
Efficient Algorithms and Routing Protocols for Handling
Transient Single Node Failures

Amit M. Bhosle∗ and Teofilo F. Gonzalez

Department of Computer Science
University of California

Santa Barbara, CA 93106
{bhosle,teo}@cs.ucsb.edu

Abstract

Single node failures represent more than 85% of all node failures in the today’s large commu-
nication networks such as the Internet [10]. Also, these node failures are usually transient. Con-
sequently, having the routing paths globally recomputed does not pay off since the failed nodes
recover fairly quickly, and the recomputed routing paths need to be discarded. Instead, we develop
algorithms and protocols for dealing with such transient single node failures by suppressing the
failure (instead of advertising it across the network), and route messages to the destination via al-
ternate paths that do not use the failed node. This philosophy was also adopted in Ref. [14] where
the authors address the same issues. We develop algorithms which are faster than those given in
Ref. [14] by an order of magnitude, while our paths are equally good. We show via simulation
results that our paths are usually within 9-12% of the optimal for randomly generated graph with
100-1000 nodes.
KEY WORDS: Network Protocols, Fault Tolerant Systems, Node Failure Recovery, Transient
Node Failures, Alternate Path Routing.

1 Introduction

Computer networks are normally represented by edge weighted graphs. The vertices represent
computers, the edges represent the direct communication links between pairs of computers, and
the weight of an edge represents the cost (e.g. time) required to transmit a message (of some given
length) through the link. The links are bi-directional. Given a computer network represented by
an edge weighted graph G = (V, E), the problem is to find the best route (under normal operation
load) to transmit a message between every pair of vertices. The number of vertices (|V |) is n and
the number of edges (|E|) is m. The shortest paths tree of a node s, Ts, specifies the fastest way of

∗Currently at Amazon.com, 1200 12th Ave. S., Seattle, WA - 98144

1

transmitting a message to node s originating at any given node in the graph. Of course, this holds
as long as messages can be transmitted at the specified costs. When the system carries heavy traffic
on some links these routes might not be the best routes, but under normal operation the routes are
the fastest. It is well known that the all pairs shortest path problem, finding a shortest path between
every pair of nodes, can be computed in polynomial time. In this paper we consider the case when
the nodes in the network may be susceptible to transient faults. These are sporadic faults of at most
one node1 at a time that last for a relatively short period of time. This type of situation has been
studied in the past [14] because it represents most of the node failures occurring in networks. Single
node failures represent more than 85% of all node failures[10]. Also, these node failures are usually
transient, with 46% lasting less than a minute, and 86% lasting less than 10 minutes[10]. Because
nodes fail for relative short periods of time, propagating information about the failure throughout
the network is not recommended. The reason for this is that it takes time for the information about
the failure to be communicated to all nodes and it takes time for the nodes to recompute the shortest
paths in order to re-adapt to the new network environment. Then, when the failing node recovers,
a new messages disseminating this information needs to be sent to inform the nodes to roll back
to the previous state. This process also consumes resources. Therefore, propagation of failures is
best suited for the case when nodes fail for long periods of time. This is not the scenario which
characterizes current computer networks, and it is not considered in this paper.

In this paper we consider the case where the network is biconnected (2-node-connected), mean-
ing that the deletion of a single node does not disconnect the network. Biconnectivity ensures that
there is at least one path between every pair of nodes even in the event that a node fails (provided
the failed node is not the origin or destination of a path). A ring network is an example of a bi-
connected network, but it is not necessary for a network to have a ring formed by all of its nodes
in order to be biconnected. Testing whether or not a network is biconnected can be performed in
linear time with respect to the number of nodes and links in a network. The algorithm is based on
depth-first search [13].

Based on our previous assumptions about failures, a message originating at node x with desti-
nation s will be sent along the path specified by Ts until it reaches node s or a node (other than s)
that failed. In the latter case, we need to use a recovery path to s from that point. Since we assume
single node faults and the graph is biconnected, such a path always exists. We call this problem of
finding the recovery paths the Single Node Failure Recovery (SNFR) problem. It is important to
recognize that the recovery path depends heavily on the protocol being deployed in the system. In
this paper we discuss several routing protocols.

1.1 Related Work

The SNFR problem was studied by Zhang, et. al. in [14], wherein the authors have presented
protocols based on local re-routing for dealing with transient single node failures. The alternate
paths are precomputed at network setup time. Information about single node failures in the network
is suppressed, and instead, messages are rerouted using these precomputed alternate paths. They
demonstrate via simulations that the recovery paths computed by their algorithm are usually within
15% of the theoretically optimal recovery paths.

A closely related problem to our problem is the Single Link Failure Recovery problem. In the
SLFR problem there is only one link failure, the failure is transient, and information about the

1The nodes are single- or multi-processor computers

2

failure is not propagated throughout the network. The SLFR problem has applications when there
is no global knowledge of a link failure, in which case the failure is discovered only when one is
about to use the failed link. In such cases the best option is to take a shortest path from the point
one discovers the failure to the destination avoiding the failed link. The link version of the problem
is relatively easier than the node version: the former has been shown to admin an optimal algorithm
with a running time of O(m + n log n) time in [1]. Also, the version of the SLFR problem is to
find an optimal (shortest) recovery paths.

One of the main applications of the SLFR problem is the alternate path routing (APR) problem
for communications networks. This problem arises when using a special protocol (see Bhosle
and Gonzalez [1]). This protocol provides the network basic functionality for path selection at
setup time. Assuming correct primary routing tables, the protocol implements a depth-first search
mechanism using the alternate paths when the primary path leads to dead-ends due to link failure.
Routes disconnected by a link failure can be re-established along the alternate path. Slosiar and
Latin [12] had studied this problem and presented an O(n3) time algorithm. Bhosle and Gonzalez
[1] developed an O(m + n log n) time algorithm for APR problem.

1.2 Organization of the paper

We formally define the SNFR problem in Section 1.3. The notation that we adopt in the rest of
the paper is defined in Section 1.4, followed by our main results in Section 1.5. We describe our
central algorithm in detail in Section 2, and discuss the protocol based on the SNFR algorithm in
Section 3. Simulation results and comparison with the results of [14] are presented in Section 4,
and we conclude the paper with a short discussion in Section 5.

1.3 Problem Definition

The Single Node Failure Recovery problem, is defined as follows:

SNFR: Given a biconnected undirected edge weighted graph G = (V, E), and the shortest paths
tree Ts(G) of a node s in G where Cx = {x1, x2, . . . xkx

} denotes the set of children of the node x in
Ts, for each node x ∈ V and x 6= s, find a path from xi ∈ Cx to s in the graph G = (V \{x}, E\Ex),
where Ex is the set of edges adjacent to vertex x.

In other words, for each node x in the graph, we are interested in finding alternate paths from
each of its children to the source node s when the node x fails. Note that node x cannot be node s.

1.4 Preliminaries

Our communication network is modeled by an edge-weighted biconnected undirected graph
G = (V, E), with n = |V | and m = |E|. Each edge e ∈ E has an associated cost (weight),
denoted by cost(e), which is a non-negative real number. We use pG(s, t) to denote a shortest path
between s and t in graph G and dG(s, t) to denote its cost (weight).

A shortest path tree Ts for a node s is a collection of n− 1 edges {e1, e2, . . . , en−1} of G which
form a spanning tree of G such that the path from node v to s in Ts is a shortest path from v to s in
G. We say that Ts is rooted at node s. With respect to this root we define the set of nodes that are
the children of each node x as follows. In Ts we say that every node y that is adjacent to x such

3

that x is on the path in Ts from y to s, is a child of x. For each node x in the shortest paths tree,
kx denotes the number of children of x in the tree, and Cx = {x1, x2, . . . xkx

} denotes this set of
children of the node x. Also, x is said to be the parent of each xi ∈ Cx in the tree Ts.

Vx(T) denotes the set of nodes in the subtree of x in the tree T and Ex ⊂ E denotes the set of
all edges incident on the node x in the graph G. We use nextHop(x, y) to denote the next node
from x on the shortest path tree from x to y. Note that by definition, nextHop(x, y) is the parent
of x in Ty.

1.5 Main Results

We present an efficient2 algorithm for the SNFR problem that has a running time of O(m log n).
We further develop protocols based on this algorithm for recovering from single node transient
failures in communication networks.

The recovery paths computed by our algorithm are not necessarily the shortest recovery paths.
However, we demonstrate via simulation results that they are very close to the optimal paths. The
test data consists of randomly generated graphs with an average stretch factor3 of the paths within
4-12% of the optimal in graphs with 100-1000 nodes.

Finally, we compare our results with those of [14] wherein the authors have also studied the
same problem and presented protocols based on local rerouting for dealing with transient single
node failures. One important difference between the algorithm of [14] and our’s is that their’s
performs a lot of recomputations, while our’s reuses information computed in previous steps of
the algorithm. Consequently, our algorithm is faster by an order of magnitude than those in [14],
and as shown by our simulation results, our recovery paths are usually comparable, and sometimes
better.

2 Algorithm for Single Node Failure Recovery

In this section we describe an algorithm for the SNFR problem defined in Section 1.3 and later
develop protocols for recovering from transient single node failures based on the SNFR algorithm.

A naive algorithm for the SNFR problem is based on recomputation: for each node v ∈ G(V)
and v 6= s, compute the shortest paths tree of s in the graph G(V \v, E\Ev). Of interest are
the paths from s to each of the nodes vi ∈ Cv. This naive algorithm invokes a shortest paths
algorithm n − 1 times, and thus takes O(mn + n2 log n) time when it uses the Fibonacci heap[4]
implementation of Dijkstra’s shortest paths algorithm[3]. While these paths are optimal recovery
paths for recovering from the single node failure, their structure can be much different from each
other, and from the original shortest paths (in absence of any failures) - to the extent that routing
messages along these paths may involve recomputing large parts of the primary routing tables at
the nodes through which these paths pass. Also, it may not be easy to switch between the alternate
paths and primary paths as nodes fail or recover in the network. As we shall see later, the recovery
paths computed by our algorithm have a well defined structure, and they overlap with the paths
in the original shortest paths tree (Ts) to an extent that storing the information of a single edge at

2The primary routing tables can be computed using the Fibonacci heaps[4] based implementation of Dijkstra’s
shortest paths algorithm[3] in O(m + n log n) time

3The stretch is defined in Ref. [14], as the ratio of the lengths of the recovery paths computed by an algorithm for
the SNFR problem to the lengths of the optimal recovery paths

4

each node provides sufficient information to infer the entire recovery path. Moreover, our approach
makes it easy to switch between alternate and primary paths as the nodes of the network fail and
recover.

2.1 Basic Principles and Observations

We start by describing some basic observations about the characteristics of the recovery paths.
We also categorize the graph edges according to their role in providing recovery paths for a node
when its parent fails.

x
1

x x
i

k x
x

j

x

b b

b b g ra rb
u

qp

v p

s

y

g
q

Figure 1. Recovery paths for recovering from the failure of x.

Figure 1 illustrates a scenario of a single node failure. In this case, the node x has failed, and we
need to find recovery paths to s from each xi ∈ Cx. When a node fails, the shortest paths tree of s,
Ts, gets split into kx + 1 components - one containing the source node s and each of the remaining
ones contain one subtree of a child xi ∈ Cx.

Notice that the edge {gp, gq} (Figure 1), which has one end point in the subtree of xj , and the
other outside the subtree of x provides a candidate recovery path for the node xj . The complete
path is of the form pG(xj, gp) ; {gp, gq} ; pG(gq, s). Since gq is outside the subtree of x, the
path pG(gq, s) is not affected by the failure of x. Edges of this type (from a node in the subtree of
xi ∈ Cx to a node outside the subtree of x) can be used by xi ∈ Cx to escape the failure of node x.
These edges are called green edges. For example, edge {gp, gq} is a green edge.

Next, consider the edge {bu, bv} (Figure 1) between a node in the subtree of xi and a node in
the subtree of xj . Although there is no green edge with an end point in the subtree of xi, the edges
{gp, gq} and {bu, bv} together offer a candidate recovery path that can be used by xi to recover

5

from the failure of x. Part of this path connects xi to xj (pG(xi, bu) ; {bu, bv} ; pG(bv, xj)),
after which it uses the recovery path of xj (via xj’s green edge, {gp, gq}). Edges of this type (from
a node in the subtree of xi to a node in the subtree of xj for some i 6= j) are called blue edges.
Another example of a blue edge is edge {bp, bq} which can be used the node x1 to recover from the
failure of x.

Note that edges like {ra, rb} and {bv, gp} (Figure 1) with both end points within the subtree of
the same child of x do not help any of the nodes in Cx to find a recovery path from the failure of
node x. We do not consider such edges in the computation of recovery paths, even though they
may provide a shorter recovery path for some nodes (e.g. {bv, gp} may offer a shorter recovery
path to xi). The reason for this is that routing protocols would need to be very complex in order
to use this information. As we describe later in the paper, we carefully organize the green and
blue edges in a way that allows us to retain only the useful edges and eliminate useless (red) ones
efficiently.

We now describe the construction of a new graph Gx which will be used to compute recovery
paths for the elements of Cx when the node x fails. As we later show, a single source shortest paths
computation on this graph suffices to compute the recovery paths for all xi ∈ Cx.

The graph Gx has kx +1 nodes, where kx = |Cx|. A special node, sx, represents the source node
s in the original graph G = (V, E). Apart from sx, we have one node, denoted by yi, for each
xi ∈ Cx. We add all the green and blue edges defined earlier to the graph Gx as follows. A green
edge with an end point in the subtree of xi (by definition, green edges have the other end point
outside the subtree of x) translates to an edge between sx and yi. A blue edge with an end point in
the subtree of xi and the other in the subtree of xj translates to an edge between nodes yi and yj.
However, the weight of each edge added to Gx is not the same as the weight of the green or blue
edge in G = (V, E) used to define it. The weights for these edges is specified below.

Note that the candidate recovery path of xj that uses the green edge g = {gp, gq} has total cost
equal to:

greenWeight(g) = dG(xj, gp) + cost(gp, gq) + dG(gq, s) (1)

This weight can4 be assigned to the edge corresponding to the green edge {gp, gq} that is added
in Gx between yj and sx. If there are multiple green edges with an end point in Vxj

, the subtree of
xj , we choose the one which offers the shortest recovery path for yj, and ignore the rest (with ties
being broken arbitrarily).

As discussed earlier, a blue edge provides a path connecting two siblings of x, say xi and xj .
Once the path reaches xj , the remaining part of the recovery path of xi coincides with that of xj .
If {bu, bv} is the blue edge connecting the subtrees of xi and xj (the cheapest one corresponding to
the edge {yi, yj}), the length of the subpath from xi to xj is:

blueWeight(b) = dG(xi, bu) + cost(bu, bv) + dG(bv, xj) (2)

We assign this weight to the edge corresponding to the blue edge {bu, bv} that is added in Gx

between yi and yj.
4Since the weight given by equation (1) for an edge depends on the node xj whose recovery path is being computed,

using these weights directly involves the expensive task of updating these values as we look at different nodes. Later on
we define and use a slightly different weight function for the edges which is independent of the node whose recovery
path is being computed.

6

The construction of our graph Gx is now complete. As we discuss later, computing the shortest
paths tree of sx in Gx provides enough information to compute the recovery paths for all nodes
xi ∈ Cx when x fails.

2.2 Description of the Algorithm and its Analysis

We now incorporate the basic observations described earlier into a formal algorithm for the
SNFR problem. Then we analyze the complexity of our algorithm and show that it has a nearly
optimal running time of O(m log n).

Our algorithm is a depth-first recursive algorithm over Ts. We maintain the following informa-
tion at each node x:

• Green Edges: The set of green edges in G = (V, E) that offer a recovery path for x to escape
the failure of its parent.

• Blue Edges: A set of edges {p, q} in G = (V, E) such that x is the nearest-common-ancestor
of p and q with respect to the tree Ts.

Green Edges

The set of green edges for node x is maintained in a min heap (priority queue) data structure, which
is denoted by Hx. The heap elements are tuples of the form < e, greenWeight(e) > where e is a
green edge, and greenWeight(·) defines its priority as an element of the heap. Since the weight
of the path using a green edge is given by the equation (1), the greenWeight(·) function can be
defined as in equation (1). However, the expression in this equation depends on the node xi whose
recovery path is being computed. Thus, using this weight would imply additional computations to
update the weight of the edges as they move from the H heaps of a node to those of their parents
(and then ancestors’). We get around this by further analyzing the use of green edges in the recov-
ery paths for a node x. Once we have a minimum weight edge in Hx, we do not need to consider
other elements ofHx for computing the recovery path for x. We use the following greenWeight(·)
function as the priority for the heap element corresponding to the edge g = {p, q}:

greenWeight(g)
= dG(s, x) + dG(x, p) + cost(p, q) + dG(q, s)

= dG(s, p) + cost(p, q) + dG(q, s) (3)

I.e., when the edges are part of Hx we have added the term dG(s, x) to the weight function
defined in equation (1). Interestingly, the relative ordering of the edges in Hx does not change
when we change our greenWeight(·) function from equation (1) to (3). However, equation (3)
is better behaved in that it does not depend on the node x whose heap (Hx) contains the entry
corresponding to the green edge. In other words the weight of the green edge is invariant over all
the nodes where it is a green edge.

Since an edge can serve as a green edge for O(n) nodes, storing them explicitly at all nodes
would impose high space (and time) requirements. Instead of storing the green edges explicitly, we
compute this set dynamically when required. Dynamically building this set for a node x involves
merging the H heaps of the children xi of x. However, an edge which is a green edge for a node

7

xi may not remain a green edge for its parent, x. We get around this limitation by using a quick
constant-time check which tells us whether the edge is a green edge for x or not. This quick check
is only performed when the edge is the top entry (minimum key) in the heap. If it is no longer a
green edge, it will be deleted and the next edge is considered.

We use the dfs-labeling technique described in [1] to determine whether an edge is a green edge
for a node or not. The dfs-labeling assigns a start and end dfs label to each node as a depth-first-
search traversal of Ts starts or ends at the node. Let dfsStart(·) and dfsEnd(·) denote these labels.
It follows from the property of these dfs labels that a node u belongs to the subtree Vv of a node v

iff dfsStart(v) < dfsStart(u) < dfsEnd(u) < dfsEnd(v).
Given the above property of the dfs labels, an edge e = {p, q} is a green edge for a node u iff

exactly one of p and q belongs to the subtree of u, while the other lies outside the subtree of the
parent of u in Ts.

Blue Edges

Note that the edges {bu, bv} and {bp, bq} in Figure 1 are red for the node x itself (since both their
end points are within Vx, the subtree of x), but blue for the children of x. We store the set of blue
edges for a node at the node’s parent in a set denoted by B. This way, an edge belongs to the B set
of exactly one node (which is the nearest-common-ancestor of its two end points).

The nearest common ancestor problem has been extensively studied. The first linear time algo-
rithm by Harel and Tarjan[5] has been simplified and several linear time algorithms (e.g. [2]) are
known for the problem. Using these algorithms, after a linear time preprocessing, one can find the
nearest common ancestor of any two specified nodes in a given tree in constant time. Using this
data structure, we can build the B set for all nodes in O(m) total time.

The weights of these blue edges added to Gx are as given by the equation (2). Consider b =
{p, q} ∈ Bx, which serves as a blue edge for the children of x. We add an edge corresponding to
b in Gx between the nodes px and qx where px and qx denote respectively the children of x whose
subtree contains the actual end points p and q of b. We now outline the process of determining
these two children px and qx of x. We suggest two simple options for this part:

(a) All pairs shortest paths: If we have the all pair shortest paths information for all nodes
of G, then the next hop from x to p will be the child of x whose subtree contains p. That is,
px=nextHop(x, p) and similarly, qx=nextHop(x, q). These are constant-time lookups once the all
pair shortest paths primary lookup tables are available.

(b) dfs labels: As mentioned earlier, the dfsStart(·) and dfsEnd(·) labels can be used to de-
termine in constant time whether a node u lies in the subtree of a node v. Also note that the
dfsStart(·) and dfsEnd(·) values of each node xi ∈ Cx partition the (dfsStart(x), dfsEnd(x))
range in disjoint segments of (dfsStart(xi), dfsEnd(xi)). Once we sort elements xi ∈ Cx accord-
ing to the dfsStart(xi) values, px can be found using binary search for the value of dfsStart(p) in
O(log n) time.

If there are multiple edges in Bx which translate to an edge between the same two nodes of Gx,
we retain the one with the cheapest weight, and discard the rest.

8

Computing the Recovery Paths

Initially Hx contains an entry for each edge of x which serves as a green edge for it (i.e. an edge
of x whose other end point does not lie in the subtree of the parent of x). The elements of Bx are
tuples < e, blueWeight(e) >, maintained as a linked list. The blueWeight(·) function is given by
the equation (2).

x
1

x x
i

k x
x

j

x

b b

b b g
u

qp

v p

s

g k

x x x x1 i j k x

s
x

Edge translations from

G

G to Gx

Gx

Figure 2. Recovery paths for recovering from the failure of x: Constructing Gx

Figure 2 illustrates an arbitrary step in the algorithm where the the recovery paths from the node
xi ∈ Cx to the node s need to be computed when the node x has failed. The recovery paths from
the children of xi to s for recovering from the failure of xi have been computed in the previous
recursions of the algorithm.

For computing the recovery paths for the elements of Cx, we build the (kx + 1)-node graph Gx

as described in Section 2.1. Since the elements inHxi
have the weights given by equation (3), we

9

subtract the term dG(s, xi) from the weight of the edge retrieved from Hxi
. This way, we use the

correct weight for the minimum weight green edge, as given by equation (1).
As we mentioned before, Hxi

is built by merging together the H heaps of the nodes in Cxi
, the

set of children on xi. Consequently, all the elements in Hxi
may not be green edges for xi. Using

the dfs labeling scheme, we can quickly determine whether the edge retrieved by findMin(Hxi
)

is a valid green edge for xi or not. If not, we remove the entry corresponding to the edge fromHxi

via a deleteMin(Hxi
) operation. Note that since the deleted edge cannot serve as a green edge for

xi, it cannot serve as one for any of the ancestors of xi, and it doesn’t need to be added back to
the Hx heap for any x. We continue deleting the minimum weight edges from Hxi

till either Hxi

becomes empty or we find a green edge valid for xi to escape x’s failure, in which case we add it
to Gx.

After adding the green edges to Gx, we add the blue edges from Bx to Gx.
Finally, we compute the shortest paths tree of the node sx in the graph Gx using a standard

shortest paths algorithm, Dijkstra’s algorithm[3]. The escape edge for the node xi is stored as the
parent edge of xi in Tsx

, the shortest paths tree of sx in Gx.
Since the communication graph is assumed to be bi-connected, there exists a path from each

node xi ∈ Cx to sx, provided that the failing node is not note s. Also, since this is a tree, we are
guaranteed to have acyclic paths from each xi to sx.

We formally present our algorithm Compute Recovery Paths (CRP) below. The algorithm is
initially invoked on the node s.

Precomputation
Compute the dfsStart(·) and dfsEnd(·) labels for the nodes based on the depth-first-search of Ts.
Initialize the nearest-common-ancestor data-structure of [5] or [2], and assign each graph edge
{u, v} to the Blue Edges set B of the node nca(u, v).

For each node v ∈ G(V) and v 6= s, initialize the heapHv which initially contains an entry for
each green edge incident on it. The weights of the green edges are as defined in equation (3).

Procedure CRP (x)
// Computes the recovery paths for xi ∈ Cx when x fails
if x is a leaf in Ts return;

// Recurse on the children of x

for each node xi ∈ Cx do
CRP(xi);

end-for

if x = s return; // Everything done

// Build the subgraph Gx(Vx, Ex) as defined in Section 2.1
Vx = {sx} // sx represents the source node s in Gx

for each node xi ∈ Cx do
Vx.add(xi)

10

// Find the cheapest green edge fromHxi
, but delete all the red edges encountered

whileHxi
.findMin() is red do

Hxi
.deleteMin()

end-while

// If there’s another edge inHxi
, use it

if (Hxi
.size()> 0) do

e = Hxi
.findMin()

w = greenWeight(e)− dG(s, xi)
Ex.add(new Edge(xi, sx, w))

end-if
end-for

// Add the blue edges from Bx to Ex

for each edge b = {p, q} ∈ Bx do
px ← child of x whose subtree contains p

qx ← child of x whose subtree contains q

w = blueWeight(e)
Ex.add(new Edge(px, qx, w))

end-for

Compute the shortest paths tree Tsx
of sx in Gx(Vx, Ex)

for each node xi ∈ Cx do
Pxi

= parent node of xi in Tsx

xi.escapeEdge= {xi,Pxi
}

end-for

for each node xi ∈ Cx do
Hx ← meld(Hx, Hxi

);
end-for

End Procedure CRP
The analysis of the above algorithm is straightforward and its time complexity is dominated by

the heap operations involved on the heaps H. Using amortized heaps (e.g. Fredman and Tarjan’s
F-Heaps[4]) we can perform the operations findMin and meld in amortized constant time, while
deleteMin requires O(log n) amortized time.

Computing the shortest paths tree of sx in Gx takes time O(mx + nx log nx) where mx is the
number of edges in Gx and nx is the number of nodes. From the construction of Gx, it follows
that nx = kx + 1. There are at most kx green edges added to Gx (at most one green edge is added
between sx and the node corresponding to xi ∈ Cx), and as discussed earlier, an edge of G(V, E)
belongs to exactly one set Bx. I.e.

mx ≤ |Bx|+ kx

∑
|Bx| = O(m)

11

Over the entire course of the algorithm, an edge of G = (V, E) is deleted from anyH heap at most
once. The overall time complexity of the algorithm can be shown to be O(m logn) where m = |E|
and n = |V |. We have thus established the following theorem whose proof is omitted for brevity.

Theorem 2.1 Given an undirected weighted graph G = (V, E) and a specified node s, the recov-
ery path from each node xi to s to escape from the failure of the parent of x is computed by our
procedure in O(m logn) time.

3 Single Node Failure Recovery Protocol

We now describe a protocol based on the SNFR algorithm that is designed to deal with transient
single node failures in communication networks. As mentioned earlier, the information about a
node’s failure is suppressed, and not advertised across the network. Instead, the nodes that detect
the failure re-route the messages via alternate paths which do not use the failed node.

For an illustration of how the protocol works, consider the network G in Figure 2. If xi notices
that x has failed, it adds information in the message header about {bu, bv} as the escape edge to
use, and reroutes the message to bu. bu clears the header information, and sends the message to bv

via the edge (bu, bv), after which it follows the regular path to s. If x has not recovered when the
message reaches xj , xj reroutes with message to gp with {gp, gq} as the escape edge to use. This
continues till the message reaches a node outside the subtree of x, or till x recovers.

Note that when routing a message to a node s, if a node x needs to forward the message to
another node y, the node y is the parent of x in the shortest paths tree Ts of s. The SNFR algorithm
computes the recovery path from x to s which does not use the failed node y. In case a node has
failed, the protocol re-routes the messages along these alternate paths that have been computed by
the SNFR algorithm.

In one version of our protocol, the node x that discovers the failure of y adds information about
the escape edge to use in the message header. The escape edge is same as the one identified for
the node x to use when its parent (y, in this example) has failed. We take advantage of the fact
that TCP headers are not of fixed size, and other header fields (e.g. data offset) indicate where the
actual message data begins. For our purpose, we need an additional header space for two node
identifiers (e.g. IP addresses, and the port numbers) which define the two end points of the escape
edge. It is important to note that this extra space is required only when the messages are being
re-routed as part of the single node failure recovery. In absence of failures, we do not need to
modify the message headers.

For this discussion, we assume the message packet has the following structure:

message(s|d1|d2|data)

where s denotes the final destination d1, and d2 denotes the intermediate destinations, and data

denotes the actual message data in the packet.
Note that for simplicity, we assume that the header contains identifiers of three nodes, and in

absence of failures, the two intermediate destination identifiers would be null. When messages
are being re-routed to recover from a node failure, the intermediate destinations specify the escape
edge of the child of the failed node that discovered the failure.

12

The protocol is formally defined below.

Protocol SNFR
// the node x has received the message m(s|d1|d2|data).

if m.d1 and m.d2 are null, do
// Regular situation without any failures.
// Lookup the next hop to s in the primary lookup tables.
y = nextHop(x, s)
if y is alive, do

forward m to y

else
// Node y has failed.
// Route m via alternate path.
e = {p, q} = my escape edge for s

m.d1 = p, m.d2 = q

z = nextHop(x, p)
forward m to z

end-if
else

// Intermediate destinations specified:
// Already in failure recovery mode
if m.d1 6= my ID, do

// Need to forward the message to m.d1

w1 = nextHop(x, m.d1)
forward m to w1

else
// Local node is the first end point of the escape edge. Need to forward the message
// along the escape edge to m.d2. Strip off the intermediate destination identifiers.
w2 = m.d2 // need to use the direct edge {m.d1, m.d2}
m.d1 =null
m.d2 =null
forward m to w2

end-if
End Protocol SNFR

The recovery path for xi computed by the SNFR algorithm may pass through the subtrees of
multiple children of x before leaving the subtree of x. Once the path enters the subtree of a child
xj ∈ Cx at a node u, it becomes a regular message that the node u needs to forward towards s. The
message is routed along the shortest path from u to s, as defined by Ts. When the node xj sees that
the node x is not reachable, it re-routes the message along its alternate path (via its escape edge
identified to escape from the failure of x). Interestingly, if x has recovered since the time xi had
noticed its failure, and initiated the re-routing, xj simply forwards the message across to x, and the
recovery path of xi gets short circuited.

We also considered a few other versions of this basic protocol, but do not describe them in detail

13

here due to space limitations. In one version, we can reduce the extra space requirement in the
message headers from two node identifiers to one at the cost of increased space requirements on
the nodes themselves. A different version of the protocol wraps the original message into another
message which is sent to the first end point of the escape edge, with information about the other
end point in the message body. In this approach, one may need to split the original message into
multiple such messages which will need to be assembled at the second end point of the escape
edge back into the original message which can then be forwarded to the original destination.

4 Simulation Results and Comparisons

In this section, we present the simulation results for our algorithm, and compare the lengths of
the recovery paths generated by our algorithm to the theoretically optimal paths. We also compare
the lengths of our recovery paths, and the running time of our algorithm to those of [14]. In the
implementation of our algorithm, we have used standard data structures (e.g. binary heaps instead
of Fibonacci heap[4]: binary heaps suffer from a linear-time merge/meld operation as opposed to
constant time for the latter). Consequently, our algorithms have the potential to produce much
better running times than what we report.

4.1 Graph Generation

We ran our simulations on randomly generated graphs, with varying the following parameters:
(a) Number of nodes, and (b) Average degree of a node. The edge weights are randomly generated
numbers between 100 and 1000. In order to guarantee that the graph is 2-node-connected (bicon-
nected), we ensure that the generated graph contains a Hamiltonian cycle5. Finally, for each set of
these parameters, we simulate our algorithm on multiple random graphs to compute the average
value of the of a metric for the parameter set.

The algorithms have been implemented in the Java 5.0 [7] programming language (1.5.0.12
patch), and we ran them on an Intel machine with Pentium IV 3.06GHz processor and 2GB RAM
running Red Hat Enterprise Linux 3.2.

4.2 Comparisons

We borrow the definition of stretch factor from [14]. Strech factor is defined as the ratio of the
lengths of recovery paths generated by our algorithm to the lengths of the theoretically optimal
paths. The optimal recovery path lengths when a node x fails are computed by recomputing the
shortest paths tree of s in the graph G(V \x, E\Ex).

Consider a network as in Figure 3, and we need to compute alternate paths for messages destined
to node (7). The thicker edges form the original shortest paths tree of the node (7), and in absence
of any failures, messages are routed along these links. The thinner edges represent the other links
in the network. In their approach, the authors of [14] build a set of key nodes for each edge of the
graph, and if a node receives a message for destination s via an edge e which is unusual for the
destination (i.e. an edge via which it would never receive a message destined for s), the messages
are routed along a path computed in the graph G after deleting all the key nodes for the edge e. A
node p belongs to the key nodes set of edge e if the shortest path to s of the parent node of p (in

5we add edges to our graph if required in order to ensure that the graph contains a the Hamiltonian cycle

14

1

3

4

5

2

6 7

1

1

1

1

3

1

5
50

1

0

6 − since path of node (5) uses edge (2,1) if (6) has failed.

5 − since path of node (2) uses edge (2,1) if (5) has failed.

Edge {1,2} has key nodes:

Remaining edges of the graph.

Edges in the shortest paths tree of node (7)

Figure 3. Zhong et. al.’s algorithm[14] misses some good paths

Ts) goes via the edge e when the node p fails. In our example, the key nodes for the edge {2, 5}
include nodes (5) and (6) since when the node (5) fails, the path from node (2) to node (7) uses
the edge {2, 1}; and when the node (6) fails, the path from node (5) to node (7) uses the edge
{2, 1}. Consequently, their algorithm results in longer paths when there are multiple key nodes for
an edge. Our algorithm wins in such cases since we don’t consider more nodes to have failed than
reality. E.g. When the node (5) fails, the protocol of [14] resorts to routing the messages from
(2) to (7) along the path 2 → 1 → 4 → 7 which has a total weight of 52 units. In this case, our
algorithm uses the optimal recovery path 2 → 1 → 4 → 6 → 7, which has a total weight of 8
units. However, in some cases, there is only a single key node for an edge, which happens to be
the actual node that fails. Our algorithm loses in such cases since the algorithm of [14] recomputes
the shortest paths from scratch after deleting the failed node.

Computation of the key nodes is an expensive task which dominates the time complexity of
the algorithm of [14]. Though the authors haven’t presented a detailed analysis of their algo-
rithm (probably because of space limitations), from our analysis, their algorithm needs at least
Ω(mn log n) time6.

Another signification difference between the algorithm of [14] and our’s is that their approach
involves precomputing and storing an O(n) size routing table per edge at the routers. The routing
table is based on the key nodes for that edge, and thus differs across all edges of the router. Conse-
quently, their space requirement is also higher than our’s - we need to store additional information
of only a single edge7 (the escape edge for the node to escape the failure of it’s parent) at each node

6For each node v in the graph, they need to compute the shortest path from the node u = parent(v) to s in the
graph G(V \v, E\Ev). There are some more non-trivial computations besides this.

7Note the space requirements being discussed here for both algorithms is per destination.

15

(router).

Figure 4. Performance with varying number of graph nodes

Figures [4,5] compare the performance of our algorithm (CRP) to that of [14] (FIR). The plots
for the running times of our algorithm and that of [14] fall in line with the theoretical analysis that
our algorithms are faster by an order of magnitude than those of [14]. Interestingly, the stretch
factors of the two algorithms are very close for most of the cases. However, for reasons discussed
above, there are cases where our algorithm’s stretch factors are better than those of [14], as well
as when they are worse. The metrics are plotted against the variation in (1) the number of nodes
(Figure [4]), and (2) the average degree of the nodes (Figure [5]). The average degree of a node is
fixed at 15 for the cases where we vary the number of nodes (Figure [4]), and the number of nodes
is fixed at 200 for the cases where we plot the impact of varying average node degree (Figure [5]).

As expected, the stretch factors improve as the number of nodes increase. Our algorithm falls
behind in finding the optimal paths in cases when the recovery path passes through the subtrees
of multiple siblings. Instead of finding the best exit point out of the subtree, in order to keep the
protocol simple and the paths well structured, our paths go to the root of the subtree and then follow
its alternate path beyond that. These paths are formed using the blue edges. Paths discovered using
a node’s green edges are optimal such paths. In other words, if most of the edges of a node are
green, our algorithm is more likely to find paths close to the optimal ones. Since the average
degree of the nodes is kept fixed in these simulations, increasing the number of nodes increases
the probability of the edges being green. A similar logic explains the plots in Figure [5]. When
the number of nodes is fixed, increasing the average degree of a node results in an increase in the
number of green edges for the nodes.

16

Figure 5. Performance with varying average degree of nodes

5 Concluding Remarks

In this paper we have presented an efficient algorithm for the SNFR problem, and developed
protocols for dealing with transient single node failures in communication networks. Via simula-
tion results, we show that our algorithms are much faster than those of [14], while the stretch factor
of our paths are usually better or comparable.

The approach of [14] had previously been applied to the link version of the problem, and similar
algorithms and protocols have been developed. See [9, 11] for further details on these. Interest-
ingly the Single Link Failure Recovery (SLFR) algorithm presented by Bhosle and Gonzalez [1]
computes optimal recovery paths, in optimal O(m+n logn) time. Protocols reported in this paper
can be generalized to the link version of the problem based on the SLFR algorithms of [1]. These
link failure recovery protocols would also work by passing the information about the escape edge
in the message headers. However, it is important to note that unlike the recovery paths generated
for the node version, the recovery paths used by these protocols would be optimal, since they use
the exact paths generated by the optimal SLFR algorithm. Also, the SLFR algorithm is faster than
those of [9, 11] by at least an order of magnitude.

The single node algorithms and protocols presented here can also be generalized to specific
types of multiple node versions of the problems. One of these versions is the case where two nodes
that are adjacent to each other in the shortest paths tree Ts. Another version that can be handled is
the failure of a node and all its neighbors in Ts. These two types of multiple node failures are said
to be base groups. A more general version of multiple node failures that can be handled is a group
of nodes which can be iteratively built from a base group by adding a node that is adjacent to some

17

node in the base group. For instance, a node and all of its 2-hop neighbors forms such a group -
we start with a single node, and grow the group by adding a node adjacent to a node in the group.
Due to space limitations, we don’t discuss these generalizations in more detail.

The directed version of the SNFR problem, where one needs to find the optimal (shortest) recov-
ery paths can be shown to have a lower bound of Ω(min(m

√
n, n2)) using a construction similar to

those used for proving the same lower bound on the directed version of SLFR[1] and replacement
paths[6] problems. The bound holds under the path comparison model of [8] for shortest paths
algorithms.

6 Acknowledgement

We thank Dr. Raju Rangaswami for reviewing an initial draft of this paper that greatly enhanced
the readability of the same.

References

[1] A. M. Bhosle and T. F. Gonzalez. Algorithms for single link failure recovery and related problems. J.
of Graph Alg. and Appl., pages 8(3):275-294, 2004.

[2] A. L. Buchsbaum, H. Kaplan, A. Rogers, and J. R. Westbrook. Linear-time pointer-machine algorithms
for least common ancestors, mst verification, and dominators. In 30th ACM STOC, pages 279-288.
ACM Press, 1998.

[3] E. W. Dijkstra. A note on two problems in connection with graphs. In Numerische Mathematik, pages
1:269-271, 1959.

[4] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization
algorithms. JACM, 34:596-615, 1987.

[5] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM J. Comput.
13(2), pages 338-355, 1984.

[6] J. Hershberger, S. Suri, and A. M. Bhosle. On the difficulty of some shortest path problems. ACM
Transactions on Algorithms, 3(1), 2007.

[7] Sun Microsystems Inc. Java 5.0 programming language. http://java.sun.com/j2se/1.5.0/, 2007.

[8] D. R. Karger, D. Koller, and S. J. Phillips. Finding the hidden path: Time bounds for all-pairs shortest
paths. In 32ndIEEE FOCS, pages 560-568, 1991.

[9] S. Lee, Y. Yu, S. Nelakuditi, Z.-L. Zhang, and C.-N. Chuah. Proactive vs reactive approaches to failure
resilient routing. In Proc. of IEEE INFOCOM, 2004.

[10] A. Markopulu, G. Iannaccone, S. Bhattacharya, C. Chuah, and C. Diot. Characterization of failures in
an ip backbone. In Proc. of IEEE INFOCOM, 2004.

[11] S. Nelakuditi, S. Lee, Y. Yu, Z.-L. Zhang, and C.-N. Chuah. Fast local rerouting for handling transient
link failures. IEEE/ACM Trans. on Networking, pages 15(2):359s–372, 2007.

[12] R. Slosiar and D. Latin. A polynomial-time algorithm for the establishment of primary and alternate
paths in atm networks. In IEEE INFOCOM, pages 509-518, 2000.

18

[13] R. Rivest T. Cormen, C Leiserson and C. Stein. Introduction to Algorithms. McGraw Hill, 2001.

[14] Z. Zhong, S. Nelakuditi, Y. Yu, S. Lee, J. Wang, and C.-N. Chuah. Failure inferencing based fast
rerouting for handling transient link and node failures. In Proc. of IEEE INFOCOM, pages 4: 2859-
2863, 2005.

19

