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ABSTRACT

The increasing popularity of social networks has initiated a fer-
tile research area in information extraction and data mining. Al-

though such analysis can facilitate better understanding of socio-
logical, behavioral, and other interesting phenomena, there is grow-

ing concern about personal privacy being breached, therebyrreq
ing effective anonymization techniques. If we consider the social

graph to be a weighted graph, then the problem of anonymization

can be of various typesnode identity anonymizatiorstructural
anonymizationor edge weight anonymizatiorin this paper, we

consider edge weight anonymization. Our approach builds a linear 5 ;
9 9 y P h be anonymized before they are published. Consequently, there has

programming (LP) model which preserves properties of the grap

user is associated with a number of others through friendship, pro-
fessional association (being members of communities), common
interests, and so on. The resulting graph structures have millions
of vertices (users or social actors) and edges (social associations)
Recent research has explored these social networks for undgrstan
ing their structure 10, 4, 1, 22, for criminal intelligence 24,
information discoveryZ], advertising and marketind.g], and oth-

ers P]. As a result, companies (such as Facebook) hosting the data
are interested in publishing portions of the graphs so that indepen-
dent entities can mine the data. In order to protect the privacy of
the users against different types of attacBs15], graphs should

that are expressible as linear functions of the edge weights. Suchalso been considerable interest in the anonymization of graph struc-

properties form the foundations of many important graph-theoretic
algorithms such asingle source shortest paths tree, all-pairs short-
est pathsk-nearest neighbors, minimum cost spanning tee,
Off-the-shelf LP solvers can then be used to find solutions to the
resulting model where the computed solution forms the weights

tured data}, 6, 12, 19, 31]. But most of the existing research on
anonymization techniques tend to focusimweightedyraphs for
nodeandstructural anonymizatian

Are social graphs weighted?Recently, there has been consider-
able interest in the analysis of theeightednetwork model where

of the anonymized graph. As a proof of concept, we choose the the social networks are viewed as weighted graphs. The weighted

shortest paths problemnd its extensions, prove the correctness of

the constructed models, analyze their complexity, and experimen-

graph model is used for analyzing tf@emation of communities
within the network 17], viral and targeted marketing and adver-

tally evaluate the proposed techniques using real social networktising [13], modeling the structure and dynamissch as opinion

data sets.

Our experiments demonstrate that not only does theformation P8], and for analysis of the network fanaximizing

proposed technique anonymize the weights, but it also improves the spread of informatiothrough the social links1{], in addition

the k-anonymityof the graphs while scrambling the relative or-
dering of the edge-weights, thereby providing robust and effective
anonymization of the sensitive edge-weights.

Categories and Subject Descriptors

E.1 [Data Structures]: Graphs and networks; G.1.6ptimization]:
Linear programming; J.4jocial and Behavioral Sciencds Soci-
ology

General Terms
Algorithms, Design, Security.

Keywords

Anonymization, Social Networks, Weighted network models, Short-
est paths, Linear Programming.

1. INTRODUCTION

Social Networks have become increasingly popular applications

to the traditional applications on weighted graphs sucshastest
paths spanning treesk-Nearest Neighbors (kNMc. The seman-
tics of the edge weights depend on the application (such as users in
a social network assigning weights based on “degree of friendship”,
“trustworthiness”, “behavior”, etc.), or the property being modeled
(such as detection of communities7] or modeling network dy-
namics R8]). For example, consider thH&os Angeles” commu-

nity in Facebook. If we consider that edge weights are inverse of
“trustworthiness” (smaller weights correspond to higher trust in the
relation), then th&kNN query at a particular vertex returns the
most trusted users associated to the queried user, arsirtle
source shortest paths trggovides the most trusted paths within
the community which might be used for communicating while min-
imizing chances of a leak. Similarly, if we consider a routing prob-
lem (for information spread and marketing) where edge weights
correspond to cost of information propagation, then the shortest
paths minimizes the cost of information transfer.

Edge-weight anonymization: why do we careFirst, even though

in most cases node identities are anonymized, there are a number
of instances where they are public knowledge. For example, if we
consider théLos Angeles” community, the members and the link

in Web 2.0. Social networks such as MySpace (www.myspace.com)structures of the members (i.e., their connections) are known to any

Facebook (www.facebook.com), LinkedIn (www.linkedin.conmda
Orkut (www.orkut.com) have millions of registered users, and each

user who is also a member of the community. But the edge weights,
such as “trustworthiness” of uséraccording to useB, is private
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information (in this case foB — A). Therefore, for publish- @
ing the graph, anonymization of the edge weights is critical, while 4_-

node identity anonymization might not be needed. Similarly, in 11
academic social network&T, 6], node identities and link structure e

are public knowledge, but edge weights are sensiezondeven 7= 3
in the case where the node identities are anonymized, we assert that @
edge weight anonymization is still important. This is because as
demonstrated by Backstrom et &],[if the adversary has prior ac-

cess to the graph, then an attack can be devised for re-identification . )
of nodes in the anonymized graph. Hence, if the edge weights areFigure 1: Preserving only the order of edge-weights cannot
also not anonymized, re-identification of a node in the anonymized Model shortest paths tree. The dashed edges in the graph rep-
graph will reveal even more information. Therefore, unless effec- resent the shortest paths tree withv, as the root. In both the
tive anonymization techniques are devised, the wealth of informa- 9"apPhs, we havew(3, 4] <wl(l, 2] <w[2, 4] <wl[1, 3] <w([1,4]. This
tion contained in the weighted social network graphs will remain @PProach preserves the minimum cost spanning tree.

buried inside the companies hosting the networks. In this paper, we
provide a solution to this problem.

(a) Original graph (b) Naive anonymization

original graph. Consequently, the owner of the social network
But what is anonymized and what is preserved?As noted ear- can publish théLos Angeles” community graph without worry-

lier, weights vastly increase the utility of the social graph struc- jng about privacy breaches, while allowing applications to mean-
tures, and it is these properties of edge weights that must be pre-ingfully process the anonymized graphs and extract useful infor-
served across anonymization. For example, if we consider applica-mation [17, 28]. If the node identities are not anonymized, then
tions such ashortest pathsorkNN then the anonymization should  the shortest path in the anonymized graph can be used to spread
preserve some notion aélative distancesretween the nodes in  jnformation through entities in the original social graph. If node
the graph. On the other hand, if we consider applications such asjdentities are anonymized, it still allows the extraction of useful in-

maximizing spread of influencel4], then properties that can be  formation [L7, 28] from the graphs without privacy breaches.
formulated in the form)_ nei?hbo, ofw Wu,v < 6 [11] need to be

preserved. What is ultimately desirabletgshave an anonymized
graph which is as useful as the original graph in terms of the prop-
erty being preserved, while revealing as little information as al-
lowed by the semantics of the property being presef28&{

Contributions.

e We propose a framework for edge weight anonymization of
graph structured data that preseriieear properties

Privacy preserving modeling.Our solution to the problem of edge e As a proof-of-concept, we chooshortest paths problem
weight anonymization is to model the weighted graph based on the which forms the basis of a number other graph properties.
property to be preserved, and then reassign edge weights to obtain We usesingle source shortest paths tras a stepping stone.
the anonymized graph satisfying the model. To be specific, we The solutions to the individuaingle source shortest paths
preservdinear properties of the graph: treesfor all the nodes can be combined to modelahigairs
shortest paths problenThe composability of individual so-

DEerFINITION 1.1. A linear property of a graph is a property lutions in this way demonstrates the extensibility of the pro-
expressible in terms of inequalities involving linear combinations posed model to othdinear propertiesand preserve multiple
of edge weights. properties in a single anonymized graph.

If we consider that the anonymized graph preserves the structure e \We prove the correctness of the proposed models, provide a
of the original graph, the objective of the privacy preserving model thorough analysis of the complexity of the proposed models,
can be formally stated as: and present the results of experiments on real social network

graphs that validate this analysis, while confirming that the

OBJECTIVE 1.1. To construct a model thatorrectly captures anonymity of the sensitive information is preserved.

the inequalities that must be obeyed by the edge weights for the

linear property being modeled to be preserved. Any solution to  oyganization. Section2 introduces the abstract technique for pri-
such a _model vx_/ould ensure anonymization of gdge weights, wh|IeVaCy preserving modeling of weighted graphs while providing a
preserving the linear property under consideration. simple model fominimum spanning treas an example. Sectiéh
introduces the measures used to quantify the anonymity provided
by the models. Sectios explains the algorithm for modeling the
‘graph forsingle source shortest paths tregection5 extends these
models to solve thall pairs shortest pathgroblem. Sectiorb
%resents an experimental evaluation of the proposed techniques us-
ing real social network data sets, Sectibprovides a survey of
related work in social network mining and anonymization, and Sec-
tion 8 concludes the paper.

As noted earlier, graph properties such as minimum spanning
tree, shortest paths, nearest neighbors, graph clustering, maximiz
ing information spread etc., aflmear properties and hence our
approach is general enough to model and anonymize a large clas
of graph algorithms. In this paper, as a proof-of-concept, we con-
sider theshortest paths problersince it is a problem of great in-
terest in edge weighted graphs. It is also useful in modeling other
properties such agNN and community formation within complex
network models.

Edge weights have been anonymized — now what®nce the 2. ABSTRACT MODEL

model is created and a solution (edge weights) satisfying the modelNaive modeling. Unlike node anonymization, where a random
is obtained, the anonymized graph is guaranteed to preserve theassignment of identifiers is a possible option for anonymization,
property being modeled. For example, if we model shortest paths, with edge weight anonymization, a simple random assignment of
the anonymized graph will have the same shortest paths as in theweights would be useless as it would not preserve any properties
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G = (V,E,W) | Weighted graph to be anonymized the inequalityz(, ) < (... Therefore, for the MST, any so-
G' = (V,E,W’) || Anonymized graphlV’ satisfies the model | |ution to the system of inequalities constructed by taking for every
n, |V Number of vertices in the graph pair of edges selected in consecutive iteratiomg) and (v, v'),
m, |E| Number of edges in the graph the inequalityr(,.,.,y < z(.,/y Whenever the given weights satisfy
d Average degree of the vertices of the graph| w[u,v] < w[u’,v'], preserves the MST.
wlu, v] Original weight of edgéu, v), in G The algorithm makes decisions based on the actual numerical
w'[u, v] Anonymized weight of edgéu, v) in G’ values of the edge weights (@ffu, v]'s) and we model this decision
Plu,v] Path from vertex: to v in the graphGy in terms of the variables,,, ... Decisions made at each step of the
Dlu, v] Cost of P[u, v], Z(u’,v’)EP[u,v] wlu’, V'] algorlthm can similarly be expre_ssed as mequghtles |nvoIV|r_19 the
T[] Predecessor af in the shortest paths tree edge-weights. Thus, the execution gf the.algorlth.nj processing the
T Shortest paths tree with as the source graph can be modz_eled as a set pf linear m_equalltles |nvolv_|ng the
T owm) Variable corresponding to edge, v) € E _edge w_e_lgh.ts agariables and this results in a system of linear
inequalities:
f(uz EEE) U) Z(u’,u’)el—"[u,v] L(u! ")
I Indistinguishability threshold fok-anonymity
Ny Edge neighborhood of a vertex @11 A1z -+ Qim 21 by
a1 a2 - G2m T2 b2
Table 1: Notational Conventions. : : : : = : 1)
a1 Qg2 - Qkm Tm bm
N—_——
of the original graph. An alternative but still naive anonymization A X B

attempt is to randomly reassign edge weights compatible with the . . .

given linear ordering of the weights. But this naive approach is re- _If the edge weights are reassigned as any solution of the system
strictive in terms of both preserving the properties, as well as the ©f inequalities in 1), this would ensure that the properties of the
extent of anonymization it provides. In terms of restrictiveness, 9raph remain unchanged w.r.t the algorithm being modeled. The
preserving only the order of edge-weights will work for simple ap- model can therefore be formulated as a Linear Programming (LP)

plications likeminimum spanning treut cannot be extended to ~ Problem

shortest paths treekNN etc. As an example, consider the graph

in Figure 1; the order of the edge weights in the original graph . e

(Figure 1(a) is preserved in the anonymized graph (Figli(b)), Minimize (or Maximize)  F(z1,x2,...,%m)
but the shortest paths tree in the two graphs are not identical. This subjectto AX <B

method is also deficient in terms of the anonymity it provides since

the relative order is preserved. In terms of the extent of anonymiza- whereF is a linear objective function. Any application that can
tion provided, unintended information is seen to be revealed in the be expressed as a function of a linear combination of edge weights
anonymized graph: the ordering of the neighbors of each node, orcan be expressed as a Linear Optimization problem, and hence this
the relative “trustworthiness” among a set of friends, for example. abstract modeling technique can be used for any such application.
These shortcomings call for stronger models. In the rest of this Once the model has been developed, any off-the-shelf LP solver
section we introduce, in abstract, a stronger modeling technique. package can be used to find a solution to the set of inequalities

Abstract model formulation. As noted in Sectiorl, our pro- (constraints) that optimizes. The model is said to beorrect if
posed model is based on the observation that a gamut of interest-N€ Property being modeled is preserved across anonymization, i.e.,
ing properties are expressible in terms of linear combinations of 1Y Solution to the model ensures that the property being modeled
edge weights. For example, applications involving maximization IS the same in the original graph as well as the anonymized graph.
of the spread of influencel§, 11], use properties of linear com- The complgxﬂy of the model is the n_umber of |r_1equaI|t|es neces-
bination of edge weights (such 5, reighbor ofe wlu,v] < 0,). sary to de_flne the model_. Columns in the mammqrrespond to
Similarly, applications such ahortest pathskNN, minimum cost variables in the system, ie., the_qumber of edges in the graph, and
spanning treg etc., are expressable in terms of linear properties "OWS correspond to the inequalities produced by the model. The
of graphs. In this section, we introduce in abstract the technique fewer the constraln_ts required by the model, the more efficient it is.
used for modelinginear propertiesand use Kruskal's algorithm for ~ NOte that most social network graphs are sparse, and hence matrix
minimum spanning tree (MST36] as an example algorithm being A is also sparse, and LP solvers optlm_lzed _for such large systems
modeled. The goal of the model is to capture the dynamic behav- €@N be ysed. We remark that our t_echnlque is not dependent on the
ior of the algorithm using a system of linear inequalities. Given Semantics of edge-weights, and is general enough to encompass
the original weighted grapli’ = (V, E, W) with positive edge Ny algorithm based dimear propertiesof the graph.

weights represented by variables, z2, ...,z (Where eache; Choice of Objective Function. An added advantage of the LP
corresponds to an edge= (u,v) € E; refer to Tablel for no- formulation is that different objective functiorfs can be used to
tational conventions), our goal is to model the system of linear in- generate different solution sets, and hence different anonymized
equalities in terms of these variables. For example at every stepgraphs. Since any solution to the LP model can act as anonymized
of the Kruskal's algorithm 16] for the MST, the edge with the  weights, the actual objective function used is a free parameter. Stated
minimum weight amongst the set of remaining edges is selected, otherwise, feasibility is sufficient for correctness of the proposed
and if this edge does not result in a cycle, it is added to the MST. technique. Additionally, the variables can be assigned varying lower
Let (u,v) be the edge selected at ti& iteration, and(u’, v") be and upper bounds to attain different scalings as well as shifts in the
the edge selected in the 4+ 1)*" iteration, then this implies that  values of the solution. Therefore, the publisher of the graph can
wlu,v] < wu',v']. If (., andz, . are the variables repre-  publish anonymized versions of the same graph where the edge
senting these edges in the model, then this outcome is modeled byweights in each published version is different.
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3. DATA SENSITIVITY AND PRIVACY PRE-
SERVATION

This section formalizes the measures that quantify the extent

of anonymity. Our goal is to anonymize the edge weights of the

graph, while node identities and the structure of the graph remain

unchanged. While anonymizing the edge weights, it is imperative
that the anonymized edge weights should have little correlation to
the original edge weight. The LP modeling allows a wide selec-
tion of objective functions, in addition to shifting the bounds of the
variables and scaling the weights, thereby providing a lot of room
for manipulating the edge-weights so that the magnitude of the
anonymized weights have little correlation to the original weights.
In addition to altering the magnitudes of the edge weights, two
additional properties are also importafirst, how indistinguish-
able the weight of an edge is compared to the weights of other
edges, andecond how different the ordering of the edge weights
are in the original and anonymized graphs. The reason for indistin-
guishability is obvious, since a distinguishable edge-weight would
aid re-identification of the edge and possibly its weight. Order-
ing of weights is sensitive for certain semantics of edge-weights.
For instance, in théLos Angeles” community example, let edge
weights represent “trustworthiness”, so for the lidkk— B, its
weight corresponds to how trustworthy is according toA. So
if A ratesB as more trustworthy compared €4 thenw[A, B] >
w[A, C]. Evidently, this ordering is “sensitive” for all the involved

Algorithm 4.1 Dijkstra’a Algorithm: Shortest paths tree

1: D « (oc0) /* Cost of best known path from source. */
2: II « () /* Predecessor in shortest path from source. */
3: Q < wvo I* Set of unvisited vertices */
4: S «— ¢ I* Vertices to which shortest path is known. */
5: D[vo,vo] < 0
6: while Q # ¢ do
7. u + ExtractMin(Q) /* Unvisited vertex with min cost */
8: S —SuU {u}
9: for each vertew such thafu,v) € E andv ¢ S do
10: if D[vo,v] > Dlvo, u] + w(u,v] then
11 Dlvo,v] «+ D[vo, u] + wlu, v]
12: II(v) < w /* Shorter path exists. */
13: else
14: /* Do Nothing. */
: end if
16: if v ¢ @ then
17: Q— QU{v}
18: end if
19:  end for
20: end while

andp = 0 implies no correlation between the two orders. There-
fore, given a list of edges in thedge neighborhoodf a vertex, for

users, and the anonymized graph should not reveal this ordering. Inanonymizing the ranks or order of edge weights, valugs@bser
other words, anonymization should ensure that given an ordering in to 0 is desirable.
the anonymized graph, an adversary cannot determine the original

odrder with high confidence.

Note that this ordering or indistinguishability of edges is impor-
tant only in aneighborhood For instance, ordering @f[A, B] and
w[X,Y] is not important ifA, B, X, andY are not related. We
therefore define andge neighborhoodf a vertex where ordering
and indistinguishability is important.

DerINITION 3.1. Edge neighborhood of a vertexThe edge
neighborhood of a vertex, denoted asV,, is the set of edges
emanating from the vertey i.e., edges with as the source.

To address the privacy concerns, we use two well known metrics
used in data privacy and statistics:
k-anonymity. k-anonymityis a well known metric used in data
privacy for dealing with indistinguishability2l] of data values in
an anonymized data sets. We use the following definitiok-of
anonymityin the context of edge weight anonymization:

DEFINITION 3.2. An edge(u, v) is k-anonymousif there ex-
ists k — 1 other edgegu,v’) in the neighborhoodV,, such that
|lw[w, v]—wlu, v']|| < u, wherew is the indistinguishability thresh-
old, i.e., the difference of weights below which two edge weights
cannot be distinguished.

Spearman rank correlation coefficient. The Spearman rank coef-
ficient [25], denoted byp, is a statistical measure of the correlation

4. SINGLE SOURCE SHORTEST PATHS

In this section, we demonstrate how the abstract model described
in Section2 can be used fasingle source shortest paths tregiven
a weighted grapli = (V, E, W), and a source vertex, asingle
source shortest paths tré®a spanning tree of the graph where the
path from the source to any other vertex in the tree is the shortest
path between the pair i¥. This tree is important in a number
of applications; for example, if an application assigns weights to
the edges based on inverse of “trustworthiness”, then this tree will
provide the paths with greatest “trustworthiness” for transferring
critical information from a specific node.

The single source shortest paths trpeoblem can have various
naive anonymization schemes such as publishing the tree separately
along with an unweighted version of the graph. Our motivation for
solving this problem separately derives from the followiryst,
the single source shortest paths tre¢gorithm subsumes thie-
nearest neighborguery, since given the shortest paths tree from
nodewvg, we can determine the tapnearest neighbors in increas-
ing order. Our proposed solution preserves this additional property
which many naive solutions cannot preseng&econgd this algo-
rithm forms the basis for thall pairs shortest pathgroblem and
we use this as a stepping stone towards this gbaird, our com-
position of thesingle source shortest paths treesmodelall pairs
shortest pathproblem demonstrates the composability of the mod-

of ranks or orders of two ranked data sets. Given two ranked dataels. For instance, this allows the model & pairs shortest paths

setsX andY’, p is computed as:

63 d
n(n? —1)

whered; = x; — y; is the difference between the ranks of cor-
responding valueX; andY;, andn is the number of items in each
data set. The value of lies between—1 and 1,p = 1 implies
perfect correlationp = —1 implies perfect negative correlation,

p

to be combined with the model faninimum cost spanning tree

and the resulting anonymized graph preserves both these proper-
ties without the need to publish two separate graphs each preserv-
ing one property.

Dijkstra’s algorithm [f] is a well known greedy algorithm for
single source shortest paths tread Algorithm4.1 provides an
overview. Given a start vertex, at every step the algorithm selects
the vertexu with the smallest known cost fromy. The algorithm
tries to “relax” the neighbors of, by checking to see if the cost
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(a) Original weighted graph (b) Dijkstra’s algorithm in progress (c) After completion

Figure 2: lllustration of Dijkstra’s algorithm. The numbers adjoinin g the vertices and outside parenthesis correspond to the order
in which the vertices were selected by Dijkstra’s algorithm, the nunber in parentheses correspond to the cost of the best known gat
from the source, and the dashed edges constitute the shortgsiths tree.

Algorithm 4.2 Linear Complexity model e Category |: When processing edde, v), if D[vo,v] can be
1: D «— (co) /* Cost of best known path from source. */ improved, therD[vo, v] > D[vo, u]+w[u, v], add constraint
2: II « () /* Predecessor in shortest path from source. */ f(vo,v) > f(vo,u) + (u,. (line18in Algorithm 4.2).

3: Q < vo [* Set of unvisited vertices */ . .

4: S — ¢ I* Vertices to which shortest path is known. */ e Category II: When processing edde, v), if D[vo,v] can
5: Dlvo, vo] — 0 not be improved, the®[vo, v] < Dlvo,u] + wu,v], add
6: u' — ¢ /* Stores the vertex processed in previous iteration */ QOQStLa'ntf(”‘)?”) < flvo,u) + Z(u,) (line 20in Algo-
7: while Q # ¢ do rithm 4.2).

8:  u — ExtractMin(Q) e Category Il : When processing «— ExtractMin(@Q), if «’
90 S Su{u}

is the previous vertex processed, thefg, u'] < Dlvo, ul,
add constrainf (v, u’) < f(vo,w). This captures the order
in which the vertices are selected (lib&in Algorithm 4.2).

10:  if u’ # ¢then
11: AddConstraintf (vo,u’) < f(vo,u))

12:  endif
13: v «—u THEOREM 4.1. A model built from all the inequalities of Cat-
14:  for each vertexw such tha(u, v) € E'andv ¢ S do egories |, II, and Ill combined will correctly model Dijkstra’s al-
15: if D[vo,v] > Dlvo, u] + wlu,v] then gorithm, i.e., any solution to the model used to anonymize edge
16: Dlvo,v] < Dlvo, u] + wlu, v] weights in the graph results in the same shortest paths tree in the
17: H(v) < u original as well as the anonymized graph.
18: AddConstrai v0,0) > f(vo,u) + Ty .
19: else tf (v, v) > f(vo, ) (w) PrROOFR Proof by Contradiction. Let G = (V, E, W) be the
20: AddConstraintf (vo, v) < f(vo, u) + T (u.0)) input graph, and>’ = (V, E, W’) be the anonymized graph. Let
21 end if - ’ To be the shortest paths tree starting at verigi G andT} be the
22: if v ¢ ( then corresponding tree i6'. By way of contradiction, assume tHgg
23 Q — QU {v} andTy are different. Let be a vertex wher&, and7} differ, and
24 end if let u be its predecessor ify, andu’ in Tf, such that: # «’. Since
25 end for w is the predecessor ofin G and sincqu, v) and(v’,v) € E, we
26: end while must have:

D[U()?u}"_w[u?l)} :D[’U(),’U} (2
from the source has now decreased because of the selection of and, D[vo, '] + w[u’,v] > D[vo, v] )

Thus, the algorithm makes a decision when to relax a neighbor,
and which vertex to select for the next iteration. FigRhows an The model will contain constraints corresponding to propeies
illustration of the execution of Dijkstra’s algorithm on an example and3 under Category Il. Again, a8 is the predecessor ofin G,
graph, and the resulting tree. We will show how the decisions made and sincgu, v) and(u’, v) € E, we have:

by Dijkstra’s algorithm can be modeled. For notational conventions
refer to Tablel. Recall thatD[u,v] is the cost of the path from / / Ny
the vertexu to v, and £ (1, v) iS 3 s e pu.v) T(uro)- 1N OthEr D,[UO’ ul +uj [0l = ? [vo, v] “)
words f (u, v) is a shorthand for the expression for the path in terms and, D'[vo,u] +w'[u,v] > D'[vo, v] (5)

of the variables representing the edges in the path. SinceW’ is a solution of the model, propertidsand5 will be

. satisfied only ifu = «’, which is a contradiction. [J
4.1 Linear model Yl =u

Algorithm 4.2provides the pseudocode for generation of the pro- Complexity of the Model. Category | and Category Il combined
posed model. Dijkstra’s algorithnffmakes a number of decisions  will result in O(dn) inequalities. This is because, when an edge is
based on the outcome of comparisons of linear combinations of processed, either the path to its neighbor is improved (Category I),
edge weights. These decisions can be modeled using the followingor it remains unchanged (Category Il), and hence every edgksesu
three categories of inequalities: in at least one inequality. Since the average degree per natle is
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the resulting number of inequalities (¥(dn). The number of in-
equalities for Category Illi©(n) since one inequality of Category
IIl'is generated for every vertex processed. Thus, the complexity of

Algorithm 4.3 Reduced model

1: /* Initialize similar to Dijkstra in Algorithm4.2 */
2: T — ¢ I* Set of edges in the Tree. */

the model isO(dn). Since most large real graphs are sparse, i.e., 3: while Q # ¢ do

d < n (generallyd is of the order of tens or hundreds), we referto  4: 4 « ExtractMin(Q)
this model as th&inear modelwith complexity growing linearly 5 S+« Su{u}
with n. 6: if (II(u),u) ¢ T then
7: T — T U {(TT(u),

4.2 Reduced model ro e TUlllw),w)

In this section, we improve the model explained in the previ- 9: if o/ # ¢ then
ous section by reducing its complexity. Note that even though Di- 10: AddConstraintf (vo, u’) < f(vo,u))
jkstra’s algorithm tries to relax the neighbors when processing a 11: end if
vertex, the ultimate goal is to select an appropriate vertex for the 12: ' «— «

next iteration, i.e., the vertex with the smallest known cost from 13:
the source. It does not matter how many times the cost of the 14:
path to a particular vertex is improved, the minimum amongst these 15:
costs determines its order of selection, and hence the shortest path 6:

for each vertex such thaiu, v) € E andv ¢ S do
if D[vo,v] > Dlvo,u] + wlu,v] then
D[’U(),U] — D[’Uo7 ’LL] + "LU[’U,, U]
II(v) < w /* Shorter path exists. */

from the source. Category Il inequalities model this information 17: end if

in an efficient way, and hence ideally, only Category Il are needed. 18: if v ¢ Q then
However Category Il inequalities only include the edges that are 19: Q — QuU{v}
part of the shortest paths tree. Thereforegrify Category Il in- 20: end if
equalities are considered in the model, then only part of the total 21:  end for

number of edges are modeled. The model does not put constraint2: end while
on non-tree edges, and thus, if no care is taken while reassigning
edge weights in the anonymized graph, it can lead to violations of
the order in the anonymized graph. For instance, if €dge) is a THEOREM 4.2. A model which ensures thét) the order of se-
non-tree edge, then a model using only Category Ill would not im- |ection of vertices remains the same even after anonymization, and
pose any constraint ofu, v). Hence a reassignment of weights in  (;;) non-tree edges in the original graph are not included in the

the anonymized graph might assign the edgev) a weight such
that Dijkstra’s algorithm executing on the anonymized graph se-
lects(u, v) as a tree edge. The following example illustrates this.

EXAMPLE 4.1. Let us consider the example graph in Fige
As shown in Figure(c), after the execution of the algorithm, we

tree constructed on the anonymized graph, will also ensure that the
shortest paths tree in the original and anonymized graph are also
same, i.e., the model is correct.

ProOF Proof by Contradiction. Let G = (V, E, W) be the
input graph, and?’ = (V, E, W') be the anonymized graph. Let

have the order in which the vertices are selected, and edges thatT be the shortest paths tree starting at vertexn G and7” be
constitute the shortest paths tree. The inequalities for modeling the the corresponding tree i6’. Let us assume thaf and 7" are
order would be: different. Letwv be first vertex wherd” and 7 differ, and letu
be its predecessor ifi, andv’ in 7" such thatu # «’. Then the
following two possibilities arise:
Case I: The edge(u,v) € T, and(u’,v) ¢ T. Now if u’ is the
predecessor afin 7', then(u’, v) € T". Butthis is a contradiction
since(ii) ensures that ifu’,v) ¢ T = (u',v) ¢ T".
Case II: Both edgequ, v) and(u’,v) are inT. If (v/,v) is a di-
rected edge, then this is not possible since vertean have only
one predecessor iiiwhich isu, and sincdv’, v) is a directed edge
It can be seen that ibnly Category Il inequalities are con- towardsw, it cannot be in(_:luded_ in the path to some _other vertex
sidered in the model, then only part of the total number of edges Processed after. If (u’, v) is undirected, then itis possible only if
are modeled. To be specific, Category Il inequalities include only in 7', v is the predecessor of . But a vertexo can become a pre-
the edges which are part of the shortest paths tree (dashed edgegiecessor only for vertices that are processed aftefhis implies
in Figure 2(c). The model does not put constraints on non-tree thatinG, v is processed ahead of. Butif v’ is the predecessor
edges, and thus, if no care is taken while reassigning edge weights©f v in 7", then inG’, v’ is processed ahead of which again is a
in the anonymized graph, it can lead to violation of the order in Ccontradiction to the conditioti). [
the anonymized graph. If we consider the original graph, edge
(v2,v7) is not part of the model, so the solution to the model will
not impose any constraint om4,v7), and as a result if it so hap-

Divy,v1] < D[vi,v2] < Dlvi,vs] < D[vy,v7] < Dy, vs]
< Dlv1,ve] < D[v1,v4]

i.e.f(vi,v1) < f(v,v2) < for,v3) < f(v1,v7) < fvr,v5)
< f(vi,ve) < f(v1,v4)

Augmenting the model — Complexity and CorrectnessCategory
Il inequalities enforce conditiori) of Theorem4.2. A simple

pens that in the anonymized graph'[2, 7] is set a value such that
w'[1,2] + w'[2,7] < w'[1,7] then Dijkstra’s algorithm running
on the anonymized graph will selegt as the predecessor of;
instead ofv; as in the original graph.

solution to ensure that conditidix) is also satisfied is to add all the
non-tree edges into the constraints of the model. This can be done
as follows: lety; be the last vertex to be processed by Dijkstra’s
algorithm, and lefl’; represent the shortest paths tree obtained as
output from the algorithm, then add all inequalities of the form:

Therefore, to ensure correctness, the model must be augmented

to make sure that the non-tree edges are not included in the tree

when the algorithm executes on the anonymized graph. The fol-
lowing theorem formalizes this proposition.

V(u,v) € EA (u,v) ¢ Ts,

AddConstraint(x,, ) > f(vs,vr)) (6)
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Algorithm 4.4 Reassignment of weights in Reduced model erties (described in Sectidh4) which makes it better suited for
Require: v; is the last vertex processed by Algoritih8 certain applications.
1: for each ed ,v) € Edo . .. .
2 if (u,0) eg%hve)n 5.1 Naive composition of single source model
3: w'[u, v] « Value obtained from solution of model. The simplest approach is to apply tReducedalgorithm (Sec-
4: else tion 4.2) for all the vertices of the graph and combine the resulting
5: [* v is the source vertex. */ models of the shortest paths trees. Since the constraints from differ-
6 w'[u, v] < D'[vs, vi] + rand() ent trees cannot contradict each other (we will prove this in the next
7. endif section in Theorerd.1), they can be combined. The edges that are
8: end for not part of any tree can be assigned a sufficiently large value, just

as the non-tree edges in Sect@ This approach is a straightfor-
ward extension of the principles developed in the previous section,

This ensures that any path which includes these non-tree edge§3Ut is not correct as described by the following counterexample.

will have a cost greater than the corresponding path involving only
the edges i, and hence all such paths with non-tree edges will
not be selected by Dijkstra’s algorithm running 6. The O(n)
edges inT; are modeled by Category Il inequalities, and the re-
mainingO(dn) edges are modeled by the inequalitieséh Thus,

the complexity of the model still remairt3(dn), even after elimi-
nating inequalities of Categories | and Il. Note that the inequalities

ExampLE 5.1. Counterexamplelet us consider the weighted
graph G as shown in Figure3(a). Figure 3(b) shows the shortest
paths tree for vertex; (731) with the edges in the shortest paths
tree represented in dashed lines, while Fig8¢e) shows the short-
est paths tree for vertexs (75) with edges in the shortest paths
tree represented in dotted lines. When computing all pairs short-

in (6) add very little to the model except for ensuring that any non- est paths trees for all the vertices, the constraints of all the trees
y P 9 Y are merged. Now, as is evident from the figure, there will be three

tree edge should be assigned a weight that is greatefhan, v;], . X . :
and it does not really matter what weight is assigned to these edgest);pglf t? ;ggge:; 'r:é‘t;gn;;ﬁg?e:ngkteélbfL’rgllgghixvg:]gengitnsec_

as long as the above condition is satisfied. Therefore, the edges noﬁon, since the constraints generated by the algorithm for different

g]rgtsr:celfe % n;):] 5) Svk?:;t:;sﬁhﬁirrro\?vzli' ﬁtsslgnn?h;haeni?]grensizaeﬁc? I?a , Source vertices are not contradictory, the combination of the con-
! gning weig Y 9"aPNstraints do not pose any problem. A solution will satisfy each of the

ant';rrii tehdgﬁ %?:ﬁﬁiﬂ%?&ﬁﬂ%?i g{r?gtf(;rgi%ﬁg:mzi]lg constraints individually, therefore it does not affect the outcome in
no?addin to the complexity of the mgdel to be solved,b the LP the anonymized graphSecond some edges likévr, vs) which
Y piexity Y are not part of any of the trees. These can be handled similar to

fnc;g/rer;agggsé;atrﬁggg gi.'&];?:,zl'gfiﬁlﬁ&g V:rtlg iﬁzi:gdiggﬂal the scheme described in Sect®f, and hence are not of concern.
| 9 ’ P y Third, some edges like7, vg) which are part in some of the trees

of the modified model becom&3(n) (n — 1 to be exact). The : - .
e . . . : and not in others. These seemingly innocuous edges render the
pseudocode for the modified algorithm is shown in Algorithi3 suggested model incorrect. This is how it works: since these edges

Vn:t]alrlﬁ '?I'\lr?ggsh;]nitétllsc 22%&?;?5'; ?ﬁg?&%gg i\rgvfllq?:tséizz?%rrz d are part_ of at least one of_the trees, they will be_ ass_igned values
in Seétion4.1 are the same: both grow linearly with(assuming as obtained from the solution of the_ model. Aga_ln, since they are
thatd is a constant compared 1. But considering the fact that not part of all the trees, these sol_utlon_s only satisfy the trees that
is generally of the order af0 or 160 (as shown in our experiments _contam these edges. Therefore, in this example, vs) belong-
using social network graphs), the model suggested in this sectionIng to T, has ng constraints due i, so there can be a solution

’ such thatD’[5,7] + w'[7,6] < w’[5,6]. Therefore, when Dijk-

ﬁ]rgvhdaﬁilesto 2 orders of magnitude reduction in the number of stra’s algorithm is executed for vertey in the anonymized graph,
q ’ it will setv7 as the predecessor of instead ofvs as in the original
graph. This shows that the model is not correct.

5. ALL PAIRS SHORTEST PATHS

In the previous section, we presented models fosthgle source

shortest paths tredn this section, we build on the proposed mod-
els to solve thall pairs shortest pathproblem [7]. Shortest paths source shortest paths tree does not translate to a correct model for
the all-pairs problem. In this section, we take thieear solution

trees with multiple source vertices can be modeled by repeated ap- ) : .
plication of Dijkstra’s algorithm for single source shortest paths. explained m_Sectlon.land show how that model can be extendt_ed
to the all-pairs problem. But before we proceed, we need to first

All pairs shortest paths is then the case where every vertex in the S
graph is considered as a source. This problem is important for vari- prove the following:
ey Lo o oo ey s THEOREN 5.1 Nor-Contdictory CompoiforCompoiion
on ashortes:t path) amongst any pair of users of shortest paths trees and the constraints in the corresponding
. ! ) > . models do not result in contradictory constraints.
In this section, we discuss ways of applying the techniques we

have described for the single-source shortest paths tree to the all- PrRoor Proof by Contradiction. Let G = (V, E, W) be the
pairs shortest paths problem. Refer to Tabler notational con- original weighted graph. Léf; be the shortest paths tree obtained
ventions. The proposed abstract modeling technique can be usedfter executing Dijkstra’s algorithm for source vertexvasand let

for the Floyd-Warshall §] algorithm for all-pairs shortest paths, S; be the set of constraints or inequalities. Similarly,Tetbe the
since the Floyd-Warshall is also based on linear properties. We usetree for vertexv, and.S» be the set of inequalities. Let us assume
Dijkstra’s algorithm in this paper for two reasorstst, rather than that there exist a contradictory pair of constraintsinJ Ss, i.e.,
starting from scratch, we can build on the models developed in the there does not exist a single solution for the set of constraints
previous sectionSecondDijkstra’s algorithm has additional prop-  .S2. Since the se$ is built based on the original set of weighs,

5.2 Quadratic solution
As demonstrated in Sectidnl, the Reducedmodel for single
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(a) Original weighted graph

Figure 3: lllustration of Dijkstra’s algorithm for

(b) Dijkstra’s algorithm onvy

(c) Dijkstra’s algorithm orvs

all pairs shortest pathsThe dashed edges corresponds to the shortest paths tree for

vertex vy, while the dotted edges correspond to the tree fors. Other conventions are similar to Figure?2.

hencelV is a valid solution satisfying; (and there are possibly
many more solutions satisfying; ). Using similar argumentd}/
also satisfiesS>. SinceW satisfiesS; and.S2 individually, hence
W must also satisfy5; U S>. This leads to a contradiction that
S1 U S2 had a contradicting pair of inequalities[]

Theorem5.1is an extremely important result that shows com-
posability and extendibility of the models developed in this paper
to other models, and hence preservingltiplelinear properties in
the same anonymized graph. The following corollary provides a
more general result, the proof of which follows the same logic as
that of Theorens.1:

COROLLARY 5.2. Composability of ModelsThe composition
of linear programming models developed as extensions oAlthe
stract model (Sectior2) and modeling differentinear properties
do not lead to contradictory constraints.

Therefore, a simple solution for the all-pairs problem would be
to generate th&inear model (as in Sectiod.1) for all the ver-
ticesvy, va, ..., vy, Obtain the set of constraints, So, ..., Sh,
and then obtain the model for all-pairs&suU S. U- - -U.S,,. Since
each of theS;’s provide constraints oall edges, hence the con-
straints from one&ingle source shortest paths treennot set values

to edges which result in another tree being inadvertently modified.

due to the composition. For example, edges that are not part of
any of the trees need not be part of the model, and can be treated
as the non-tree edges in Sectidr2 However in the described
model, there are no means for filtering out these inequalities. In
this section, we delve deeper into the problem of composition of
the solution of Sectiod.2for the all pairs problem.

When merging the constraints of multiple trees developed using
theReducedmodel, some edges that are part of some but not all of
the trees result in problems. We formalize this as follows:

DEFINITION 5.1. Problematic edgesAn edge(u, v) is said to
be problematicfor composition if there exists a shortest paths tree
T; such that(u, v) € Tj, and there exists a treg; (1; # T}) such
that (u,v) ¢ Tj.

A problematic edgéu, v) ¢ T; will not have any constraint in-
volving z (.. in the model developed f&F; (refer to Sectior.2),
and hence the constraints 6f (or any other tre€}, which con-
tains(u, v)) can set a valu@’ [u, v] in the anonymized graph such
that wheriT; is reconstructed in the anonymized grafh,v) is se-
lected as an edge ifi;. There was a decision which the algorithm
took when(u, v) was not included irff;, but since(u, v) was not
selected irl;, this decision was not part of the model. But if we
devise a mechanism to model this decisioffjnthen the edge will

This overcomes the problem that arises in the naive merging of theno longer be problematic f&F;.

Reducedmodel discussed earlier in this section.

THEOREM 5.3. A model comprised of all the constraints gen-
erated by the.inear solution for single source shortest paths tree,
repeated for all the vertices of the tree, is a correct model for the
all-pairs problem.

PROOF Proof by Contradiction. Let G = (V, E, W) be the
input graph, andz’ = (V, E,W') be the anonymized graph. Let
us assume that there exists at least one pair of vertices whose
shortest paths i’ differs from its shortest path i@'. The shortest
path fromw; to v; in the all-pairs problem is the path from to v;
in the single source shortest paths tree wittas the source, i.e.,
T;. This implies thatl; in G does not matcH? in G’, which is a
contradiction of Theored.1 [

Complexity of the Model. The complexity of the model can be de-
rived trivially from the complexity of the constituting model. Each
of the shortest paths trees have a complexity)¢fin), and this
repeated forn vertices gives us a total complexity 6K dn?).

5.3 Optimized solution

In the previous section, we presented a solution with complexity
O(dn?). Itis correct, but there are many redundant inequalities

PROPOSITION 5.4. Eliminating Problematic EdgesThe prob-
lematic edgg(u, v) was not selected iff;, since there exists an-
other path from the source vertex to v which is cheaper than the
path fromw; to v through the vertex, i.e., D[v;,v] < D[vj,u] +
wlu, v]. If the corresponding constrainf(v;,v) < f(vj,u) +
Z([u,v]) IS added to the model @f;, then(u, v) is no longer a prob-
lematic edge foff’;. Similarly, if the process is repeated for all trees
T} such that(u,v) ¢ Ty, then(u,v) is no longer a problematic
edge for any of the trees.

If we consider the graph in Exampfel, for edge(vr, vs) this
will amount to adding the constrainfi(5,6) < f(5,7) + 2(7,6),
which will address the problem illustrated in Exampld. There-
fore, once we have made sure that the problematic edges are elim-
inated during the combination of the constraints of the individual
trees, we combine the individual constraints to form the model for
all-pairs shortest paths. Thereforelif, ..., T, are the trees and
S1,...,S, are the corresponding set of constraints, then we want
to form S = S; ¢ Se @ --- @ S, which would model the all-
pairs shortest paths problem. AlgoritBril provides an overview
of how the shortest paths trees and the constraints can be combined.
Again, since at the end of the algorithffi,contains all the edges
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Algorithm 5.1 Optimized model forll pairs shortest paths COROLLARY 5.7. The model generated by Algorithil cor-
1: Run Algorithm4.3for all verticesvs, . .., vy, rectly models the shortest paths between all pairs of vertices.
2. T

39 :ﬁ Complexity of the Model. The analysis of the complexity of the
4: for eachT; in{Ty,...,T,} do algorithm is a bit more involved. In thbest casgall the trees
5 S—SUS; have the same edges. Since there are no problematic edges, no new
6: for each edgéu, v) € T; do constraints were added, and hence the complexif)(is®). In the
7 for eachT}, in {T},..., T} such that(u,v) ¢ T} do Wor_st caseevery problematic edge will actﬁ(_n) inequalities, and
8: S SU{f(vi,v) < f(vi, 1) + T} again, there can be at maStdn) problematic edges. Therefore,
9: end for ' the number of added constraints are:

10:  end for

11:. T« TUT;

12: end for m=1)+n-1)+--+(n-1)

dn terms

+n=D+Mnm-1)+--+(n-1)

that are part of at least one of the treés;- T yields the non-tree
edges, and then a technique similar to Algorith#can be used to
reassign weights to the anonymized graph.

The algorithm combines the trees one at a time, while making  Therefore, the total number of inequalitiesd$dn?). Thus the
sure that the set of inequalities cannot produce problematic edgescomplexity is no worse than the model described in Secfigh
In Algorithm 5.1, line 8 adds a constraint that ensures that the prob- Our experimental evaluation on real datasets in Secmhows
lematic edggu, v) is eliminated, and after iteratian all the con- that this model performs significantly better on the average than
straints in the sef preserve the tree®;,...,T;. Theorem5.5 O(dn?).
formally proves the correctness of the model.

n terms

5.4 Incremental Algorithm

THEOREM 5.5. The model created by AlgorithBi1 preserves The incremental nature of the algorithm makes it suitable for a
allthe treesTt, ..., Th. specific class of applications in which the client mining the graph
PROOF Proof by Mathematical Induction. may not be interested in the shortest paths for all pairs of vertices
Base CaseAt the beginning of the algorithnf = ¢ andS = in the graph (or subgraph). As is evident from Theor®gs3) the
#. Hence it is true trivially. model is consistent at every step of the algorithm. Therefore, the al-
Inductive Case. Let us assume that after iterationwe have ~ 90rithm can be terminated after processing ttées. ., 7. (where
T and set of constraint§ that preserves treek, ..., T}, and at k < n) and the model is still consistent for these trees. In addition,
iterationi + 1, we are adding the tre&,,1. Let us assume that the treedl1, . . ., T} can be arbitrarily chosen as well as composed
(u,v) is a problematic edge. For evefy such that(u,v) ¢ Ti in any arbitrary order. Note that each shortest paths tree can also
(T € {T1,...,T,}), means that Dijkstra’s algorithm did not pick be truncated after processittgof the n vertices, resulting in the
(u,v) in Ty, and addition of the constraint in lif@ makes sure ~ k-nearest-neighbors of each node. _ _
that Dijkstra’s algorithm executing on the anonymized graph will ~ Consider théLos Angeles” community example in Sectioh
not pick (u, v) as an edge iff,. This property exists in the original A client requesting the anonymized data corresponding to all the
graph that made sure that, v) was not picked in any 6f},. There- members in théLos Angeles” community might only be inter-

fore, it is evident that when the edge, v) is added, the algorithm ested in shortest paths between all pairs of “computer scientists”. In
makes sure that it is not problematic, and hence at the end of theSUch a scenario, only the shortest paths trees with “computer scien-
iteration, the set of constraingspreserves tre€s,, . .., T}, Ti 1. tists” as roots need to be combined. If the number of trees n,

Therefore, by the principle of mathematical induction, the set of then this technique will have a complexity Of(kn), i.e., linearin
constraints at the end of the algorithm preserved the ffees . , T, the number of vertices in the graph. Similarly, if edge weights indi-
and hence in the anonymized graph, all the trees can be recon-cate “trustworthiness”, then the method allows the client to request
structed which are identical to the trees in the original gragh. the topk “trustworthy" computer scientists according to a member

in the community.

An interesting property to note here is that this combination of Parallelization for Multicores Since thesingle source shortest

trees is incremental, and if the algorithm stops after iteration ~ Paths treecomputation for one vertex is independent of the oth-

we can still reconstruct the tred, . .., T; from the anonymized ers, the first phase of the algorithm in \{vhich the individual shortest
graph. paths trees are computed,embarrassingly parallel Therefore,

this phase can be easily parallelized. Considering the ubiquitous

THEOREM 5.6. A model that preserves the tre@s, ..., T, presence of multicores and the compute intensive nature of the al-

correctly models the shortest path between all pairs of vertices. ~ 90rithm, this should lead to significant improvements in the pro-
cessing time for large graphs. We leave parallelization as a future
ProOOF Proof by Contradiction. Let G = (V, E, W) be the extension to this work.

input graph, and le&’ = (V, E,W’) be the anonymized graph. )

Let us assume that there exists at least one pair of vertices 5.5 Implementation Issues

whose shortest paths @ differs from its shortest path i&'. The It is appropriate to address some of the subtleties of implemen-
shortest path from; to v; in the all-pairs problem is the path from  tation for completeness. Every decision modeled results in an in-
v; tow; in the single source shortest paths tree withs the source, equality. For example, in Dijkstra’s algorithm, if vertex is pro-

i.e., T;. This Implles thatE in G does not matcﬁ“{ in G/, which cessed before vertex then we OUtpr(Uo, ’U,/) < f(’Uo, u) (Ca’[_

is a contradiction, since thE; is preserved by Theoref5.  [J egory lll, Sectiond.1). In order to deal with ties and different im-
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Single source All pairs Orkut (www. or kut . com), andYoutube (W, yout ube. com.
Linear: O(dn) Quadratic: O(dn” While Orkut is a pure social networking site, LiveJournal (referred
Reduced:O(n) || Optimized: O(n?) (best),0(dn?) (average) to asLJ in the data sets) is a blogging site whose users form a so-
cial network, while Flickr and Youtube are photo sharing and video
sharing sites respectively, with an overlayed social network struc-
ture amongst its users. We model the graphs of these networks as
directed graphs where edges have positive weights, but the models
plementations of queues, the ties in the original graphs should becan be extended for undirected graphs. Even though some social
modeled exactly in the same way in which it was resolved while network graphs (such as Orkut) might have symmetric edges (i.e.,
generating the model in the original graph. Consequently, in this an edge(u, v) means both: andv are connected to each other),
scenario, to make sure that in the anonymized grépis chosen the weights on either direction might not be the same (for exam-

Table 2: Summary of Complexity of the models.

ahead ofu, we model the decision a8(vo, u') < f(vo,u) — €, ple if edge weights are based on “trustworthiness”, for (thev)

wheree > 0 is a small real number. Additionally, LP solvers edge,u’s rating ofv, or wlu, v], might be different fromw[v, u]).

do not accept strict inequalities of the typér,y) < b. There- Even though we assume directed graphs in all our discussion, and

fore, such inequalities are converted to non-strict inequalities as use directed graphs for our experiments, the model can accommo-

f(z,y) <b— ¢ where agair > 0 is a small real number. date undirected graphs as well, and the algorithms in Secfions
and5 can be extended for undirected graphs as well. The pub-

6. EXPERIMENTAL EVALUATION lished graph data sets are unweighted, but since our model is not

dependent on the semantics of the weights or their magnitude, we
assign randomly generated weights (real numbers in the range 1 to
100) to the edges of the graph. We used different distributions for
assigning edge weights, but no considerable change in complexity
was observed.

In our experiments, we consider different sub-graphs from the
original graph data sets. There are multiple reasons for considering
sub-graphskFirst, both the applications involving shortest paths are
more meaningful in a portion of a graph rather than the entire graph.
For example, a user will hardly be interested in knowing the short-
est paths to all other reachable vertices in the graph. Rather, short-
est path to all members of a community to which the user belong

In this section, we experimentally evaluate the different models
presented in this paper, compare their performance, and validate
our analysis. All the algorithms were implemented in Java, and
the experiments were run on an Intel Core 2 Quad Q6600 proces-
sor operating at a clock speed of 2.4GHz. The machine has 4GB
main memory (3.2GB available) and runs Fedora Core Linux with
kernel 2.6.26.6-49.fc8. We used four real social network deits s
obtained from the authors o2%]. In our experiments, we used
a free open-source LP Solvdp(solve 5.5 [21]. We report the
time taken to generate the model, complexity of the model, and the
time taken to solve the models. Since we use the LP Solver as a
library, we assume that it is de-cogpleq from thg system generatmgto, or to all the vertices which are withith degrees of separation
the model. Therefore, the model is written to disk, and the system . . .

. ; will be of more interest to a particular usebecondthe shortest
solving the model reads the model from disk, and generates the so- hs algorith idered in thi lqorith ith
lution, which is then used to anonymize the model. The reported paths algorithms considered in this paper are exact algorithms wit

. . . . very high time complexity, and hence do not scale to large graphs.
times therefore include the disk access latencies. Most open SOUrCer S fore. even if the entire anonymized graph is available, exe-
implementations of LP solvers are not heavily optlmlzed, and are cuting, for instance, Dijkstra’s algorithm for all the vertices of the
stable for smaller systems. There are commercial systems which

are much faster than these open source implementations, and Cargraph 'S exrt]remely COStI{Td’ fromhthe pgrslpectlvekof tr;]e gofm-
also handle larger models. Correctness of the models is also ex-banies such as Facebook hosting the social networks, the informa-

erimentallv validated by checking the equivalence of the short tion content of the graphs drives their businesses, and releasing the
P y v 9 quiy o entire graph structure can be detrimental to their business in addi-
est paths trees and all-pairs shortest paths in the original and the; . . . . . A
; tion to introducing a very high overhead on their engineering in-
anonymized graphs. ; .
. . . . frastructure. Therefore, they are more likely to release portions of
We first provide details of the data sets used for the experiments, ,, . ; ; .
. . their social graphs rather than the entire social graph.
then experimentally evaluate the model gangle source shortest ; o .
. We consider two specific forms of sub-graphs for our experi-
paths treefollowed by that ofall pairs shortest paths problerand ments:
finally evaluate the privacy guarantees of the models. In our ex- . . s
. . .. User Driven Structures: These are sub-graphs where a specific
periments, we focus more on the complexity of the models as it

affects both the time to generate and to solve the models. Pable user is of interest, and is useful for applications focgssed on a user.
. For example, for marketing purposes, a company might select some

summarizes the complexity of the models developed in the previ- . fl ial for f als of thei d hat th .
ous two sections. As noted in Sectidnthe objective function is a Influentialusers for free trials of their products so t. aFt €y canin-

. ) : . . .. fluence other users to use or buy the proddd}.[ Similarly, ap-
choice of either the publisher of the data set, or the client who will .~ - . .
mine the data set. We experimented with a limited number of ob- plications such ashortest paths treeand nearest neighborsvill
. . L . . .~ also be interested in similar structures. To simulate these struc-
ject functions coefficients such as setting all of then to unity (unity .

. . X . 7 tures, we select a vertex in the graph as the root, and extract the
object function), or setting them to random values picked from uni- raph induced by the vertices which are witiiearees of sepa-
form as well as Gaussian distributions, but no significant difference grap f h y is the i 9 ) Fh
was observed. In the reported experiments, we use a unity objectratIon r_omt € roc_)t (a vertex is the first degree connecno_n ofthe

’ ' root v, if there exists an edgevo, v)). We use thaisersuffix for

function. ; ) .
referring to the user data sets, and for our experiments, we consider

6.1 Datasets 374 degree of separation (e.@rkut-user-3.
Mislove et al. 7] crawled a number of social network sites Community Driven Structures: These graphs correspond to com-

for analyzing the properties of these large social graphs, and havemunltles (or groups) within the social networks. For example, in

made their data sets publicly available. Their data sets include the fn”l;n?txairr‘:‘;'aeseg‘oafcgﬂ:hn"‘q’ﬁnri‘ffe;trfctﬂfe';o:r é\cgrele.:n o o
graphs for a number of popular social networking sit€sckr y : Y yimp

(waw. f 1§ ckr . com, LiveJournal ( i vej our nal . com, applications such ashortest pathsnearest neighbordargeted ad-


www.flickr.com
www.livejournal.com
www.orkut.com
www.youtube.com
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[ Data Set | No. of Vertices | No. of Edges| Avg. Degree| the Reducedmodel is extremely efficient compared to thieear
Flickr-user-3 55,803 6,662,377 119.39 model both in terms of complexity and time. The complexity of the
LJ-user-3 15,508 384,947 24.82 Reducedmodel is about 1 to 2 orders of magnitude lesser when
Orkut-user-3 26,110 899,638 34.46 ; . . .
Youtube-user-3 237,469 2.457 206 10.35 _compared to théinear model and so is the time taken in comput-
Flicki-comm 1,382 69,321 50.16 ing the model. . .
LJ-comm 1.497 21481 14.35 Table4 provides the results from these experiments along with a
Orkut-comm 1,047 28,240 26.97 detailed breakup of the number of inequalities, as well as the reduc-
Youtube-comm 1,823 29,342 16.1 tion in complexity and time of thReducedmodel compared to the

Linear model. For thd.inear model, the categories of inequalities
Table 3: Summary of the Social Graphs. in Table4 correspond to the categories defined in Seclidn As

is evident from Tablel, the Reducedmodel provides aboud(d)

times improvement in complexity of the models for all the graphs,
vertisingetc. This is primarily since users in the same community as observed in Sectidh 3. Depending on the graph, the value of
share some common interests, and hence many applications can bg varies, and so does the factor of improvement. For example, for
driven by the community structure. For the experiments, we select the Flickr-user-3data setd is 119.39, and the complexity of the
communities inside the social networks, and extract the graph in- Reducedmodel is aboutl 20 times less than that of thieinear

duced by the members of the community. We usectiramsuffix model. The large reduction in the number of inequalities also af-
for referring to the community data sets (e@rkut-comn). fects the time for generating the model, since inltiveear model,

Table3 summarizes the different data sets in terms of the num- fewer number of inequalities need to generatedand more im-
ber of vertices, number of edges, and average out-degrékes portantly, fewer number of inequalities need tosgtten to the
provide a better insight into the distribution of the out-degrees of disk This is illustrated by the almo§D% improvement in time to
the vertices, in Figurd, we plot thecumulative distribution func- generate th®educedmodel.

tion (CDF) of the out-degrees of the graphs in the data set. Along

the z-axis is the out-degree, and along thexis is the fraction of 6.3 All pairs shortest paths

the tOtf"ll number of vertic_es w_hose out-degree is less than the corre- In this section, we experimentally evaluate the models foathe
spondlng value OT thejaX|s. Figurel(a)plots the CDFforthelsgr pairs shortest paths problenescribed in SectioB. In a commu-
driven graphswhile Figure4(b) plots the CDF for theommunity v of 4 social network, users share common interests, and an ap-
driven graphs Each line in the figure corresponds to a graph in the lication that uses mini;num cost paths between any t\/\}o members
data set, and represents the fraction_of verFices that have out degre f the community would require the all-pairs shortest paths. On the
less than or eq“‘f’" to the correspondl_ng point onitzxis. As can other hand, for aiser drivensocial graph, two users in the graph
be noted from Figured(a)and4(b), Flickr data set has a consid- ight be completely unrelated, and from an application’s perspec-
erably higher out degree compared to the other three data sets, anh e shortest paths between them is not interesting. Thus, we eval-
for the user driven graphsabout 12% of the vertices have an out uaté the models faall-pairs only for thecommunity driven grl’iphs

degree higher than 250. We first evaluate the model for shortest paths between all pairs of

; vertices in the graph, and then evaluate lti@ementalalgorithm
6.2 _Slng!e source S_horteSt paths discussed in Sectidh.4 for shortest paths between a subset of ver-
In this section, we experimentally evaluate the modelssfor tices.

gle source shortest paths trelescribed in Sectiod. Theshortest

paths treds interesting for both types of data sets under consider- g 3 1 Evaluating shortest paths between all pairs
ation. For theuser drivendata sets, the shortest paths tree with the . . . .
In this section, we experimentally evaluate #ikepairs models

root of the graph as the source is of interest for both the shortest - ) )
. s ) (described in Sections.2 and5.3). We refer to the model of Sec-
paths as well as tHe-nearest neighborsSimilarly, for thecommu tion 5.2 as theQuadratic model, and that of Sectio.3 as the

nity drivendata sets, selecting an “influential” user and using it as Obtimized model. Eiaure? compares the two models in terms of
the source of the shortest paths tree is again of interest for many ap- P -9 P

plications. We therefore run our experiments on both types of data complexity and the time tak‘f‘“ to build the mo_del, and bo_th of thege
sets. We compare thénear model developed in Sectighito the terms have the same meaning as described in the previous section.

Reducedmodel developed in Sectiah2in terms of the complex- "; Ii}lgt:rr]e7(a),.the rr:.L:m.t;]elr:.of 'qugjalt'rt]'est.m tr:ekmr?dils IS p:]oc;[ted
ity of the model, and the time taken to build the model and write it along they-axis, while in Figure7(b), the time taken (in seconds)

to the disk. Recall that the complexity of the model corresponds to toregserlﬁgat?ath.z ?;0?3 ésng(:thtzd d.f?flgrnegmy}?:sh lir;tgmr;ttgeafrl’n%-a ain
the number of inequalities generated during modeling, and the timez t 'th tt);l Xl i |p Istt din| : ithmi 9 pl A nSt din S gal
taken includes the time for execution of Dijkstra’s algorithm, gen- t'o e5 ??F' e;;-a7s_”sptote th obga fit Cfstcr?ée't. S ?je d lec-
eration of the inequalities, and writing the generated inequalities 1on 5.3, Figure 7 fllustrates the benetits o plimized mode

to disk. Figuress and6 provide a comparison of the two model- c_ompared to th@uadratic model both in terms of complexity and

. . ; time.

ing techniques for both types of data sets for all the social graphs. . . .

Figureﬁ(;]) and5(b) comggre the complexity of the models, \?vhife Table5 prowdes_, the expenment_al fes‘%'ts' tab_u_latlng the break-
Figures6(a)and 6(b) compare the time taken to build the model. up of the categories of the_constltuent |nequalltlgs that mal§e up
In all the figures, thec-axis represents the social graphs, and the the nlwigdel. 'r:ror ther%u?d:ﬁt'c andgl‘ﬁtrTedciﬁteSgO;&; c'):f :hti -
y-axis for Figuress(a) and 5(b) plots the number of inequalities equaiities correspond fo the ones detine N or the

constituting the model, while thg-axis for Figuress(a) and 6(b) Oﬁgnmltﬁad'rzgpqc?l’atlhserll\g?tgsingﬁsaltlﬂaeess ‘:% trr;Zror:js'r?tinc?rzztign-
plot the time in seconds. Note that theaxis of all the plots have w Individu P ged !

been plotted in logarithmic scale. It is evident from the figures that S|sten_t mode_l'compensatlng for the proplematlt_:_edges, while the
Treesinequalities are the total number of inequalities generated for

1Since we extract sub-graphs from the social network graphs, thethe trees. Since this correspond€ategory lllinequalities (as the
average degree is not representative of the original graphs. Reducedmodel for single source only us€ategory Ill inequali-
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Figure 4: Cumulative Distribution Function for the out-degrees ofthe different graph data sets used for the experiments.
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Figure 5: Complexity of the models forsingle source shortest pattisee.

ties), Columns 4 and 8 of Tab%are exactly identical. Tabkalso

or “guitarists” in the“Los Angeles” community of Facebook. Ta-

provides data that allows a deeper analysis of the reasons for theble 6 summarizes the results from these experiments, and compares

improved performance of th@ptimized model, even though both
models have the same complexity boud¢tin?). As was noted in
Section5.3, the inefficiency of theQuadratic model stems from
the fact that it cannot leverage the absence of some edges from

it with the numbers obtained for tl@ptimized model for all-pairs

shortest paths from Table The significant reductions obtained

(reflected by the rightmost columns in Tal@i corroborates our
allclaim that when shortest paths between all pairs of vertices is not

the trees, which allows these edges to be excluded from the model.required, the complexity of the model can be reduced significantly.

These edges are represented by the column titleconstrained

The great reduction is primarily due to the fact that a huge portion

Edgesin Table5. It can be seen that in all the social graphs, a of the inequalities for the merge phase is not required for the trees
high percentage of edges are not part of any tree, and eliminatingthat are not of interest and therefore do not need to be merged.

these edges from the model considerably simplifies the model. Th
is evident from the 70-80% reduction in complexity of Bgpti-
mized model compared to th@uadratic model. As seen in the
case ofsingle source shortest paths traeduction in complexity

is
6.4 Overall time overhead

In all the above experiments, we considered only the complex-
ity of the model, and the time taken to generate the model. Once

of the model also considerably reduces the time, primarily becausethe model has been generated, it has to be solved to anonymize the

fewer inequalities are written to disk.

6.3.2 Shortest paths for a subset of vertices

In this section, we experimentally evaluate theremental all-
pairs model as explained in Sectibr. This kind of model finds
application incommunity drivergraphs where the application is

graph. The time required for this step depends on the efficiency
of the LP solver. We use an open source LP Soledt [n our
experiments, and it is widely acknowledged that commercial LP
solvers are far more efficient compared to open source implementa-
tions. As example timings, for tHReducedmodel ofsingle source
shortest paths treproblem, the LP solver we used to6k394 sec-

interested in a specific subset of vertices. Our goal of this evalu- onds to solve the model f@rkut-commgraph,0.541 seconds for

ation is to validate our analysis thatafl-pairs shortest pathsire
not required by the application, we can reduce the complexity o

the Youtube-comrgraph,150.638 seconds for theJ-user-3graph,
f and629.869 seconds for th&lickr-user-3graph. For the all-pairs

the model considerably. For our experiments, we consider two problem, where the complexity of the model rises to abd@@x

cases, one where the pairwise shortest paths between a subse

t ahequalities, the solvers took about an hour to find a solution. We

100 vertices is to be determined and the shortest paths tree for theremark that our open source LP solver is not optimized for solv-
rest suffices, and in another, we are interested in a subset of 200ing large, sparse models, and these timings are not the best possi-
vertices. These subsets are randomly selected, and simulate our exble. Furthermore, solving the model constitutes an offline cost and

ample where the application is interested in “computer scientists

" hence the exact times are not significant for our evaluation.
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Figure 6: Time to build the model for the single source shortest pathgee.
Linear Model Reduced Model Summary
Number Inequalities Time Number of Time Times Reduction | % Reduction
Data Sets Catl | Catll [ Catlll | Total Taken (s) || Inequalities | Taken (s) in Complexity in Time
Flickr-user-3 204,626 6,457,751] 55,802 | 6,718,179 98.81 55,802 2.835 120.39 97.13
LJ-user-3 39,030 | 345,917 | 15,507 | 400,454 4.783 15,507 0.938 25.83 80.39
Orkut-user-3 72,130 827,508 | 26,109 925,747 15.735 26,109 1.752 35.47 88.87
Youtube-user-3 || 417,526 | 2,039,680| 237,468 | 2,694,674| 44.943 237,468 8.226 11.35 81.7
Flickr-comm 4,112 65,209 1,381 70,702 2.464 1,381 0.163 51.2 93.39
LJ-comm 3,148 | 187333 | 1,496 | 22,977 2.471 1,496 0.099 15.36 95.99
Orkut-comm 2,409 25,831 1,046 29,286 1.401 1,046 0.08 27.99 94.29
Youtube-comm 3,605 25,737 1,822 31,164 2.564 1,822 0.127 17.11 95.05
Table 4: Experimental evaluation of single source shortest pathsee.
6.5 Evaluating Data privacy in the range of 1 to 100, sp = 1 corresponds to 1% of the to-

In this section, we evaluate the privacy preserving properties of tal range of edge weights. As is evident from the Fig@esid9,
the proposed models. In our evaluation, we use the two measuresoUr anonymization models considerably imprdw@nonymityof
presented in SectioB, i.e., k-anonymity[26] and Spearman rank  the anonymized graphs when compared to the original graphs. The
correlation coefficienf25]. As explained in SectioB, in the con- improvement is even more significant for larger values:afnd
text of sensitivity of edge weights, both the measures are defined Smaller values of:, which demonstrates the improved anonymity
in a neighborhood. Computation &fanonymityof edges follow ~ Of €dges in the anonymized graph. Therefore, in the anonymized
directly from its definition. TheSpearman rank correlation coeffi- ~ 9raphs, individual edge-weights are even less distinguishable. Note
cientis computed for every vertex in the graph. For each vertex in that this level ofk-anonymityis provided by the model at no addi-
the original graph and the corresponding vertex in the anonymized tional cost. We remark that the-anonymitycan be further im-
graph, the list of edges emanating from the vertex comprises the Proved by adding constraints and setting bounds on the variables
ranked lists used for computing the coefficient. The lists are sorted that ensure that the anonymized weights are even closer to each
by the edge weights, and the coefficient measures correlation be-other. Additionally, note that thie-anonymityof the edges is better

tween the ranks of the edges in the two lists. Fig@e and10 for the Flickr data set due to the higher average out-degree of the

provide the experimental results for the two measures on the real Vertices which allows for more room for hiding in tieelge neigh-

data sets. In these experiments, we useReducedmodel for borhood ) o

single source shortest path®e and th@ptimized model forall Figure10 plots theSpearman rank correlation coefficieof the

pairs shortest pathproblem. models forsingle source shortest paths traadall pairs shortest
Figures8 and9 plot the percentage of edges in the graph that are Pathsproblem. Since the value of the coefficigntorms a contin-

k-anonymous their neighborhood for a given value band indis- uum in the range-1.0 < p < 1.0, for ease of presentation, we

tinguishability thresholg:. Figure8 plots the graphs of the model ~ Maintain a equi-width histogram of the coefficient values. Along
for single source shortest path®e and Figur® plots the graphs ~ the z-axis, we plot the bucket boundaries of the histogram, and
of the model forall pairs shortest pathproblem. Along ther-axis along they-axis we plot the percentage of vertices that have the
we plot the different values df, and along they-axis, we plot the value ofp in the range corresponding to the bucket. The two graphs
percentage of edges that dcenonymoudor the corresponding ~ Plot four data sets and Figud®(a)plots the results for theingle
value ofk on thez-axis. Each graph plots two selected data sets Source shortest patfteee while FigurelO(b)plots the resuits foall

and compares theanonymityof the original and anonymized ver-  Pairs shortest pathproblem. Figured0(a)and10(b)demonstrate
sions of the same graphs. Different graphs correspond to differen the excellent scrambling of the orc_ier of the edge weights. Note that
data sets, different values pf and different algorithms. In these ~» = 0 corresponds to no correlation of ordering, and the closer it
experiments, we select tiigickr andOrkut graphs as representa- 1S 10 0, the harder it is for an adversary to determine the original
tives. Similarly, ;. values of 1 and 3 are representatives chosen to order with high confidence. Our experiments show that for all data
show the variance of the anonymity levels as the indistinguishabil- S€ts, more thafi5% of vertices have-0.3 < p < 0.3, and about

ity threshold increases. In our experiments, the edge weights were90% of the vertices have-0.5 < p < 0.5. Additionally, note
that higher the average out degree (refer to T&liter the average
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Figure 7: Performance of the models for theall pairs problem

Quadratic Model Optimized Model
Data Number Inequalities Time Number of Inequalities Time Unconstra-
Sets Catl Catll Cat Il Total Taken (s) Merge Trees Total Taken (s) | ined Edges
Flickr 3,645,749| 85,824,651| 1,813,512 91,283,912| 926.71 10,837,381| 1,813,512 12,650,893| 172.66 60,166
LJ 2,330,938| 25,847,924 2,107,957| 30,286,819| 320.42 7,588,195 | 2,107,957| 9,696,152 132.31 15,003
Orkut 1,428,809| 26,907,339| 1,088,890| 29,425,038 277.33 4,377,502 | 1,088,890 5,466,392 72.32 23,018
Youtube || 2,762,305| 38,902,975| 2,756,994 | 44,422,274| 473.945 9,163,912 | 2,756,994| 11,920,906 151.04 22,802

Table 5: Experimental evaluation of all pairs shortest paths problen for the community driven data sets.

degrees of the graphs in the data sets), the lesser is the correlation A large portion of existing work considers unweighted graphs
between the original and the anonymized orders. for node identity and structural anonymization. But as reflected by
Therefore, these experiments demonstrate the robustness of theecent work 28, 17], the weighted social network model is gradu-
privacy models, and show how hard it is for an adversary to deter- ally gaining importance, and edge weight anonymization is gaining
mine the original edge weight, to uniquely identify edge weights, significance. Liu et al.40] suggest a probabilistic technique for
or to determine the original ordering of the weights, thereby effec- anonymizing edge weights by perturbing the actual edge weights

tively preserving the sensitivity of the weights. by a smallo obtained from a probability distribution. The goal
here is to keep the total cost of the shortest path close to the cost
7 RELATED WORK of the path in the original graph. However with this approach, the

. . . ) anonymized weights are close to the original edge weights, and

_The need to protect the privacy of social entities involved in SO- hence may reveal sensitive information about the original values.
cial n_etworks has given rise to active res_ea_rch in anonymlzatlor_l Our proposed technique aims at preserving general linear proper-
techniques for social network graphs. This interest has been pri-ies of the graph. For the shortest paths, our goal is to preserve the
marily driven by the findings of Backstrom et a8] fand Korolova paths rather than the values and for most applications, the ability to

et al. [15). Backstrom et al. 3] described a technique based on  reconstruct the actual path is more important than maintaining ap-
the structural properties of graphs such as isomorphism and aUtO'proximate values. In addition, if necessary, our model can approx-

morphism to re-identify vertices in the anonymized graph. Their jnately preserve the cost of the shortest paths as well by adding
tec_hnlque was bgsed_(_)n |mplant|ng unique structures in the g_raphconstraints of the fornf (u, . .. ,v) = D[u,v] % e. Note that since
which can be re-identified in the anonymized graph with very high  he edge weights are only perturbed by a small value, the technique

probability. On the other hand, Korolova et @5 devised an at-  f [20] can neither significantly improvk-anonymity nor can it
tack where a node can be re-identified based in part on backgroundseramble the ordering of edge weights.

information regarding the neighborhood. As a result, a lot of re-
search has focused ode identity anonymizaticand structural
anonymizationA comprehensive survey is provided itf]. 8. CONCLUSION

A class of proposals, by Hay et allg], Zhou et al. B1], and The huge amount of information contained in weighted social
Liu et al. [19], suggest different methods for anonymization that networks spawned a renewed interest in information extraction and
are based on the addition and/or deletion of edges in the graphdata mining. Due to privacy issues, this has resulted in the need
for altering the structure of the graph and the prevention of re- for effective techniques for the anonymization of social network
identification in the anonymized graph. On the other hand, Cor- graphs. In this paper, we propose a technique for edge anonymiza-
mode et al. §] suggest a technique for the anonymization of bipar- tion of a weighted social network graph such that linear properties
tite graphs based on safe groupings, Ying et28] propose a ran- of the edge-weights are preserved across anonymization, while re-
domization based spectrum preserving approach which effectively vealing little information about the actual magnitude of the edge
preserves the properties of the eigenvalues of the network, while weights. Since many important algorithms of interest are functions
anonymizing the edges, and Campan et 5jl.siggest a cluster- that depend upon linear properties of edge-weights, our approach
ing based approach for node anonymization. Along different lines, provides an anonymization methodology that preserves substruc-
Zheleva et al. 30] formulate the problem of edge re-identification  tures of interest in the given social graph.
in an unweighted graph, where the edge labels are sensitive infor-  In this paper, we provide a solution for effective anonymization
mation and need to be anonymized. of weighted social network graphs. We first present an abstract
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100 vertices 200 vertices Optimized All Pairs Percent Reduction
Number of | Unconstra- || Number of | Unconstra- || No. of ineg- Uncons- 100 200
Data Sets Inequalities | ined Edges || Inequalities | ined Edges qualities trained edges | vertices | vertices
Flickr-comm 513,414 64,186 1,177,428 63,433 12,650,893 60,166 95.94 90.69
LJ-comm 314,107 18,339 732,212 17,819 9,696,152 15,003 96.76 92.45
Orkut-comm 253,002 25,709 562,005 25,429 5,466,392 23,018 95.37 89.72
Youtube-comm 374,516 25,596 835,831 25,162 11,920,906 22,802 96.86 92.99

Table 6: Experimental evaluation of all pairs shortest paths betwen a subset of vertices for the community driven data sets.
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Figure 8: Evaluating k-anonymityfor single source shortest pathsee model.

model that can effectively preserve any linear property of edge the earlier versions of the paper which has helped in improving this
weights. As a proof of concept, we consider stertest paths paper. The authors would also like to thanks Alan Mislove for pro-
problemand show how off-the-shelf linear programming libraries viding the data sets used for the experiments. This work is partially
can be used to effectively anonymize the graphs. We also prove thesupported by NSF Grant 11S-0744539.
correctness of the proposed models, analyze their complexity, and
experimentally validate our claims using real social network data. 10. REFERENCES
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