in its body governs which callsites

are executed, and as a result, which methods are subsequently invoked. Consequently,

different call-paths can be followed for different invocations of a method. Confidence

of a prefetch point refers to the probability of reaching the target method on a call

path beginning with the invocation of the prefetch point method. From the partial call

graph shown in Figure 7.7, given a call-chain G containing a prefetch point at node A

and prefetch target at node B, confidence is the probability of reaching B by following

a call path starting from A. The confidence of prefetch point A in this case is 80%.

When choosing prefetch points for a method, points with high confidence values will

minimize the amount of cache pollution due to bad prefetches, because it likely that a

target will be called if a prefetch point is reached.

Profile collection of the confidence metric is straightforward given a call graph pro-

file [99, 10] or calling context profile [13, 110]. Because we must only estimate the set

of methods that are on the stack when a prefetch target is called, a complete call graph

or calling context tree is unnecessary; consequently the overhead of confidence profile

collection should be more efficient.

163

Chapter 7. Phase-based Instruction Prefetching

Miss Distance

Miss distance is a parameter that we use to ensure prefetch timeliness. We define

miss distance as the number of instruction cache misses on the path between the entry

for the potential prefetch point and the entry for the target method. This metric is

an indication of the amount of changing code and thus replacement demand on that

path. When choosing prefetch points, we can selectively filter the set of candidates by

measuring the average miss distance from the potential prefetch point to the prefetch

target. If we require an average miss distance of at least one between the prefetch point

and the target, we will usually be able to ensure that the prefetch will not be late (the

miss latency can be used to fulfill the prefetch). A suitable upper bound is also chosen

to avoid prefetches that are likely to be displaced prior to reaching the prefetch target.

Profile collection of the miss distance metric is slightly more difficult than the confi-

dence metric, however there are at least two means by which it can be obtained. Using

performance counter hardware that include an instruction cache miss counter (which

most processors provide), one can instrument the application to read the counter value

at the entry of a prefetch point, and read again at the entry of a prefetch target. Based

on the difference of these values, miss distance is calculated. Alternatively, one can

collect this profile for all points simultaneously using cache simulation, as described in

Section 7.3.2.

164

Chapter 7. Phase-based Instruction Prefetching

We use these metrics to select prefetch points from predecessors in the call-chain

for the method to be prefetched. Note that the prefetch points selected after applying

the criteria described above form a subset of all possible prefetch points for the target

method. Depending on the control flow and thresholds chosen, the selected prefetch

points might not trigger prefetching for every instance of the prefetched method. For

example, given a target method that is rarely called from any other methods, it is possi-

ble that no prefetch points will be chosen for the target. We next empirically evaluate

the efficacy of our all-software approach to prefetching. We describe the methodology

we used to collect the results in this section, and then present our performance data and

analysis.

7.3.2 Experimental Methodology

For the performance data collected in this section, we utilize one of Mambo’s timing

simulators that models the processor and system microarchitecture of the IBM Power5.

This timing model has been validated to be cycle-accurate with respect to Power5 hard-

ware within a 2% margin of error averaged across a suite of benchmarks [108]. The

publicly available attributes of the machine are detailed in prior work [97]. Most perti-

nent to this research is its 8-way set associative 64KB instruction cache, with 128 byte

cache blocks. The instruction cache is limited to two outstanding misses, and uses a

pseudo-LRU tree-based replacement algorithm. Instruction prefetch is modeled by in-

165

Chapter 7. Phase-based Instruction Prefetching

OS (AIX)

WebSphere 6.1

WAS Application
(SPEC jAppServer)

Java VM (J9)

Trace-based

Instruction

pre-fetching

scheme

Pre-fetch points,

Methods to pre-fetch

Method Entry/Exit, L1
I-Cache miss trace

Evaluation

M
A

M
B

O
Figure 7.8: Trace-based Analysis Methodology

serting the prefetch address into a 512-entry prefetch FIFO when the trigger instruction

commits. The FIFO arbitrates with the processor front-end for one of the icache’s two

cache ports.

Given the recent trend towards on-chip EDRAM caches, we increase the L2 cache

latency from the Power5 model to 35 cycles, reflecting both EDRAM’s increased la-

tency as well as the increasing delays due to CMP arbitration logic in front of future

shared L2 caches. All other simulation parameters are identical to the Power5. Due to

workload setup issues, we only simulate a single-threaded uniprocessor for this eval-

uation. We expect the addition of multiple threads per core to only exacerbate the

instruction cache problem, therefore these results should represent a conservative es-

timation of potential performance improvement. For each prefetch configuration, we

simulate 500 million instructions

166

Chapter 7. Phase-based Instruction Prefetching

Due to our interest in building a dynamic instruction prefetching mechanism into

a Java Virtual Machine, we only consider prefetching for Java methods that have been

compiled. Java methods also constitute the majority of icache misses, at 71%. We have

implemented a trace-based algorithm to select prefetch points and studied its effect in

a timing simulator. Our objective is to observe the effect that an offline profile-based

scheme could have on the real machine, so that future systems may consider it as an

online optimization.

For the trace-based analysis, we gather traces with method entry and exit events,

annotated with icache miss counts, using Mambo. We then process these traces to find

both methods to prefetch and prefetch points for these methods, using the parameters

described in Section 7.3. For the results presented, we target the top 750 Java meth-

ods with the most L1 icache misses. Since WebSphere has multiple threads, we gather

per-thread traces and aggregate the results of our analysis across threads. Our imple-

mentation of the prefetching mechanism in Mambo uses a prefetch table generated

by the analysis to issue prefetches for the specified addresses at the specified prefetch

points.

7.3.3 Evaluation

In our evaluation, we focus on the timeliness of the prefetching mechanism, and

analyze the effect of several different miss distance ranges. Unfortunately, due to large

167

Chapter 7. Phase-based Instruction Prefetching

number of combinations of parameters, we are unable to collect and present sensitiv-

ity data for many combinations. We consider a miss distance lower bound of two,

and experiment with six different upper bounds. The confidence threshold is fixed at

90%, which means only prefetch points with at least 90% confidence are chosen. Note

that with a fixed lower bound, miss distance ranges with increasing upper bounds will

include all prefetch points from ranges with a smaller upper bound. Since the lower

bound is fixed, we only use the upper bound to denote the miss distance range. We

also include an additional entry case, for which entering the method to be prefetched

triggers prefetching. This case is similar to the scheme described in [8]. We report

improvements with respect to the baseline, no-prefetching case. We consider three as-

pects: prefetch accuracy, coverage, and impact on execution time. We next describe the

metrics used and then present results for each of these aspects.

Prefetch Accuracy

While coverage and impact on execution time quantify the overall efficacy of the

prefetching mechanism in terms of either reduction in the number of misses, or im-

provement in execution time, accuracy analyzes individual prefetch requests. More

specifically, prefetches issued are categorized as follows:

• Prefetch Hits are prefetch requests that are already in the L1 icache.

168

Chapter 7. Phase-based Instruction Prefetching

• Prefetch Misses are prefetch requests that are not in the L1 icache and must be

fulfilled.

• Useful Prefetches are prefetch requests that bring a block into the cache which is

subsequently touched by an instruction fetch prior to its eviction.

• Useless Prefetches are prefetch requests that bring a block into the cache which is

either unreferenced before eviction, or is requested by an instruction fetch while

the prefetch miss is outstanding (untimely).

Accuracy is computed as the percentage of Prefetch Misses that are Useful. Using

our current prefetching mechanism, we found approximately 20% of the total prefetches

issued to be Prefetch Misses. In future work, we plan to reduce the number of unnec-

essary prefetch requests issued by eliminating redundant prefetch requests.

Figure 7.9 shows the percentage of Useful and Useless prefetches for different

miss distance ranges. Useless prefetches include prefetches that are late. As expected,

prefetch accuracy increases as the prefetches are hoisted farther from the method to be

prefetched, owing to fewer late prefetches. However, once the miss distance reaches

an upper bound of 256, accuracy begins to decline as a result of cache pollution from

prefetches that are too early.

169

Chapter 7. Phase-based Instruction Prefetching

0%

20%

40%

60%

80%

100%

entry 8 16 24 64 256 1000

Miss-distance

P
e
rc

e
n

ta
g

e
Useless

Useful

Figure 7.9: Prefetch accuracy. This graph shows the percentage of Useful and Useless
prefetches for different miss distance ranges.

Coverage

Coverage is defined as the percentage reduction in misses as a result of prefetching,

compared with the baseline, no-prefetching case. We track three categories of coverage:

Prefetched, Java, and All. Prefetched coverage is the coverage for methods targeted

by the prefetching mechanism, Java coverage is the coverage with respect to all Java

methods, and All coverage refers to coverage with respect to all code, including non-

Java methods.

As a result of carrying out prefetching, there is a possibility of increasing the num-

ber of misses for some methods, especially if the number of useless prefetches is high.

These methods include non-Java methods, Java methods not targeted by the prefetching

170

Chapter 7. Phase-based Instruction Prefetching

Table 7.2: Coverage achieved for different miss distance ranges. Coverage is the per-
centage reduction in misses compared to the baseline, no-prefetching case. We show
coverage for methods targeted by the prefetching mechanism (top 750), coverage for
Java code, and coverage for all code.

Entry 8 16 24 64 256 1000

Prefetched 30.0 28.9 36.1 40.0 48.7 53.3 48.2

Java 18.5 18.3 22.9 25.5 31.4 33.6 29.5

All 12.1 12.4 15.7 17.2 21.5 21.8 17.2

Coverage (% Reduction in Misses)

mechanism, and in some cases Java methods that are targeted by the prefetching mech-

anism. Interference measures the negative effects due to prefetching, and is measured

as the percentage increase in misses excluding methods that are helped by prefetching,

relative to the baseline case without prefetching.

The table in Figure 7.2 lists coverage for different values of miss distance, whereas

the graph in Figure 7.10 shows trends for overall coverage and interference. The three

separate interference curves represent interference for non-Java code, interference for

Java code, and total interference, which is the sum of the first two. Overall coverage is

the achieved coverage with respect to all code, and includes interference effects (that

is it incorporates both positive and negative change in the number of misses due to

prefetching) Achieved coverage depends on several factors, including potential cover-

age and interference. As mentioned in Section 7.3, the set of prefetch points chosen

using a particular confidence threshold and miss distance range might only target a

subset of the prefetched method’s invocations, and therefore a subset of the misses in-

curred by that method. Potential coverage refers to the maximum number of misses

171

Chapter 7. Phase-based Instruction Prefetching

0%

5%

10%

15%

20%

25%

entry 8 16 24 64 256 1000

Miss distance

P
e
rc

e
n

ta
g

e
Non-java Interference

Java Interference

Total Interference

Overall Coverage

Figure 7.10: Effect of miss distance on coverage and interference. Coverage shown is
overall coverage for all code.

in the prefetched method that could be reduced using the chosen prefetch points for it.

Given a certain potential coverage, achieved coverage is further affected by interfer-

ence, which in turn depends on prefetch accuracy.

From the table in Figure 7.2, we can see that coverage improves with increasing

miss distance upper bound until the upper bound reaches the value of 1000. From Fig-

ure 7.10 we can see that interference is very high for this case. 64 is the best observed

upper bound for miss distance, with a relatively high overall coverage of 21.5% and

before the steep rise in interference. For the entry case, it is interesting to note that

172

Chapter 7. Phase-based Instruction Prefetching

Table 7.3: Improvement in IPC as a result of prefetching. Improvement is calculated
with respect to the base, no-prefetching case. The simulation length is 500 million
instructions

Entry 8 16 24 64 256 1000

2.6 2.7 3.4 3.6 4.6 5.1 3.1

% Improvement in IPC

coverage is only 30%, in spite of the fact that potential coverage is high (since every in-

stance of the targeted method is prefetched). This can be attributed to the large number

of late or useless prefetches that this case generates.

Impact on Execution Time

Finally, we measure the net effect of our prefetching mechanism on execution time

by computing percentage improvement in instructions per cycle (IPC). Table 7.3 lists

these values for the miss distance ranges considered. With a miss distance range of

[2,64], which is the best case from our results above, we achieve a 4.6% improvement

in IPC. This is 2% better than the entry case. The IPC for the baseline, no-prefetching

case was 0.518. Our results verify that timeliness is an important consideration for

prefetching schemes targeting the L1 icache, given the trend of increasing L2 latencies

for modern processors. We show that using a simple call-chain based mechanism to

hoist prefetch requests at a suitable distance from the target method, we can increase

the accuracy and efficacy of prefetching. For the benchmark we analyzed, we found

173

Chapter 7. Phase-based Instruction Prefetching

the miss distance upper bound of 64 to be best. We plan to explore a larger set of

configurations in future versions of this work.

7.3.4 Discussion: Potential Improvements

In this section, we discuss two ways of increasing coverage that we have identified,

with exploration of these observations planned in future work.

Callsite Interference and Incremental Prefetching

In addition to the factors affecting coverage that we discussed before (choice of

prefetch points and prefetch accuracy), there is one more factor that can limit cov-

erage. As mentioned earlier we currently issue prefetch requests for all used cache

blocks for a method, when a prefetch point for that method is encountered. However, if

there are callsites within the prefetched method that divert execution to other methods,

the prefetched blocks might be replaced before they can be used. We call this Call-

site Interference, and propose an incremental prefetching scheme to address it. Under

this scheme, we first find callsites that cause significant interference (more than a cer-

tain number of misses before returning to the caller), and partition the method into

blocks before and after the callsite. We then select additional prefetch points that issue

prefetches for blocks after the callsite using the same analysis parameters described

before. These prefetch points must be chosen so that they issue timely prefetches for

174

Chapter 7. Phase-based Instruction Prefetching

blocks that will be used after returning from the interfering callsite. For the top 750

methods targeted by our prefetching mechanism, we found that 159 of them had one or

more interfering callsites using an interference threshold of 64.

Balancing Confidence and Potential Coverage

Confidence is one of the parameters we use in selecting prefetch points. For the

results presented above, we use a high confidence threshold of 90% to minimize use-

less prefetches. In doing so, we lose some potential coverage, thereby reducing the

coverage achieved. To minimize the useless prefetches due to prefetch points with low

confidence, but at the same time not ignore prefetch points that have high potential cov-

erage, we considered using a hybrid parameter composed of confidence and potential

coverage, instead of considering confidence alone.

7.4 Related Work

A significant body of work has been proposed and implemented for instruction

prefetching. In this section, we review the research most related to the approach that

we present in this Chapter. The primary difference that sets our work apart is that it a

software-only technique for reducing the overhead of instruction cache misses in server

applications.

175

Chapter 7. Phase-based Instruction Prefetching

Annavaram et al. [7, 8] describe a profile-based software scheme for call graph

prefetching for database applications, using both hardware and software approaches.

Their software prefetching scheme [8] uses a labeled call graph to insert a prefetch

instruction for the first callee; a prefetch for the second callee function is inserted im-

mediately after the call to the first callee function, and so on. To reduce cache pollution,

only the first n cache lines of a function are prefetched; the rest of the callee function is

prefetched after entering the callee function. Their scheme may not be timely enough

for some prefetches due to the distance between the prefetching point and the first miss,

although it may achieve some partial overlapping of misses.

The authors of this work also conclude that code prefetch positioning alone is not

effective enough to reduce instruction cache misses because of several factors, e.g.,

the number and size of small functions, the same functions invoked by multiple call

sites. Regarding the latter, although code duplication or aggressive function inlining

may be useful to eliminate some of the callers of a function so that code placement is

more effective, the resulting code increase may result in an increase of the number of

instruction cache misses. Based on the data presented in figure 7.1, we believe this will

also be the case for WebSphere.

Spracklen et al. [100] characterize instruction cache prefetching in modern com-

mercial applications, showing that these applications incur significant instruction cache

misses. Their paper proposes a hardware scheme using both sequential and non-sequential

176

Chapter 7. Phase-based Instruction Prefetching

hardware prefetchers. Sequential prefetchers using next-N-line prefetching can cover

small discontinuities in the fetch stream, however it is not effective at eliminating the

misses resulting from transitions to distant lines. In their non-sequential prefetcher, a

basic block predictor predicts a sequence of basic blocks to be prefetched, achieving

a better coverage at the cost of substantial hardware investment. Our current scheme

only considers software prefetches for the hot basic blocks of a method, so our scheme

is more precise than sequential prefetching, but it may prefetch a basic block that may

be later discarded. In future work, we plan to investigate a more fine-grain approach

using control branches triggered from method calls and returns.

Luk et al. [73] present a cooperative, hardware-software approach to prefetching.

The compiler aggressively inserts prefetch instructions to prefetch the targets of control

transfers far enough in advance, often in multiple ways. To reduce cache pollution by

the software prefetches, the hardware has a filtering mechanism to allow it to get far

ahead without polluting the cache.

Other approaches to instruction prefetching include using helper prefetching threads

whose only purposes is to run ahead to provide prefetching for the main thread. [2]. We

do not explore this option since server applications are typically highly multithreaded

and as such, the use of helper threads instead of worker threads may be a liability rather

than an advantage. Another problem with this approach is the overhead of triggering

177

Chapter 7. Phase-based Instruction Prefetching

helper threads and that helper threads need to run ahead enough of the worker threads

to be able to hide latency.

7.5 Summary

In this chapter, we first presented a characterization of instruction cache perfor-

mance for IBM’s WebSphere Application Server and proposed a call-chain based in-

struction prefetching mechanism as a first step towards evaluating the potential for

phase-based instruction prefetching to improve cache performance of large scale server

applications. We evaluated the potential of our mechanism and found a 31% reduction

in icache misses for Java code (and 22% overall) by targeting only a subset of executed

methods.

178

Chapter 8

Conclusion

Portability and productivity-enhancing features in programming languages such as

Java, have fuelled their rapid growth and popularity in recent years. Although initially

boosted by the proliferation of internet computing, Java today is widely used in a va-

riety of domains and across a wide spectrum of devices. To enable portability (the

write-once, run-anywhere model), these programs are compiled into an architecture-

independent intermediate format and executed within a virtual execution environment

on the target host. The execution environment, a Java virtual machine or .Net run-

time, implements a compilation system that converts the intermediate code to the na-

tive format of the underlying machine. This dynamic compilation enables portability

but necessarily introduces runtime overhead. However, dynamic compilation also ex-

poses opportunities for adaptation – optimizations that we can customize according to

the behavior of the executing program.

179

Chapter 8. Conclusion

The end-goal of the research described in this dissertation is to extract and ex-

ploit the repeating patterns, i.e. phases, in a program’s execution to guide optimization

and customization of the program and the execution environment, for Java programs.

To this end, we isolate two important directions and make significant contributions in

each: (1) analysis, characterization, and detection of phases, and (2) their use to guide

optimization and further program analysis. Section 8.1 summarizes these contributions.

8.1 Dissertation Summary

Our first contribution, described next, stemmed from our need to extract, and better

understand runtime phases in Java programs.

Understanding and Analyzing Phases

We developed an open-source toolkit and JVM extensions to facilitate easy collec-

tion, visualization, and analysis of the time-varying behavior of Java programs. This

framework incorporates phase analysis techniques used by the binary optimization and

architecture communities into JikesRVM, a freely available Research Virtual Machine

from the IBM T.J. Watson Research Center, and the toolkit, which is intended for of-

fline use. The data generation framework within the JikesRVM generates a temporal

basic block trace for the executing program, which is processed by components of the

180

Chapter 8. Conclusion

toolkit to either classify intervals into phases (Phase Finder), visualize phase behavior

(Phase Visualizer), analyze program behavior within phases (Phase Analyzer), or to ex-

tract important code sequences from within phases (Code Extractor). The components

of the framework are pluggable (different models and metrics can be used to perform

phase classification), and parameterizable so that it allows users to experiment with

the granularity and similarity parameters, both of which have been shown to impact

observed phase behavior.

We used this framework to analyze phase behavior in the SpecJVM benchmark

suite, and established that Java programs exhibit phase behavior that can be exploited.

Following its initial use, the framework has proved to be equally useful, to us and others

in the analysis of new workloads. Having established the existence of phases in Java

programs, we next focused on detecting these phases accurately within a Java virtual

machine.

Online Phase Detection

Accurate, online phase detection is vital to the efficacy of phase-based, runtime

optimization. Almost all extant phase detection approaches either rely on offline tech-

niques, hardware support, or specialized hardware, thus rendering them unsuitable for

use within dynamic optimization systems like Java Virtual Machines (JVMs). Our sec-

ond contribution to enable understanding and exploitation of phase behavior is a JVM

181

Chapter 8. Conclusion

infrastructure for the development, study, and accuracy evaluation of phase detection

algorithms. Our goal with this work was to understand the parameter sensitivity of

detectors and the accuracy that is possible.

The infrastructure is a novel, parameterizable, framework for online phase detec-

tion, multiple instantiations of which produce different online phase detection algo-

rithms. The phase detection framework examines the current execution profile and

determines whether the program is in phase or in transition. It consists of a similarity

model and a similarity analyzer, both of which can be implemented in many ways. For

example, the model can differ in how it consumes, internally represents, and computes

the similarity of the profile. Like in our previously described work, this framework

can be used to investigate, compare, and evaluate both extant and novel algorithms. To

evaluate the accuracy of an online phase detector, we also designed an optimization-

and machine independent baseline methodology, and a metric to compare online de-

tectors to this baseline. Using the framework, baseline, and metric, we implemented

and evaluated numerous (over 2500 using different models, analyzers and parameters)

online phase detection algorithms for several Java programs.

The next set of contributions that we made were two phase-based runtime tech-

niques. The first technique is an accurate, low-overhead profiling scheme for resource-

constrained devices that uses phases to drive when to sample the execution of a pro-

gram. The second technique is a software instruction prefetching mechanism that uses

182

Chapter 8. Conclusion

method-level phase behavior to identify, predict, and prefetch methods that incur a large

number of instruction cache misses for emerging Java workloads like database- and ap-

plication servers. These two techniques span two extremes of execution environments

used for Java applications: software for resource-constrained devices at the low end

and application servers at the high-end.

Phase-aware Profiling

Phase-aware profiling uses phase behavior to enable efficient collection of accurate

profile information. Using program phase behavior, phase-aware profiling summarizes

a program as a minimal but diverse set of behaviors that accurately represent overall

program behavior. Compared to other commonly used sampling schemes, like peri-

odic or random sampling, phase-aware profiling intelligently chooses fewer samples to

generate more accurate profiles.

We employed phase-aware profiling to perform remote profiling of programs on

resource-constrained devices, like personal digital assistants and web-enabled mobile

phones, which have emerged as new access points to the world’s digital infrastructure.

The difficulty in testing and optimizing software for all possible hardware-, software

configurations, and use scenarios before its release, and the recent explosion in network

availability and bandwidth, have made post-deployment monitoring and evolution of

software an attractive option. A highly efficient, transparent, and unobtrusive runtime

183

Chapter 8. Conclusion

profiling scheme, like phase-aware profiling, is key to the success of such an approach,

given the limited resources available on these devices.

We proposed a hybrid, hardware-software approach to perform phase-aware remote

profiling, where phase tracking hardware (developed in prior work by Sherwood et al)

efficiently monitors program execution behavior and makes predictions about the next

phase, and the software profiler collects and communicates samples only for previously

unseen phases, significantly reducing the overhead. We compared phase-aware profil-

ing with random and periodic sampling by evaluating both accuracy and overhead for a

variety of profile types. We evaluated accuracy by comparing the profile generated by

each of the sampling techniques with an exhaustive profile. Overhead was measured in

terms of power, the primary resource for battery-powered devices, required to gather

and communicate profile information. Our results indicate that phase-aware profiling

can reduce the energy consumption overhead of gathering and communicating profile

information by 50-75% over periodic and random sampling.

Call-chain based Instruction Prefetching

With the emergence of new commercial Java workloads, like database-, and ap-

plication servers, which are characterized by larger instruction working sets and rel-

atively poorer instruction locality, instruction prefetching, as a means to alleviate the

performance loss due to instruction cache (icache) misses, has regained importance.

184

Chapter 8. Conclusion

However, historically due to the relatively larger performance cost of data cache misses

in most applications, research and development has largely focused on the data cache

miss problem. As evidence, only a few architectures (IA-64, PA-RISC, and SPARC v9)

include instruction cache prefetch instructions, while many architectures (e.g. IA-32,

x86-64, and PowerPC), include no support for instruction prefetching. In contrast, all

major architectures include support for software-directed data prefetching.

We performed a detailed characterization of instruction cache performance for IBM’s

WebSphere Application Server running the industry-standard SPECjAppServer2004

J2EE benchmark to investigate the potential of an all-software, method-level instruc-

tion prefetching mechanism that could be eventually implemented within a Virtual Ma-

chine [78]. In studying method-level behavior, we found that Java code (JITTED) ac-

counts for the majority (71%) of icache misses, but contrary to the commonly observed

80-20 paradigm, no single method is a significant contributor. In fact, an effective

prefetching mechanism would have to target thousands of methods. In this work, we

proposed a mechanism that uses repeating patterns, i.e. phases, in the calling context

to track, predict and prefetch methods before they are executed.

To evaluate the potential of this scheme for improved instruction cache perfor-

mance, we performed a trace-driven limit study. We implemented and evaluated a call-

chain based prefetching algorithm that individually targets delinquent methods (meth-

ods which cause significant icache misses) and chooses suitable predecessor methods in

185

Chapter 8. Conclusion

the call-chain as prefetch points. The method prologue of prefetch points is augmented

with instruction cache prefetch instructions for one or more delinquent targets. These

prefetch points are selected based on two parameters, miss distance and confidence,

that aim to ensure timeliness and usefulness of the issued prefetch. Miss distance is the

average number of misses on the path between the prefetch point and the method to be

prefetched and confidence is the probability of reaching the method to be prefetched

from the prefetch point. Given at least one miss between the prefetch point and the

method to be prefetched, prefetch timeliness can be ensured (since the latency due to

the miss cannot be avoided). A high confidence value is necessary to avoid cache pol-

lution. We used Mambo, a full system simulator developed at the IBM Austin Research

Lab, to gather method entry/exit traces augmented with instruction cache miss infor-

mation, and to subsequently evaluate our prefetching algorithm for IBM’s WebSphere

Application Server running the SPECjAppserver2004 J2EE benchmark. We found an

23% reduction in L1 instruction cache misses (for Java code) by targeting only a subset

of executed method. Our preliminary results argue in favor of architectural support for

software-directed instruction prefetching algorithms.

186

Chapter 8. Conclusion

8.2 Impact and Future Directions

Each of the contributions described in the previous section was an important step

towards our end-goal. Moreover, these contributions made significant advances in the

area of feedback-directed optimization of Java programs. These advances, their impact,

and future directions that have emerged are described below.

Analysis and Visualization of Phase Behavior

When we began this work, detecting and exploiting changes in program behavior

at runtime was recognized to be the next frontier in feedback-directed optimization of

dynamically compiled programs. However, there was no previous systematic study of

phase behavior in Java programs. The framework and toolkit that we developed to fa-

cilitate extraction and analysis of phase behavior in Java programs allowed us to study

the runtime behavior of Java programs, and to experiment with parameters that affect

its characterization. Following their initial use, the analysis and visualization tools have

been used by researchers at the San Diego Supercomputing Center in analyzing scien-

tific computing programs as well as at IBM in analyzing industry-standard commercial

software like IBM’s WebSphere application server.

While we expect our framework and tools to continue to be useful to researchers in

analyzing new programs, they could be made even more accessible by integrating them

187

Chapter 8. Conclusion

into development environments to enable automatic visualization and phase analysis of

programs under development.

Online, Software-level Phase Detection

Most prior work on phase detection was based on low-level program behavior,

and proposed the use of special-purpose hardware. This work was the first online,

all-software approach to detecting phases, and therefore an important step towards

phase-based adaptive optimization in virtual execution environments, in the absence

of special-purpose hardware. The client- (or optimization-) independent and parame-

terizable design of this framework makes it useful in designing online phase detection

algorithms for many potential phase-based optimizations.

In the work described in this dissertation, we focused on the accuracy of detecting

phase-shifts, i.e. changes in behavior, leaving efficiency, and the ability to recognize

repeating behaviors to future work, provided we could justify it by designing and eval-

uating techniques that could take advantage of this information. We now believe that

with additional research, online phase-shift detection could be a useful standard feature

in virtual execution environments, playing the role of behavior sensors that trigger au-

tomatic, proactive responses. The next important step to make this possible would be

to focus on the efficiency of online phase detection, and ways of leveraging existing

runtime profiling and analysis mechanisms employed by current virtual execution en-

188

Chapter 8. Conclusion

vironments. Phase-shift detection coupled with the ability to detect repeating patterns

would enable even more sophisticated optimizations.

Phase-aware Profiling

Our first application of phase behavior, to drive efficient profiling, addressed an

important problem: post deployment evolution of software, using profile informa-

tion gathered from billions of users in the ever-expanding realm of hand-held devices.

Much like several commercial applications that use error reporting to gather infor-

mation about problematic execution of software after deployment, we used our tech-

nique to remotely perform continuous, low-overhead profiling of deployed programs

to enable performance-oriented optimization in subsequent versions. This extremely

low-overhead, but accurate, profiling technique opened up opportunities for feedback-

directed optimization on resource-constrained devices. Continuing in this direction,

distributing the effort of profile collection across multiple users, could be used not only

to further reduce the overhead, but also to enable us to isolate distinct behaviors in

complex programs.

We chose continuous profiling on resource-constrained devices, since it allowed

us to evaluate phase-aware profiling under extreme circumstances, in addition to ad-

dressing an important problem. Phase-aware profiling, however, is a general-purpose

technique that could be applied to any scenario that requires efficient and accurate pro-

189

Chapter 8. Conclusion

file collection. In fact, this novel application of phase behavior, falls into the class of

proactive runtime techniques that we mentioned in conjunction with efficient phase-

shift detection, earlier in this section.

Phase-based Instruction Prefetching

In our second attempt at uncovering the potential of phase-based optimization,

we used repeating patterns in method invocations in designing an adaptive instruc-

tion prefetching mechanism. This is one of very few extant, software-level instruction

prefetching mechanisms, and has helped in identifying necessary architectural support,

which if provided in future processor architectures, would enable dynamic compilers

to drive adaptive memory system optimizations. Our work on instruction prefetching

described in this dissertation brought out the potential in phase-based prefetching (es-

pecially for new, commercial Java workloads like application servers), and the need

for architectural support; one of our future goals is to integrate this mechanism into

a Java virtual machine as a new adaptive optimization to improve the performance

of commercial Java programs. In a broader context, we also think that with the in-

creasing complexity of both software and processor architectures, and the inability of

current software to utilize hardware resources efficiently, such software-level optimiza-

tions will become increasingly important.

190

Bibliography

[1] Java technology: Brief history. This is an electronic document. Date of publica-
tion: unknown. Date retrieved: May 25, 2007.http://www.java.com/en/about.

[2] T. M. Aamodt, P. Marcuello, P. Chow, A. Gonzalez, P. Hammarlund, H. Wang,
and J. Shen. A framework for modeling and optimization of prescient instruc-
tion prefetch. In International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), June 2003.

[3] A. Adl-Tabatabai, M. Cierniak, G. Lueh, V. Parikh, and J. Stichnoth.
Fast,Effective Code Generation in a Just-In-Time Java Compiler. In Proceed-
ings of ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, pages 280–290, May 1998.

[4] A. Ailamaki, D. Dewitt, M. Hill, and D. Wood. DBMSs on a modern processor:
where does time go? In The VLDB Journal, pages 266–277, 1999.

[5] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D. Choi,
A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov,
M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd,
S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño Virtual
Machine. IBM Systems Journal, 39(1):211–221, 2000.

[6] J. Anderson, W. Weihl, L. Berc, J. Dean, S. Ghemawat, M. Henziger, S. Leung,
R. Sites, M. Vandevoorde, and C. Waldspurger. Continuous Profiling: Where
Have All the Cycles Gone? ACM Transactions on Computer Systems (TOCS),
15(4):357–390, 1997.

[7] M. Annavaram, J. Patel, and E. Davidson. Call graph prefetching for database
applications. In International Symposium on High Performance Computer Ar-
chitecture (HPCA), Feb. 2000.

191

h

Bibliography

[8] M. Annavaram, J. Patel, and E. Davidson. Call graph prefetching for database
applications. ACM Transactions on Computer Systems, 21(4):412–444, Nov.
2003.

[9] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney. Adaptive Optimiza-
tion in the Jalapeño JVM. In ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), Oct. 2000.

[10] M. Arnold and D. Grove. Collecting and Exploiting High-Accuracy Call Graph
Profiles in Virtual Machines. In International Symposium on Code Generation
and Optimization, March 2005.

[11] M. Arnold, M. Hind, and B. Ryder. Online feedback-directed optimization
of Java. In ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, Nov. 2002.

[12] M. Arnold and B. Ryder. A Framework for Reducing the Cost of Instrumented
Code. In SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 168–179, Jun 2001.

[13] M. Arnold and P. F. Sweeney. Approximating the calling context tree via sam-
pling. IBM Research Report, July 2000.

[14] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic opti-
mization system. ACM SIGPLAN Notices, 35(5):1–12, 2000.

[15] R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas.
Memory hierarchy reconfiguration for energy and performance in general-
purpose processor architectures. In Proc. of the 32nd International Symposium
on Microarchitecture, pages 245–257, Dec. 2000.

[16] R. D. Barnes, E. M. Nystrom, M. C. Merten, and W. mei W. Hwu. Vacuum pack-
ing: Extracting hardware-detected program phases for post-link optimization. In
International Symposium on Microarchitecture, pages 233–244, Nov. 2002.

[17] L. Barroso, K. Gharachorloo, and E. Bugnion. Memory system characteriza-
tion of commercial workloads. In Proc. of the 26th Intl. Symp. on Computer
Architecture, May 1999.

[18] I. T. P. Benchmark. Trade6. ”https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=trade6”.

[19] E. Berk. Jlex: A lexical analyzer generator for Java. www.cs.princeton.edu/ ap-
pel/modern/java/JLex.

192

Bibliography

[20] P. Bohrer, J. Peterson, M. Elnozahy, R. Rajamony, A. Gheith, R. Rockhold,
C. Lefurgy, H. Shafi, T. Nakra, R. Simpson, E. Speight, K. Sudeep, E. Hens-
bergen, and L. Zhang. Mambo: A full system simulator for the powerpc ar-
chitecture. ACM SIGMETRICS Performance Evaluation Review, 31(4):8–12,
March 2004.

[21] J. Bowring, A. Orso, and M. Harrold. Monitoring Deployed Software Using
Software Tomography. In Proceedings of ACM SIGPLAN-SIGSOFT Worshop
on Program Analysis for Software Tools and Engineering, pages 2–9, 2002.

[22] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scalable cross-
platform infrastructure for application performance tuning using hardware coun-
ters. In Proceedings of SuperComputing 2000 (SC’00), Nov. 2000.

[23] D. C. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0. Technical
Report CS-TR-97-1342, University of Wisconsin, Madison, June 1997.

[24] H. W. Cain, R. Rajwar, M. Marden, and M. H. Lipasti. An architectural evalu-
ation of Java TPC-W. In Proc. of the Seventh Intl. Symp. on High-Performance
Computer Architecture, pages 229–240, Monterrey, Mexico, January 2001.

[25] Q. Cao, P. Trancoso, J. Larriba, J. Torrellas, B. Knighten, and Y. Won. Detailed
characterization of a quad pentium pro server running TPC-D. In Proc. of the
IEEE International Conference on Computer Design, 1999.

[26] C. Chambers and D. Ungar. Making Pure Object-Oriented Languages Practical.
In Proceeding of ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications, OOPSLA, volume 26, pages 1–15. ACM
Press, 1991.

[27] Y. Chen, R. Dios, A. Mili, L. Wu, and K. Wang. An Empirical Study of Pro-
gramming Language Trends. IEEE Software, 22(3):72–78, 2005.

[28] M. Cierniak, G. Lueh, and J. Stichnoth. Practicing JUDO: Java Under Dynamic
Optimizations. In Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 13–26, June 2000.

[29] S. Clarke, E. Feigin, W. Yuan, and M. Smith. Phased behavior and its impact on
program optimization.

[30] M. Corliss, E. Lewis, and A. Roth. DISE: Dynamic Instruction Stream Editing.
Technical Report MS-CIS-02-24, Department of Computer and Information Sci-
ence, University of Pennsylvania, Philadelphia, PA, Jul 2002.

193

Bibliography

[31] M. Corliss, E. Lewis, and A. Roth. A DISE Implementation of Dynamic Code
Decompression. In ACM SIGPLAN Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES), pages 232–243, Jun 2003.

[32] M. Corliss, E. Lewis, and A. Roth. DISE: A Programmable Macro Engine for
Customizing Applications. In Annual International Symposium on Computer
Architecture, pages 362–373, Jun 2003.

[33] M. Corliss, E. Lewis, and A. Roth. Low-Overhead Interactive Debugging via
Dynamic Instrumentation with DISE. In International Symposium on High Per-
formance Computer Architecture, pages 303–314, Feb 2005.

[34] S. P. E. Corporation. Specjappserver2004 benchmark.
http://www.spec.org/jAppServer2004/, 2004.

[35] A. Das, J. Lu, and W.-C. Hsu. Region monitoring for local phase detection in
dynamic optimization systems. In ACM Conference on Code Generation and
Optimization, Mar. 2006.

[36] J. Dean, J. Hicks, C. Waldspurger, W. Weihl, and G. Chrysos. Profileme : Hard-
ware support for instruction-level profiling on out-of-order proce ssors. In Inter-
national Symposium on Microarchitecture, pages 292–302, 1997.

[37] P. Denning. Working sets past and present. In IEEE Transactions on Software
Engineering, 1980.

[38] A. Dhodapkar and J. Smith. Managing multi-configuration hardware via dy-
namic working set analysis. In 29th Annual International Symposium on Com-
puter Architecture, May 2002.

[39] A. Dhodapkar and J. Smith. Comparing program phase detection techniques. In
36th Annual International Symposium on Microarchitecture, Dec. 2003.

[40] E. Duesterwald and V. Bala. Software Profiling for Hot Path Prediction: Less is
More. In International Conference on Architectural Support for Programming
Languages and Operating Systems, Oct. 2000.

[41] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and predicting
program behavior and its variability. In International Conference on Parallel
Architecture and Compilation Techniques, Sept. 2003.

[42] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and predicting
program behavior and its variability. In International Conference on Parallel
Achitecture and Compilation Techniques, Sept. 2003.

194

Bibliography

[43] K. Ebcioglu, E. R. Altman, M. Gschwind, and S. W. Sathaye. Dynamic binary
translation and optimization. IEEE Transactions on Computers, 50(6):529–548,
2001.

[44] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A performance counter
architecture for computing accurate CPI components. In Proceedings of the
Twelfth International Conference on Architectural Support for Programming
Languages and Operating Systems, October 2006.

[45] S. Fink and F. Qian. Design, Implementation and Evaluation of Adaptive Re-
compilation with On-Stack Replacement. In International Symposium on Code
Generation and Optimization (CGO), Mar. 2003.

[46] A. Georges, D. Buytaert, L. Eeckhout, and K. De Bosschere. Method-level phase
behavior in Java workloads. In Conference on Object-Oriented Programming
Systems, Languages, and Applications, Oct. 2004.

[47] N. Grcevski, A. Kielstra, K. Stoodley, M. Stoodley, and V. Sundaresan. Java just-
in-time compiler and virtual machine improvements for server and middleware
applications. In Proceedings of the 3rd Virtual Machine Research and Technol-
ogy Symposium (VEE), 2004.

[48] M. Hauswirth and T. M. Chilimbi. Low-overhead memory leak detection using
adaptive statistical profiling. In International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pages 156–164, Oct
2004.

[49] D. Hilbert and D. Redmiles. Extracting usability information from
user interface events. ACM Computing Surveys, 32(4):384–421, 2000.
"http://www.ics.uci.edu/ dhilbert/papers/”.

[50] M. Hind, V. Rajan, and P. Sweeney. Phased Behavior and Its Impact on Program
Optimization.

[51] M. Hind, V. Rajan, and P. F. Sweeney. Phase detection: A problem classification.
Technical Report 22887, IBM Research, Aug. 2003.

[52] M. Hirzel and T. Chilimbi. Bursty tracing: A framework for low-overhead tem-
poral profiling. In Fourth ACM Workshop on Feedback-Directed and Dynamic
Optimization (FDDO-4), 2001.

[53] The Java HotSpot Virtual Machine, Techni-
cal White Paper. http://java.sun.com/

195

"

Bibliography

products/hotspot/docs/whitepaper/
Java_HotSpot_WP_Final_4_30_01.ps.

[54] H.Saputra, M. T. Kandemir, N. Vijaykrishnan, M. J. Irwin, J. Hu, H.Hsu, and
U.Kremer. Energy conscious compilation based on voltage scaling. In LCTES02-
SCOPES02, June 2002.

[55] C. Isci, G. Contreras, and M. Martonosi. Live, runtime phase monitoring and
prediction on real systems with application to dynamic power management. In
ACM/IEEE International Symposium on Microarchitecture (MICRO), 2006.

[56] C. Isci and M. Martonosi. Identifying program power phase behavior using
power vectors. In WWC ’03: Proceedings of the Sixth International Workshop
on Workload Characterization, 2003.

[57] C. Isci and M. Martonosi. Phase characterization for power: Evaluating control-
flow-based and event-counter-based techniques. In HPCA ’06: Proceedings of
the Twelfth International Symposium on High-Performance Computer Architec-
ture, 2006.

[58] Jikes Research Virtual Machine (RVM). http://jikesrvm.sourceforge.net.

[59] K. Keeton, D. Paterson, Y. He, R. C. Raphael, and W. Baker. Performance
characterization of a quad pentium pro smp using oltp workloads. In Proc. of
the 26th Intl. Symp. on Computer Architecture, pages 25–26, May 1998.

[60] T. Kistler and M. Franz. Continuous program optimization: A case study. ACM
Transactions on Programmins Languages and Systems, 25(4):500–548, 2003.

[61] T. Kistler and M. Franz. Continuous program optimization: A case study. ACM
Transactions on Programming Languages and Systems, 25(4):500–548, July
2003.

[62] T. P. Kistler. Continuous Program Optimization. PhD thesis, University of Cali-
fornia, Irvine, 1999.

[63] U. Kremer, J. Hicks, and J. Rehg. A compilation framework for power and
energy management on mobile computers. In 14th International Workshop on
Parallel Computing (LCPC’01), August 2001.

[64] C. Krintz. Coupling On-Line and Off-Line Profile Information to Improve Pro-
gram Performance. In International Symposium on Code Generation and Opti-
mization (CGO), Mar. 2003.

196

Bibliography

[65] C. Krintz, Y. Wen, and R. Wolski. Application-level Prediction of Battery Dis-
sipation. In International Symposium on Low Power Electronics and Design
(ISLPED), Aug. 2004.

[66] J. Lau, E. Perelman, and B. Calder. Selecting software phase markers with code
structure analysis. In ACM Conference on Code Generation and Optimization,
Mar. 2006.

[67] J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Calder. Motivation for
variable length intervals and hierarchical phase behavior. In IEEE International
Symposium on Performance Analysis of Systems and Software, Mar. 2005.

[68] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder. The strong correla-
tion between code signatures and performance. In International Symposium on
Performance Analysis of Systems and Software (ISPASS), Mar. 2005.

[69] C. Lee, M. Potkonjak, and W. Mangione-Smith. Mediabench: A tool for evaluat-
ing and synthesizing multimedia and communicatons systems. In International
Symposium on Microarchitecture (MICRO), pages 330–335, 1997.

[70] B. Liblit, A. Aiken, A. Zheng, and M. Jordan. Bug Isolation via Remote Program
Sampling. In SIGPLAN Conference on Programming Language Design and
Implementation, pages 141–154, June 2003.

[71] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison
Wesley, second edition, Apr. 1999.

[72] J. Lu, H. Chen, P.-C. Yew, and W.-C. Hsu. Design and implementation of a
lightweighted dynamic optimization system. Journal of Instruction-Level Paral-
lelism, 6, 2004.

[73] C.-K. Luk and T. C. Mowry. Architectural and compiler support for effective in-
struction prefetching: A cooperative approach. ACM Transactions on Computer
Systems, 19(1):71–109, Feb. 2001.

[74] A. Madison and A. P. Batson. Characteristics of program localities. Commun.
ACM, 19(5):285–294, May 1976.

[75] A. M. G. Maynard, C. M. Donnelly, and B. R. Olszewski. Contrasting character-
istics and cache performance of technical and multi-user commercial workloads.
In Proc. of the Sixth Intl. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, pages 145–156, 1994.

197

Bibliography

[76] M. C. Merten, A. R. Trick, C. N. George, J. C. Gyllenhaal, and W. mei W. Hwu.
A hardware-driven profiling scheme for identifying program hot spots to support
runtime optimization. In International Symposium on Computer Architecture,
June 1999.

[77] H. Mousa and C. Krintz. HPS: Hybrid Profiling Support. In International Con-
ference on Parallel Achitecture and Compilation Techniques, pages 38–50, Sep
2005.

[78] P. Nagpurkar, H. W. Cain, M. Serrano, J.-D. Choi, and C. Krintz. A Study of
Instruction Cache Performance and the Potential for Instruction Prefetching in
J2EE Server Applications. In Tenth Workshop on Computer Architecture Evalu-
ation Using Commercial Workloads (CAECW-10), Feb. 2007.

[79] P. Nagpurkar, H. W. Cain, M. Serrano, J.-D. Choi, and C. Krintz. Call-chain
Software Instruction Prefetching in J2EE Server Applications. In International
Conference on Parallel Achitecture and Compilation Techniques, Sept. 2007.

[80] P. Nagpurkar, M. Hind, C. Krintz, P. Sweeney, and V. Rajan. Online Phase
Detection Algorithms. In International Symposium on Code Generation and
Optimization (CGO), March 2006.

[81] P. Nagpurkar and C. Krintz. Visualization and analysis of phased behavior in
Java programs. In ACM Principles and Practices of Programming in Java, June
2004.

[82] P. Nagpurkar and C. Krintz. Phase-based visualization and analysis of java pro-
grams. Elsevier Science of Computer Programming – Special Issue on Priciples
Practices and Programming in Java, 59(1–2):64–81, January 2006.

[83] P. Nagpurkar, C. Krintz, and T. Sherwood. Phase-aware remote profiling. In
ACM Conference on Code Generation and Optimization, Mar. 2005.

[84] P. Nagpurkar, H. Mousa, C. Krintz, and T. Sherwood. Efficient remote profiling
for resource-constrained devices. ACM Transactions on Architecture and Code
Optimization, 3(1):1–32, March 2006.

[85] T. Nguyen. PANIC Laboratory at Rutgers University.
http://www.panic-lab.rutgers.edu/.

[86] A. Orso, D. Liang, M. Harrold, and R. Lipton. Gamma System: Continous
Evolution for Software after Deployment. In Proceedings of International Sym-
posium on Software Testing and Analysis (ISSTA), pages 65–69, 2002.

198

Bibliography

[87] C. Pavlopoulou and M. Young. Residual Test Coverage Monitoring. In Pro-
ceedings of International Conference on Software Engineering, pages 277–284,
1999.

[88] C. Pereira, J. Lau, B. Calder, and R. Gupta. Dynamic phase analysis for
cycle-close trace generation. In International Conference on Hardware/Software
Codesign and System Synthesis, Sept. 2005.

[89] K. Pettis and R. Hansen. Profile guided code positioning. In International Con-
ference on Programming Language Design and Implementation (PLDI), June
1990.

[90] The phoenix framework from microsoft research.
http://research.microsoft.com/Phoenix/technical.aspx.

[91] S. Sastry, R. Bodı́k, and J. Smith. Rapid Profiling via Stratified Sampling. In An-
nual International Symposium on Computer Architecture, pages 278–289, July
2001.

[92] X. Shen, Y. Zhong, and C. Ding. Locality phase prediction. In Eleventh Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, Nov. 2004.

[93] T. Sherwood and B. Calder. Time Varying Behavior of Programs. Technical
Report Technical Report, UC San Diego, Aug. 1999.

[94] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution analysis to
find periodic behavior and simulation points in applications. In International
Conference on Parallel Architectures and Compilation Techniques, Sept. 2001.

[95] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically char-
acterizing large scale program behavior. In 10th International Conference on
Architectural Support for Programming Languages, Oct. 2002.

[96] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. In 30th
Annual International Symposium on Computer Architecture, June 2003.

[97] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. Eickemeyer, and J. Joyner. Power5
system microarchitecture. IBM Journal of Research and Development, 49((4-
5)):505–522.

[98] SpecJVM’98 Benchmarks. http://www.spec.org/osg/jvm98.

199

Bibliography

[99] J. M. Spivey. Fast, accurate call graph profiling. Software–Practice and Experi-
ence, 34(3):249–264, 2004.

[100] L. Spracklen, Y. Chou, and S. Abraham. Efective instruction prefetching in chip
multiprocessors for modern commercial applications. In Proc. of the Eleven
Intl. Symp. on High-Performance Computer Architecture, pages 225–236, San
Francisco, CA, January 2005.

[101] R. Srinivas. The 10-yr Story: Java and the networked world. The Financial
Express, 2005. This is an electronic document. Date of publication: May 2005.
Date retrieved: May 25, 2007.

[102] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki,
H. Komatsu, and T. Nakatani. Overview of the IBM Java Just-in-Time Compiler.
IBM Systems Journal, 39(1):175–193, 2000.

[103] The Standard Performance Evaluation Corporation. SPEC JBB 2000.
http://www.spec.org/osg/jbb2000, 2000.

[104] The Standard Performance Evaluation Corporation. SPEC JVM 1998.
http://www.spec.org/osg/jvm98, 2000.

[105] J. Whaley. A Portable Sampling-based Profiler for Java Virtual Machines. In
Proceedings of ACM JavaGrande Conference, pages 78–87, 2000.

[106] J. Whaley. Partial Method Compilation using Dynamic Profile Information. In
Proceeding of ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications, OOPSLA, pages 166–179. ACM Press,
Oct. 2001.

[107] F. Xie, M. Martonosi, and S. Malik. Compile-time dynamic voltage scaling
scheduling using mixed-integer linear programming. In ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI)., june
2003.

[108] L. Zhang. Personal communication, 2007.

[109] L. Zhang and C. Krintz. Code unloading. Technical Report 2003-14, University
of California, Santa Barbara, 2003.

[110] X. Zhuang, M. Serrano, H. Cain, and J. Choi. Accurate, efficient, and adaptive
calling context profiling. In International Conference on Programming Lan-
guage Design and Implementation (PLDI), 2006.

200

Bibliography

[111] C. Zilles and G. Sohi. A programmable co-processor for profiling. In HPCA,
pages 241–, 2001.

201

	Acknowledgements
	Curriculum Vitæ
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	Phase Characterization, Detection, and Prediction Techniques
	Applications of Phase Analysis
	Dynamic Compilation and Adaptive Optimization in Java

	Phase Behavior in Java Programs
	Phase Analysis Framework
	Data Generation
	Data Processing

	Phase Analysis Toolkit
	Phase Visualizer
	Phase Finder
	Phase Analyzer and Code Extractor

	Analysis
	Visual Analysis
	Efficient Identification of Optimization Opportunities
	Cross-Input Analysis
	Other Opportunities for Exploiting Phase Behavior

	Summary

	Phase Detection for Java Programs
	Online Phase Detection Framework
	Window Policy
	Model Policy
	Analyzer Policy

	Evaluating Phase Detectors
	Phase Detection Baseline
	Accuracy Scoring Metric

	Analysis
	Methodology
	Window Policy
	Model Policy
	Analyzer Policy
	Additional Analysis

	Summary

	Phase-based Runtime Techniques
	Phase-aware Profiling
	Instruction Prefetching

	Phase-aware Remote Profiling
	Phase-aware Sampling: Deciding When to Sample
	Profiling Support for Toggling Profile Collection
	Dynamic Instruction Stream Editing (DISE)
	Hybrid Profiling Support using DISE

	Evaluation
	Phase-aware Profiling for General-purpose Programs
	Phase-aware Profiling for Embedded Devices

	Extending Phase-aware Profiling to Multiple Users
	Related Work
	Efficient Profiling
	Monitoring Program Behavior for Bug Isolation and Test Coverage

	Summary

	Phase-based Instruction Prefetching
	Characterization of Instruction Cache Behavior
	Methodology
	Stall Cycles
	Method-level Analysis

	Method-level Phase Behavior
	Call-chain Instruction Prefetching
	Design and Implementation
	Experimental Methodology
	Evaluation
	Discussion: Potential Improvements

	Related Work
	Summary

	Conclusion
	Dissertation Summary
	Impact and Future Directions

	Bibliography

