
Gaussian Elimination Based Algorithms on the GPU

Aydın Buluça,∗,1, John R. Gilberta,1, Ceren Budaka

aComputer Science Department, University of California, Santa Barbara, CA 93106-5110

Abstract

We implemented and evaluated several Gaussian elimination based algorithms
on Graphic Processing Units (GPUs). These algorithms, LU decomposition
without pivoting, all-pairs shortest-paths, and transitive closure, all have similar
data access patterns. The impressive computational power and memory band-
width of the GPU make it an attractive platform to run such computationally
intensive algorithms. Although improvements over CPU implementations have
previously been achieved for those algorithms in terms of raw speed, the utiliza-
tion of the underlying computational resources was quite low. We implemented
a recursively partioned all-pairs shortest-paths algorithm that harnesses the
power of GPUs better than existing implementations. The alternate schedule of
path computations allowed us to cast almost all operations into matrix-matrix
multiplications on a semiring. Since matrix-matrix multiplication is highly op-
timized and has a high ratio of computation to communication, our implemen-
tation does not suffer from the premature saturation of bandwidth resources as
iterative algorithms do. By increasing temporal locality, our implementation
runs more than two orders of magnitude faster on an NVIDIA 8800 GPU than
on an Opteron. Our work provides evidence that programmers should rethink
algorithms instead of directly porting them to GPU.

Key words: All-pairs shortest paths, Gaussian elimination, graphical
processing units, semirings, matrix multiplication, graph algorithms

1. Introduction

The massively parallel nature of GPUs makes them capable of yielding the-
oretically much higher GFlops rates than current state-of-the-art CPUs. GPU
performance also grows much faster than CPU performance due to specialized
explicit parallelism. The amount of computational power to be harvested has

∗Corresponding author
Email addresses: aydin@cs.ucsb.edu (Aydın Buluç), gilbert@cs.ucsb.edu (John R.

Gilbert), cbudak@cs.ucsb.edu (Ceren Budak)
1The research of these authors was supported in part by the Department of Energy under

award number DE-FG02-04ER25632, in part by NSF grant CNS-0709385, and in part by MIT
Lincoln Laboratory under contract number 7000012980

UCSB Technical Report November 21, 2008

also attracted the high-performance computing (HPC) community, and we have
seen many scientific applications successfully implemented with significant per-
formance gains on the GPU [5, 30].

Implementing HPC applications to run on a GPU requires significant ex-
pertise, even with the recently introduced C-like APIs such as Nvidia’s Cuda
platform [25]. The key to performance is to hide the data access latency by
having many threads on the fly. The performance is usually fragile and requires
careful craftmanship from the programmer’s side. It is up to the programmer to
make sure that the registers and other levels of cache are neither underutilized
nor over-pressured. Several papers are devoted to the issue of achieving the
right balance to get optimal performance on GPUs [28, 37], relying on novel
programming techniques that are not necessarily intuitive to the existing HPC
programmer.

Gaussian elimination (GE) based algorithms have triple nested loops and
very similar data access patterns. Examples include LU decomposition without
pivoting, Cholesky factorization, all-pairs shortest paths (APSP), and transitive
closure. The similarity among those problems has led researchers to approach
them in a unified manner. For example, the Gaussian Elimination Paradigm
of Chowdhury and Ramachandran provides a cache-oblivious framework for
these problems [8]. In this paper, we specifically focus on the APSP problem
because it usually operates on single precision floating point data, making it
suitable to current generation GPUs. On the contrary, factorizations such as
LU and Cholesky require double precision arithmetic that was not available on
the GPUs until very recently (with AMD FireStream 9170 and Nvidia GeForce
GTX 280). Even now, the double precision performance is 4-8 times slower than
single precision, and the limited global memory of current generation GPUs
discourage the use of double precision floating point numbers. Furthermore,
numerical LU decomposition without pivoting is unstable [17] at best (it may
not even exist), and pivoting strategies on the GPU are beyond the scope of
this paper. Volkov and Demmel did an excellent job of implementing LU, QR,
and Cholesky factorizations on the GPU, albeit in single precision [37]. It is
worth noting that our implementations compute only the distance version of
the APSP problem, i.e. they do not explicitly compute the paths, only their
lengths. This is due to memory limitations of the GPUs.

Our two main contributions in this paper are:

1. Recursive partitioning is used as a tool to express a different schedule of
path computations that allows extensive use of highly optimized matrix-
matrix operations. Specifically, we use matrix multiplication on semirings
as a building block for GE based algorithms. By doing so, we increase data
locality, which is even more important for high performance computing on
the GPU than on the CPU

2. As a proof of concept, we provide an efficient implementation of the APSP
algorithm on the GPU that is up to 480x faster than our reference CPU
implementation, and up to 75x faster than an existing GPU implementation
on a similar architecture.

Locality of reference has always been an issue in algorithm design, and it
will be even more important with GPUs. Our work provides evidence that
some fundamental algorithmic techniques that have not been popular in the
HPC community, such as recursion, may become mainstream. This is because
stream processors, such as GPUs, achieve efficiency through locality [11], and
recursive algorithms naturally exploit locality.

As minor contributions, we give an alternate (arguably simpler) proof of
correctness based on path expressions for the recursively partitioned APSP al-
gorithm. On the GPU, we compare iterative, and recursive versions of the same
algorithm and provide insights into their performance difference through micro
benchmarks. Therefore, we provide evidence that BLAS-3 routines on semirings
can be used to speed up certain graph algorithms. Finally, we compare different
CPUs and GPUs on their power efficiency in solving this problem.

2. Gaussian Elimination Based Algorithms

Gaussian elimination is used to solve a system of linear equations Ax = b,
where A is an n × n matrix of coefficients, x is a vector of unknowns, and
b is a vector of constants. Recursive blocked LU factorization is an efficient
way of performing Gaussian elimination on architectures with deep memory
hierarchies [12, 35]. This is mostly due to its extensive use of matrix-matrix
operations (Level 3 BLAS) that are optimized for the underlying architecture.
Let A be partitioned as

A =

⎡
⎣

A11 A12

A21 A22

⎤
⎦ . (1)

Then, the in-place version of the recursive blocked algorithm without pivot-
ing can be written as

A11 ←LU(A11)
A12 ←A12\A11 (2)
A21 ←A21/A11

A22 ←LU(A22 −A21A12).

In this pseudocode, LU is the recursive call to the function itself, \ and /
denote triangular solve operations with multiple right hand sides.

LU factorization operates on the field of real numbers, but the same algo-
rithm can be used to solve a number of graph problems, albeit using a different
algebra. Specifically, closed semirings provide a general algebraic structure that
can be used to solve a number of path problems on graphs [4, 33]. A semiring
has all the properties of a ring, except that there might be elements without an
additive inverse. One practical implication is that fast matrix multiplication al-
gorithms that use additive inverses, such as the Strassen algorithm [32] and the
Coppersmith-Winograd algorithm [9], do not apply to matrices over semirings.

A closed semiring is formally denoted by (S,⊕,⊗, 0, 1), where⊕ and⊗ are bi-
nary operations defined on the set S with identity elements 0 and 1 respectively.
Fletcher [15] gives a complete definition of a closed semiring. Two important
semirings used in this work are the Boolean semiring ({0, 1},∨,∧, 0, 1) and the
tropical semiring (R+, min, +,∞, 0). A closed semiring is said to be idempotent
if a⊕a = a for all a ∈ S. Although idempotence of the semiring is not a require-
ment for the solution of path problems on graphs [15], the correctness of our
in-place algorithms relies on idempotence. Both the Boolean semiring and the
tropical semiring are idempotent, as min(a, a) = a for all a ∈ R

+, and 0∨0 = 0,
1 ∨ 1 = 1.

2.1. The All-Pairs Shortest-Paths Problem
The all-pairs shortest-paths (APSP) is a fundamental graph problem. Given

a directed graph G = (V, E) with vertices V = {v1, v2, ..., vn} and edges E =
{e1, e2, ..., em}, the problem is to compute the length of the shortest path from
vi to vj for all (vi, vj) pairs. APSP corresponds to finding the matrix closure
A∗ = I ⊕A⊕A2 ⊕ ... on the tropical semiring.

APSP is the focus of this paper among the set of GE based algorithms due
to its practical importance and the lack of fast implementations on the GPU.
All the algorithms discussed in this paper take the adjacency matrix A of the
graph, where A(i, j) represents the length of the edge vi → vj , as the input.
They output A∗, where A∗(i, j) represents the length of the shortest path from
vi to vj . Edge weights can be arbitrary (positive, negative, or zero), but we
assume that there are no negative cycles in the graph. Also, the cost of staying
at the same vertex is zero, i.e., A(i, i) = 0. If not, we can delete any edge of the
form A(i, i)
= 0 as it will certainly not contribute to any shortest path. This is
because shortest paths are simple when there are no negative cycles.

The standard algorithm for solving the APSP problem is the Floyd-Warshall
(FW) algorithm. It is especially well-suited for dense graphs due to its Θ(n3)
complexity. It is a dynamic programming algorithm that consists of a triply
nested loop similar to matrix multiplication. In fact, computing the APSP
problem is computationally equivalent to computing the product of two matrices
on a semiring [4]. However, the order of the loops cannot be changed arbitrarily
as in the case of matrix multiplication. In the linear algebra sense, the algorithm
computes the outer product of the kth row and the kth column, and does rank-1
updates on the whole matrix, for k = 1, 2, ..., n. The order of the outer product
updates cannot be changed, but one is free to compute the outer product in any
order. This means that the k-loop should be the outermost loop, and the other
loops can be freely interchanged. Although the added constraint on the order
of loops hinders some of the loop-interchange optimizations that are applied
to matrix multiplication, automatic program generators for the FW algorithm
have been shown to provide formidable speedups [19]. The pseudocode for the
FW algorithm, in standard notation and in linear algebra notation, are given in
Figures 1 and 2.

For sparse graphs, Johnson’s algorithm [24], which runs Dijkstra’s single-
source shortest paths algorithm from every vertex (after some preprocessing

A∗ : R
N×N = FW(A : R

N×N)
1 for k ← 0 to N − 1
2 do for i← 0 to N − 1
3 do for j ← 0 to N − 1
4 do A(i, j)← min(A(i, j), A(i, k) + A(k, j))
5 A∗ ← A

Figure 1: FW algorithm in the stardard notation

A∗ : R
N×N = FW(A : R

N×N)
1 for k ← 0 to N − 1
2 do A← A⊕A(:, k)⊗A(k, :) � Algebra on the (min,+) semiring
3 A∗ ← A

Figure 2: FW algorithm in linear algebra notation

that lets the algorithm run on graphs having edges with negative weights), is
probably the algorithm of choice for an implementation on the CPU. However,
as we demonstrate in Section 4, the GE based algorithm clearly outperforms
both the FW algorithm and Johnson’s algorithm when implemented on the
GPU.

For unweighted graphs, it is possible to embed the semiring into the ring
of integers and use a fast, o(n3), matrix multiplication. For an undirected and
unweighted graph, Seidel [29] gives a O(M(n) lg n) algorithm, where M(n) is
the time to multiply two n × n matrices on the ring of integers. This elegant
algorithm repeatedly squares the adjacency matrix of the graph. However, it is
not currently known how to generalize Seidel’s algorithm to weighted or directed
graphs [38].

2.2. Recursive In-Place APSP Algorithm
The closure of a matrix can be computed using an algorithm similar to

recursive Gaussian elimination without pivoting. It is guaranteed to terminate
on a closed semiring like the tropical semiring. The only subroutine of this
algorithm is matrix multiplication on a semiring. The n-by-n adjacency matrix
is recursively partitioned into four equal-sized n/2-by-n/2 submatrices as before;
the pseudocode for the algorithm is shown in Figure 3. We use juxtaposition
(AB) to denote the multiplication of A and B on the semiring. The algorithm
does not require n to be even. If n is odd, the same decomposition in (1) works
with �n/2� and n/2�.

A11 ←A∗
11

A12 ←A11A12

A21 ←A21A11

A22 ←A22 ⊕A21A12 (3)
A22 ←A∗

22

A21 ←A22A21

A12 ←A12A22

A11 ←A11 ⊕A12A21.

Figure 3: Pseudocode for recursive in-place APSP

Recursive formulations of APSP have been presented by many researchers
over the years [10, 27, 34]. The connection to semiring matrix multiplication
was shown by Aho et al. [4], but they did not present a complete algorithm.
Ours is a modified version of the algorithm of Tiskin [34] and R-Kleene algo-
rithm [10]. Especially, the in-place nature of the R-Kleene algorithm helped us
avoid expensive global memory to global memory data copying. As the algo-
rithm makes use of matrix multiplication as a subroutine, it has a much higher
data reuse ratio while having asymptotically the same operation count.

The correctness of the recursive algorithm has been formally proven in var-
ious ways before [10, 27]. Here we present an simpler proof based on algebraic
paths. As in Aho et al. [4], we partition the set of vertices into V1 = {v1, ..., vn/2}
and V2 = {vn/2+1, ..., vn}. Submatrix A11 represents the edges within V1, sub-
matrix A12 the edges from V1 to V2, submatrix A21 the edges from V2 to V1,
and submatrix A22 the edges within V2.

Now, consider the paths in A∗
11. They can either travel within V1 only or

move from V1 to V2 following an edge in A12, and then come back to V2 through
an edge in A21, possibly after traveling within V2 for a while by following edges in
A22. The regular expression for the latter path is A12A

∗
22A21. This partial path

can be repeated a number of times, possibly going through different vertices
each time. An example path from v to w is shown in Figure 4. The complete
regular expression becomes

A∗
11 = (A11 |A12A

∗
22A21)∗. (4)

On the other hand, the regular expression we get after the recursive algo-
rithm terminates is

A∗
11 = A∗

11 | (A∗
11A12(A22 |A21A

∗
11A12)∗A21A

∗
11). (5)

These two regular expressions define the same language, hence represent the
same set of paths [33]. By converting these regular expressions into deterministic

w

v

x

t

q

y

r

s
V1

A∗
11

V2

A∗
11

A12

A21

A21

A12

A∗
22

A∗
22

Figure 4: An example path in A∗
11

finite automata (DFA), and minimizing them [22], we see that both have the
same minimum-state DFA shown in Figure 5. Since the minimum-state DFA is
unique for a language, this proves that the algorithm computes the correct set
of paths.

q1
A11

A12

A21

A22

A11
q0 q2

Figure 5: Minimum-state DFA for the path expressions in A∗
11

It is also possible to implement this algorithm in a blocked iterative way as
previously done for transitive closure [36]. The percentage of work done itera-
tively (without using matrix multiplication) is the same, and corresponds to the
block diagonal part of the matrix. However, the multiplications in the blocked
algorithm are always between matrices of size B × B, where B is the blocking
factor. This is potentially a limiting factor on GPUs because multiplication

tends to get drastically faster as matrices get bigger (less than 20 GFlops/s
when N=64 versus 200 GFlops/s when N=1024) [37]. With the recursive for-
mulation, on the other hand, more work can be done during multiplication of
large matrices.

Furthermore, the recursive algorithm does fewer kernel launches than the
block iterative one. The block iterative algorithm launches O((N/B)3) kernels
for matrix multiplications and O(N/B) kernels for computing closures of B ×
B blocks on the diagonal. On the other hand, at each level of the recursion
tree, the recursive algorithm launches 6 kernels for matrix multiplications, and
does 2 recursive calls. This makes a total of only O(N/B) kernel launches
because the height of the recursion tree is lg (N/B), and the number of kernel
launches doubles at each level ({6, 12, 24, ..., 6(N/B)}). The O((N/B)2) factor
of improvement can be quite significant, as kernel launches incur significant
overhead in CUDA.

One important feature of our implementation is that it is performed in place,
overwriting the input with the output without constraining the order of loops
in the matrix multiplication. For the matrix multiply-add operations A22 ←
A22 ⊕ A21A12 and A11 ← A11 ⊕ A12A21, there are no issues of correctness.
However, for other multiplications of the form B ← BA or B ← AB, the order
of evaluation (whether it is an ijk loop or an kji loop) matters on a general
semiring. This is because updating the output automatically updates the input,
and the algorithm will now use a different input for the rest of the computation.
As proved by D’Alberto and Nicolau [10], this is not a problem as long as the
semiring is idempotent and A is a closure. The intuition is that if the algorithm
prematurely overwrites its input, this just makes the algorithm find shortest
paths quicker. In other words, it speeds up the information dissemination, but
the correctness is preserved thanks to idempotence.

Note that four of the six multiplications at any level of the recursion tree
are of the form B ← BA or B ← AB. In other words, they perform multiply
instead of multiply-add operations. Using B ← B +BA or B ← B +AB would
be equally correct, but unnecessary. Remember that the cost of staying in a
vertex is zero, i.e. A(i, i) = 0. Consider B ← AB: If B contains a path vi ⇒ vj

before the operation, AB generates a cost-equivalent path vi ⇒ vi ⇒ vj and
safely overwrites B.

3. GPU Computing Model with CUDA

More and more applications that traditionally run on the CPU are now
being reimplemented to run on the GPU, a technique called general-purpose
computing on graphics processing units (GPGPU). Both Nvidia and AMD offer
programming interfaces for making GPGPU accessible to programmers who
are not experts in computer graphics [1, 3]. Nvidia’s Compute Unified Device
Architecture (Cuda) offers a higher level C-like API, whereas AMD’s Close-
to-Metal (CTM) allows the programmers to access lower levels of hardware.
As opposed to CTM, the Cuda platform is unified in the sense that it has no
architectural division for vertex and pixel processing.

3.1. GPU Programming
The new generation of GPUs are basically multithreaded stream processors.

They offer tremendous amounts of bandwidth and single-precision floating point
arithmetic computation rates. In stream processing, a single data parallel func-
tion (kernel) is executed on a stream of data, and that is exactly how the Cuda
programming model works. A Cuda program is composed of two parts: A host
(CPU) code that makes kernel calls, and a device (GPU) code that actually
implements the kernel. The host code is conceptually a serial C program, but
the device code should be massively parallel in order to harness the power of
the GPU.

The fundamental building block of Nvidia 8 and 9 series is the streaming
multiprocessors (SMs), sometimes called the GPU chips. Each SM consists of 8
streaming processors (cores), but only one instruction fetch/decode unit. The
implies that all 8 cores must simultaneously execute the same instruction. This
is why divergence in the device code should be avoided as much as possible. The
memory hierarchy consists of multiple levels. Each SM has 8192 registers and
16KB on-chip shared memory, which is as fast as registers provided that bank
conflicts are avoided. A high-latency (200-300 cycles) off-chip global memory
provides the main storage for the application on the GPU. Part of the off-chip
memory, called the local memory, is used for storing variables that are spilled
from registers.

A kernel is executed by many threads on the GPU. These threads are or-
ganized as a grid of thread blocks, which are batches of threads that can co-
operate/communicate through on-chip shared memory and synchronize their
execution. Each thread block is executed by only one SM, but each SM can
execute multiple thread blocks simultaneously.

The main scheduling unit in Cuda is a warp, a group of 32 threads from the
same thread block. All threads in a warp execute the same instruction, and
execution of an arithmetic instruction for the whole warp takes 4 clock cycles.
The number of active warps in a block is an important factor in tolerating global
memory access latency.

3.2. Experiences and Observations
Some limitations exist for the device code. For example, recursion and static

variables are not allowed. These limitations do not apply to the host code, as it
is just a regular C code running on the CPU. In fact, recursion in the host code
is a powerful technique, since it naturally separates the recursion stack from the
floating-point intensive part of the program. Although recursive divide-and-
conquer algorithms are naturally cache efficient [18], they have traditionally not
achieved their full performance due to the overheads associated with recursion.
We do not have such a limitation with CUDA because the recursion stack, which
is on the CPU, does not interfere with the kernel code on the GPU.

Code optimization on a GPU is a tedious job with many pitfalls. Perfor-
mance on a GPU is often more fragile than performance on a CPU. It has been
observed that small changes can cause huge effects on the performance [28]. For

example, in the optimized GEMM routine of Volkov [37], each thread block is
16×4 and each thread uses 32 registers. This allows 8192/32 = 256 threads and
256/64 = 4 thread blocks can simultaneously be active on each SM. As there
are two warps per thread block and it takes 4 cycles to execute an instruction
for the whole warp, a latency of 8 × 4 = 32 cycles can be completely hidden.
In the case that an extra variable is required, the compiler can either choose to
spill it out to local memory and keep the register count intact, or increase the
register usage per thread by one. In the latter case, the number of active thread
blocks decreases to 3. This introduces a 25% reduction in parallelism, but the
former option may perform worse if the kernel has few instructions because ac-
cess to a local variable will introduce one-time extra latency of 200-300 cycles.
Whichever option is chosen, it is obvious that performance is fragile: by just
adding one extra line, it is possible to drastically slow down the computation.

Another pitfall awaiting the programmer is bandwidth optimizations. In
Cuda, peak bandwidth can only be achieved through memory coalescing, i.e. by
making consecutively numbered threads access consecutive memory locations.
One can heavily underutilize the GPU bandwidth by not paying attention to
memory coalescing. However, the way memory coalescing works is quite counter-
intuitive to a multicore programmer. Assume that one wants to scan a 16 ×
N matrix stored in row-major order. On an SMP system with 16 cores, the
most bandwidth-friendly way is to let each processor scan a different row of the
matrix; in this case, each processor makes at most N/B cache misses, which
is optimal. On an Nvidia GPU, on the other hand, this will create multiple
memory accesses per warp since these threads do not access contiguous range of
memory addresses. An example with N = 8 is shown in Figure 6. However, if the
matrix were stored in column-major order, having each thread scan a different
row would be optimal on an Nvidia GPU. This is because memory accesses at
each step would be coalesced into a single access by the NVCC compiler [26].
Consequently, the right programming practices for achieving high bandwidth
are quite different for the GPU than for traditional parallel programming.

Thread 16

Thread 1

Thread 2

Thread 3

Thread 4

Thread 15

Figure 6: Stride-1 access per thread (row-major storage)

As a result, we advocate the use of optimized primitives as much as pos-
sible on the GPU. Harris et al. provide an excellent optimized scan primitive
with Cuda and encourage its use as a building block for implementing parallel
algorithms on Nvidia GPUs [21]. Here, we advocate the use of matrix-matrix
multiplication as an important primitive, not only for solving systems of linear
equations, but also for graph computations. In terms of performance, matrix
multiplication has been claimed to be unsuitable to run on GPUs due to the
lack of sufficient bandwidth [13]. The new generation GPUs, however, offer a
tremendous bandwidth of more than 100GB/s. Moreover, alternate implemen-
tations that are not bandwidth bound achieved close to peak performance [37].
It would be wise to take advantage of such an efficient primitive whenever pos-
sible.

4. Implementation and Experimentation

4.1. Experimental Platforms
We ran our GPU code on an Nvidia GeForce 8800 Ultra with Cuda SDK

1.1 and GCC version 4.1. The graphics card driver installed in our system is
Nvidia Unix x86 64 kernel module 169.09. The GeForce 8800 Ultra has 768MB
DRAM, a core clock of 612MHz, a stream processor clock of 1.5GHz, a memory
clock of 1080MHz, and an impressive bandwidth of 103.7GB/s. It consists of
16 SMs, each containing 8 cores, making up a total of 128 cores. Each core
can perform a multiply-add operation in a single cycle, which accounts for two
floating-point operations (Flops). Therefore, it offers a peak multiply-add rate
of 2 × 1.5 × 128 = 384 GFlops/s (not counting the extra MUL operation that
cores can issue only under certain circumstances).

For comparison, we ran our CPU experiments in three different settings:

1. Serial C++ code on Intel Core 2 Duo T2400 1.83Ghz with 1GB RAM
running Windows XP.

2. Serial C++ code on Opteron 2.2Ghz with 64GB RAM running Linux
kernel 2.6.18

3. Parallel Cilk++ code on a Numa machine (Neumann) with 64GB RAM,
and 8 dual-core Opteron processors clocked at 2.2Ghz.

4.2. Implementation Details
We implemented both the recursive and the iterative algorithm on the GPU

using Cuda. For the recursive algorithm, we experimented with two different
versions: one that uses a simple GEMM kernel, and one that uses the optimized
GEMM routine of Volkov [37]. When reporting experimental results, we call the
latter recursive optimized. Both recursive codes implement the same algorithm
given in Figure 3. Our recursive Cuda code is freely available at http://gauss.
cs.ucsb.edu/~aydin/apsp_cuda.html.

Our iterative APSP implementation uses a logical 2D partitioning of the
whole adjacency matrix. Such a decomposition was previously employed by

Jenq and Sahni on a hypercube multiprocessor [23], and found to be more
effective than 1D partitioning. However, keep in mind that there is no explicit
data partitioning, only a logical mapping of submatrices to thread blocks. Host
code invokes the kernel n times, where each thread block does a rank-1 update to
its submatrix per invocation. An initial snapshot of the execution is illustrated
in Figure 7 from the viewpoint of (2, 2) thread block.

k=1

k=1

A(2,2)

Figure 7: A shapshot from the execution of the iterative algorithm

Our serial iterative and recursive implementations run on the CPU as ref-
erences. The iterative implementation is the standard implementation of FW,
as shown in Figure 1. The recursive implementation is based on our recursive
formulation shown in Figure 3. The recursive implemention stops the recursion
when the submatrices completely fit into L1-cache to achieve better results.

Our reference parallel implementation runs on Neumann, a Numa machine
with a total of 16 processor cores (8 dual-core 2.2Ghz Opterons). We used
Cilk++ [2] to parallelize our code, which enabled speedups up to 15x.

4.3. Performance Results
Timings for our APSP implementations on Cuda are given in Table 1. Please

note the orders of magnitude difference among implementations.

Table 1: GPU timings on GeForce 8800 Ultra (in milliseconds)

Num. of Vertices Iterative Recursive Recursive Optimized
512 2.51× 102 1.62× 101 6.43× 100

1024 2.42× 103 1.00× 102 2.44× 101

2048 4.60× 104 7.46× 102 1.41× 102

4096 4.13× 105 5.88× 103 1.01× 103

8192 5.47× 106 5.57× 104 7.87× 103

Among our reference implementations, the best CPU performance is ob-
tained on the Intel Core 2 Duo, even though the processor had a slower clock

Table 2: Speedup on 8800 Ultra w.r.t. the best CPU implementation

Num. of Vertices Iterative Recursive Recursive Optimized
512 3.1 48.1 121.4
1024 3.0 73.4 301.5
2048 1.3 79.6 420.7
4096 1.2 81.5 473.2
8192 0.7 67.7 479.3

speed than the Opteron. We attribute this difference to the superior perfor-
mance of MS Visual Studio’s C++ compiler. Full listings of timings obtained
on two different CPUs and various compilers can be found in Appendix A. Ta-
ble 2 shows the speedup of various GPU implementations with respect to the
best CPU performance achieved for the given number of vertices. The results
are impressive, showing up to 480x speedups over our reference CPU implemen-
tation. Using an iterative formulation, only a modest 3.1x speedup is achieved
for relatively small inputs.

 1e+006

 100000

 10000

 1000

 100

 10

 1
 8192 4096 2048 1024 512

Ti
m

e
(m

ill
is

ec
on

ds
)

Number of Vertices

Iterative CPU
Recursive CPU

Iterative GPU
Recursive GPU

Recursive Optimized GPU

Figure 8: Log-log plot of absolute running times

Figure 8 shows a log-log plot of running times of 5 different implementa-
tions. Iterative CPU and recursive CPU are timings obtained by our serial code

Table 3: Observed exponents and constants for the asymptotic behaviour
of our APSP implementations with increasing problem size

t = c|V |n CPU (Intel Core 2 Duo) GPU (GeForce 8800 Ultra)
Iterative Recursive Iterative Recursive Recur. Optimized

Exponent (n) 3.02 3.23 3.62 2.94 2.59
Constant (c) 5.5× 10−6 1.4× 10−6 3.6× 10−8 1.5× 10−7 4.7× 10−7

Table 4: Performance comparison of our best (optimized recursive) GPU
implementation with parallel Cilk++ code running on Neumann, using all
16 cores

Num. of Vertices Best GPU (secs) Parallel CPU (secs) GPU Speedup
512 0.00643 0.113 17.5×
1024 0.0244 0.708 29×
2048 0.141 5.146 36.5×
4096 1.01 40.36 40×
8192 7.87 354.9 45×

running on Intel Core 2 Duo. For the rest of this section, we will be referring
to the recursive optimized code as our best GPU code.

The observed exponent of the recursive GPU implementation turned out
to be slightly different than theoretical values. To reveal that, we performed
a least-squares polynomial data fit on the log-log data. The input size(|V |) -
running time(t) relationship is of the form t = c|V |n. This can be converted
to lg t = lg c + n lg |V |, on which we can do linear data fitting. The observed
exponents and constants are reported in Table 3.

Our best GPU implementation still outperforms the parallelized CPU code
by a factor of 17-45x, even on 16 processors. Timings are listed in Table 4. The
economic advantage of the GPU is clear. Each of the dual-core sockets cost
more than $500, with a total cost of more than $4000, where Nvidia 8800 costs
less than $600. These estimates ignore the costs of other supporting hardware.

4.4. Comparison with Earlier Performance Results
We compare the performance of our code with two previously reported

results. One is an automatically generated, highly optimized serial program
running on a 3.6Ghz Pentium 4 CPU [19]. The other is due to Harish and
Narayanan on a GPU platform very similar to ours [20]. Our GeForce 8800 Ul-
tra is slightly faster than the GeForce 8800 GTX used by Harish and Narayanan,
so we underclocked our GPU to allow a direct comparison in terms of absolute
values.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

Matrix dimension

T
im

e
(s

ec
)

Optimized Recursive (GTX)
H&N APSP (GTX)
H&N SSSP (GTX)

Figure 9: Comparison of different GPU implementations on 8800 GTX settings

On the GPU, Harish and Narayanan implemented two variants of APSP: one
that uses the FW algorithm and one that runs Dijkstra’s single source shortest
paths (SSSP) algorithm for every vertex. For sparse graphs with m = O(n),
the latter is theoretically faster than both the FW algorithm and our recur-
sive formulation in the classical RAM model of computation [4]. It runs in
O(n2 lg n + nm) time using Fibonacci heaps [16]. However, as seen in Fig-
ure 9, our recursive implementation significantly outperforms both their FW
implementation (H&N APSP) and Dijkstra based implementation (H&N SSSP)
when implemented on a GPU. The running times for the H&N SSSP code are
observed for randomly generated Erdős-Rényi graphs with an average vertex
degree of 6. The running times of the other two implementations are not sensi-
tive to sparsity. When timing our algorithm, we underclocked our GPU’s clocks
down to the speed of 8800 GTX for a head-to-head comparison. Due to the
adjacency matrix representation, our algorithm runs on graphs of at most 8192
vertices. Therefore, the H&N SSSP implementation is currently more favorable
for large sparse graphs, although it lags behind in terms of raw speed. We plan
to implement an out-of-core version of our algorithm for larger graphs.

The performance results for our iterative algorithm, given in Section 4.3,
agree with the 2x-3x speedup over a CPU implementation achieved by H&N
APSP. That implementation was also limited to 4096 vertices, while ours ex-
tends to 8192 with only a slowdown. Our best APSP code is faster than H&N
APSP by a factor of 35-75x.

Comparing our results with the timings reported by Han et al. for the op-
timized code obtained using their auto generation tool Spiral [19], we also see

significant speedups achieved by our best (optimized recursive) GPU implemen-
tation. Our comparisons are against their vectorized code (typically 4-5x faster
than scalar code), and we see speedups up to 28x against Pentium 4, and 42x
against Athlon 64. A detailed comparison can be found in Table 5. Those
results also show that the GPU implementation scales better with increasing
problem size, because the speedup we get over Spiral increases as the problem
size increases.

Table 5: Comparisons of our best GPU implementation with the timings
reported for Han et al. ’s auto generation tool Spiral

Num. of Vertices GFlops/s Speedup of GeForce
GeForce 8800 Pentium 4 Athlon 64 Pentium 4 Athlon 64

512 38.6 5.08 3.17 7.6x 12.2x
1024 82.0 5.00 2.77 16.4x 29.6x
2048 113.5 4.78 2.73 23.7x 41.6x
4096 126.7 4.47 2.96 28.3x 42.8x

4.5. Scalability and Resource Usage
In this section, we try to identify the bottlenecks in our implementation in

terms of resource usage and scalability. By using the NVIDIA Coolbits util-
ity, we tweaked the frequencies of both the GPU core clock and the memory
clock. The results reveal that our recursive implementation is not limited by the
memory bandwidth to global GPU DRAM. For this implementation, the tim-
ings and GFlops/s rates with different clock rates are given in Table 6. When
the memory clock is fixed, the slowdown of the computation closely tracks the
slowdown of the GPU core clock (0-50% with increments of 12.5%). On the
other hand, when the GPU core clock is fixed, little slowdown is observed when
we underclock the memory clock. Coolbits reported the default clock speeds of
8800 Ultra as 648Mhz for cores, and 1152Mhz for memory, which are slightly
different than the values reported in NVIDIA factsheets.

The peak rate observed was 130 GFlops/s for |V | = 8192, compared to the
theoretical peak of 384 GFlops. However, the theoretical peak counts 2 Flops
for each fused multiply-add operation, which is not available on the tropical
semiring our algorithm operates on. Therefore, the actual theoretical peak in
the absence of fused multiply-add operations is 192 GFlops. Our implementation
achieves more than 67% of that arithmetic peak rate for APSP.

The iterative implementation, on the other hand, is observed to be com-
pletely bandwidth bound. Even when the GPU cores are underclocked to half,
no slowdown was observed. Underclocking the memory to half, however, slowed
down the computation by exactly a factor of two. Exact timings can be seen
in Figure 7. We conclude that the iterative formulation is putting too much
stress on GPU memory bandwidth, consequently not harnessing the available
computation power of the GPU. This is indeed expected, because the iterative

Table 6: Scalability of our optimized recursive GPU implementation. We
tweaked core and memory clock rates using Coolbits.

|V | = 4096 GPU Clock Memory Clock Time (ms) GFlops/s Slowdown (%)
Default values 648 1152 1028.3 124.4 -

Memory
clock fixed
at 1152 Mhz

567 1152 1190.8 107.5 13.6
486 1152 1362.9 93.9 24.5
405 1152 1673.1 76.5 38.5
324 1152 2093.7 61.1 50.8

GPU core
clock fixed
at 648 Mhz

648 1008 1036.2 123.5 0.7
648 864 1047.3 122.2 1.8
648 720 1096 116.8 6.1
648 576 1124.9 113.8 8.5

Table 7: Scalability of our iterative GPU implementation. We tweaked
core and memory clock rates using Coolbits.

|V | = 4096 GPU Clock Memory Clock Time (ms) Slowdown (%)
Default values 648 1152 417611.4 -

Core clock halved 324 1152 418845.7 0.3
Memory clock halved 648 576 856689.7 51.2

formulation accesses O(n2) data and does O(n2) work in every iteration. The
recursive algorithm, on the other hand, does almost all of its work in matrix
multiplications, which access O(n2) data for doing O(n3) work. Therefore, it
clearly has better locality of reference.

As it was not possible to disable a subset of GPU cores in the NVIDIA 8800,
we do not report any scalability results with increasing number of processors.

4.6. Power Consumption
Power efficiency is becoming an important consideration when comparing

different architectures [14]. The Green500 list ranks supercomputers according
to their Flops/Watts/s (or Flops/Joule) ratio. In this section, we compare
the power efficiency of different architures for the APSP problem. Due to the
lack of equipment we were not able to measure exact power usages during the
computation. Thus, we will refer to these values provided by the manufacturers.
The results, however, are orders of magnitude different, so that the uncertainty
in the actual power consumption when running the application is acceptable.

Nvidia reports a peak power consumption of 175Watts for its GeForce 8800
Ultra video card. Our dual-core Opteron (model number 8214) is reported
to consume a peak power of 95Watts, but we are using only a single core of
it during serial computation. The machines used in the reported timings of
automatically tuned CPU implementations are Pentium 4 (model number 560)

Table 8: Efficiency comparison of different architectures (running various
codes), values in MFlops/Watts/s (or equivalently MFlops/Joule)

|V | Nvidia GPU Athlon Pentium 4 Core 2 Duo Neumann (Opteron)
Best Cuda code Spiral Code Reference FW Cilk++ (p=16)

512 173 35.6 44.1 19.1 2.9
1024 368 31.1 43.7 17.4 3.7
2048 510 30.6 41.5 17.3 4.1
4096 569 33.2 38.8 17.2 4.2

and Athlon 64 (model 4000+). They consume 115 and 89Watts, respectively.
The Intel Core Duo T2400, the most power efficient CPU in this comparison,
has a maximum power consumption of only 31Watts even when both cores are
active.

This comparative study should be considered very preliminary, because we
are not running the same code in every architecture. The GPU code is assumed
to use 175 + 95/2 = 222.5 Watts as it also uses one of the CPU cores to assist
the computation. This is also a rough estimate as it is likely that when one
core is idle, the whole processor’s power consumption is more than half of its
maximum. However, our rationale is that it is possible to use the other core to
perform the same computation on a different input.

The results, outlined in Table 8, show that the Nvidia Cuda implementa-
tion is not only powerful, but also efficient. The closest competitor is the auto
generated Spiral [19] code that runs on Pentium 4. Note that Pentium 4 is
not a particularly power efficient processor. Therefore, it is plausible that an
auto generated code on more power efficient hardware would get closer to the
efficiency of the GPU. A couple of factors contribute to the inefficiency of Neu-
mann. The most important one being that the Opterons we use are not HE
versions, but rather high-performance Opterons. A single Opteron core in Neu-
mann consumes more than three times the power that is consumed by Core 2
Duo, while still giving worse performance in this particular problem.

5. Conclusions and Future Work

We have considered the efficient implementation of Gaussian elimination
based algorithms on the GPU. Choosing the right algorithm that efficiently maps
to the underlying hardware has always been important in high-performance
computing. Our work shows that it is even more important when the hardware
in question is a GPU. Our proof-of-concept implementation runs more than two
orders of magnitude faster than a simple porting of the most popular algorithm
to the GPU. The key to performance was to choose an algorithm that has good
locality of reference and makes the most use of optimized kernels.

We made extensive comparisons with our reference implementations on sin-
gle processor and shared memory multiprocessor systems, as well as with pre-
viously reported results obtained on various CPUs and GPUs. Future work
includes identifying and implementing crucial kernels that are likely to speed
up a large class of applications. Specifically, we are working on implementing
an efficient sparse matrix-matrix multiplication algorithm on the GPU, which
is to be used as a building block for many graph algorithms [6, 7].

Acknowledgments

We acknowledge the kind permission of Charles Leiserson and CilkArts to
use an alpha release of the Cilk++ language. We also thank P.J.Narayanan and
Pawan Harish for providing us the exact timings from their experiments. Sivan
Toledo helped us improve the presentation of the paper with various comments.
Also, thanks to Fenglin Liao and Arda Atali for their help during the initial
implementation on Cuda.

References

[1] AMD Stream Computing. http://ati.amd.com/technology/streamcomputing.
[2] Cilk Arts. www.cilk.com/.
[3] NVIDIA CUDA. http://www.nvidia.com/cuda.
[4] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley Longman, Boston, MA, USA, 1974.
[5] J. Bolz, I. Farmer, E. Grinspun, and P. Schrder. Sparse matrix solvers on

the GPU: Conjugate gradients and multigrid. ACM Transactions on Graphics,
22(3):917–924, 2003.

[6] A. Buluç and J. R. Gilbert. Challenges and advances in parallel sparse matrix-
matrix multiplication. In The 37th International Conference on Parallel Process-
ing (ICPP’08), pages 503–510, Portland, Oregon, USA, September 2008.

[7] A. Buluç and J. R. Gilbert. On the representation and multiplication of hy-
persparse matrices. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2008), April 2008.

[8] R. A. Chowdhury and V. Ramachandran. Cache-oblivious dynamic programming.
In SODA ’06: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithm, pages 591–600, New York, NY, USA, 2006. ACM.

[9] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-
sions. In STOC ’87: Proceedings of the Nineteenth Annual ACM Conference on
Theory of Computing, pages 1–6, New York, NY, USA, 1987. ACM Press.

[10] P. D’Alberto and A. Nicolau. R-Kleene: A high-performance divide-and-conquer
algorithm for the all-pair shortest path for densely connected networks. Algorith-
mica, 47(2):203–213, 2007.

[11] W. J. Dally. Keynote address: “Stream programming : Parallel processing made
simple”. In ICPP ’08: Proc. of the Intl. Conf. on Parallel Processing. IEEE
Computer Society, September 2008.

[12] E. Elmroth, F. Gustavson, I. Jonsson, and B. K̊agström. Recursive blocked
algorithms and hybrid data structures for dense matrix library software. SIAM
Review, 46(1):3–45, 2004.

[13] K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding the efficiency of
GPU algorithms for matrix-matrix multiplication. In HWWS ’04: Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware,
pages 133–137, New York, 2004. ACM.

[14] W. Feng, X. Feng, and R. Ge. Green supercomputing comes of age. IT Profes-
sional, 10(1):17–23, 2008.

[15] J. G. Fletcher. A more general algorithm for computing closed semiring costs
between vertices of a directed graph. Communications of the ACM, 23(6):350–
351, 1980.

[16] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.

[17] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, 1996.

[18] F. G. Gustavson. Recursion leads to automatic variable blocking for dense linear-
algebra algorithms. IBM J. Res. Dev., 41(6):737–756, 1997.

[19] S.-C. Han, F. Franchetti, and M. Püschel. Program generation for the all-pairs
shortest path problem. In PACT ’06: Proceedings of the 15th International
Conference on Parallel Architectures and Compilation techniques, pages 222–232,
New York, 2006. ACM.

[20] P. Harish and P.J.Narayanan. Accelerating large graph algorithms on the GPU
using CUDA. In International Conference on High Performance Computing
(HiPC 2007), 2007.

[21] M. Harris, S. Sengupta, and J. D. Owens. Parallel prefix sum (scan) with CUDA.
In H. Nguyen, editor, GPU Gems 3. Addison Wesley, 2007.

[22] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation (2nd Edition). Addison Wesley, 2000.

[23] J. Jenq and S. Sahni. All pairs shortest paths on a hypercube multiprocessor. In
ICPP ’87: Proc. of the Intl. Conf. on Parallel Processing, pages 713–716, 1987.

[24] D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal
of the ACM, 24(1):1–13, 1977.

[25] E. Lindholm, J. Nickolls, S. F. Oberman, and J. Montrym. Nvidia Tesla: A
unified graphics and computing architecture. IEEE Micro, 28(2):39–55, 2008.

[26] NVIDIA. CUDA Programming Guide 1.1, 2007. http://developer.download.

nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf.
[27] J.-S. Park, M. Penner, and V. K. Prasanna. Optimizing graph algorithms for

improved cache performance. IEEE Transactions on Parallel and Distributed
Systems, 15(9):769–782, 2004.

[28] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-
M. W. Hwu. Optimization principles and application performance evaluation of
a multithreaded GPU using CUDA. In PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages
73–82, New York, NY, USA, 2008. ACM.

[29] R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected
graphs. Journal of Computer and System Sciences, 51(3):400–403, 1995.

[30] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan primitives for GPU
computing. In Graphics Hardware 2007, pages 97–106. ACM, 2007.

[31] J. G. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph Library User Guide
and Reference Manual (With CD-ROM). Addison-Wesley Professional, 2001.

[32] V. Strassen. Gaussian elimination is not optimal. Numerical Math., 13:354–356,
1969.

[33] R. E. Tarjan. A unified approach to path problems. Journal of the ACM,
28(3):577–593, 1981.

[34] A. Tiskin. Synchronisation-efficient parallel all-pairs shortest paths computation
(work in progress), 2004. http://www.dcs.warwick.ac.uk/~tiskin/pub/2004/

apsp.ps.
[35] S. Toledo. Locality of reference in LU decomposition with partial pivoting. SIAM

Journal of Matrix Analysis and Applications, 18(4):1065–1081, 1997.
[36] J. D. Ullman and M. Yannakakis. The input/output complexity of transitive

closure. Annals of Mathematics and Artificial Intelligence, 3(2-4):331–360, 1991.
[37] V. Volkov and J. Demmel. LU, QR and Cholesky Factorizations using Vector

Capabilities of GPUs. Technical Report UCB/EECS-2008-49, EECS Department,
University of California, Berkeley, May 2008.

[38] U. Zwick. Exact and approximate distances in graphs - a survey. In ESA ’01:
Proceedings of the 9th Annual European Symposium on Algorithms, pages 33–48.
Springer-Verlag, 2001.

Appendix A. Additional Timing Results

Table 9 shows the timings obtained on Intel Core 2 Duo, using MS Visual
Studio 2003’s C++ compiler. For small inputs (|V | ≤ 1024), the recursive im-
plementation performs better due to its cache friendliness. For larger inputs,
however, the overhead of recursion starts to dominate the running time. We
have also experimented with the Boost Graph Library’s Floyd-Warshall imple-
mentation [31] but found it to be consistently slower than our implementations.
This might be due to the overheads coming from the genericity of Boost. There-
fore, we excluded its running times from our plots in the main text.

Table 9: Serial timings on Intel Core 2 Duo (in milliseconds)

Num. of Vertices Iterative Recursive Boost
512 8.43× 102 7.81× 102 1.37× 103

1024 7.40× 103 7.35× 103 1.16× 104

2048 5.94× 104 7.98× 104 9.19× 104

4096 4.79× 105 7.20× 105 7.27× 105

8192 3.77× 106 5.82× 106 N.A.

In Table 10, we list the performance of our reference implementations, com-
piled both with GCC and Intel C/C++ compiler version 9.1 (ICC). Although
Intel’s compiler consistently outperformed GCC, its performance still lags be-
hind the performance achieved by MS Visual Studio on Intel.

Table 10: Serial timings on Opteron (in milliseconds)

Num. of Vertices Iterative Recursive
GCC ICC GCC ICC

512 1.30× 103 9.90× 102 1.60× 103 1.14× 103

1024 1.07× 104 8.31× 103 1.34× 104 9.74× 103

2048 8.41× 104 6.41× 104 1.32× 105 1.03× 105

4096 6.66× 105 5.03× 105 1.24× 106 1.00× 106

8192 N.A. 3.94× 106 N.A. 1.58× 107

