
Hardware Assisted Compression in Wireless Sensor Networks

Navraj Chohan
Dept. of Computer Engineering and Computer Science

University of California, Santa Barbara
nchohan@cs.ucsb.edu

June 2007

Abstract

A wireless sensor network (WSN) is comprised of re-
source constrained devices called motes. Motes are
battery operated and must conserve as much power
as possible. Power usage for each mote is made up of
processing data, sensing the surroundings, and send-
ing and receiving packets. The bulk of power usage
for standard WSN applications lies in the radio where
receiving and sending packets are necessary to com-
municate to a base station (as much as 80%) [5]. This
communication is generally greater than the range of
any single mote, and thus multi-hop routing must
take place. The multi-hop routing furthers the need
for reduction of packets because each additional hop
adds to the amount of traffic generated. By compress-
ing sense data, which each mote collects, the number
of packets can be reduced. Only lossless compression
is taken into consideration. This paper proposes a
solution to reduce the consumption of power using
reconfigurable hardware specially programmed to do
low power compression. A mote would offload bulk
data to a hardware attachment and receive the com-
pressed version of the data. The compressed data can
be stored in flash or sent over the network to the sink
node. Additional work will go into the trade-off fac-
tor between compression to non-compression. Com-
pression should only occur if the amount of power
taken to compress X amount of bytes and transfer
Y amount of bytes is less than just transferring X
amount of bytes. Moreover, seeing the gains from
doing offloading of compression versus doing it on-

chip must be taken into consideration as well. Addi-
tional hardware is not free, so cost for the power sav-
ings plays a factor in deciding how compression takes
place. Moreover, there are also limitations based on
the kind of reconfigurable hardware. This paper ad-
dresses these issues.

1 Introduction/Background

Wireless sensor networks (WSNs) are comprised of
resource constrained embedded devices called motes.
Motes are placed in an ad-hoc fashion to sense the
environment and report back their readings to a base
station or sink node. Sink nodes are generally out
of the range of many of the motes. Motes must use
peer-to-peer links to cope with the lack of direct com-
munication. A network is built in a distributed fash-
ion which results in a minimum spanning tree as seen
in Figure 1. This paper aims to take advantage of the
communication model of a sensor network by mini-
mizing the amount of bits transmitted through com-
pression.

Motes are constrained in resources. The primary
resource is their battery supply. The battery supply
limits the lifetime of a mote as well as sets the scale of
their form factor. For example, the MICAz mote runs
on two AA batteries, providing 3V and 2000mAH (a
brief summary of power terminology is given in Sec-
tion 2). If an application takes on average 25mA to
run (100% duty cycle), the lifetime of the motes is
approximately three and a third days [8]. Having
a low duty cycle is key to extending the lifetime of



Figure 1: A minimum spanning tree with one sink
node.

the mote. Normal operation of the microprocessor,
radio, and flash take in the order of miliamps to op-
erate. When putting these components to sleep the
cost is on the order of microamps. The key to any
application is only having the necessary components
active and the rest asleep.

The popular motes in today’s WSNs are built by
Crossbow [8]. Two of these motes are the MICA2
and the MICAz. Both have the same microprocessor
in the 8-bit Atmel ATMega 128L which clocks in at
8MHz [3]. The current draw for operation is 8mA
at full operation and less than 15uA in sleep mode.
The next generation mote as of 2007 is the Imote2
which is also made by Crossbow. The Imote2 has
the Intel PXA271 XScale 32-bit processor running at
13 to 416MHz. The current draw at full operation
is 31mA and 290uA in deep sleep mode at 13MHz.
Current draw goes up with the clock frequency.

The MICA2 has the CC1000 radio chip made by
ChipCon [7]. The chip is capable of two different fre-
quencies of 433 and 915 MHz with a link capacity
of 38.4kbps using Manchester encoding. The MICAz
and Imote2, on the other hand, have the CC2420,

which is also made by ChipCon and is ZigBee com-
pliant. It operates in the 2.4GHz band and has a link
capacity of 250kbps using spread spectrum and O-
QPSK modulation for tolerance to interference. The
CC1000 has a maximum outdoor range of 300m with
a current draw of 26.7mA (10dBm). The CC2420
has a maximum outdoor range of 125m with a maxi-
mum current draw of 17.4mA (0dBm). These ranges
are based on the receive reception strength threshold.
Reception power is based on the path loss model of
Pt
dα where α is a value equal or greater than 2 and
Pt is the transmit power. Threshold power reception
for the MICA2 and MICAz/Imote2 is -98dBm and
-94dBm, respectively.

Additionally, EEPROM memory access also cost
power. A read takes 565us at 6.3mA and a write
takes 12.9 ms at 18.4mA. These values were taken
from [13] for the MICA2 mote. With the informa-
tion from above we can calculate the joule cost of
transmitting one bit compared with the joule cost of
an add instruction.

By looking at compression techniques we can cal-
culate the potential power saved. This power savings
potential is highly dependent on the the character-
istics of the mote (processor/radio power draw), the
data set, and the power characteristics and compres-
sion capability of the assistance hardware. These
characteristics will tell whether compression should
take place to save power.

It should be noted that sensor networks are gen-
erally delay tolerant. Many designs of protocols
have traded off delay (as well as throughput) to save
power. In the case of compression, better savings can
be achieve with larger data sets (Section 3 goes into
this in detail). Typical sensor readings should have a
Gaussian distribution with low entropy in the over-
all data set. Thus, a sensor mote can make readings
for several hours or days and send back aggregate
compressed data. Not only does this save bytes by
compressing data, but also the overhead endured by
headers. In the case for the MICAz, headers from
the physical (CC2420), MAC (tinyOS), and network
layer (routing engine) can account for more than 23
bytes.

The novelty of this project is the inclusion of repro-
grammable logic in a sensor network. To the best of



the author’s knowledge this has not been attempted
in the sensor network community due to the power
hungry nature of standard FPGAs. As discussed in
the sections to come the initial development is based
on both FPGAs and CPLDs. A review of the current
generation of hardware by Xilinx [15] and Altera [1]
is given, followed by a power analysis of the consump-
tion of different families of reconfigurable hardware.
FPGAs have disfavorable characteristics because of
their power draw and the need to be reflashed after
being powered down. While it is unrealistic for FP-
GAs to be considered as a feasible components for a
mote like devices due to its power draw, it does serve
as a means of comparison to low power reconfigurable
CPLD devices. Reprogrammable logic, such as Xil-
inx’s CoolRunner II CPLD has a standby power draw
as low as 17uA [15], and does not require expensive
reprogramming when powered down because of the
use of nonvolatile memory. Analysis of power is a
two fold approach because it must look at what is
the current cost of operation for a mote and the ad-
ditional cost of added hardware. This paper analyzes
the area and power constraints of CPLDs and looks
to see if specialized hardware for data compression
may provide better compression at lower power cost
for a net power gain.

Section 2 will discuss the approach of analyzing
power consumption and the cost of additional spe-
cialized hardware. Section 3 will talk about the ap-
plications for which compression is a beneficial and
speaks of the data sets used by the compression algo-
rithm presented in Section 4. Section 5 gives results
on using the compression algorithm with the data set
presented from Section 3. Section 6 has information
about related work. Concluding remarks and future
work is in Section 7.

2 Approach/Motivation

In this section the power values for the different pro-
cessors and radio chips are given. As mentioned in
Section 1, the radio chips are CC1000 and CC2420,
which are two of the more popular radio chips. More-
over, the processors analyzed are the Atmel AVR AT-
mega128L 8-bit and the Intel XScale PXA271 32-bit
processor. It should be noted, that the PXA271’s

datasheet could not be found, so much of the data
presented here for that processor is based on esti-
mates from the Crossbow website [8]. The data serves
as motivation as to why it is useful to do compression,
rather than just send raw data. Typically, compres-
sion has been done in order to save memory and hard
disk space. The results shown in this section give
the power taken in joules per instruction as well as
the amount of energy taken for receiving and trans-
mitting packets. This information gives hints on the
viability of compression for low power devices.

2.1 Power overview

Just as a brief overview of the model of power con-
sumption for the devices used, I review typical units
of power here. If you are familiar with basic power
terminology, you may skip this brief subsection.

A battery such as a double-A provides 1.5 volts
and a current of 2000 miliamp hours. This means
that the battery is capable of providing 3 watts of
power for one hour. A joule is considered the amount
of watts per second. A double-A battery can provide
10,800 joules over its lifetime. These numbers should
be taken into mind when looking at the numbers pre-
sented in the next subsection.

2.2 Power Consumption

The values from Table 3 give the characteristics of
both radios in terms of timing. The CC2420 has a
much higher data rate and can thus get more bits
transmitted at a cheaper cost. But because of the
higher frequency the range is less. The values from
Table 3 gives the power consumption per bit listed
in Table 4. The power consumption of idle listen-
ing and receiving are the same, and the transmission
varies depending on the power chosen for transmit-
ting. The power of transmission can by dynamically
changed on these motes, which serves well for topol-
ogy control to save power and minimize interference
to other nodes. Because the cost of idle listening can
become very expensive in the lifetime of a mote, they
must either be put into sleep mode, where the radio
is turned off (after some sort of scheduling) or put
into a polling phase, where the mote listens a small



Instruction Cycles Power
Add 1 3nJ
Mul 2 6nJ
Jump 3 9nJ
Store 2 6nJ
Load 2 6nJ
AND/OR 1 2nJ

Table 2: Power consumption of ATmega128L instruc-
tions and cycle count.

Radio Chip CC1000 CC2420
Data Rate 38.4kbps 250kbps
Tx Time per Bit 26us 4us

Table 3: Operating modes of CC1000 and CC2420.

percentage of the time to overhear the preamble of a
message. Generally, after a mote has heard messages
over the air, the mote will go into full listening mode,
and back to a polling mode shortly thereafter.

Table 1 shows the characteristics of the current
generation processor as well as the next generation
processor for sensor network motes. The newer gen-
eration provides 32 bit processing as well as a faster
frequency. But it still comes at the expense of more
current draw for both regular operation and sleep
mode. To scale the two processors in terms of power
per instruction, the ATmega128L spends 2.98nJ per
cycle, whereas the PXA271 spends 10.73nJ, but the
fact that the PXA271 is 32 bits should be considered
in the comparison (4 times the operational bits for 3
times the power cost). Looking at Table 2, each add
cost one cycle. Compared to the transmission of one
bit from Table 4, a bit transmitted at full power for
the CC1000 and CC2420 is 695 and 69 times more
costly, respectively. A sensor network is generally
built on multiple hops, and therefore even if the cost
of doing more instructions gives a local loss in power,
the overall system power still benefits.

3 WSN Application

Applications in WSNs are in many domains. These
domains include environmental monitoring, animal

tracking, and military surveillance. Many applica-
tional uses are delay tolerant, which means data is
not required in real time. Each autonomous mote can
store sensed values and send aggregated data back
to the base station as needed. Additionally, for real
time usage, when the current sensed readings have
deviated from the expected values, the collector may
want a higher rate of sensing. In this case, so long
as the hard deadline is no longer than the time it
takes to collect a bulk set of data, compression can
be applied. Most applications that are in use do not
have hard deadlines, and this flexibility can be used
to conserve power.

3.1 Data Sets

The mote application is for the MICAz platform. The
mote runs an application executing in TinyOS [14]
and is written in nesC [10]. TinyOS combines
reusable components and “wires” them together.
nesC is a language very similar to C but is event
driven and lacks dynamic memory allocation.

In order to collect data sets which were used for
testing the compression algorithm an application for
sending data values was written for the MICAz using
TinyOS. The MICAz has a stackable hardware archi-
tecture allowing for add-on sensor boards through a
51-pin connector (this is how compression hardware
would be attached). The MTS300 sensor board was
the means of sensing. It can measure light, temper-
ature, and acoustics. In addition to writing a data
collection application, a collecting base station appli-
cation was used to transfer the collected data to the
PC. The gateway is a MIB510 programming board
which has a connected base station mote. The mote
forwards traffic from the air over the UART and vice
versa. The MIB510 transfer the packet to and from
the UART and the serial port. A PC application
logged data for light and temperature.

The mote application written collected 132 read-
ings of two bytes each for a total of one flash page (264
bytes). The data was collect from a mote running an
application which sensed light and temperature in an
indoor office environment at a sampling rate of one
second. Section 5 gives the results on the amount
compressed. Different sampling rates and different



uProcessor ATmega128L PXA271
Operational Current Draw 8mA 31mA
Sleep Current Draw 15uA 390uA
Bits 8 32
Clock Freq 8MHz 13MHz
Cycle Time 124ns 76.92ns
Voltage 3V 4.5V

Table 1: Operating characteristics of the ATmega128L and PXA271 processor.

Radio Chip CC1000 CC2420
Current Energy/Bit Current Energy/Bit

Listening/Rx 74mA 88nJ/b 19.7mA 236.4pJ/b
Polling(1/100) 74uA N/A 197uA N/A
Tx @ -25 dBm N/A N/A 8.5mA 102nJ/b
Tx @ -20 dBm 5.3mA 414nJ/b 9.2mA 110.4nJ/b
Tx @ -15 dBm 7.4mA 578nJ/b 9.9mA 118.8nJ/b
Tx @-10 dBm 7.9mA 617nJ/b 11.2mA 134.4nJ/b
Tx @ -5 dBm 8.9mA 695nJ/b 13.9mA 166.8nJ/b
Tx @ 0 dBm 10.4mA 812.4nJ/b 17.4mA 208.8nJ/b
Tx @ 5 dBm 14.8mA 1156nJ/b N/A N/A
Tx @ 10 dBm 26.7mA 2086nJ/b N/A N/A

Table 4: Operating modes for transmission and reception of CC1000 and CC2420. Fields which are N/A
are not applicable for those radios.



types and sizes of data is the subject of future work.

3.2 Transformed Data

In order to get good compression ratios, tricks can
be played on the data to give it favorable character-
istics for compression. For the case of sensor data,
it can be noted that data is relatively similar from
one sample to the next. Being so means the most
significant digit will be the same over many samples.
Data can thus be transformed as shown in Figure 2.
The figure shows the most significant bytes reoccur-
ring for each reading (every row). Swapping certain
positions in the data creates patterns, allowing for
greater compression.

4 Compression Algorithm

This section discusses the design, implementation,
and testing of the compression hardware which was
fitted on different reconfigurable platforms (See Sec-
tion 5 for the types of hardware).

4.1 Design

The choice of the compression algorithm is based on
the key metric of energy. When choosing the al-
gorithm the author did not take into account what
would transfer well over to hardware, but rather what
would fit the application domain of sensor network
data. Moreover only lossless compression algorithms
were considered. These may be limitations and other

Figure 2: Transformation of the data set can result to
additional patterns, allowing for better compression.

types of low power compression is a subject of future
work.

Much of the previous work on compression is fo-
cused on memory savings rather than energy. As
mentioned in Section 2, the key goal is to minimize
the amount of sent and received data, while main-
taining a low overall cost of compression. The cost
of compression comes from its computation expense
on the mote, whereas the cost of decompression does
affect the design decision because it is done on high
powered nodes (sink nodes). Communication over-
head is also a factor. In compression schemes such
as Huffman encoding, the dictionary used must be
known ahead of time. The sharing of the dictionary
is additional overhead, and it also limits the adapt-
ability of the algorithm to different data sets. Addi-
tionally, the design of the algorithm must be robust
to packet loss. Sensor networks communicate in a
medium where packet loss can be high and reception
can not be guaranteed.

Thus to recap, the algorithm must be energy effi-
cient, lossless, computationally low, low or no com-
munication overhead, adaptable to different data sets
as well adapt to changes for long term sensing. Lastly,
the algorithm must be robust to packet loss.

The algorithm chosen is based on LZW compres-
sion. This compression builds a dictionary as data
comes in serially. An eight bit word comes in and a
9 bit word is encoded, where many eight bit words
can be encapsulated in the 9 bit word. Table 5 an ex-
ample of input data and the corresponding encoded
output. A flow chart can be found in [12].

4.2 Implementation

This subsection describes the implementation of the
hardware module. The module was written in Ver-
ilog.

Figure 3 shows the top level design of the com-
pression algorithm. The input to the circuit is an 8
bit word. The output is 9 bits and is latched when
the ready signal is high. A done signal signifies when
all the input stream has been encoded. The dictio-
nary resets every 264 bytes to allow for robustness to
packet loss between sets and adaptability for chang-
ing data.



Input Stream Output New Dictionary Entry
a
aa 0 aa as 256
aa
aaa 256 aaa as 257
ab 0 ab as 258
ba 1 ba 259
aa
aac 256 aac as 260

2

Table 5: Example of LZW compression. Input Stream: aaaabaac, where a=0, b=1, c=2.

The implementation was done originally for the
CoolRunnerII which has 256 macro blocks, where a
macro block is approximately 1.3 logic elements. The
size of the compression algorithm proved to be too
large for this chip. This also eliminated the design
to include interface logic. The supplied I2C interface
for the chip by Xilinx takes up half of the logic for
the CoolRunnerII. The focus of the implementation
was switched to the MAX II and the Cyclone II by
Altera (2210 and 33216 logic elements, respectively).
The author used both the ISE 9.1i tool by Xilinx
and Quartus II by Altera for synthesis. This allowed
the author to notice the vendor specific Verilog con-
structs. The Verilog was written to synthesize in both
environments for portability. The code is available at
www.cs.ucsb.edu/˜nchohan/comp.

4.3 Testing

Quartus II was initially used for debugging and test-
ing. Creating test benches are easy with the graphical
tool, yet analyzing the results is entirely wave based
and slows development down. ModelSim was used in-
stead to take advantage of the capability to monitor
signals via print statements. This allowed for quicker
development time. Xilinx’s tool lacked a means of
simulating, forcing the author to rely on third party
tools. Test benches were created from the data sets
via a perl script.

5 Results

Results are presented for two reconfigurable hardware
platforms, the Cyclone II FPGA, and the MAX II
CPLD. These platforms are from Altera [1]. Power
estimates for the two boards were attained from the
Quartus II PowerPlay feature.

As mentioned in Section 3 two data sets were at-
tained. One for light and another for temperature.
Each one of these sets also had a transformed ver-
sion, using the tactic shown in Figure 2.

Due to the limited amount of logic in CPLDs (max-
ing out at 2210 logic elements) the number of en-
tries which can be stored is limited. The MAX II
EPM2210G CPLD had a maximum of 44 entries.
The Cyclone II was able to fit the maximum amount,
which can be attained with 9 bit output, of 256 new
entries. Figure 7 shows the results for the MAX II
CPLD. This can be compared to the results for the
Cyclone II in Figure 8. Because of the lack of entries
for the CPLD, the compression actually looks like de-
compression for non-transformed temperature data.
The FPGA is able to achieve compression for all data
sets. An oddity is the fact that the transform data ac-
tually is worse for the light data set, whereas it works
well for the temperature data set. The FPGA’s suc-
cess shows that CPLDs are in need for more logical
units. A comparison of the clock rate, power con-
sumption and logical units is shown in Figure 6. The
clock rate is low for the FPGA and uses more power.
Disregarding the number of logic elements we can see



Figure 3: Top level design of hardware compression module.

Platform Power Rate Logic Units Entries
Cyclone II 112mW 12.88MHz 11973 256
MAX II 10.29mW 36.11MHz 2143 44

Table 6: MAX II EPM2210G CPLD and Cyclone II design specifics.

Data Set Input Bytes Output Bytes
Temperature Normal 264 279
Temperature Transformed 264 221
Photo Normal 264 129
Photo Transformed 264 140

Table 7: MAX II EPM2210G CPLD compression capability with 44 dictionary entries.

Data Set Input Bytes Output Bytes
Temperature Normal 264 237
Temperature Transformed 264 212
Photo Normal 264 121
Photo Transformed 264 132

Table 8: Cyclone II FPGA compression capability with 256 dictionary entries.



that the Cyclone II would take 2.35 microjoule and
the MAX II would take 964 nanojoules. These values
are functions of the clock rate, power consumption,
and the number of cycles to compress one flash page
(264 bytes or approx. 270 cycles). This comparison
is not fully fair due to the additional entries the Cy-
clone II design has. Nonetheless, these values should
be compared to the number presented in Section 2 to
see if compression is advantageous.

The numbers from Table 3 shows that each bit cost
812.4 nJ and 208.8 nJ for transmitting at 0dBm, for
the CC1000 and CC2420 respectively. As mentioned
before, the cost of compression for the CPLDs opera-
tion is approximately 964 nJ. The average number of
bytes saved across data sets was 79 bytes or 632 bits.
Looking at power from a transmit perspective shows
that it cost less than 1 bytes worth of power (6.50 uJ
for CC1000 or 1.67 uJ for CC2420) in order to reduce
the total number of bytes by 79 bytes. This gives a
net savings of 78 bytes or a 29.5 percent savings of to-
tal transmission power. Because transmission power
is the bulk of power draw, this 29.5 percent can be a
major portion of total battery consumption and can
give significant improvement in total battery life. The
average compression is greater by 9 bytes using the
bigger design in the FPGA and the cost of compres-
sion is 2 times greater. Additionally, the FPGA has
a high standby cost, or if completely powered down,
would need to be reflashed.

The numbers given in this section do not account
for the power consumed by the interface cost. More-
over, the numbers assume that the hardware is being
clocked at the maximum given frequency as specified
by the Quartus toolset, which is actually much higher
than the frequency the processor runs at (8MHz ver-
sus 36.11 MHz). All presented values are estimates
from simulation and CAD tools and actual empirical
measurements are needed to verify these results.

6 Related Work

Previous work for compression in sensor networks has
been primarily done using the microprocessor on the
mote and to the best of my knowledge has not been
offloaded using additional hardware. Much work has
gone into devising lossless energy aware compression

algorithms such as work by [5]. They looked at sev-
eral different compression algorithms and the power
consumption of each on variable data sets. Much like
this paper it looks at the substitution of execution
of instructions for the reduction in the number of
bytes transmitted. Their results showed that there
are many variables to having successful power aware
compression. Things depend heavily on the relative
energy cost of the CPU, memory, network, data and
the compression ratio achieved. In an ad-hoc 802.11
network it may be the case where an individual node
may have to spend more energy to transmit so that
the overall system saves power. Their results were
not for a sensor network, nor did they use specialized
hardware. A paper for compression in sensor net-
works was done by [12] for data compression in delay
tolerant networks. They address the same problem of
power constraints through compression as this paper
does. They see that energy benefits grow as the num-
ber of hops does. Moreover, retransmissions must
occur because the communication between hops is
lossy. Shorter packets are less likely to be corrupted
because they are in the medium for a shorter amount
of time, and less power is exerted when a retransmis-
sion does occur. They differ from [5] in the fact they
propose techniques and algorithms tailored for sen-
sor nodes which are power and memory constrained.
They focus on LZW compression which is based on
dictionary entries which are used for lookups. There
is no cost of synchronizing dictionaries between the
encoder and the decoder because they build the dic-
tionary as data comes in. The main constraint is the
fact that the dictionary takes up significant RAM.
They use a 256 entry dictionary as done in this pa-
per. Additionally, they have a mini-cache to take
advantage of the fact that sensor readings are spa-
tially correlated over short periods of time. They
suggest aggressive compression, even at the cost of a
loss of power at the local node, in order to save power
downstream and for the overall system.

Other types of compression in sensor networks have
been based on the spatial and temporal redundancies
of sensor readings. Tactics such as funneling, where
nodes send their data to a parent which compresses
and does in network processing of the data, reduces
the overall transmission cost to the sink node [9].



Pipeline in-network compression as presented in [2]
is a delay tolerant method which has each node com-
press duplicate readings of sense values, and it mini-
mizes the total number of packets to reduce the over-
head of packet headers. The compression presented is
very lightweight, and depends heavily on values of the
sense data to be similar across time stamps. Other
schemes for data compression in a WSN include dis-
tributed compression as presented in [4, 11].

The hardware assisted low power compression has
been presented by Benini et al in [6]. The adap-
tive compression is based on statistical analysis of
the data. The data dictionary, for their static ap-
proach is built using offline data profiling, which is
something which is taken into consideration in devis-
ing this paper’s compression techniques. Generally,
sense data is expected to have a Gaussian distribu-
tion, which can be exploited for savings in data trans-
mission. Benini et al shows energy savings of 39% for
the offline approach, and 27% for the adaptive ap-
proach for their set of benchmarks. This paper show
similar savings using an adaptive approach of 29.5%.

7 Future Work

Future work entails implementing other low power
compression algorithms as well as analyzing differ-
ent and more realistic data sets. Because more tech-
nology is coming out for low power FPGAs, a new
area of reconfigurable hardware over the air may be-
come a viable option. From the experience gained
from this project the author may try to take it a step
further and attempt to build dynamic and reconfig-
urable hardware in sensor networks but with the cur-
rent limitations of both CPLDs and sensor motes,
this is very challenging. The major problem is power
consumption, so it will depend on how expensive it
is to reconfigure the hardware over the air, as well as
what does this extra flexibility buy us in the sensor
network application domain.

References

[1] Altera Corporation. http://www.altera.com.

[2] T. Arici, B. Gedik, Y. Altunbasak, and L. Liu.
Pinco: A pipelined in-network compression
scheme for data collection in wireless sensor net-
works, 2003.

[3] Atmel corporation. http://www.atmel.com.

[4] Waheed Bajwa, Jarvis Haupt, Akbar Sayeed,
and Robert Nowak. Compressive wireless sens-
ing. In IPSN ’06: Proceedings of the fifth inter-
national conference on Information processing in
sensor networks, pages 134–142, New York, NY,
USA, 2006. ACM Press.

[5] Kenneth Barr and Krste Asanovi. Energy aware
lossless data compression. In MobiSys ’03: Pro-
ceedings of the 1st international conference on
Mobile systems, applications and services, pages
231–244, New York, NY, USA, 2003. ACM
Press.

[6] L. Benini, D. Bruni, A. Macii, and E. Macii.
Hardware-assisted data compression for energy
minimization in systems with embedded proces-
sors. In DATE ’02: Proceedings of the conference
on Design, automation and test in Europe, page
449, Washington, DC, USA, 2002. IEEE Com-
puter Society.

[7] Chipcon corporation. http://www.chipcon.
com.

[8] Crossbow Technology. http://www.xbow.com.

[9] K. Ramchandran D. Petrovic, R. C. Shah and
J.Rabaey. Data funneling: Routing with aggre-
gation and compression for wireless sensor net-
works. In First IEEE International Workshop
on Sensor Network Protocols and Applications,
May 2003.

[10] David Gay, Philip Levis, Robert von Behren,
Matt Welsh, Eric Brewer, and David Culler. The
nesc language: A holistic approach to networked
embedded systems. In ACM SIGPLAN Confer-
ence on Programming Language Design and Im-
plementation (PLDI), pages 1–11, 2003.



[11] J. Kusuma, L. Doherty, and K. Ramchandran.
DISTRIBUTED COMPRESSION FOR SEN-
SOR NETWORKS. pages 82–85.

[12] Christopher M. Sadler and Margaret Martonosi.
Data compression algorithms for energy-
constrained devices in delay tolerant networks.
In SenSys ’06: Proceedings of the 4th inter-
national conference on Embedded networked
sensor systems, pages 265–278, New York, NY,
USA, 2006. ACM Press.

[13] Victor Shnayder, Mark Hempstead, Bor rong
Chen, Geoff Werner Allen, and Matt Welsh.
Simulating the power consumption of large-scale
sensor network applications. In SenSys ’04: Pro-
ceedings of the 2nd international conference on
Embedded networked sensor systems, pages 188–
200, New York, NY, USA, 2004. ACM Press.

[14] TinyOS. http://www.tinyos.net.

[15] Xilinx corporation. http://www.xilinx.com.


