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ABSTRACT
Applications involving analysis of data streams have gained
significant popularity and importance. Frequency count-
ing, frequent elements and top-k queries form a class of
operators that are used for a wide range of stream anal-
ysis applications. In spite of the abundance of these al-
gorithms, all known techniques for answering data stream
queries are sequential in nature. The imminent ubiquity
of Chip Multi-Processor (CMP) architectures requires algo-
rithms that can exploit the parallelism of such architectures.
In this paper, we first explore the challenges in paralleliz-
ing frequent elements and top-k queries in the context of
the inherent parallelism available in multi-core processors,
evaluate different naive techniques for intra-operator paral-
lelism, and summarize the insights obtained from the differ-
ent parallelization efforts. Our experimental analysis of the
naive designs implemented in the paper shows that intra-
operator parallelism is not straightforward and requires a
complete redesign of the system. Based on the lessons learnt
from this analysis, we design an efficient and scalable frame-
work for parallelizing frequency counting, frequent elements
and top-k queries over data streams. The proposed CoTS
(Co-operative Thread Scheduling) framework is based on the
principle of threads co-operating rather than contending.
Our experiments on a state-of-the-art quad-core chip multi-
processor architecture and synthetic data sets demonstrate
the scalability of the proposed framework, and the efficiency
is demonstrated by peak throughput of more that 60 million
elements per second. In addition, for skewed data distribu-
tions, despite using heavy weight synchronization primitives,
the implementation of the proposed framework outperforms
the sequential implementation by a factor of 2–4X.
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1. INTRODUCTION
Data stream analysis forms an important class of applica-

tions where the data is streaming in, and processing has to
be done in real time [2]. An important distinction of data
stream applications compared to database applications is
that stream algorithms can only make a single pass through
the stream of tuples and since the stream can be poten-
tially infinite, only a summary of the stream is stored in-
stead of the entire stream. Analysis of click streams in
internet advertising, and network monitoring for detecting
malicious activities are examples of stream processing and
its requirements. In Internet advertising, for determining
the effective Cost Per Click (CPC) for an advertisement
and in turn deciding which advertisements to display, a pub-
lisher (web site hosting the advertisements) needs to have
an estimate of the number of impressions (the number of
times an advertisement is rendered on the web page), and
the Click Through Rate (i.e. the number of times the ad-
vertisement was clicked). This analysis requires real time
frequency counting on the stream of clicks seen by the pub-
lisher. Irrespective of whether an exact or an approximate
estimation is sought, the answers need to be updated on-
line. An advertising commissioner also needs to keep track
of the number of clicks and impressions and is also respon-
sible to detect any fraud by the publisher or the advertiser.
Again, this requires real-time processing of the streams for
accounting purposes and for detection of frequent patterns
and correlations.

Frequent elements [15, 9, 16] and top-k [7, 17] queries
are an important class of queries for stream analysis appli-
cations, and the research community has proposed several
algorithms for answering these queries efficiently. A frequent
elements query returns all the elements whose frequency of
occurrence is above a certain threshold. For example, a
query of the form“advertisements that are clicked more than
0.1% of the total clicks” is a frequent elements query. On
the other hand, a top-k query returns the k elements with
the highest frequency. Again, a query of the form “top-25
most clicked advertisements” is a top-k query.

Even though numerous algorithms have been proposed in
the literature to answer these queries, all the proposed algo-
rithms are serial in nature. However, processor architectures
have seen a recent shift in design where a single processor
now consists of multiple cores, which can execute instruc-
tions in parallel. The ubiquitous presence of these proces-
sors in almost all commodity as well as high-end computers
necessitates the algorithms to be concurrent, so that multi-
ple threads executing in parallel can effectively exploit the
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available parallelism. In addition to inter-operator paral-
lelism (or scheduling as in [1]), where multiple operators ex-
ecute independently and in parallel on different cores, intra-
operator parallelism – where a single operator aims to utilize
the available cores to improve the throughput of processing –
is also important for long standing queries operating on huge
amounts of data. Data stream queries are typical examples
of these long standing queries and are thus candidates for
possible intra-operator parallelism. It must be realized that
frequency counting over the stream forms the basis for an-
swering frequent elements and top-k queries as in [15, 9, 16].
So these queries can be considered as queries ensuing the
frequency counting operator. Therefore, for making query
answering scalable, scalability of frequency counting is the
primary goal.

In this paper, we explore and thoroughly analyze the chal-
lenges in intra-operator parallelism of frequency counting
over data stream, in the context of the inherent parallelism
available in multi-core processors. Even though it might
seem that parallelizing these operators would be straightfor-
ward, our analysis and evaluation of the naive parallelization
schemes reveal that these designs are not scalable and effi-
cient. Based on the insights gained from this analysis, we
design a scalable and efficient framework for parallelization
of these operators. The framework is referred to as CoTS
(Cooperative Thread Scheduling) and is based on the princi-
ple of threads cooperating rather than contending for shared
resources. This framework is general enough to accommo-
date different frequency counting algorithms where the ele-
ment’s frequency increases monotonically. In this paper, we
adapt the Space Saving algorithm [16] and our experiments
on a state-of-the-art quad-core chip-multiprocessor architec-
ture demonstrate the scalability of the proposed framework,
and the efficiency is established by peak throughput of more
that 60 million elements per second.

The main contributions of the paper are as follow:

• This is the first work exploring intra-operator paral-
lelism of data stream operators in the context of the
parallelism offered by multi-core architectures. We an-
alyze and identify the challenges for intra-operator par-
allelism of frequency counting, frequent elements and
top-k queries over data streams.

• We propose CoTS, an efficient and scalable frame-
work for parallel frequency counting of stream ele-
ments. We implement the Space Saving [16] algorithm
in the CoTS framework and our experiments demon-
strate scalability and efficiency. Despite a not very
scalable summary structure and a not very easily par-
allelizable problem, the framework shows good scala-
bility and efficient performance for skewed data.

• We further analyze and identify the system-level and
design-level challenges that need to be addressed for
further improving the performance of parallel algo-
rithms and to efficiently exploit the parallelism of mod-
ern processor architectures.

The rest of the paper is organized as follows: Section 2
summarizes related work, and Section 3 explains the details
of the Space Saving algorithm and the modern processor
architectures and formalizes the query model which the sys-
tem supports. Section 4 analyzes the naive parallelization
schemes, experimentally evaluates them and analyzes the

challenges in intra-operator parallelism. Section 5 explains
the proposed CoTS framework and how the Space Saving
algorithm can be adapted into the framework, Section 6
provides experimental evaluation and analyzes the different
challenges that still remain unsolved and must be addressed
to efficiently exploiting the parallelism of modern processor
architectures, and Section 7 concludes the paper.

2. RELATED WORK
Frequent elements and top-k queries constitute an impor-

tant class of queries for stream analysis applications and
numerous algorithms have been proposed in the literature
for answering such queries. The algorithms for answering
frequent element queries are broadly divided into two cat-
egories: sketch based and counter based. The sketch based
techniques such as [3, 6] try to represent the entire stream’s
information as a “sketch” which is maintained and updated
as the elements are processed. Since the “sketch” does not
store per element information, the error bounds of these
techniques are not very stringent. In addition, these tech-
niques generally process each stream element using a series
of hash functions, and hence the processing cost per element
is also high. Even though these techniques can answer fre-
quent elements queries, these are not very well suited for the
class of applications that require frequency counting.

On the other hand, the counter based techniques such
as [16, 15, 9] monitor a subset of the stream elements and
maintain an approximate frequency count of the elements.
Different approaches use different heuristics to determine
the set of elements to be monitored and to limit the amount
of space. The goal is to give high accuracy with a small
memory footprint. For example, in Lossy Counting [15],
the stream is divided into rounds, and at the end of every
round potentially non-frequent elements are deleted. This ε-
approximate algorithm has a space bound of O( 1

ε
log(εN)),

where N is the length of the stream. The Space Saving al-
gorithm [16], on the other hand, uses a different heuristic to
limit space and details are provided in Section 3.3. Cormode
et al. [5] provide an experimental evaluation of the different
algorithms for finding the frequent elements on a stream.

Different solutions have also been suggested for answering
top-k queries [7, 17]. Mouratidis et al. [17] suggest the use
of geometrical properties to determine the k-skyband and
use this abstraction to answer top-k queries, whereas Das
et al. [7] propose a technique which is capable of answering
ad-hoc top-k queries, i.e., the algorithm does not need apri-
ori knowledge of the attribute on which the top-k queries
have to be answered.

With the growing data rates and faster processing speed
requirements, researchers are also striving for accelerating
these queries. For example in [8] Content Addressable Mem-
ories (CAM) have been used for accelerating frequent el-
ements and top-k queries. The constant time lookups of
CAM is leveraged to accelerate counter based techniques.
Similarly, other novel architectures have also been explored
to accelerate the processing of elements. In [12], graphics
processors have been used for accelerating different data
management operations, while in [10] the parallelism of a
cell broadband engine is exploited for acceleration.

The advent of modern Chip Multiprocessor architectures [18,
13] have opened new frontiers and their ubiquitous presence
calls for algorithms that can efficiently exploit the paral-
lelism offered by these architectures. Although much re-
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search has been done in the database arena for exploiting
the parallelism [4, 11], very little or no research has focussed
on stream operators. In this paper we analyze the challenges
in intra-operator parallelism of frequent elements and top-k
queries and propose a scalable and efficient framework for
parallelizing these stream operators.

3. BACKGROUND

3.1 Chip Multi-Processor Architectures
Over the last decade, the transistor density of a chip has

increased considerably and processor designers utilized the
increased density coupled with increased the clock speed to
increase processor performance. But as the transistor sizes
become smaller and smaller, this processor design paradigm
has hit physical limitations of heat dissipation, leakage cur-
rent and so forth. As a result, there has been a paradigm
shift in processor design, and now chip manufacturers are
packing more execution units into the same die. Each of
these cores do not operate at frequencies as high as the tra-
ditional single core CPUs, but these multiple execution units
can execute instruction in parallel and thus provide a huge
amount of parallelism, the rationale being that the perfor-
mance advantage will be realized via parallelism instead of
faster clock speeds. These processors are broadly catego-
rized as “Multi-core processors” and examples include Cell
Broadband Engine [10], and Chip Multi-Processors (CMP) [11].
CMP is a class of multi-core processors that have been de-
signed for general purpose computing, and the popularity of
these processors is evident from their ubiquitous presence in
all modern low-end as well as high-end computers. CMPs
can be further classified into two broad categories, which
the authors in [11] term as “Lean Camp” and “Fat Camp”
processors. This categorization is based on the architectural
differences of the processors and the type of workload for
which they are suited.

Lean Camp: These processors (e.g. Sun UltraSPARC T2 [18])
are characterized by simple cores which support many“hard-
ware thread contexts” for high Thread Level Parallelism
(TLP). It must be noted that “hardware” threads are dif-
ferent from conventional “software threads” as the hardware
threads are equivalent to independent CPU’s that can ex-
ecute in parallel. Each hardware thread has its own set of
registers and local resources, and sharing the execution unit
between hardware threads does not require a costly con-
text switch. Since the cores are simpler, a large number of
cores/hardware threads can fit on a single chip, but the clock
frequencies are low (about 1.2 – 1.4 GHz). For example, the
Sun UltraSPARC T2 processor (Niagara2) contains 8 cores
and each core contains 8 hardware threads, which gives it a
total of 64 hardware threads.

Fat Camp: These processors (e.g. Intel Quad Core [13]) are
characterized by relatively complex cores that employ wide-
issue, out of order execution and aggressive speculation for
Instruction Level Parallelism (ILP) to optimize single thread
performance. Since each core involves complex logic and
design, the core sizes are relatively larger and thus there are
lesser number of cores/hardware contexts on a single chip.
For example, the Intel Core2 Quad series of processors have
4 cores on a single processor, and each core operates at about
2–3 GHz.

To summarize, the “lean camp” processors provide high

TLP and low ILP and are suitable for workloads where there
is enough computation to be performed to efficiently hide
I/O access latencies, while the “fat camp” processors are
characterized by high ILP and low TLP and are suitable for
workloads which are more compute intensive.

3.2 Query Model
In this section, we define the queries to be supported by

the system. The queries can vary based on the type of an-
swers sought (Queries 1, 2) or the frequency at which the
queries need to be answered (Queries 3, 4).

Query 1. Point Query: This type of query is interested
in a single element and is a boolean query of the form IsE-
lementFrequent(e) or IsElementInTopk(e).

Query 2. Set Query: These queries report all the ele-
ments that are frequent, or all elements that are in the top-k.
A frequent elements set query can be expressed formally in
a language similar to SQL as:

Select S.element

From Stream S

Where IsElementFrequent(S.element)

Even though a set query can be visualized as a combina-
tion of point queries for all the elements in the input alpha-
bet, more efficient techniques can be employed provided the
elements are sorted by their frequency.

Query 3. Interval/Discrete Query: These queries
are posed as independent queries and consecutive queries
are spaced out either with respect to time or the number
of updates. A frequent elements interval set query can be
expressed formally in a language similar to SQL as:

Select S.element

From Stream S

Where IsElementFrequent(S.element)

Every 0.001s

Query 4. Continuous Query: These queries are posed
with “every update”, i.e., as soon as a stream element is
processed, the answer should be updated.

When the stream elements are processed in parallel, the
notion of “every update” is not as clear as in sequential
processing of stream elements. If the sequential continu-
ous query is mapped into the parallel processing scenario,
there will be multiple concurrent queries at a particular in-
stant, and the result from one query will be immediately
updated by the next result. Most of the applications require
the answer sets to be updated periodically and therefore, we
only consider“Interval/Discrete”queries which can either be
“point” or “set” queries.

3.3 Space Saving
The Space Saving algorithm provides an elegant technique

for frequency counting on a stream of elements. An inter-
esting property of the algorithm is that it is deterministic
and provides tight space bounds corresponding to the user
specified error bound. Space Saving monitors only O( 1

ε
)

counters for providing answers within error bound of ε. Al-
gorithm 1 gives an overview of Space Saving. The main
operations performed by the algorithm have been tabulated



S. Das et al., CoTS: A Scalable Framework for Parallelizing Frequency Counting over Data Streams

Algorithm 1 Space Saving algorithm

for each element 〈e〉 in the stream do
/*Check if already being monitored*/
if (LOOKUP(〈e〉)) then

IncrementCounter(〈e〉)
else

if (numCountersMonitored < maxCounters) then
e→frequency ← 1
AddElementToBucket(minFreq, e)

else
Overwrite(minFreq, e)

end if
end if

end for

Stream 

Summary Search 

Structure

Input 

Stream

Figure 1: System Design for Space Saving.

in Table 1. The algorithm monitors a subset of the stream
elements (Monitored Set). If the element being processed is
already being monitored, then its count is incremented (In-
crementCounter). Otherwise, if the number of elements is
less than the maximum bound, then the element is added to
the monitored set (AddElementToBucket), else the current
element overwrites the element with minimum frequency
(Overwrite). Since an element is overwritten only when the
upper bound of space is reached, if the alphabet is small,
the algorithm can give exact counts. Thus, the space bound
of the algorithm is min(O( 1

ε
, |A|)), where |A| is the size of

the alphabet of the stream, and ε is the user specified error
bound.

For overwriting, this algorithm needs to have knowledge
of the minimum frequency element. The Stream Summary
structure [9, 16] is used for maintaining the minimum fre-
quency element. The Stream Summary structure consists of
a doubly-linked list of frequency buckets which are sorted by
frequency. Each bucket contains a list of elements which has
the same frequency as that of the bucket. A nice property
of this structure is that it maintains the elements sorted
by frequency and in constant time per element. Figure 2
demonstrates this for an example stream. For lookup, the
algorithm needs to have an efficient search structure that can
be integrated with the Stream Summary structure. Figure 1
provides an abstract representation of the overall structure
of the Space Saving algorithm. The algorithm looks up an
element in the Search Structure (LOOKUP), and then moves
to the Stream Summary structure to update the element.
Since the elements are sorted by their frequency of occur-
rence, the Stream Summary structure can also be used to
efficiently answer both frequent elements and top-k queries.
The Monitored Set is thus represented by a combination of
Search Structure and Stream Summary.

Table 1: Main Operations in Space Saving
Operation Description
LOOKUP(e) Check whether element e is being

monitored
IncrementCounter(e) Increment the frequency of e
AddElementToBucket(
freq, e)

Add an element e to bucket with
frequency freq

Overwrite(minFreq,
e)

Overwrite the minimum fre-
quency element with e

e1, ǫ1 e2, ǫ2 e3, ǫ3

f2 = 2f1 = 1

(a) After processing ele-
ments 〈e1, e3, e3, e2〉.

f1 = 1 f2 = 2

e1, ǫ1 e2, ǫ2 e3, ǫ3

(b) After processing 〈e2〉.

Figure 2: This figure illustrates the Stream Summary
data structure for an example stream of elements 〈
e1, e3, e3, e2, e2 〉. The elements can be kept sorted in
constant time per element.

4. NAIVE PARALLELIZATION SCHEMES
In this section, we analyze the different naive schemes for

parallelizing the Space Saving algorithm. From the descrip-
tion of the algorithm in Section 3.3, it is evident that the
Monitored Set is the point of interest. Referring back to Fig-
ure 1, the Search Structure can be efficiently implemented
using a hash table, and the sort-order is maintained using
Stream Summary. The design of the system depends on how
the threads share these counters, but each design needs to
implement the set of operations listed in Table 1. We now
discuss two approaches for naive parallelization, namely In-
dependent Structures and Shared Structure.

4.1 Independent Structures
This design corresponds to the shared nothing paradigm,

where the threads do not share any data or state informa-
tion. The idea is to simulate sequential execution, and run
multiple copies of the same algorithm executing on different
partitions of data and operating on local structures. Each
thread has a local copy of the combination of Stream Sum-
mary and the Search Structure. These local structures need
to be merged into a global structure so that queries can be
answered from the global structure. The Space Saving al-
gorithm has two parts, the frequency counting part, which
counts the number of occurrences of an element, and the
query part, where the frequency counts are used to answer
the queries. In this design, even though the frequency count-
ing part can execute in parallel, the local structures need to
be merged to answer queries, and the frequency of merg-
ing the counters depends on the query frequency required
by the application. As the number of parallel threads in-
creases, the cost of frequency counting decreases, but the
cost of merging increases. The merge can be performed us-
ing two different approaches. In Serial Merge a single thread
merges all the structures, while Hierarchical Merge refers to
a parallel merge similar to the merge phase of the Merge
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Sort algorithm.

4.2 Shared Structure
This design corresponds to the other extreme where all

the threads share a common Stream Summary structure.
Since multiple threads are accessing the same structure, the
threads must be synchronized. Synchronization is achieved
using locks and atomic operations supported by the underly-
ing architecture, and this synchronization needs to be done
at two levels:
Element Level Synchronization: Multiple threads oper-
ating on the same element must be serialized so that there
is only one thread inside Stream Summary that is operating
on the element.
Bucket Level Synchronization: Since an increment or
overwrite operation needs to move an element from one fre-
quency bucket to another, a thread that is performing this
operation needs to obtain a lock on the source and the des-
tination bucket (for example, in Figure 2(b), when e2 is pro-
moted from bucket f1 to f2, the thread must acquire locks
on both these buckets). Since there can be several elements
within a frequency bucket, a lock on a bucket prevents other
threads from operating on any element belonging to that
bucket. So this bucket-level locking serializes accesses to a
frequency bucket.

The pointer to the minimum frequency bucket should also
be protected by a lock. The queries (which are only read-
ers) also need to obtain locks so that the writes are blocked
while a reader is inside a bucket. Additionally, in the orig-
inal sequential design, the queries traverse the list of fre-
quency buckets from maximum frequency towards minimum
frequency, while the updates would traverse the list in the
opposite direction. Therefore, additional locks need to be
obtained to synchronize the queries with updates traversing
the structure in the opposite direction.

4.3 Analysis of Naive Techniques
In this section, we experimentally evaluate the naive par-

allelization schemes and analyze their performance. The ex-
periments were performed on an Intel Quad Core processor
and the data set used is a synthetic zipfian data set. More
details about the experimental set up can be found in Sec-
tion 6. Figure 3 shows the results for a data set of 5 million
elements. The number of threads that are concurrently pro-
cessing the data is plotted along the x-axis while the speedup
obtained compared to the execution time of a single thread
is plotted along the y-axis. The different lines in the graphs
correspond to different zipfian factors α.

From Figure 3(a), it can be seen that the independent de-
sign does not scale as the number of threads increase. Fig-
ure 3(a) plots the results for a query every 50000 updates,
and the scalability will be worse if the query frequency in-
creases. This figure shows results for serial merge invoked ev-
ery 50000 elements processed; hierarchical merge also shows
a similar pattern, and the actual cost of merge varies as the
number of monitored counters varies. Even though it seems
that hierarchical merge should perform better, in practice
it does not because of the overhead of threads synchroniz-
ing at the end of merge at each level. The reason for poor
scalability would be evident from the break-up of where the
time is spent by the algorithm, and Figure 4 shows a break-
up of the time taken for the different sub-parts of the Space
Saving algorithm, i.e. the frequency counting part (repre-
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(a) Independent Structures with a query every
50000 elements.
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(b) Shared Structure with synchronization using
Pthread mutex.

Figure 3: Evaluation of the naive parallelization
techniques for a stream of 5 million elements.

sented by “Counting” in the figures) and the merging part
(represented by “Merge” in the figures) where the individual
structures are merged to find the final result. The y-axis
shows the percentage of the total time spent for the opera-
tion, and the different bars correspond to different number
of threads processing the input. The number of threads is
plotted corresponding to the bar representing that particu-
lar run. In these experiments, one query (and thus a merge)
was executed every 50000 elements. The different sub fig-
ures correspond to different values of zipfian α. As is evident
from the figures, even though the frequency counting part
scales very well and takes lesser amount of time with increase
in number of threads, the counters need to be merged peri-
odically to answer the queries, and as the number of threads
increases, the merge cost increases considerably. The merge
cost would increase further if the merges become frequent,
i.e. if the query frequency is high, and if the number of ele-
ments being monitored increases. In addition to the merge
overhead, it must also be noted that independent structures
would incur a high space overhead due to local repetition of
the structure.

From Figure 3(b), it can be seen that the shared design
also does not scale. Even though the shared design does not
have the overhead of merges, but since the threads share
a common structure, the synchronization overhead is pretty
high. In addition, as pointed out in Section 4.2, there are two
levels of synchronization (the element level and the bucket
level), and even if there are multiple threads, they are seri-
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(a) Zipfian α = 1.5.
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(b) Zipfian α = 2.
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(c) Zipfian α = 3.

Figure 4: Profiling of the technique using Independent Structures for a stream of 5 million elements and
varying Zipfian α with query every 50000 elements.
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(a) Zipfian α = 1.5.
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(b) Zipfian α = 2.
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(c) Zipfian α = 3.

Figure 5: Profiling of the technique using Shared Structures for a stream of 5 million elements and varying
Zipfian α.

alized at these contention points. Figure 5 shows a break-up
of where the time in spent by the Space Saving algorithm
using a shared structure. The y-axis shows the percentage of
the total time spent for the operation, and the different bars
correspond to different number of threads processing the in-
put. The number of threads is plotted corresponding to the
bar representing that particular run. The different sub fig-
ures correspond to different values of zipfian α. “Hash Opns”
represents the time taken to complete the hash table oper-
ations and this includes the time when a thread blocks for
an element while some other thread is processing the same
element. “Structure Opns” is the time taken to complete the
different operations in the Stream Summary structure, and
correspond to adding a new element to the structure, incre-
menting an existing element or overwriting a minimum fre-
quency element. For all these operations, the threads need
to contend for locks on the shared resources. As pointed out
in Section 4.2, the pointers to the minimum frequency and
maximum frequency buckets need to be protected by locks,
and “Min-Max Locks” represents the time taken to acquire
these locks whenever needed. “Bucket Locks” represents the
time taken to acquire a lock on a frequency bucket, other
than the cases of the structure operations, and “Rest” cor-
responds to time for all the remaining operations performed
by the algorithm.

As is evident from Figure 5, with the increase in number of
threads, a high percentage of the time is spent for the hash
table operations because threads are blocked in the hash ta-
ble as some other thread is operating on the same element

(element level synchronization). With increasing number of
threads, the growth rate of time spent on hash operations
is higher for more skewed data sets (Figure 5(c)) compared
to somewhat lesser skewed data (Figure 5(a)). This is be-
cause for skewed data sets, the same element reappears fre-
quently in the stream and hence multiple threads try to con-
currently process the same element, therefore being serial-
ized. Thus due to the element level synchronization require-
ment, adding more threads does not improve performance
for skewed data sets. When the threads are not blocked in
the hash table, they concurrently access the Stream Sum-
mary and again threads accessing the same bucket are se-
rialized there due to bucket level synchronization. This a
evident from the high percentage of time spent for structure
operations and for lesser skew, more time is spent for the
structure operations. From these figures, it is evident that
high contention for shared resources is the reason preventing
improved throughput of processing with more threads added
to the system. The performance was worse with Spin Locks
(busy-wait) as not only were the threads waiting for shared
resources, they were busy-waiting, and hence were also con-
tending for the CPU. An important point to be noted from
Figure 3(b) is that the performance of the system degrades
when the number of threads is increased from 1 to 4, and
beyond that, the performance remain almost steady. Since
the processor used for the experiments has 4 cores, only 4
threads can run in parallel, so in 1 – 4 threads, the threads
were operating really in parallel, and the effect of contention
is evident. Beyond 4, the threads share CPU time and this
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Figure 6: Time taken using independent structures with varying input sizes and queries every 50000 elements.
As the number of threads increases, the execution time also increases. The increase is even more noticeable
for larger inputs.

0
20

40

0

1

2

x 10
7

0

20

40

Number of ThreadsInput Length

T
im

e
 (

in
 s

e
c
s
)

(a) Zipfian α = 2.

0
20

40

0

1

2
x 10

7

0

20

40

Number of ThreadsInput Length

T
im

e
 (

in
 s

e
c
s
)

(b) Zipfian α = 2.5.

0
20

40

0

1

2

x 10
7

0

20

40

Number of ThreadsInput Length
T

im
e

 (
in

 s
e

c
s
)

(c) Zipfian α = 3.

Figure 7: Time taken using shared structures with varying input sizes. Note that the horizontal axes are
flipped in this figure for better understanding and visibility.

limits the amount of contention in the system and the ex-
ecution time depends on how the thread executions are in-
terleaved.

In the last experiment, we evaluate the scalability of the
naive algorithms with varying input length. Figures 6 and 7
show the plots for the independent and the shared designs
and different sub figures correspond to different values of
zipfian α. The input size was varied from 1 million to 16
million elements and the number of threads was varied from
1 to 32. In both Figures 6 and 7, along one horizontal axis we
vary the input size, along the other horizontal axis we vary
the number of threads, and the vertical axis represents the
execution time in seconds. The time reported is the average
time for completion of each thread, and is further averaged
over multiple repeated runs. The zipfian α was varied from
2.0 to 3.0 in steps of 0.5. Even though we do not report
the times for α = 1.5, since frequent elements and top-k
queries are generally targeted towards skewed distributions,
they also show a similar trend.

As is evident from Figure 6, for independent structures
as the input size increases, more merges are required (since
the query is posed every 50000 elements) and this prevents
scalings, and the effect of adding more threads is worse with
larger input sizes. Figure 7 shows similar trends as Fig-

ure 3(b) and with increase in the length of the input, the
time increases almost linearly, but even with large inputs,
there is no improvement in the scalability.

4.4 Need for Re-designing the System
As the analysis in Section 4.3 reveals, straightforward par-

allelization schemes do not scale well. Ideally, we would like
a system that has the good properties of the shared design
(small memory footprint and no merge overhead) and the
independent design (no contention for locks). In a shared
structure, bucket level synchronization (Section 4.2) serial-
izes all threads accessing the same bucket, and things get
worse when there are many overwrites, as all threads are
trying to find the minimum frequency element and hence
are serialized at the minimum frequency bucket. This is the
limitation imposed by the Stream Summary structure. But
if two threads are operating on different buckets, then they
can operate in parallel. Again, element level synchronization
(Section 4.2) prevents parallel processing in a skewed stream
where multiple threads are processing the same element and
hence are serialized.

One possible extension can be to maintain a combination
of local and global counters (i.e. a Hybrid Structure) to
limit the contention (by hitting local counters frequently)
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as well as space overhead (no need to replicate relatively
infrequent elements). This design would not be scalable as
well because on the two extremes of the input distribution
(relatively uniform and relatively skewed), this technique
would degenerate into one or the other parent technique
explored here. Therefore, the conventional locking models or
models of parallelizing operations using the shared-nothing
paradigm does not scale and a somewhat unconventional
approach is needed to effectively leverage the parallelism
inherent in modern processors.

Based on the insights from this analysis, we design the
CoTS framework that has the good properties of shared
design (small memory footprint and no merge overhead),
and reduces the amount of contention by having the threads
cooperate rather than contend. Since the CoTS framework
uses the shared structure, the two levels of synchronization
mentioned in Section 4.2 still remain and the framework
provides a scheme to reduce this synchronization overhead.

5. COOPERATIVE THREAD SCHEDULING
In this section, we provide details of the Cooperative Thread

Scheduling (CoTS) framework. As observed in Section 4.3,
instead of the sibling threads contending with each other
for shared resources, as they are part of the same system,
they can rather cooperate with each other thereby boosting
each other and in turn boosting the overall system perfor-
mance. In formal terms, when two threads are contending
for a shared resource, only one of the threads will acquire
the resource. Instead of the other thread waiting for the
resource to be available, this thread can “log” its request
and leave, provided that it is guaranteed that the thread
which is currently holding the resource will eventually com-
plete the “logged” request before relinquishing control over
the resource. The manner in which the request is “logged”
varies on where the request is being delegated, and details
are provided in Section 5.2. This design principle can be
easily generalized to a system with multiple threads leading
to the following design principles:
Delegation Model: If Threadi is trying to acquire a shared
resource R and it succeeds in acquiring that resource, it will
go ahead and complete its job using the resource. If it fails to
acquire a resource, it will “delegate” its request to the thread
that is currently holding exclusive access for R, and move
to the next request. All threads trying to acquire R will
delegate their requests to Threadi. Once Threadi finishes
its own request, and before it relinquishes control over R, it
will check for any pending requests on R and will relinquish
R only when all pending requests have been processed. The
implementation should ensure that no request is lost after it
has been “logged” or “delegated”.
Minimal Existence: Once a thread has acquired a re-
source, live minimally by abstaining from “blocking” for any
other shared resource, thereby allowing it to make unhin-
dered progress. As we will see later, a thread will never
block on any resource and the Delegation Model is used to
obviate the need for acquiring multiple shared resources.

The above principles of Delegation and Minimal Existence
rely on the thread cooperation. There are multiple benefits
of this approach:

Remove Waits: The threads do not wait for any shared re-
source and waste useful computational resources either spin-
ning for the lock or sleeping. In this model, the thread that

Stream 

Summary Search 

Structure

Input 

Stream

Boundary Satisfying 

an Invariant

Pool of threads managed by the system

Figure 8: Overview of the system using the model
of cooperating threads.

is deprived of the resource can “log” the request and proceed
to process the next request.

Remove Overhead of Arbitration: Since the threads do not
contend for resources, this technique would save the over-
head of arbitration of the locks among the contending threads,
the cost of which varies based on the implementation of the
locks.

5.1 System Overview
Figure 8 provides a high level overview of the system ar-

chitecture of the co-operative thread model. The system
design is very similar to sequential Space Saving (Figure 1).
As earlier, the system has a stream of elements which is
being processed, and the Stream Summary structure is up-
dated to reflect the stream element that was processed. The
boundary conceptually separates the Stream Summary and
the Search Structure, and these structures interact with each
other through a well-defined interface and need not be aware
of the implementation details. In this concurrent processing
model of the stream, the system should guarantee that the
following invariant holds:

Invariant 5.1. If Threadi processing element 〈e〉 has cro-
ssed the boundary into the Stream Summary structure, then
it is the only thread active in the Stream Summary that is
processing the element 〈e〉.

The Search Structure should guarantee that Invariant 5.1
holds and this provides the element level synchronization as
discussed in Section 4.2. The Stream Summary structure
can be optimized with the knowledge of Invariant 5.1. This
framework is independent of the choice of different structures
involved and the actual algorithm used for processing the
stream elements, as long as the desired properties and the
invariant holds. The system has at its disposal a Thread
Pool from where it can select threads to perform different
tasks as required by the system. Depending on the amount
of parallelism supported by the Stream Summary structure
and the data distribution, the system can adaptively wake-
up threads from Thread Pool and return them to the pool
when they are not required. Ideally, the system should try
to determine the number of threads required to optimize the
throughput of the system depending on the characteristics
of the data stream being processed.

Thus the problem of parallelization of a stream operator
can be viewed as a scheduling problem, where the threads
are scheduled in a way that utilizes the maximum parallelism
allowed by the underlying structures and input data, with
the goal of optimizing performance and resource utilization
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of the system. The following sections demonstrate how this
general framework applies to the Space Saving algorithm.

5.2 Adapting Space Saving
As depicted in Figure 8, the system can be viewed as two

different components which interact with each other through
an interface that ensures Invariant 5.1 holds. It must be
recalled than when processing the elements, the algorithm
first accesses the Search Structure and this structure directs
the algorithm to the appropriate place in the Stream Sum-
mary. In the implementation, the hash table (search struc-
ture) points to the element in the Stream Summary struc-
ture, and the element in turn points to the bucket to which
it belongs. The two different components of the system are
now discussed in detail.

5.2.1 Search Structure
As pointed out earlier in Section 4, a hash table is an

appropriate choice for the Search Structure. The hash table
lookup is equivalent to the LOOKUP operation in Table 1.

Thread Safe Cache Conscious Chained Hash table: We use
a hash table where separate chaining is used to resolve hash
collisions. This application has a constant churn in the set
of elements being monitored, and therefore, there are a lot
of deletions in the hash table. In such a case, a hash ta-
ble using open addressing [14] will have to resize often to
remove the garbage which has accumulated due to the dele-
tions, and designing an efficient and scalable thread safe
open hash table is quite complex. On the other hand, minor
modifications to the conventional design of a chained hash
table [14] can make it cache conscious as well as efficient and
scalable, while guaranteeing thread safety. Figure 9 gives
an overview of the chained hash table. As depicted in the
figure, the design is made cache conscious by grouping the
elements in separate chains into a Block and the size of the
block is made a multiple of the size of the cache line of the
underlying architecture.

The hash table is designed in a scalable manner such that
minimal locking is needed. The “readers” in the hash table
do not need locks, deletions are performed lazily and thus
need no synchronization. Locks are needed only to serialize
insertions to the same hash bucket. Once a thread has ac-
quired a lock on a bucket, it will Garbage Collect all deleted
entries in the bucket and add the new entry to the chain be-
longing to the bucket. Therefore the design is mostly wait
free, as the locks are held for small intervals, and threads
are blocked only when two threads are trying to insert into

Algorithm 2 Hash table Delegation

Procedure Delegate(〈e〉)
entry ← LOOKUP(〈e〉)
newlyInserted ← false
if (entry = NULL) then

entry ← INSERT(〈e〉)
newlyInserted ← true

end if
result ← ATOMIC_INC_AND_FETCH(entry→count)
if (result = 1) then

/*No other thread is processing this element.*/
CrossBoundary(entry, newlyInserted)

end if

end Procedure Delegate

the same hash bucket. If a moderately robust hash func-
tion (such as Multiplicative Hashing [14]) is used, then the
likelihood of two “writers” mapping to the same hash bucket
is very rare. This design also leverages the fact that the
frequency counting algorithms limit the number of counters
monitored at all times, and thus if a suitable hash table size
is chosen, the hash table will not require a resize.

Delegation and Guaranteeing Satisfaction of the Invariant:
As explained in Section 5.1, the Search Structure, should
guarantee that Invariant 5.1 is satisfied at all times. This
implies that if Threadi has exclusive rights on stream el-
ement 〈e〉, then any other Threadj , which is also process-
ing 〈e〉, should not cross the boundary. Instead of making
and such Threadj wait for completion of Threadi, the Del-
egation model is used. Threadj will delegate its request
for processing 〈e〉 to Threadi and before Threadi (or any
other Threadk to which Threadi delegates its request) re-
linquishes 〈e〉, it will complete any other pending request on
〈e〉. To capture delegation, and since the sole operation on
〈e〉 is an increment, we associate with each entry in the hash
table a count which is initialized to 0 and incremented by the
threads In the shared design in Section 4.2, Threadj would
be blocked. Algorithm 2 explains how this delegation can
be performed efficiently using atomic primitives supported
by the underlying architecture. Once the count correspond-
ing to the entry has been incremented, the request for that
element has already been “logged”, and now it has to be de-
cided if the thread will go ahead with the request (in case
it is the sole thread processing the element), or some other
thread will eventually process this request (in case of dele-
gation). Since the requests are additive and commutative,
so the ordering of the requests does not make any difference,
as long as they are logged atomically. Because requests are
getting accumulated, the adaptation of Space Saving in the
CoTS framework needs to handle Bulk Increments, and the
algorithm for handling these is explained in Section 5.2.2.

Crossing the Boundary : The action which a thread performs
after “crossing the boundary” depends on whether the ele-
ment was newly inserted or not. If the element was already
being monitored, it is an IncrementCounter request to the
bucket in which the element is residing. If the element was
newly inserted and space is still left in the structure, then
the request is an AddElementToBucket to the minimum fre-
quency bucket, otherwise it is a OverwriteElement request
to the minimum frequency bucket. Recall that this is in ac-
cordance with Algorithm 1 and operations listed in Table 1.

Relinquishing an element: Once a thread has processed the
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based on thread “cooperation”.

request for an element, it has to relinquish the element.
This is again done by a combination of atomic compare and
swap (CAS) and atomic swap. To relinquish, the thread
first performs a CAS with 1 and 0. If this succeeds, no
other request was pending, and the element has been relin-
quished. A failure implies pending requests and the thread
will do a swap with 1. This prevents other threads from
crossing the boundary, and the swap will return the number
of “logged” requests. The thread then subtracts 1 from this
value (which corresponds to the request for this thread in the
earlier round) and crosses the boundary with the subtracted
value as increment for the IncrementCounter request.

5.2.2 Stream Summary Structure
The structure used for this adaptation is very similar to

the original Stream Summary structure proposed in [9, 16]
(Figure 2) but is slightly modified to suit the requirements
of a concurrent design. This modified structure is shown in
Figure 10 and is referred to as Concurrent Stream Summary.
The structure consists of a singly linked list of Frequency
Buckets. Each bucket maintains a list of elements which
have the same frequency as that represented by the bucket.
The buckets are ordered by their frequency, and the elements
traverse through this structure of buckets as their frequency
changes while the stream is being processed. Each bucket
has a queue to “log” requests for the bucket.

Lock Free and Wait Free Design: As pointed out in Sec-
tion 4.2, the frequency buckets are points of contention. So
in this model, each bucket has an associated queue of re-
quests (Figure 10), which is a thread safe producer-consumer
FIFO structure. Whenever a thread wants to perform any
operation on a bucket, it will atomically add the request to
the queue of the bucket. If the bucket is not currently be-
ing held by any other thread, then this thread can acquire
this bucket and go ahead with its request. Otherwise, the
request has already been delegated and will be processed by
the thread which is currently holding this bucket. All these
tests can be performed using atomic primitives supported
by the hardware and a thread does not need to wait for ac-
quiring any shared resource. It must be noted that in the
shared design (Section 4.2), the threads would wait till the
resource becomes available again.

Lock-free Reads: The structure of frequency buckets is main-
tained in such a way that any “reads” (reads include reading
the frequency of a bucket, or traversing through the struc-
ture) in the list of frequency buckets can be made lock-free.

Algorithm 3 Processing the AddElementToBucket Request

Procedure AddElementToBucket(element, bucket)
if (element→frequency = bucket→frequency) then

bucket→addElementToList(element)
else if (element→frequency < bucket→frequency) then

if (bucket = minFreq) then
newBucket ← getNewBucket(element→frequency)
newBucket→addElementToList(element)
newBucket→next ← bucket
minFreq ← newBucket

else
DelegateRequestToBucket(minFreq)

end if
else

findDestBucket(bucket, element)
end if

end Procedure AddElementToBucket

The main design characteristics that allow these lock-free
“reads” are: First, the frequency of a bucket never changes,
if the bucket becomes empty, it is marked as Garbage Col-
lected and will be removed eventually. Second, whenever a
bucket is Garbage Collected, enough time is given for “read-
ers” of that bucket to rejoin the main list. Third, at no point
of execution will there be any broken links in the structure.
To ensure this and to adhere to the principle of Minimal
Existence, the Concurrent Stream Summary structure con-
sists of a singly linked list of frequency buckets, compared
to a doubly-linked structure in the sequential structure (Fig-
ure 2). Last, if at any point, the “reader” determines that
things have gone wrong, it will abort and restart from where
it started the read.

We now describe the algorithms for implementing the ba-
sic operations listed in Table 1. These operations will be
enqueued as requests in the processing queue of the bucket,
and the process that acquires exclusive access to the bucket
will process all pending requests for the bucket.

AddElementToBucket: An addition request that arrives at a
bucket can either be an addition to the current bucket, or to
a bucket whose frequency is greater than the present bucket
(for dealing with bulk increments). Algorithm 3 provides a
high level overview of how the add request is processed. If
the addition is to the same bucket, it can be processed right
away, while addition to a higher frequency bucket is handled
as explained in Algorithm 4. When a new element is added
to the set of monitored elements, this request is delegated
to the current minimum frequency bucket. If the frequency
of the bucket is greater than 1, then the addition request
will be for a frequency less than that of the present bucket.
The request will then result in creation of a new minimum
frequency bucket. It must be noted that after creation of
the new minimum frequency bucket, the present bucket can
still have pending requests for addition to a lower frequency
bucket, and these requests will then be delegated to the new
minimum frequency bucket. If the add request was com-
pleted by the current thread, this implies that processing of
the corresponding element is complete and the thread should
relinquish the lock on the element, and this is achieved as
described in Section 5.2.1.

Finding the Destination Bucket: Finding the next bucket
in the case of counter increments is an important part of
most requests and is explained in Algorithm 4. If the cur-
rent next node is not the destination for the element, then
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Algorithm 4 Finding the Destination bucket for an element

Require: Invoking thread has exclusive access to startBkt.
Ensure: The element has either been added, or addition has

been delegated.
Ensure: Garbage Collected any candidate bucket next to start-

Bkt.
Procedure FindDestBucket(startBkt, e)
GarbageCollectCandidateBuckets(startBkt)
nextBkt ← startBkt→next
if (nextBkt = NULL || nextBkt→freq > e→freq) then

newBkt ← getNewBucket(e→freq)
nextBkt→addElementToList(e)
nextBkt→next ← nextBkt
startBkt→next ← nextBkt

else if (nextBkt→freq = e→freq) then
DelegateRequestToBucket(nextBkt)

else if (nextBkt→freq < e→freq) then
/*Process a Bulk Increment.*/
repeat

prevBkt ← startBkt
nextBkt ← prevBkt→next
repeat

if (!(nextBkt→isGarbageCollected())) then
prevBkt ← nextBkt

end if
nextBkt ← nextBkt→next

until (nextBkt 6= NULL && nextBkt→freq ≤ e→freq)
returnStatus ← DelegateRequestToBucket(prevBkt)
/*If returnStatus is false, then the read has to rolled back
and restarted.*/

until (returnStatus 6= TRUE)
else

startBkt→addElementToList(e)
end if

end Procedure FindDestBucket

either a new bucket needs to be inserted after the present
bucket, or the list of buckets needs to be traversed. In either
case, the design of the structure allows lock-free operation.
If at any point during traversal through the list, the “reader”
finds that it has ended up in a node that has been marked
for garbage collection, then it can abort the present run, and
start the traversal again. This is likely to converge quickly,
as after each garbage collection phase, the destination is ap-
proaching the source. From the efficiency perspective, this
failure and abort will be rare, as this case would arise when
dealing with bulk increments and this is common only for the
high frequency elements, which are generally towards the ex-
treme right of the Concurrent Stream Summary structure.
For the less frequent elements in the middle of the struc-
ture, the next node will be the destination in most cases. A
thread can perform garbage collection whenever this routine
is invoked.

Garbage Collection: This is another important aspect which
makes sure that empty frequency buckets are removed from
the list of frequency buckets in the Concurrent Stream Sum-
mary structure. This prevents the “readers” from making
unnecessarily long traversal through the structure, as well
as reduce unnecessary resource usage. An advantage of the
design is that Garbage Collection can also be done lock free.
A bucket can be garbage collected if there are no elements
in that bucket, and no pending requests on it. Once this is
determined, it is atomically marked as Garbage Collected. A
thread traversing through the list can remove these marked
buckets if these buckets are immediately next to the bucket
which the thread owns. Once the buckets have been removed

Algorithm 5 Processing the IncrementCounter Request

Procedure IncrementCounter(element, increment)
bucket→removeElementFromList(element)
element→frequency + = increment
findDestBucket(bucket, element)
if (bucket→isEmpty() && bucket = minFreq) then

/* This is the minimum frequency bucket that had fallen
empty. This thread should immediately update minFreq.*/
success ← FALSE
repeat

newMinFreq ← findNewMinFreqBucket(minFreq)
minFreq ← newMinFreq
success ← newMinFreq→appendQueues(bucket)
if (success) then

gcStatus ← false
while (gcStatus = FALSE) do

gcStatus← bucket→atomicMarkGarbageCollected()

if (gcStatus = FALSE) then
/*The queue has accumulated some requests and
needs to be merged.*/
success ← newMinFreq→appendQueues(bucket)

end if
end while

else
minFreq ← bucket

end if
until (success = FALSE)
deferAllOverwrites ← FALSE

end if

end Procedure IncrementCounter

from the list, de-allocation can be done using a reference
counting principle as in Java garbage collection.

Dealing with Accumulated Counts and Bulk Increments:
While an element is being processed inside the Concurrent
Stream Summary structure, other threads might have accu-
mulated requests for that element inside the Search Struc-
ture. This would result in bulk increments. The FindDest-
Bucket function in Algorithm 4 is general enough to handle
this situation.

IncrementCounter: A request for increment counter will be
made only for an element within the current bucket. In-
crement results in deletion of the element from the bucket
and adding it to a bucket corresponding to the desired fre-
quency of the element. Deleting the element from the bucket
is straightforward as the thread currently processing this
request has exclusive control on that bucket. Finding the
destination node can be done by FindDestBucket in Algo-
rithm 4. Algorithm 5 shows a high level overview of how
the increment request is processed. If after an increment, a
bucket falls empty and there are no pending requests, it is
atomically marked as garbage collected, and will eventually
be removed from the structure by some other thread. If the
present bucket is the minimum frequency bucket and it falls
empty, it can be immediately removed from the structure,
and any pending requests on the minimum frequency bucket
is appended to the bucket that becomes the new minimum
frequency bucket.

Overwrite: This is the most complex request and is specific
to the Space Saving algorithm which uses this technique to
limit the number of counters monitored. This request ar-
rives only on the minimum frequency bucket and process-
ing this request amounts to selecting a candidate element
from the minimum frequency bucket, overwriting it with the
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Algorithm 6 Processing the OverwriteElement Request

Procedure OverwriteElement(element, increment)
bucket ← minFreq
if (deferAllOverwrites) then

/*There are no candidates to be overwritten, so defer the
requests.*/
DelegateRequestToBucket(bucket)

end if
curElement ← bucket→firstElement
while (curElement != NULL) do

hashtable→tryRemove(curElement→element, status)
if (status = SUCCESS) then

/*The current element was successfully removed from the
Hashtable, so it can be overwritten.*/
bucket→removeElementFromList(curElement)
element→error ← bucket→frequency
element←frequency ← element→error + increment
findDestBucket(bucket, element)
break

end if
/*The current element is busy, so move to the next ele-
ment.*/
curElement ← curElement→next

end while
if (bucket→isEmpty()) then

/*The minimum frequency bucket has fallen empty. Move
all pending requests to the next available bucket.*/
Select new Minimum Frequency Bucket as shown in Incre-
mentCounter (Algorithm 5)
deferAllOverwrites ← FALSE

end if
if (curElement == NULL) then

/*The OVERWRITE request was not processed because
there are no candidates to be overwritten. So append the
request to the end of the queue and defer all further over-
writes till we have some candidate that can be overwritten.
*/
DelegateRequestToBucket(bucket)
deferAllOverwrites ← TRUE

end if

end Procedure OverwriteElement

current element being processed and then incrementing the
count of that element. Algorithm 6 provides a high level
overview of how the overwrite request is processed. For se-
lecting a candidate to overwrite, the thread will follow the
principle of Minimal Existence and will not block on any
shared resource. It will start from the first element in the
minimum frequency bucket, and to overwrite the element,
the corresponding entry in the Search Structure should be
deleted. This deletion is non-blocking, and a failure implies
that some other thread is trying to increment that element,
and the increment request should be in the request queue
of the minimum frequency bucket. So the thread moves to
the next element in the bucket, and the process is repeated.
If all elements are busy and none of them could be over-
written, this implies that all these elements have pending
increment requests. The overwrite request is thus deferred
till all the increment requests have been processed. Since a
single thread will process all these requests, the processing
can be highly optimized as the thread now has much more
knowledge about the requests. If at any time, the minimum
frequency bucket becomes empty, the thread can immedi-
ately remove this bucket, making the next bucket as the
new minimum frequency bucket. All pending requests for
this bucket are transferred to the next bucket, and now the
thread might have elements that can be overwritten.

5.2.3 Dynamic Auto Configuration
The CoTS framework has the capability to dynamically

determine the number of threads needed for high through-
put and low wastage of system resources. This can be done
by a thread scheduling algorithm and the Thread Pool pro-
vided to the framework by the system as shown in Figure 8.
The scheduler can start with the number of threads that
are available. Whenever a thread crosses the boundary and
enqueues a request to the queue of a bucket, it will check
to see if the queue size has increased beyond a threshold σ.
In this case, the system puts several threads to sleep and
returns them to the Thread Pool. On the other hand, when
a thread which is processing a frequency bucket delegates
its request to another frequency bucket and might also be
building up the queue for that bucket. If there is no thread
that is processing requests for that bucket, and the queue
size is above a threshold ρ, then the system wakes up a
thread from the pool and this thread can start processing
the pending request for this bucket.

Whenever a thread finishes processing the requests for
its bucket, and has relinquished the bucket, it checks its
neighbors for any pending requests and no thread process-
ing them. In that case, this thread can acquire the bucket
and start processing the requests. This checking and traver-
sal through the list will continue till the point a bucket is
reached which is acquired by some thread. At this point this
thread can leave the Concurrent Stream Summary structure
and return back to the stream. Occasionally, if there are
threads available in the Thread Pool, the system can wake
up a few threads and assign tasks for them to process. This
allows the system to adapt to changes in the input distribu-
tion enabling more parallelism.

5.2.4 Answering Queries
The Concurrent Stream Summary structure maintains the

elements in a sorted order, so that queries can traverse this
structure to find the appropriate elements. It must be noted,
that for the target applications, queries are far less frequent
than the rate of updates, so the design of the Concurrent
Stream Summary has been optimized for “updates”. Queries
however can still be processed with considerable efficiency
because with most data distributions, the elements of inter-
est will have high frequencies and reside in the rightmost
end of the structure, and the low frequency elements will be
cluttered in the leftmost end (assuming frequencies increase
from left to right). Therefore, as the queries start from the
minimum frequency, they can very quickly prune out the low
frequency elements and reach the region of interest. Again,
queries can be answered without acquiring any locks. We
now provide techniques for answering the queries explained
in Section 3.2.

Point Queries: Frequent elements queries are straightfor-
ward and can be answered directly from the Search Structure
without coming to the Concurrent Stream Summary. This
is done by looking up the query point in the search struc-
ture and reporting it as frequent if its frequency is above
the query threshold. For Top-k queries, the frequency of the
kth element needs to be determined, and this can be done
by a traversal through the structure, reading the buckets
for the number of elements and the request queue statistics,
thereby counting the number of elements that are present to
the right of the present bucket. With a count of number of
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elements in the structure, the bucket to which the kth ele-
ment belongs can be determined. Once this is known, if the
frequency of the query point is above the kth frequency, then
the point is in the top-k, otherwise the answer is negative.

Reporting the Answer Set: Answering these queries are costlier
since they need traversal through the elements in the bucket.
Again, once the appropriate buckets are determined through
a traversal of the list of buckets, the delegation model can
be used to report the actual elements in the answer set. The
query requests can be appropriately prioritized to improve
response times.

5.3 Generalization of the CoTS Framework
Even though we only discuss the adaptation of the Space

Saving algorithm, the framework is general enough to be
able to accommodate other counter based algorithms. For
example, the Lossy Counting [15] algorithm divides the stream
into multiple rounds and at the end of the round would re-
move elements which are infrequent. Therefore, for adapta-
tion into the CoTS framework, only the Overwrite request
in Space Saving has to be replaced by a request that re-
moves the minimum frequency bucket at round boundaries,
everything else remains unchanged.

6. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the proposed

framework. The experiments have been performed on an
Intel Core 2 Quad Q6600 processor, which belongs to the
“fat camp” as described in Section 3.1. This processor has
4 cores, each corresponding to a hardware thread and oper-
ating at a clock speed of 2.4GHz, and the cores share a L2
Cache of 4MB. The machine has 4 GB main memory and
runs Fedora Core Linux with kernel 2.6.24.5-85.fc8. All algo-
rithms and the framework have been implemented in C++
and compiled using GNU C++ compiler with Level 2 op-
timization and code generation tuned towards the architec-
ture. The four algorithms (shared, independent, CoTS, and
sequential) were implemented on the same platform. The
data set is synthetically generated and follows zipfian distri-
bution which is very close to realistic data distribution [19].
The zipfian factor α determines whether the distribution is
uniform or skewed. The frequency of the elements in the

distribution varies as fi = N
iαζ(α)

where ζ(α) =
∑|A|
i=1

1
iα

where N is the length of the stream, |A| is the size of the
alphabet, and fi represents the frequency of the ith frequent
element. Smaller values of α represent lesser skew in the
distribution with α = 0 representing uniform distribution.
As the value of α increases, the skew of the data distribution
also increases. The data set has a total of 100 million ele-
ments and an alphabet of 5 million. Different experiments
have been performed by varying the size of the data set, the
zipfian factor α, and the number of threads processing the
stream elements. Even though the CoTS framework can be
adaptive, we do not use this feature for experiments as here
we are more interested in the scalability of the system when
all threads are working in parallel. GCC built-in atomic
primitives were used for performing the atomic operations.
In all our experiments, we choose data with α in the range
1.5 to 3.0. The lower α values have not been evaluated be-
cause the frequent elements and top-k elements are more
interesting and meaningful in a skewed distribution, than in
a uniform distribution.
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Figure 11: Scalability of the CoTS framework with
increasing number of threads.

Figure 11 shows the scalability of the proposed framework
with increasing number of threads, and plots the number of
threads along the x-axis, and speed-up along the y-axis. In
this experiment, the data size was set to 1 million elements,
and the number of threads was varied from 4 to 256. The
different plots in the graph correspond to different values
of α. The CoTS framework has been designed with a view
towards multiple threads cooperating with each other and
delegating requests wherever possible. Because of this as-
sumption, the system performance will be bad when there
are not sufficient threads working in parallel. So we select
4 threads as the baseline for computing the speedup. An-
other reason for this number 4 is that the processor has 4
cores and so below 4 threads the system will not leverage
the parallelism offered by the processor. Even though we do
not report these values in this experiment, the throughput
increases almost by 30 times when the number of threads
was increased from 1 to 4.

As is evident from Figure 11, for skewed data, as more
and more threads are added to the system, the through-
put of the system increases almost linearly. This is because
the cooperation model allows two-level delegation (at the
bucket level as well as at the element level as explained in
Section 5.2), and as a result what used to points of con-
tention in the shared design (Section 4.2) has become points
of improved performance in this design. The two-levels also
explain the super-linear speedup observed in certain cases.
For skewed data, since multiple threads are processing the
same element concurrently, they can delegate the request in
the search structure itself, and the thread which is processing
the element inside the stream summary can perform bulk in-
crements resulting from delegation. These bulk increments
(Section 5.2) improve the system throughput considerably
and this is evident from the speedup obtained for higher
values of α. As the value of α decreases and the stream
tends towards uniformity, the gains of this delegation model
diminishes because there are not many threads processing
the same element. In most cases, different threads are pro-
cessing different elements and thus the delegations do not
add up. In addition, as observed in Section 4.3, the Stream
Summary structure does not allow much parallelism because
all requests to the same bucket have to be serialized, and
generally there are only two hot spots in the structure – the
minimum frequency bucket and the buckets near the maxi-
mum frequency. As a result, the stream summary structure
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Figure 12: Scalability with varying input size for different values of α.

Table 2: Comparison of different techniques
α = 2.0 α = 2.5 α = 3.0

Sequential 0.43861 0.520246 0.506345
Shared 13.404 12.649 12.3309
CoTS 0.662688 0.227706 0.1115

limits the amount of parallelism that can be achieved. So
for α = 1.5, the system throughput does not scale much be-
yond 8 to 16 threads. In this case, adding more threads is
likely to give diminishing returns, but the low contention in
CoTS system prevents the system throughput from degrad-
ing heavily when more and more threads are added. There-
fore, it is evident that the cooperation based model performs
really well when the data is skewed, and when the skew is
less, the system can effectively eke out whatever parallelism
is supported by the underlying stream summary structure.

In another experiment, the input size was varied from 1
– 16 millions to demonstrate the scalability of the system
with increasing input size, and that the execution time in-
creases linearly with a linear increase in length of the input.
Figure 12 shows the results of this experiment. In each of
the sub-figures, along one horizontal axis we vary the input
size, along the other horizontal axis we vary the number of
threads, and the vertical axis represents the execution time
in seconds. The time reported is the average time for com-
pletion of each thread, and is further averaged over multiple
repeated runs. The different sub-figures correspond to dif-
ferent values of α and in this experiment we concentrate
only on the skewed distributions. As is evident from each
of the Figures 12(a), 12(b), and 12(c), the execution time
increases linearly with the input stream length, and scala-
bility remains the same irrespective of the size of the input
stream. This is particularly important as the input streams
can be potentially infinite. This experiment reinforces the
scalability results in Figure 11.

In the last experiment, we compare the best case execu-
tion time of the two implementations which share the Stream
Summary structure, with a sequential implementation which
does not need any locks or synchronization, and processes
the stream sequentially. Table 2 shows this comparison in
terms of the absolute execution times (in seconds) obtained
from the experiments. The length of the stream is set to 16
million elements. The independent structures technique has

not been compared here because the actual cost depends on
the merge frequency used. Only the single thread version
does not have this overhead, and can be compared directly,
but then it is equivalent to sequential. As can be seen from
the table, not only does the CoTS implementation outper-
forms the best implementation of shared by two orders of
magnitude, but it outperforms the sequential implementa-
tion for α values 2.5 and 3.0 by 2–4 times. It must be noted
that this performance gain is in spite of multiple levels of
overhead in the CoTS implementation. First, the CoTS im-
plementation relies on system calls to synchronize between
the threads, and each of these calls incur a significant over-
head. Second, memory allocations in the CoTS framework
is much higher because of request logging and related book
keeping, and these allocation calls again invoke system rou-
tines thereby adding to the overhead. Third, any calls made
to the pthread library for thread management and synchro-
nization involves high overhead. These overheads are even
more noticeable as these calls are invoked for every stream
element (in certain cases multiple calls per element) and the
per element processing cost is not high enough to hide this
latency. Above all, the underlying structure and the problem
semantics do not support high parallelism and as seen for
somewhat uniform distributions, the amount of parallelism
is limited by the stream summary structure.

It should be noted that the time reported in different
experiments only involves the time for frequency counting.
Since queries are read-only and do not require locks, they
will not affect the scalability of the system and if frequency
counting scales, so will the queries. Separate threads can be
devoted for processing ad-hoc queries and the performance
of the threads performing frequency counting will not suffer.

7. DISCUSSION AND CONCLUSION
In this paper, we analyze different challenges in intra-

operator parallelism in the context of the inherent paral-
lelism in modern processor architectures. Based on the anal-
ysis and insights from naive parallelization techniques, we
propose an efficient and scalable framework for parallelizing
frequency counting algorithms. In this paper, we adapted
the Space Saving algorithm, but other counter based algo-
rithms that monotonically increase the element’s frequency
can also be adapted to the framework. Our experiments
show that the proposed CoTS framework is highly scalable
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and efficient for skewed distributions. Since the frequent el-
ements and top-k queries are generally interested in skewed
data, these results show a positive sign of improvement to-
wards parallel designs which have gained importance with
the changing landscape of the processor architectures. For
completeness of the framework, it should also scale for less
skewed data, but in this implementation, the scaling is lim-
ited by the underlying search structure. Therefore, more
scalable concurrent structures need to be designed to effec-
tively utilize the parallelism supported by modern proces-
sors. In addition, the insights gained from the experiments
assert the need for efficient and lightweight system primi-
tives for threading and synchronization, so that the parallel
algorithms and frameworks can efficiently leverage the avail-
able parallelism. The analysis and techniques proposed in
this paper serve as a step forward in this world of multi-
core processors, but further steps need to be taken to ef-
fectively exploit the available parallelism. In the future, we
plan to analyze the performance of the CoTS framework on
the “lean camp” CMP architectures.
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