
UCSB Computer Science Technical Report 2009-03.

Anonymizing Edge-Weighted Social Network Graphs

Sudipto Das Ömer Eğecioğlu Amr El Abbadi

Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106 - 5110, USA

{sudipto, omer, amr}@cs.ucsb.edu

ABSTRACT
The increasing popularity of social networks has initiated a fer-
tile research area in information extraction and data mining. Al-
though such analysis can facilitate better understanding of socio-
logical, behavioral, and other interesting phenomena, there is grow-
ing concern about personal privacy being breached, thereby requir-
ing effective anonymization techniques. If we consider the social
graph to be a weighted graph, then the problem of anonymization
can be of various types:node identity anonymization, structural
anonymization, or edge weight anonymization. In this paper, we
consider edge weight anonymization. Our approach builds a linear
programming (LP) model which preserves properties of the graph
that are expressible as linear functions of the edge weights. Such
properties form the foundations of many important graph-theoretic
algorithms such assingle source shortest paths tree, all-pairs short-
est paths,k-nearest neighbors, minimum cost spanning tree,etc.
Off-the-shelf LP solvers can then be used to find solutions to the
resulting model where the computed solution forms the weights
of the anonymized graph. As a proof of concept, we choose the
shortest paths problemand its extensions, prove the correctness of
the constructed models, analyze their complexity, and experimen-
tally evaluate the proposed techniques using real social network
data sets. Our experiments demonstrate that not only does the
proposed technique anonymize the weights, but it also improves
the k-anonymityof the graphs while scrambling the relative or-
dering of the edge-weights, thereby providing robust and effective
anonymization of the sensitive edge-weights.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and networks; G.1.6 [Optimization]:
Linear programming; J.4 [Social and Behavioral Sciences]: Soci-
ology

General Terms
Algorithms, Design, Security.

Keywords
Anonymization, Social Networks, Weighted network models, Short-
est paths, Linear Programming.

1. INTRODUCTION
Social Networks have become increasingly popular applications

in Web 2.0. Social networks such as MySpace (www.myspace.com),
Facebook (www.facebook.com), LinkedIn (www.linkedin.com), and
Orkut (www.orkut.com) have millions of registered users, and each

user is associated with a number of others through friendship, pro-
fessional association (being members of communities), common
interests, and so on. The resulting graph structures have millions
of vertices (users or social actors) and edges (social associations).
Recent research has explored these social networks for understand-
ing their structure [10, 4, 1, 22], for criminal intelligence [24],
information discovery [2], advertising and marketing [13], and oth-
ers [9]. As a result, companies (such as Facebook) hosting the data
are interested in publishing portions of the graphs so that indepen-
dent entities can mine the data. In order to protect the privacy of
the users against different types of attacks [3, 15], graphs should
be anonymized before they are published. Consequently, there has
also been considerable interest in the anonymization of graph struc-
tured data [5, 6, 12, 19, 31]. But most of the existing research on
anonymization techniques tend to focus onunweightedgraphs for
nodeandstructural anonymization.

Are social graphs weighted?Recently, there has been consider-
able interest in the analysis of theweightednetwork model where
the social networks are viewed as weighted graphs. The weighted
graph model is used for analyzing theformation of communities
within the network [17], viral and targeted marketing and adver-
tising [13], modeling the structure and dynamicssuch as opinion
formation [28], and for analysis of the network formaximizing
the spread of informationthrough the social links [14], in addition
to the traditional applications on weighted graphs such asshortest
paths, spanning trees, k-Nearest Neighbors (kNN)etc. The seman-
tics of the edge weights depend on the application (such as users in
a social network assigning weights based on “degree of friendship”,
“trustworthiness”, “behavior”, etc.), or the property being modeled
(such as detection of communities [17] or modeling network dy-
namics [28]). For example, consider the“Los Angeles” commu-
nity in Facebook. If we consider that edge weights are inverse of
“trustworthiness” (smaller weights correspond to higher trust in the
relation), then thekNN query at a particular vertex returns thek
most trusted users associated to the queried user, and thesingle
source shortest paths treeprovides the most trusted paths within
the community which might be used for communicating while min-
imizing chances of a leak. Similarly, if we consider a routing prob-
lem (for information spread and marketing) where edge weights
correspond to cost of information propagation, then the shortest
paths minimizes the cost of information transfer.

Edge-weight anonymization: why do we care?First, even though
in most cases node identities are anonymized, there are a number
of instances where they are public knowledge. For example, if we
consider the“Los Angeles” community, the members and the link
structures of the members (i.e., their connections) are known to any
user who is also a member of the community. But the edge weights,
such as “trustworthiness” of userA according to userB, is private

S. Das et al.,Anonymizing Edge-Weighted Social Network Graphs

information (in this case forB → A). Therefore, for publish-
ing the graph, anonymization of the edge weights is critical, while
node identity anonymization might not be needed. Similarly, in
academic social networks [27, 6], node identities and link structure
are public knowledge, but edge weights are sensitive.Second, even
in the case where the node identities are anonymized, we assert that
edge weight anonymization is still important. This is because as
demonstrated by Backstrom et al. [3], if the adversary has prior ac-
cess to the graph, then an attack can be devised for re-identification
of nodes in the anonymized graph. Hence, if the edge weights are
also not anonymized, re-identification of a node in the anonymized
graph will reveal even more information. Therefore, unless effec-
tive anonymization techniques are devised, the wealth of informa-
tion contained in the weighted social network graphs will remain
buried inside the companies hosting the networks. In this paper, we
provide a solution to this problem.

But what is anonymized and what is preserved?As noted ear-
lier, weights vastly increase the utility of the social graph struc-
tures, and it is these properties of edge weights that must be pre-
served across anonymization. For example, if we consider applica-
tions such asshortest paths, orkNN, then the anonymization should
preserve some notion ofrelative distancesbetween the nodes in
the graph. On the other hand, if we consider applications such as
maximizing spread of influence [14], then properties that can be
formulated in the form

∑

v neighbor ofu wu,v ≤ θu [11] need to be
preserved. What is ultimately desirable isto have an anonymized
graph which is as useful as the original graph in terms of the prop-
erty being preserved, while revealing as little information as al-
lowed by the semantics of the property being preserved[23].

Privacy preserving modeling.Our solution to the problem of edge
weight anonymization is to model the weighted graph based on the
property to be preserved, and then reassign edge weights to obtain
the anonymized graph satisfying the model. To be specific, we
preservelinear properties of the graph:

DEFINITION 1.1. A linear property of a graph is a property
expressible in terms of inequalities involving linear combinations
of edge weights.

If we consider that the anonymized graph preserves the structure
of the original graph, the objective of the privacy preserving model
can be formally stated as:

OBJECTIVE 1.1. To construct a model thatcorrectly captures
the inequalities that must be obeyed by the edge weights for the
linear property being modeled to be preserved. Any solution to
such a model would ensure anonymization of edge weights, while
preserving the linear property under consideration.

As noted earlier, graph properties such as minimum spanning
tree, shortest paths, nearest neighbors, graph clustering, maximiz-
ing information spread etc., arelinear properties, and hence our
approach is general enough to model and anonymize a large class
of graph algorithms. In this paper, as a proof-of-concept, we con-
sider theshortest paths problemsince it is a problem of great in-
terest in edge weighted graphs. It is also useful in modeling other
properties such askNN and community formation within complex
network models.

Edge weights have been anonymized – now what?Once the
model is created and a solution (edge weights) satisfying the model
is obtained, the anonymized graph is guaranteed to preserve the
property being modeled. For example, if we model shortest paths,
the anonymized graph will have the same shortest paths as in the

(a) Original graph (b) Naïve anonymization

Figure 1: Preserving only the order of edge-weights cannot
model shortest paths tree. The dashed edges in the graph rep-
resent the shortest paths tree withv1 as the root. In both the
graphs, we havew[3, 4]<w[1, 2]<w[2, 4]<w[1, 3]<w[1, 4]. This
approach preserves the minimum cost spanning tree.

original graph. Consequently, the owner of the social network
can publish the“Los Angeles” community graph without worry-
ing about privacy breaches, while allowing applications to mean-
ingfully process the anonymized graphs and extract useful infor-
mation [17, 28]. If the node identities are not anonymized, then
the shortest path in the anonymized graph can be used to spread
information through entities in the original social graph. If node
identities are anonymized, it still allows the extraction of useful in-
formation [17, 28] from the graphs without privacy breaches.

Contributions.

• We propose a framework for edge weight anonymization of
graph structured data that preserveslinear properties.

• As a proof-of-concept, we chooseshortest paths problem
which forms the basis of a number other graph properties.
We usesingle source shortest paths treeas a stepping stone.
The solutions to the individualsingle source shortest paths
treesfor all the nodes can be combined to model theall pairs
shortest paths problem. The composability of individual so-
lutions in this way demonstrates the extensibility of the pro-
posed model to otherlinear properties, and preserve multiple
properties in a single anonymized graph.

• We prove the correctness of the proposed models, provide a
thorough analysis of the complexity of the proposed models,
and present the results of experiments on real social network
graphs that validate this analysis, while confirming that the
anonymity of the sensitive information is preserved.

Organization. Section2 introduces the abstract technique for pri-
vacy preserving modeling of weighted graphs while providing a
simple model forminimum spanning treeas an example. Section3
introduces the measures used to quantify the anonymity provided
by the models. Section4 explains the algorithm for modeling the
graph forsingle source shortest paths tree. Section5 extends these
models to solve theall pairs shortest pathsproblem. Section6
presents an experimental evaluation of the proposed techniques us-
ing real social network data sets, Section7 provides a survey of
related work in social network mining and anonymization, and Sec-
tion 8 concludes the paper.

2. ABSTRACT MODEL
Naïve modeling. Unlike node anonymization, where a random
assignment of identifiers is a possible option for anonymization,
with edge weight anonymization, a simple random assignment of
weights would be useless as it would not preserve any properties

UCSB Computer Science Technical Report 2009-03.

G = (V, E, W) Weighted graph to be anonymized
G′ = (V, E, W ′) Anonymized graph,W ′ satisfies the model

n, |V | Number of vertices in the graph
m, |E| Number of edges in the graph

d Average degree of the vertices of the graph
w[u, v] Original weight of edge(u, v), in G
w′[u, v] Anonymized weight of edge(u, v) in G′

P [u, v] Path from vertexu to v in the graphG
D[u, v] Cost ofP [u, v],

∑

(u′,v′)∈P [u,v] w[u′, v′]

Π[v] Predecessor ofv in the shortest paths tree
Ti Shortest paths tree withvi as the source

x(u,v) Variable corresponding to edge(u, v) ∈ E
f(u, . . . , v)

∑

(u′,v′)∈P [u,v] x(u′,v′)

µ Indistinguishability threshold fork-anonymity
Nu Edge neighborhood of a vertex

Table 1: Notational Conventions.

of the original graph. An alternative but still naïve anonymization
attempt is to randomly reassign edge weights compatible with the
given linear ordering of the weights. But this naïve approach is re-
strictive in terms of both preserving the properties, as well as the
extent of anonymization it provides. In terms of restrictiveness,
preserving only the order of edge-weights will work for simple ap-
plications likeminimum spanning tree, but cannot be extended to
shortest paths tree, kNN etc. As an example, consider the graph
in Figure 1; the order of the edge weights in the original graph
(Figure1(a)) is preserved in the anonymized graph (Figure1(b)),
but the shortest paths tree in the two graphs are not identical. This
method is also deficient in terms of the anonymity it provides since
the relative order is preserved. In terms of the extent of anonymiza-
tion provided, unintended information is seen to be revealed in the
anonymized graph: the ordering of the neighbors of each node, or
the relative “trustworthiness” among a set of friends, for example.
These shortcomings call for stronger models. In the rest of this
section we introduce, in abstract, a stronger modeling technique.

Abstract model formulation. As noted in Section1, our pro-
posed model is based on the observation that a gamut of interest-
ing properties are expressible in terms of linear combinations of
edge weights. For example, applications involving maximization
of the spread of influence [14, 11], use properties of linear com-
bination of edge weights (such as

∑

v neighbor ofu w[u, v] ≤ θu).
Similarly, applications such asshortest paths, kNN, minimum cost
spanning tree, etc., are expressable in terms of linear properties
of graphs. In this section, we introduce in abstract the technique
used for modelinglinear propertiesand use Kruskal’s algorithm for
minimum spanning tree (MST)[16] as an example algorithm being
modeled. The goal of the model is to capture the dynamic behav-
ior of the algorithm using a system of linear inequalities. Given
the original weighted graphG = (V, E, W) with positive edge
weights represented by variablesx1, x2, . . . , xm (where eachxi

corresponds to an edgei = (u, v) ∈ E; refer to Table1 for no-
tational conventions), our goal is to model the system of linear in-
equalities in terms of these variables. For example at every step
of the Kruskal’s algorithm [16] for the MST, the edge with the
minimum weight amongst the set of remaining edges is selected,
and if this edge does not result in a cycle, it is added to the MST.
Let (u, v) be the edge selected at theith iteration, and(u′, v′) be
the edge selected in the(i + 1)th iteration, then this implies that
w[u, v] ≤ w[u′, v′]. If x(u,v) andx(u′,v′) are the variables repre-
senting these edges in the model, then this outcome is modeled by

the inequalityx(u,v) ≤ x(u′,v′). Therefore, for the MST, any so-
lution to the system of inequalities constructed by taking for every
pair of edges selected in consecutive iterations(u, v) and(u′, v′),
the inequalityx(u,v) ≤ x(u′,v′) whenever the given weights satisfy
w[u, v] ≤ w[u′, v′], preserves the MST.

The algorithm makes decisions based on the actual numerical
values of the edge weights (orw[u, v]’s) and we model this decision
in terms of the variablesx(u,v). Decisions made at each step of the
algorithm can similarly be expressed as inequalities involving the
edge-weights. Thus, the execution of the algorithm processing the
graph can be modeled as a set of linear inequalities involving the
edge weights asvariables, and this results in a system of linear
inequalities:

a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

ak1 ak2 · · · akm

︸ ︷︷ ︸

A

x1

x2

...
xm

︸ ︷︷ ︸

X

≤

b1

b2

...
bm

︸ ︷︷ ︸

B

(1)

If the edge weights are reassigned as any solution of the system
of inequalities in (1), this would ensure that the properties of the
graph remain unchanged w.r.t the algorithm being modeled. The
model can therefore be formulated as a Linear Programming (LP)
problem

Minimize (or Maximize) F (x1, x2, . . . , xm)

subject to AX ≤ B

whereF is a linear objective function. Any application that can
be expressed as a function of a linear combination of edge weights
can be expressed as a Linear Optimization problem, and hence this
abstract modeling technique can be used for any such application.
Once the model has been developed, any off-the-shelf LP solver
package can be used to find a solution to the set of inequalities
(constraints) that optimizesF . The model is said to becorrect if
the property being modeled is preserved across anonymization, i.e.,
any solution to the model ensures that the property being modeled
is the same in the original graph as well as the anonymized graph.
Thecomplexity of the model is the number of inequalities neces-
sary to define the model. Columns in the matrixA correspond to
variables in the system, i.e., the number of edges in the graph, and
rows correspond to the inequalities produced by the model. The
fewer the constraints required by the model, the more efficient it is.
Note that most social network graphs are sparse, and hence matrix
A is also sparse, and LP solvers optimized for such large systems
can be used. We remark that our technique is not dependent on the
semantics of edge-weights, and is general enough to encompass
any algorithm based onlinear propertiesof the graph.

Choice of Objective Function. An added advantage of the LP
formulation is that different objective functionsF can be used to
generate different solution sets, and hence different anonymized
graphs. Since any solution to the LP model can act as anonymized
weights, the actual objective function used is a free parameter. Stated
otherwise, feasibility is sufficient for correctness of the proposed
technique. Additionally, the variables can be assigned varying lower
and upper bounds to attain different scalings as well as shifts in the
values of the solution. Therefore, the publisher of the graph can
publish anonymized versions of the same graph where the edge
weights in each published version is different.

S. Das et al.,Anonymizing Edge-Weighted Social Network Graphs

3. DATA SENSITIVITY AND PRIVACY PRE-
SERVATION

This section formalizes the measures that quantify the extent
of anonymity. Our goal is to anonymize the edge weights of the
graph, while node identities and the structure of the graph remain
unchanged. While anonymizing the edge weights, it is imperative
that the anonymized edge weights should have little correlation to
the original edge weight. The LP modeling allows a wide selec-
tion of objective functions, in addition to shifting the bounds of the
variables and scaling the weights, thereby providing a lot of room
for manipulating the edge-weights so that the magnitude of the
anonymized weights have little correlation to the original weights.

In addition to altering the magnitudes of the edge weights, two
additional properties are also important:first, how indistinguish-
able the weight of an edge is compared to the weights of other
edges, andsecond, how different the ordering of the edge weights
are in the original and anonymized graphs. The reason for indistin-
guishability is obvious, since a distinguishable edge-weight would
aid re-identification of the edge and possibly its weight. Order-
ing of weights is sensitive for certain semantics of edge-weights.
For instance, in the“Los Angeles” community example, let edge
weights represent “trustworthiness”, so for the linkA → B, its
weight corresponds to how trustworthyB is according toA. So
if A ratesB as more trustworthy compared toC, thenw[A, B] >
w[A, C]. Evidently, this ordering is “sensitive” for all the involved
users, and the anonymized graph should not reveal this ordering. In
other words, anonymization should ensure that given an ordering in
the anonymized graph, an adversary cannot determine the original
odrder with high confidence.

Note that this ordering or indistinguishability of edges is impor-
tant only in aneighborhood. For instance, ordering ofw[A, B] and
w[X, Y] is not important ifA, B, X, andY are not related. We
therefore define anedge neighborhoodof a vertex where ordering
and indistinguishability is important.

DEFINITION 3.1. Edge neighborhood of a vertex.The edge
neighborhood of a vertexu, denoted asNu, is the set of edges
emanating from the vertexu, i.e., edges withu as the source.

To address the privacy concerns, we use two well known metrics
used in data privacy and statistics:
k-anonymity. k-anonymityis a well known metric used in data
privacy for dealing with indistinguishability [26] of data values in
an anonymized data sets. We use the following definition ofk-
anonymityin the context of edge weight anonymization:

DEFINITION 3.2. An edge(u, v) is k-anonymousif there ex-
ists k − 1 other edges(u, v′) in the neighborhoodNu such that
‖w[u, v]−w[u, v′]‖ ≤ µ, whereµ is the indistinguishability thresh-
old, i.e., the difference of weights below which two edge weights
cannot be distinguished.

Spearman rank correlation coefficient.The Spearman rank coef-
ficient [25], denoted byρ, is a statistical measure of the correlation
of ranks or orders of two ranked data sets. Given two ranked data
setsX andY , ρ is computed as:

ρ = 1−
6

∑
d2

i

n(n2 − 1)

wheredi = xi − yi is the difference between the ranks of cor-
responding valuesXi andYi, andn is the number of items in each
data set. The value ofρ lies between−1 and 1,ρ = 1 implies
perfect correlation,ρ = −1 implies perfect negative correlation,

Algorithm 4.1 Dijkstra’a Algorithm: Shortest paths tree
1: D← (∞) /* Cost of best known path from source. */
2: Π← () /* Predecessor in shortest path from source. */
3: Q← v0 /* Set of unvisited vertices */
4: S ← φ /* Vertices to which shortest path is known. */
5: D[v0, v0]← 0
6: while Q 6= φ do
7: u← ExtractMin(Q) /* Unvisited vertex with min cost */
8: S ← S ∪ {u}
9: for each vertexv such that(u, v) ∈ E andv /∈ S do

10: if D[v0, v] > D[v0, u] + w[u, v] then
11: D[v0, v]← D[v0, u] + w[u, v]
12: Π(v)← u /* Shorter path exists. */
13: else
14: /* Do Nothing. */
15: end if
16: if v /∈ Q then
17: Q← Q ∪ {v}
18: end if
19: end for
20: end while

andρ = 0 implies no correlation between the two orders. There-
fore, given a list of edges in theedge neighborhoodof a vertex, for
anonymizing the ranks or order of edge weights, values ofρ closer
to 0 is desirable.

4. SINGLE SOURCE SHORTEST PATHS
In this section, we demonstrate how the abstract model described

in Section2 can be used forsingle source shortest paths tree. Given
a weighted graphG = (V, E, W), and a source vertexv0, asingle
source shortest paths treeis a spanning tree of the graph where the
path from the source to any other vertex in the tree is the shortest
path between the pair inG. This tree is important in a number
of applications; for example, if an application assigns weights to
the edges based on inverse of “trustworthiness”, then this tree will
provide the paths with greatest “trustworthiness” for transferring
critical information from a specific node.

Thesingle source shortest paths treeproblem can have various
naïve anonymization schemes such as publishing the tree separately
along with an unweighted version of the graph. Our motivation for
solving this problem separately derives from the following:First,
the single source shortest paths treealgorithm subsumes thek-
nearest neighborsquery, since given the shortest paths tree from
nodev0, we can determine the top-k nearest neighbors in increas-
ing order. Our proposed solution preserves this additional property
which many naïve solutions cannot preserve.Second, this algo-
rithm forms the basis for theall pairs shortest pathsproblem and
we use this as a stepping stone towards this goal.Third, our com-
position of thesingle source shortest paths treesto modelall pairs
shortest pathsproblem demonstrates the composability of the mod-
els. For instance, this allows the model forall pairs shortest paths
to be combined with the model forminimum cost spanning tree,
and the resulting anonymized graph preserves both these proper-
ties without the need to publish two separate graphs each preserv-
ing one property.

Dijkstra’s algorithm [7] is a well known greedy algorithm for
single source shortest paths treeand Algorithm4.1 provides an
overview. Given a start vertexv0, at every step the algorithm selects
the vertexu with the smallest known cost fromv0. The algorithm
tries to “relax” the neighbors ofu by checking to see if the cost

UCSB Computer Science Technical Report 2009-03.

(a) Original weighted graph (b) Dijkstra’s algorithm in progress (c) After completion

Figure 2: Illustration of Dijkstra’s algorithm. The numbers adjoinin g the vertices and outside parenthesis correspond to the order
in which the vertices were selected by Dijkstra’s algorithm, the number in parentheses correspond to the cost of the best known path
from the source, and the dashed edges constitute the shortestpaths tree.

Algorithm 4.2 Linear Complexity model
1: D← (∞) /* Cost of best known path from source. */
2: Π← () /* Predecessor in shortest path from source. */
3: Q← v0 /* Set of unvisited vertices */
4: S ← φ /* Vertices to which shortest path is known. */
5: D[v0, v0]← 0
6: u′ ← φ /* Stores the vertex processed in previous iteration */
7: while Q 6= φ do
8: u← ExtractMin(Q)
9: S ← S ∪ {u}

10: if u′ 6= φ then
11: AddConstraint(f(v0, u

′) ≤ f(v0, u))
12: end if
13: u′ ← u
14: for each vertexv such that(u, v) ∈ E andv /∈ S do
15: if D[v0, v] > D[v0, u] + w[u, v] then
16: D[v0, v]← D[v0, u] + w[u, v]
17: Π(v)← u
18: AddConstraint(f(v0, v) > f(v0, u) + x(u,v))
19: else
20: AddConstraint(f(v0, v) ≤ f(v0, u) + x(u,v))
21: end if
22: if v /∈ Q then
23: Q← Q ∪ {v}
24: end if
25: end for
26: end while

from the source has now decreased because of the selection ofu.
Thus, the algorithm makes a decision when to relax a neighbor,
and which vertex to select for the next iteration. Figure2 shows an
illustration of the execution of Dijkstra’s algorithm on an example
graph, and the resulting tree. We will show how the decisions made
by Dijkstra’s algorithm can be modeled. For notational conventions
refer to Table1. Recall thatD[u, v] is the cost of the path from
the vertexu to v, andf(u, v) is

∑

(u′,v′)∈P [u,v] x(u′,v′). In other
wordsf(u, v) is a shorthand for the expression for the path in terms
of the variables representing the edges in the path.

4.1 Linear model
Algorithm 4.2provides the pseudocode for generation of the pro-

posed model. Dijkstra’s algorithm [7] makes a number of decisions
based on the outcome of comparisons of linear combinations of
edge weights. These decisions can be modeled using the following
three categories of inequalities:

• Category I: When processing edge(u, v), if D[v0, v] can be
improved, thenD[v0, v] > D[v0, u]+w[u, v], add constraint
f(v0, v) > f(v0, u) + x(u,v) (line 18 in Algorithm 4.2).

• Category II : When processing edge(u, v), if D[v0, v] can
not be improved, thenD[v0, v] ≤ D[v0, u] + w[u, v], add
constraintf(v0, v) ≤ f(v0, u) + x(u,v) (line 20 in Algo-
rithm 4.2).

• Category III : When processingu ← ExtractMin(Q), if u′

is the previous vertex processed, thenD[v0, u
′] ≤ D[v0, u],

add constraintf(v0, u
′) ≤ f(v0, u). This captures the order

in which the vertices are selected (line11 in Algorithm 4.2).

THEOREM 4.1. A model built from all the inequalities of Cat-
egories I, II, and III combined will correctly model Dijkstra’s al-
gorithm, i.e., any solution to the model used to anonymize edge
weights in the graph results in the same shortest paths tree in the
original as well as the anonymized graph.

PROOF. Proof by Contradiction. Let G = (V, E, W) be the
input graph, andG′ = (V, E, W ′) be the anonymized graph. Let
T0 be the shortest paths tree starting at vertexv0 in G andT ′

0 be the
corresponding tree inG′. By way of contradiction, assume thatT0

andT ′

0 are different. Letv be a vertex whereT0 andT ′

0 differ, and
let u be its predecessor inT0, andu′ in T ′

0 such thatu 6= u′. Since
u is the predecessor ofv in G and since(u, v) and(u′, v) ∈ E, we
must have:

D[v0, u] + w[u, v] = D[v0, v] (2)

and, D[v0, u
′] + w[u′, v] ≥ D[v0, v] (3)

The model will contain constraints corresponding to properties2
and3 under Category II. Again, asu′ is the predecessor ofv in G′,
and since(u, v) and(u′, v) ∈ E, we have:

D′[v0, u
′] + w′[u′, v] = D′[v0, v] (4)

and, D′[v0, u] + w′[u, v] ≥ D′[v0, v] (5)

SinceW ′ is a solution of the model, properties4 and5 will be
satisfied only ifu = u′, which is a contradiction.

Complexity of the Model. Category I and Category II combined
will result in O(dn) inequalities. This is because, when an edge is
processed, either the path to its neighbor is improved (Category I),
or it remains unchanged (Category II), and hence every edge results
in at least one inequality. Since the average degree per node isd,

S. Das et al.,Anonymizing Edge-Weighted Social Network Graphs

the resulting number of inequalities isO(dn). The number of in-
equalities for Category III isO(n) since one inequality of Category
III is generated for every vertex processed. Thus, the complexity of
the model isO(dn). Since most large real graphs are sparse, i.e.,
d≪ n (generallyd is of the order of tens or hundreds), we refer to
this model as theLinear modelwith complexity growing linearly
with n.

4.2 Reduced model
In this section, we improve the model explained in the previ-

ous section by reducing its complexity. Note that even though Di-
jkstra’s algorithm tries to relax the neighbors when processing a
vertex, the ultimate goal is to select an appropriate vertex for the
next iteration, i.e., the vertex with the smallest known cost from
the source. It does not matter how many times the cost of the
path to a particular vertex is improved, the minimum amongst these
costs determines its order of selection, and hence the shortest path
from the source. Category III inequalities model this information
in an efficient way, and hence ideally, only Category III are needed.
However Category III inequalities only include the edges that are
part of the shortest paths tree. Therefore, ifonly Category III in-
equalities are considered in the model, then only part of the total
number of edges are modeled. The model does not put constraints
on non-tree edges, and thus, if no care is taken while reassigning
edge weights in the anonymized graph, it can lead to violations of
the order in the anonymized graph. For instance, if edge(u, v) is a
non-tree edge, then a model using only Category III would not im-
pose any constraint on(u, v). Hence a reassignment of weights in
the anonymized graph might assign the edge(u, v) a weight such
that Dijkstra’s algorithm executing on the anonymized graph se-
lects(u, v) as a tree edge. The following example illustrates this.

EXAMPLE 4.1. Let us consider the example graph in Figure2.
As shown in Figure2(c), after the execution of the algorithm, we
have the order in which the vertices are selected, and edges that
constitute the shortest paths tree. The inequalities for modeling the
order would be:

D[v1, v1] ≤ D[v1, v2] ≤ D[v1, v3] ≤ D[v1, v7] ≤ D[v1, v5]

≤ D[v1, v6] ≤ D[v1, v4]

i.e.,f(v1, v1) ≤ f(v1, v2) ≤ f(v1, v3) ≤ f(v1, v7) ≤ f(v1, v5)

≤ f(v1, v6) ≤ f(v1, v4)

It can be seen that ifonly Category III inequalities are con-
sidered in the model, then only part of the total number of edges
are modeled. To be specific, Category III inequalities include only
the edges which are part of the shortest paths tree (dashed edges
in Figure 2(c)). The model does not put constraints on non-tree
edges, and thus, if no care is taken while reassigning edge weights
in the anonymized graph, it can lead to violation of the order in
the anonymized graph. If we consider the original graph, edge
(v2,v7) is not part of the model, so the solution to the model will
not impose any constraint on (v2,v7), and as a result if it so hap-
pens that in the anonymized graph,w′[2, 7] is set a value such that
w′[1, 2] + w′[2, 7] < w′[1, 7] then Dijkstra’s algorithm running
on the anonymized graph will selectv2 as the predecessor ofv7

instead ofv1 as in the original graph.

Therefore, to ensure correctness, the model must be augmented
to make sure that the non-tree edges are not included in the tree
when the algorithm executes on the anonymized graph. The fol-
lowing theorem formalizes this proposition.

Algorithm 4.3 Reduced model
1: /* Initialize similar to Dijkstra in Algorithm4.2. */
2: T ← φ /* Set of edges in the Tree. */
3: while Q 6= φ do
4: u← ExtractMin(Q)
5: S ← S ∪ {u}
6: if (Π(u), u) /∈ T then
7: T ← T ∪ {(Π(u), u)}
8: end if
9: if u′ 6= φ then

10: AddConstraint(f(v0, u
′) ≤ f(v0, u))

11: end if
12: u′ ← u
13: for each vertexv such that(u, v) ∈ E andv /∈ S do
14: if D[v0, v] > D[v0, u] + w[u, v] then
15: D[v0, v]← D[v0, u] + w[u, v]
16: Π(v)← u /* Shorter path exists. */
17: end if
18: if v /∈ Q then
19: Q← Q ∪ {v}
20: end if
21: end for
22: end while

THEOREM 4.2. A model which ensures that(i) the order of se-
lection of vertices remains the same even after anonymization, and
(ii) non-tree edges in the original graph are not included in the
tree constructed on the anonymized graph, will also ensure that the
shortest paths tree in the original and anonymized graph are also
same, i.e., the model is correct.

PROOF. Proof by Contradiction. Let G = (V, E, W) be the
input graph, andG′ = (V, E, W ′) be the anonymized graph. Let
T be the shortest paths tree starting at vertexv0 in G andT ′ be
the corresponding tree inG′. Let us assume thatT and T ′ are
different. Letv be first vertex whereT andT ′ differ, and letu
be its predecessor inT , andu′ in T ′ such thatu 6= u′. Then the
following two possibilities arise:
Case I: The edge(u, v) ∈ T , and(u′, v) /∈ T . Now if u′ is the
predecessor ofv in T ′, then(u′, v) ∈ T ′. But this is a contradiction
since(ii) ensures that if(u′, v) /∈ T ⇒ (u′, v) /∈ T ′.
Case II: Both edges(u, v) and(u′, v) are inT . If (u′, v) is a di-
rected edge, then this is not possible since vertexv can have only
one predecessor inT which isu, and since(u′, v) is a directed edge
towardsv, it cannot be included in the path to some other vertex
processed afterv. If (u′, v) is undirected, then it is possible only if
in T , v is the predecessor ofu′. But a vertexv can become a pre-
decessor only for vertices that are processed afterv. This implies
that inG, v is processed ahead ofu′. But if u′ is the predecessor
of v in T ′, then inG′, u′ is processed ahead ofv, which again is a
contradiction to the condition(i).

Augmenting the model – Complexity and Correctness.Category
III inequalities enforce condition(i) of Theorem4.2. A simple
solution to ensure that condition(ii) is also satisfied is to add all the
non-tree edges into the constraints of the model. This can be done
as follows: letvl be the last vertex to be processed by Dijkstra’s
algorithm, and letTs represent the shortest paths tree obtained as
output from the algorithm, then add all inequalities of the form:

∀(u, v) ∈ E ∧ (u, v) /∈ Ts,

AddConstraint(x(u,v) > f(vs, vl)) (6)

UCSB Computer Science Technical Report 2009-03.

Algorithm 4.4 Reassignment of weights in Reduced model
Require: vl is the last vertex processed by Algorithm4.3
1: for each edge(u, v) ∈ E do
2: if (u, v) ∈ T then
3: w′[u, v]← Value obtained from solution of model.
4: else
5: /* vs is the source vertex. */
6: w′[u, v]← D′[vs, vl] + rand()
7: end if
8: end for

This ensures that any path which includes these non-tree edges
will have a cost greater than the corresponding path involving only
the edges inTs, and hence all such paths with non-tree edges will
not be selected by Dijkstra’s algorithm running onG′. TheO(n)
edges inTs are modeled by Category III inequalities, and the re-
mainingO(dn) edges are modeled by the inequalities in (6). Thus,
the complexity of the model still remainsO(dn), even after elimi-
nating inequalities of Categories I and II. Note that the inequalities
in (6) add very little to the model except for ensuring that any non-
tree edge should be assigned a weight that is greater thanD′[vs, vl],
and it does not really matter what weight is assigned to these edges
as long as the above condition is satisfied. Therefore, the edges not
in Ts need not be part of the model, as long the edges are inTs

are tracked, and when assigning weights to the anonymized graph,
non-tree edges are assigned weights greater thanD′[vs, vl]. This
captures the information as modeled by the constraints in (6), while
not adding to the complexity of the model to be solved by the LP
solver. Thus, Category III inequalities along with some additional
information can model Dijkstra’s algorithm, and the complexity
of the modified model becomesO(n) (n − 1 to be exact). The
pseudocode for the modified algorithm is shown in Algorithm4.3,
while Algorithm 4.4 is one possible scheme for weight reassign-
ment. The asymptotic complexity of the models in this section and
in Section4.1 are the same: both grow linearly withn (assuming
thatd is a constant compared ton). But considering the fact thatd
is generally of the order of10 or 100 (as shown in our experiments
using social network graphs), the model suggested in this section
provides1 to 2 orders of magnitude reduction in the number of
inequalities.

5. ALL PAIRS SHORTEST PATHS
In the previous section, we presented models for thesingle source

shortest paths tree. In this section, we build on the proposed mod-
els to solve theall pairs shortest pathsproblem [7]. Shortest paths
trees with multiple source vertices can be modeled by repeated ap-
plication of Dijkstra’s algorithm for single source shortest paths.
All pairs shortest paths is then the case where every vertex in the
graph is considered as a source. This problem is important for vari-
ous applications involving content distribution. Orkut and LinkedIn,
for example, display the degree of separation (the number of edges
on a shortest path) amongst any pair of users.

In this section, we discuss ways of applying the techniques we
have described for the single-source shortest paths tree to the all-
pairs shortest paths problem. Refer to Table1 for notational con-
ventions. The proposed abstract modeling technique can be used
for the Floyd-Warshall [8] algorithm for all-pairs shortest paths,
since the Floyd-Warshall is also based on linear properties. We use
Dijkstra’s algorithm in this paper for two reasons.First, rather than
starting from scratch, we can build on the models developed in the
previous section.Second, Dijkstra’s algorithm has additional prop-

erties (described in Section5.4) which makes it better suited for
certain applications.

5.1 Naïve composition of single source model
The simplest approach is to apply theReducedalgorithm (Sec-

tion 4.2) for all the vertices of the graph and combine the resulting
models of the shortest paths trees. Since the constraints from differ-
ent trees cannot contradict each other (we will prove this in the next
section in Theorem5.1), they can be combined. The edges that are
not part of any tree can be assigned a sufficiently large value, just
as the non-tree edges in Section4.2. This approach is a straightfor-
ward extension of the principles developed in the previous section,
but is not correct as described by the following counterexample.

EXAMPLE 5.1. Counterexample.Let us consider the weighted
graphG as shown in Figure3(a). Figure 3(b) shows the shortest
paths tree for vertexv1 (T1) with the edges in the shortest paths
tree represented in dashed lines, while Figure3(c)shows the short-
est paths tree for vertexv5 (T5) with edges in the shortest paths
tree represented in dotted lines. When computing all pairs short-
est paths trees for all the vertices, the constraints of all the trees
are merged. Now, as is evident from the figure, there will be three
types of edges.First, some edges like(v1, v2), which will be part
of all trees. As noted earlier, and to be proved in the next sec-
tion, since the constraints generated by the algorithm for different
source vertices are not contradictory, the combination of the con-
straints do not pose any problem. A solution will satisfy each of the
constraints individually, therefore it does not affect the outcome in
the anonymized graph.Second, some edges like(v7, v3) which
are not part of any of the trees. These can be handled similar to
the scheme described in Section4.2, and hence are not of concern.
Third, some edges like(v7, v6) which are part in some of the trees
and not in others. These seemingly innocuous edges render the
suggested model incorrect. This is how it works: since these edges
are part of at least one of the trees, they will be assigned values
as obtained from the solution of the model. Again, since they are
not part of all the trees, these solutions only satisfy the trees that
contain these edges. Therefore, in this example,(v7, v6) belong-
ing to T1 has no constraints due toT5, so there can be a solution
such thatD′[5, 7] + w′[7, 6] ≤ w′[5, 6]. Therefore, when Dijk-
stra’s algorithm is executed for vertexv5 in the anonymized graph,
it will set v7 as the predecessor ofv6 instead ofv5 as in the original
graph. This shows that the model is not correct.

5.2 Quadratic solution
As demonstrated in Section5.1, theReducedmodel for single

source shortest paths tree does not translate to a correct model for
the all-pairs problem. In this section, we take theLinear solution
explained in Section4.1and show how that model can be extended
to the all-pairs problem. But before we proceed, we need to first
prove the following:

THEOREM 5.1. Non-Contradictory Composition.Composition
of shortest paths trees and the constraints in the corresponding
models do not result in contradictory constraints.

PROOF. Proof by Contradiction. Let G = (V, E, W) be the
original weighted graph. LetT1 be the shortest paths tree obtained
after executing Dijkstra’s algorithm for source vertex asv1, and let
S1 be the set of constraints or inequalities. Similarly, letT2 be the
tree for vertexv2 andS2 be the set of inequalities. Let us assume
that there exist a contradictory pair of constraints inS1 ∪ S2, i.e.,
there does not exist a single solution for the set of constraintsS1 ∪
S2. Since the setS1 is built based on the original set of weightsW ,

S. Das et al.,Anonymizing Edge-Weighted Social Network Graphs

(a) Original weighted graph (b) Dijkstra’s algorithm onv1 (c) Dijkstra’s algorithm onv5

Figure 3: Illustration of Dijkstra’s algorithm for all pairs shortest paths. The dashed edges corresponds to the shortest paths tree for
vertex v1, while the dotted edges correspond to the tree forv5. Other conventions are similar to Figure2.

henceW is a valid solution satisfyingS1 (and there are possibly
many more solutions satisfyingS1). Using similar arguments,W
also satisfiesS2. SinceW satisfiesS1 andS2 individually, hence
W must also satisfyS1 ∪ S2. This leads to a contradiction that
S1 ∪ S2 had a contradicting pair of inequalities.

Theorem5.1 is an extremely important result that shows com-
posability and extendibility of the models developed in this paper
to other models, and hence preservingmultiple linear properties in
the same anonymized graph. The following corollary provides a
more general result, the proof of which follows the same logic as
that of Theorem5.1:

COROLLARY 5.2. Composability of Models.The composition
of linear programming models developed as extensions of theAb-
stract model (Section2) and modeling differentlinear properties
do not lead to contradictory constraints.

Therefore, a simple solution for the all-pairs problem would be
to generate theLinear model (as in Section4.1) for all the ver-
ticesv1, v2, . . . , vn, obtain the set of constraintsS1, S2, . . . , Sn,
and then obtain the model for all-pairs asS1∪S2∪· · ·∪Sn. Since
each of theSi’s provide constraints onall edges, hence the con-
straints from onesingle source shortest paths treecannot set values
to edges which result in another tree being inadvertently modified.
This overcomes the problem that arises in the naïve merging of the
Reducedmodel discussed earlier in this section.

THEOREM 5.3. A model comprised of all the constraints gen-
erated by theLinear solution for single source shortest paths tree,
repeated for all the vertices of the tree, is a correct model for the
all-pairs problem.

PROOF. Proof by Contradiction. Let G = (V, E, W) be the
input graph, andG′ = (V, E, W ′) be the anonymized graph. Let
us assume that there exists at least one pair of verticesvi, vj whose
shortest paths inG′ differs from its shortest path inG. The shortest
path fromvi to vj in the all-pairs problem is the path fromvi to vj

in the single source shortest paths tree withvi as the source, i.e.,
Ti. This implies thatTi in G does not matchT ′

i in G′, which is a
contradiction of Theorem4.1.

Complexity of the Model. The complexity of the model can be de-
rived trivially from the complexity of the constituting model. Each
of the shortest paths trees have a complexity ofO(dn), and this
repeated forn vertices gives us a total complexity ofO(dn2).

5.3 Optimized solution
In the previous section, we presented a solution with complexity

O(dn2). It is correct, but there are many redundant inequalities

due to the composition. For example, edges that are not part of
any of the trees need not be part of the model, and can be treated
as the non-tree edges in Section4.2. However in the described
model, there are no means for filtering out these inequalities. In
this section, we delve deeper into the problem of composition of
the solution of Section4.2for the all pairs problem.

When merging the constraints of multiple trees developed using
theReducedmodel, some edges that are part of some but not all of
the trees result in problems. We formalize this as follows:

DEFINITION 5.1. Problematic edges:An edge(u, v) is said to
beproblematicfor composition if there exists a shortest paths tree
Ti such that(u, v) ∈ Ti, and there exists a treeTj (Ti 6= Tj) such
that (u, v) /∈ Tj .

A problematic edge(u, v) /∈ Tj will not have any constraint in-
volving x(u,v) in the model developed forTj (refer to Section4.2),
and hence the constraints ofTi (or any other treeTk which con-
tains(u, v)) can set a valuew′[u, v] in the anonymized graph such
that whenT ′

j is reconstructed in the anonymized graph,(u, v) is se-
lected as an edge inT ′

j . There was a decision which the algorithm
took when(u, v) was not included inTj , but since(u, v) was not
selected inTj , this decision was not part of the model. But if we
devise a mechanism to model this decision inTj , then the edge will
no longer be problematic forTj .

PROPOSITION 5.4. Eliminating Problematic Edges:The prob-
lematic edge(u, v) was not selected inTj , since there exists an-
other path from the source vertexvj to v which is cheaper than the
path fromvj to v through the vertexu, i.e.,D[vj , v] < D[vj , u] +
w[u, v]. If the corresponding constraintf(vj , v) < f(vj , u) +
x([u,v]) is added to the model ofTj , then(u, v) is no longer a prob-
lematic edge forTj . Similarly, if the process is repeated for all trees
Tk such that(u, v) /∈ Tk, then(u, v) is no longer a problematic
edge for any of the trees.

If we consider the graph in Example5.1, for edge(v7, v6) this
will amount to adding the constraintf(5, 6) < f(5, 7) + x(7,6),
which will address the problem illustrated in Example5.1. There-
fore, once we have made sure that the problematic edges are elim-
inated during the combination of the constraints of the individual
trees, we combine the individual constraints to form the model for
all-pairs shortest paths. Therefore, ifT1, . . . , Tn are the trees and
S1, . . . , Sn are the corresponding set of constraints, then we want
to form S = S1 ⊕ S2 ⊕ · · · ⊕ Sn which would model the all-
pairs shortest paths problem. Algorithm5.1 provides an overview
of how the shortest paths trees and the constraints can be combined.
Again, since at the end of the algorithm,T contains all the edges

UCSB Computer Science Technical Report 2009-03.

Algorithm 5.1 Optimized model forall pairs shortest paths

1: Run Algorithm4.3for all verticesv1, . . . , vn

2: T ← φ
3: S ← φ
4: for eachTi in {T1, . . . , Tn} do
5: S ← S ∪ Si

6: for each edge(u, v) ∈ Ti do
7: for eachTk in {T1, . . . , Tn} such that(u, v) /∈ Tk do
8: S ← S∪ {f(vk, v) < f(vk, u) + x(u,v)}
9: end for

10: end for
11: T ← T ∪ Ti

12: end for

that are part of at least one of the trees,E − T yields the non-tree
edges, and then a technique similar to Algorithm4.4can be used to
reassign weights to the anonymized graph.

The algorithm combines the trees one at a time, while making
sure that the set of inequalities cannot produce problematic edges.
In Algorithm 5.1, line8 adds a constraint that ensures that the prob-
lematic edge(u, v) is eliminated, and after iterationi, all the con-
straints in the setS preserve the treesT1, . . . , Ti. Theorem5.5
formally proves the correctness of the model.

THEOREM 5.5. The model created by Algorithm5.1 preserves
all the treesT1, . . . , Tn.

PROOF. Proof by Mathematical Induction.
Base Case.At the beginning of the algorithm,T = φ andS =

φ. Hence it is true trivially.
Inductive Case. Let us assume that after iterationi, we have

T and set of constraintsS that preserves treesT1, . . . , Ti, and at
iteration i + 1, we are adding the treeTi+1. Let us assume that
(u, v) is a problematic edge. For everyTk such that(u, v) /∈ Tk

(Tk ∈ {T1, . . . , Tn}), means that Dijkstra’s algorithm did not pick
(u, v) in Tk, and addition of the constraint in line8 makes sure
that Dijkstra’s algorithm executing on the anonymized graph will
not pick(u, v) as an edge inT ′

k. This property exists in the original
graph that made sure that(u, v) was not picked in any ofTk. There-
fore, it is evident that when the edge(u, v) is added, the algorithm
makes sure that it is not problematic, and hence at the end of the
iteration, the set of constraintsS preserves treesT1, . . . , Ti, Ti+1.

Therefore, by the principle of mathematical induction, the set of
constraints at the end of the algorithm preserved the treesT1, . . . , Tn,
and hence in the anonymized graph, all the trees can be recon-
structed which are identical to the trees in the original graph.

An interesting property to note here is that this combination of
trees is incremental, and if the algorithm stops after iterationi,
we can still reconstruct the treesT1, . . . , Ti from the anonymized
graph.

THEOREM 5.6. A model that preserves the treesT1, . . . , Tn

correctly models the shortest path between all pairs of vertices.

PROOF. Proof by Contradiction. Let G = (V, E, W) be the
input graph, and letG′ = (V, E, W ′) be the anonymized graph.
Let us assume that there exists at least one pair of verticesvi, vj

whose shortest paths inG′ differs from its shortest path inG. The
shortest path fromvi to vj in the all-pairs problem is the path from
vi tovj in the single source shortest paths tree withvi as the source,
i.e.,Ti. This implies thatTi in G does not matchT ′

i in G′, which
is a contradiction, since theTi is preserved by Theorem5.5.

COROLLARY 5.7. The model generated by Algorithm5.1 cor-
rectly models the shortest paths between all pairs of vertices.

Complexity of the Model. The analysis of the complexity of the
algorithm is a bit more involved. In thebest case, all the trees
have the same edges. Since there are no problematic edges, no new
constraints were added, and hence the complexity isO(n2). In the
worst case, every problematic edge will addO(n) inequalities, and
again, there can be at mostO(dn) problematic edges. Therefore,
the number of added constraints are:

(n− 1) + (n− 1) + · · ·+ (n− 1)
︸ ︷︷ ︸

dn terms

+ (n− 1) + (n− 1) + · · ·+ (n− 1)
︸ ︷︷ ︸

n terms

Therefore, the total number of inequalities isO(dn2). Thus the
complexity is no worse than the model described in Section5.2.
Our experimental evaluation on real datasets in Section6 shows
that this model performs significantly better on the average than
O(dn2).

5.4 Incremental Algorithm
The incremental nature of the algorithm makes it suitable for a

specific class of applications in which the client mining the graph
may not be interested in the shortest paths for all pairs of vertices
in the graph (or subgraph). As is evident from Theorem5.5, the
model is consistent at every step of the algorithm. Therefore, the al-
gorithm can be terminated after processing treesT1, . . . , Tk (where
k < n) and the model is still consistent for these trees. In addition,
the treesT1, . . . , Tk can be arbitrarily chosen as well as composed
in any arbitrary order. Note that each shortest paths tree can also
be truncated after processingk of the n vertices, resulting in the
k-nearest-neighbors of each node.

Consider the“Los Angeles” community example in Section1.
A client requesting the anonymized data corresponding to all the
members in the“Los Angeles” community might only be inter-
ested in shortest paths between all pairs of “computer scientists”. In
such a scenario, only the shortest paths trees with “computer scien-
tists” as roots need to be combined. If the number of treesk ≪ n,
then this technique will have a complexity ofO(kn), i.e., linear in
the number of vertices in the graph. Similarly, if edge weights indi-
cate “trustworthiness", then the method allows the client to request
the topk “trustworthy" computer scientists according to a member
in the community.
Parallelization for Multicores Since thesingle source shortest
paths treecomputation for one vertex is independent of the oth-
ers, the first phase of the algorithm in which the individual shortest
paths trees are computed, isembarrassingly parallel. Therefore,
this phase can be easily parallelized. Considering the ubiquitous
presence of multicores and the compute intensive nature of the al-
gorithm, this should lead to significant improvements in the pro-
cessing time for large graphs. We leave parallelization as a future
extension to this work.

5.5 Implementation Issues
It is appropriate to address some of the subtleties of implemen-

tation for completeness. Every decision modeled results in an in-
equality. For example, in Dijkstra’s algorithm, if vertexu′ is pro-
cessed before vertexu, then we outputf(v0, u

′) ≤ f(v0, u) (Cat-
egory III, Section4.1). In order to deal with ties and different im-

S. Das et al.,Anonymizing Edge-Weighted Social Network Graphs

Single source All pairs
Linear: O(dn) Quadratic: O(dn2)

Reduced:O(n) Optimized: O(n2) (best),O(dn2) (average)

Table 2: Summary of Complexity of the models.

plementations of queues, the ties in the original graphs should be
modeled exactly in the same way in which it was resolved while
generating the model in the original graph. Consequently, in this
scenario, to make sure that in the anonymized graphu′ is chosen
ahead ofu, we model the decision asf(v0, u

′) ≤ f(v0, u) − ǫ,
where ǫ > 0 is a small real number. Additionally, LP solvers
do not accept strict inequalities of the typef(x, y) < b. There-
fore, such inequalities are converted to non-strict inequalities as
f(x, y) ≤ b− ǫ, where againǫ > 0 is a small real number.

6. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the different models

presented in this paper, compare their performance, and validate
our analysis. All the algorithms were implemented in Java, and
the experiments were run on an Intel Core 2 Quad Q6600 proces-
sor operating at a clock speed of 2.4GHz. The machine has 4GB
main memory (3.2GB available) and runs Fedora Core Linux with
kernel 2.6.26.6-49.fc8. We used four real social network data sets
obtained from the authors of [22]. In our experiments, we used
a free open-source LP Solver (lp_solve 5.5) [21]. We report the
time taken to generate the model, complexity of the model, and the
time taken to solve the models. Since we use the LP Solver as a
library, we assume that it is de-coupled from the system generating
the model. Therefore, the model is written to disk, and the system
solving the model reads the model from disk, and generates the so-
lution, which is then used to anonymize the model. The reported
times therefore include the disk access latencies. Most open source
implementations of LP solvers are not heavily optimized, and are
stable for smaller systems. There are commercial systems which
are much faster than these open source implementations, and can
also handle larger models. Correctness of the models is also ex-
perimentally validated by checking the equivalence of the short-
est paths trees and all-pairs shortest paths in the original and the
anonymized graphs.

We first provide details of the data sets used for the experiments,
then experimentally evaluate the model forsingle source shortest
paths tree, followed by that ofall pairs shortest paths problem, and
finally evaluate the privacy guarantees of the models. In our ex-
periments, we focus more on the complexity of the models as it
affects both the time to generate and to solve the models. Table2
summarizes the complexity of the models developed in the previ-
ous two sections. As noted in Section2, the objective function is a
choice of either the publisher of the data set, or the client who will
mine the data set. We experimented with a limited number of ob-
ject functions coefficients such as setting all of then to unity (unity
object function), or setting them to random values picked from uni-
form as well as Gaussian distributions, but no significant difference
was observed. In the reported experiments, we use a unity object
function.

6.1 Datasets
Mislove et al. [22] crawled a number of social network sites

for analyzing the properties of these large social graphs, and have
made their data sets publicly available. Their data sets include the
graphs for a number of popular social networking sites:Flickr
(www.flickr.com), LiveJournal (www.livejournal.com),

Orkut (www.orkut.com), andYoutube (www.youtube.com).
While Orkut is a pure social networking site, LiveJournal (referred
to asLJ in the data sets) is a blogging site whose users form a so-
cial network, while Flickr and Youtube are photo sharing and video
sharing sites respectively, with an overlayed social network struc-
ture amongst its users. We model the graphs of these networks as
directed graphs where edges have positive weights, but the models
can be extended for undirected graphs. Even though some social
network graphs (such as Orkut) might have symmetric edges (i.e.,
an edge(u, v) means bothu andv are connected to each other),
the weights on either direction might not be the same (for exam-
ple if edge weights are based on “trustworthiness”, for the(u, v)
edge,u’s rating ofv, or w[u, v], might be different fromw[v, u]).
Even though we assume directed graphs in all our discussion, and
use directed graphs for our experiments, the model can accommo-
date undirected graphs as well, and the algorithms in Sections4
and 5 can be extended for undirected graphs as well. The pub-
lished graph data sets are unweighted, but since our model is not
dependent on the semantics of the weights or their magnitude, we
assign randomly generated weights (real numbers in the range 1 to
100) to the edges of the graph. We used different distributions for
assigning edge weights, but no considerable change in complexity
was observed.

In our experiments, we consider different sub-graphs from the
original graph data sets. There are multiple reasons for considering
sub-graphs:First, both the applications involving shortest paths are
more meaningful in a portion of a graph rather than the entire graph.
For example, a user will hardly be interested in knowing the short-
est paths to all other reachable vertices in the graph. Rather, short-
est path to all members of a community to which the user belong
to, or to all the vertices which are withink degrees of separation
will be of more interest to a particular user.Second, the shortest
paths algorithms considered in this paper are exact algorithms with
very high time complexity, and hence do not scale to large graphs.
Therefore, even if the entire anonymized graph is available, exe-
cuting, for instance, Dijkstra’s algorithm for all the vertices of the
graph is extremely costly.Third, from the perspective of the com-
panies such as Facebook hosting the social networks, the informa-
tion content of the graphs drives their businesses, and releasing the
entire graph structure can be detrimental to their business in addi-
tion to introducing a very high overhead on their engineering in-
frastructure. Therefore, they are more likely to release portions of
their social graphs rather than the entire social graph.

We consider two specific forms of sub-graphs for our experi-
ments:
User Driven Structures: These are sub-graphs where a specific
user is of interest, and is useful for applications focussed on a user.
For example, for marketing purposes, a company might select some
influentialusers for free trials of their products so that they can in-
fluence other users to use or buy the product [14]. Similarly, ap-
plications such asshortest paths treesandnearest neighborswill
also be interested in similar structures. To simulate these struc-
tures, we select a vertex in the graph as the root, and extract the
graph induced by the vertices which are withink degrees of sepa-
ration from the root (a vertexv is the first degree connection of the
root v0 if there exists an edge(v0, v)). We use theusersuffix for
referring to the user data sets, and for our experiments, we consider
3rd degree of separation (e.g.,Orkut-user-3).
Community Driven Structures: These graphs correspond to com-
munities (or groups) within the social networks. For example, in
our examples in Section1, we refer to the“Los Angeles” com-
munity in Facebook. Community structures are very important for
applications such asshortest paths, nearest neighbors, targeted ad-

www.flickr.com
www.livejournal.com
www.orkut.com
www.youtube.com

UCSB Computer Science Technical Report 2009-03.

Data Set No. of Vertices No. of Edges Avg. Degree
Flickr-user-3 55,803 6,662,377 119.39
LJ-user-3 15,508 384,947 24.82
Orkut-user-3 26,110 899,638 34.46
Youtube-user-3 237,469 2,457,206 10.35

Flickr-comm 1,382 69,321 50.16
LJ-comm 1,497 21,481 14.35
Orkut-comm 1,047 28,240 26.97
Youtube-comm 1,823 29,342 16.1

Table 3: Summary of the Social Graphs.

vertisingetc. This is primarily since users in the same community
share some common interests, and hence many applications can be
driven by the community structure. For the experiments, we select
communities inside the social networks, and extract the graph in-
duced by the members of the community. We use thecommsuffix
for referring to the community data sets (e.g.,Orkut-comm).

Table3 summarizes the different data sets in terms of the num-
ber of vertices, number of edges, and average out-degrees1. To
provide a better insight into the distribution of the out-degrees of
the vertices, in Figure4, we plot thecumulative distribution func-
tion (CDF) of the out-degrees of the graphs in the data set. Along
thex-axis is the out-degree, and along they-axis is the fraction of
the total number of vertices whose out-degree is less than the corre-
sponding value of thex-axis. Figure4(a)plots the CDF for theuser
driven graphs, while Figure4(b) plots the CDF for thecommunity
driven graphs. Each line in the figure corresponds to a graph in the
data set, and represents the fraction of vertices that have out degree
less than or equal to the corresponding point on thex-axis. As can
be noted from Figures4(a) and4(b), Flickr data set has a consid-
erably higher out degree compared to the other three data sets, and
for theuser driven graphs, about 12% of the vertices have an out
degree higher than 250.

6.2 Single source shortest paths
In this section, we experimentally evaluate the models forsin-

gle source shortest paths treedescribed in Section4. Theshortest
paths treeis interesting for both types of data sets under consider-
ation. For theuser drivendata sets, the shortest paths tree with the
root of the graph as the source is of interest for both the shortest
paths as well as thek-nearest neighbors. Similarly, for thecommu-
nity drivendata sets, selecting an “influential” user and using it as
the source of the shortest paths tree is again of interest for many ap-
plications. We therefore run our experiments on both types of data
sets. We compare theLinear model developed in Section4.1to the
Reducedmodel developed in Section4.2 in terms of the complex-
ity of the model, and the time taken to build the model and write it
to the disk. Recall that the complexity of the model corresponds to
the number of inequalities generated during modeling, and the time
taken includes the time for execution of Dijkstra’s algorithm, gen-
eration of the inequalities, and writing the generated inequalities
to disk. Figures5 and6 provide a comparison of the two model-
ing techniques for both types of data sets for all the social graphs.
Figures5(a)and5(b)compare the complexity of the models, while
Figures6(a)and 6(b) compare the time taken to build the model.
In all the figures, thex-axis represents the social graphs, and the
y-axis for Figures5(a) and5(b) plots the number of inequalities
constituting the model, while they-axis for Figures6(a)and 6(b)
plot the time in seconds. Note that they-axis of all the plots have
been plotted in logarithmic scale. It is evident from the figures that

1Since we extract sub-graphs from the social network graphs, the
average degree is not representative of the original graphs.

theReducedmodel is extremely efficient compared to theLinear
model both in terms of complexity and time. The complexity of the
Reducedmodel is about 1 to 2 orders of magnitude lesser when
compared to theLinear model and so is the time taken in comput-
ing the model.

Table4 provides the results from these experiments along with a
detailed breakup of the number of inequalities, as well as the reduc-
tion in complexity and time of theReducedmodel compared to the
Linear model. For theLinear model, the categories of inequalities
in Table4 correspond to the categories defined in Section4.1. As
is evident from Table4, theReducedmodel provides aboutO(d)
times improvement in complexity of the models for all the graphs,
as observed in Section5.3. Depending on the graph, the value of
d varies, and so does the factor of improvement. For example, for
the Flickr-user-3data set,d is 119.39, and the complexity of the
Reducedmodel is about120 times less than that of theLinear
model. The large reduction in the number of inequalities also af-
fects the time for generating the model, since in theLinear model,
fewer number of inequalities need to begenerated, and more im-
portantly, fewer number of inequalities need to bewritten to the
disk. This is illustrated by the almost90% improvement in time to
generate theReducedmodel.

6.3 All pairs shortest paths
In this section, we experimentally evaluate the models for theall

pairs shortest paths problemdescribed in Section5. In a commu-
nity of a social network, users share common interests, and an ap-
plication that uses minimum cost paths between any two members
of the community would require the all-pairs shortest paths. On the
other hand, for auser drivensocial graph, two users in the graph
might be completely unrelated, and from an application’s perspec-
tive, shortest paths between them is not interesting. Thus, we eval-
uate the models forall-pairs only for thecommunity driven graphs.
We first evaluate the model for shortest paths between all pairs of
vertices in the graph, and then evaluate theIncrementalalgorithm
discussed in Section5.4for shortest paths between a subset of ver-
tices.

6.3.1 Evaluating shortest paths between all pairs
In this section, we experimentally evaluate theall pairs models

(described in Sections5.2 and5.3). We refer to the model of Sec-
tion 5.2 as theQuadratic model, and that of Section5.3 as the
Optimized model. Figure7 compares the two models in terms of
complexity and the time taken to build the model, and both of these
terms have the same meaning as described in the previous section.
In Figure7(a), the number of inequalities in the models is plotted
along they-axis, while in Figure7(b), the time taken (in seconds)
to generate the model is plotted along they-axis. In both the fig-
ures, the x-axis represents the different graph data sets, and again
note that they-axis is plotted in logarithmic scale. As noted in Sec-
tion 5.3, Figure7 illustrates the benefits of theOptimized model
compared to theQuadratic model both in terms of complexity and
time.

Table5 provides the experimental results, tabulating the break-
up of the categories of the constituent inequalities that make up
the model. For theQuadratic model, the categories of the in-
equalities correspond to the ones defined in Section4.1. For the
Optimized model, theMerge inequalities are the ones generated
when the individual shortest paths trees are merged into one con-
sistent model compensating for the problematic edges, while the
Treesinequalities are the total number of inequalities generated for
the trees. Since this corresponds toCategory III inequalities (as the
Reducedmodel for single source only usesCategory III inequali-

S. Das et al.,Anonymizing Edge-Weighted Social Network Graphs

0 50 100 150 200 250

0.2

0.4

0.6

0.8

1

Out Degree

C
D

F

Flickr
LiveJournal
Orkut
Youtube

(a) User driven graph

0 50 100 150 200 250
0.2

0.4

0.6

0.8

1

Out Degree

C
D

F

Flickr
LiveJournal
Orkut
Youtube

(b) Community driven graph

Figure 4: Cumulative Distribution Function for the out-degrees of the different graph data sets used for the experiments.

Flickr LJ Orkut Youtube
10

3

10
4

10
5

10
6

10
7

N
um

be
r o

f I
ne

qu
al

iti
es

 (l
og

 s
ca

le
)

Linear Reduced

(a) Userdata sets.
Flickr LJ Orkut Youtube

10
2

10
3

10
4

10
5

N
um

be
r o

f I
ne

qu
al

iti
es

 (l
og

 s
ca

le
)

Linear Reduced

(b) Communitydata sets.

Figure 5: Complexity of the models forsingle source shortest pathstree.

ties), Columns 4 and 8 of Table5 are exactly identical. Table5 also
provides data that allows a deeper analysis of the reasons for the
improved performance of theOptimized model, even though both
models have the same complexity boundO(dn2). As was noted in
Section5.3, the inefficiency of theQuadratic model stems from
the fact that it cannot leverage the absence of some edges from all
the trees, which allows these edges to be excluded from the model.
These edges are represented by the column titledUnconstrained
Edgesin Table 5. It can be seen that in all the social graphs, a
high percentage of edges are not part of any tree, and eliminating
these edges from the model considerably simplifies the model. This
is evident from the 70–80% reduction in complexity of theOpti-
mized model compared to theQuadratic model. As seen in the
case ofsingle source shortest paths tree, reduction in complexity
of the model also considerably reduces the time, primarily because
fewer inequalities are written to disk.

6.3.2 Shortest paths for a subset of vertices
In this section, we experimentally evaluate theIncremental all-

pairs model as explained in Section5.4. This kind of model finds
application incommunity drivengraphs where the application is
interested in a specific subset of vertices. Our goal of this evalu-
ation is to validate our analysis that ifall-pairs shortest pathsare
not required by the application, we can reduce the complexity of
the model considerably. For our experiments, we consider two
cases, one where the pairwise shortest paths between a subset of
100 vertices is to be determined and the shortest paths tree for the
rest suffices, and in another, we are interested in a subset of 200
vertices. These subsets are randomly selected, and simulate our ex-
ample where the application is interested in “computer scientists”

or “guitarists” in the“Los Angeles” community of Facebook. Ta-
ble6 summarizes the results from these experiments, and compares
it with the numbers obtained for theOptimized model for all-pairs
shortest paths from Table5. The significant reductions obtained
(reflected by the rightmost columns in Table6) corroborates our
claim that when shortest paths between all pairs of vertices is not
required, the complexity of the model can be reduced significantly.
The great reduction is primarily due to the fact that a huge portion
of the inequalities for the merge phase is not required for the trees
that are not of interest and therefore do not need to be merged.

6.4 Overall time overhead
In all the above experiments, we considered only the complex-

ity of the model, and the time taken to generate the model. Once
the model has been generated, it has to be solved to anonymize the
graph. The time required for this step depends on the efficiency
of the LP solver. We use an open source LP Solver [21] in our
experiments, and it is widely acknowledged that commercial LP
solvers are far more efficient compared to open source implementa-
tions. As example timings, for theReducedmodel ofsingle source
shortest paths treeproblem, the LP solver we used took0.394 sec-
onds to solve the model forOrkut-commgraph,0.541 seconds for
theYoutube-commgraph,150.638 seconds for theLJ-user-3graph,
and629.869 seconds for theFlickr-user-3graph. For the all-pairs
problem, where the complexity of the model rises to about100K
inequalities, the solvers took about an hour to find a solution. We
remark that our open source LP solver is not optimized for solv-
ing large, sparse models, and these timings are not the best possi-
ble. Furthermore, solving the model constitutes an offline cost and
hence the exact times are not significant for our evaluation.

UCSB Computer Science Technical Report 2009-03.

Flickr LJ Orkut Youtube
10

−2

10
−1

10
0

10
1

Ti
m

e
(in

 s
ec

s)
, l

og
 s

ca
le

Linear Reduced

(a) Userdata sets.
Flickr LJ Orkut Youtube

10
−2

10
−1

10
0

10
1

Ti
m

e
(in

 s
ec

s)
, l

og
 s

ca
le

Linear Reduced

(b) Communitydata sets.

Figure 6: Time to build the model for the single source shortest pathstree.

Linear Model Reduced Model Summary
Number Inequalities Time Number of Time Times Reduction % Reduction

Data Sets Cat I Cat II Cat III Total Taken (s) Inequalities Taken (s) in Complexity in Time
Flickr-user-3 204,626 6,457,751 55,802 6,718,179 98.81 55,802 2.835 120.39 97.13
LJ-user-3 39,030 345,917 15,507 400,454 4.783 15,507 0.938 25.83 80.39
Orkut-user-3 72,130 827,508 26,109 925,747 15.735 26,109 1.752 35.47 88.87
Youtube-user-3 417,526 2,039,680 237,468 2,694,674 44.943 237,468 8.226 11.35 81.7

Flickr-comm 4,112 65,209 1,381 70,702 2.464 1,381 0.163 51.2 93.39
LJ-comm 3,148 18,333 1,496 22,977 2.471 1,496 0.099 15.36 95.99
Orkut-comm 2,409 25,831 1,046 29,286 1.401 1,046 0.08 27.99 94.29
Youtube-comm 3,605 25,737 1,822 31,164 2.564 1,822 0.127 17.11 95.05

Table 4: Experimental evaluation of single source shortest paths tree.

6.5 Evaluating Data privacy
In this section, we evaluate the privacy preserving properties of

the proposed models. In our evaluation, we use the two measures
presented in Section3, i.e., k-anonymity[26] and Spearman rank
correlation coefficient[25]. As explained in Section3, in the con-
text of sensitivity of edge weights, both the measures are defined
in a neighborhood. Computation ofk-anonymityof edges follow
directly from its definition. TheSpearman rank correlation coeffi-
cient is computed for every vertex in the graph. For each vertex in
the original graph and the corresponding vertex in the anonymized
graph, the list of edges emanating from the vertex comprises the
ranked lists used for computing the coefficient. The lists are sorted
by the edge weights, and the coefficient measures correlation be-
tween the ranks of the edges in the two lists. Figures8, 9, and10
provide the experimental results for the two measures on the real
data sets. In these experiments, we use theReducedmodel for
single source shortest pathstree and theOptimized model forall
pairs shortest pathsproblem.

Figures8 and9 plot the percentage of edges in the graph that are
k-anonymousin their neighborhood for a given value ofk and indis-
tinguishability thresholdµ. Figure8 plots the graphs of the model
for single source shortest pathstree and Figure9 plots the graphs
of the model forall pairs shortest pathsproblem. Along thex-axis
we plot the different values ofk, and along they-axis, we plot the
percentage of edges that arek-anonymousfor the corresponding
value ofk on thex-axis. Each graph plots two selected data sets
and compares thek-anonymityof the original and anonymized ver-
sions of the same graphs. Different graphs correspond to different
data sets, different values ofµ, and different algorithms. In these
experiments, we select theFlickr andOrkut graphs as representa-
tives. Similarly,µ values of 1 and 3 are representatives chosen to
show the variance of the anonymity levels as the indistinguishabil-
ity threshold increases. In our experiments, the edge weights were

in the range of 1 to 100, soµ = 1 corresponds to 1% of the to-
tal range of edge weights. As is evident from the Figures8 and9,
our anonymization models considerably improvek-anonymityof
the anonymized graphs when compared to the original graphs. The
improvement is even more significant for larger values ofk and
smaller values ofµ, which demonstrates the improved anonymity
of edges in the anonymized graph. Therefore, in the anonymized
graphs, individual edge-weights are even less distinguishable. Note
that this level ofk-anonymityis provided by the model at no addi-
tional cost. We remark that thek-anonymitycan be further im-
proved by adding constraints and setting bounds on the variables
that ensure that the anonymized weights are even closer to each
other. Additionally, note that thek-anonymityof the edges is better
for theFlickr data set due to the higher average out-degree of the
vertices which allows for more room for hiding in theedge neigh-
borhood.

Figure10 plots theSpearman rank correlation coefficientof the
models forsingle source shortest paths treeandall pairs shortest
pathsproblem. Since the value of the coefficientρ forms a contin-
uum in the range−1.0 ≤ ρ ≤ 1.0, for ease of presentation, we
maintain a equi-width histogram of the coefficient values. Along
the x-axis, we plot the bucket boundaries of the histogram, and
along they-axis we plot the percentage of vertices that have the
value ofρ in the range corresponding to the bucket. The two graphs
plot four data sets and Figure10(a)plots the results for thesingle
source shortest pathstree while Figure10(b)plots the results forall
pairs shortest pathsproblem. Figures10(a)and10(b)demonstrate
the excellent scrambling of the order of the edge weights. Note that
ρ = 0 corresponds to no correlation of ordering, and the closer it
is to 0, the harder it is for an adversary to determine the original
order with high confidence. Our experiments show that for all data
sets, more than75% of vertices have−0.3 ≤ ρ ≤ 0.3, and about
90% of the vertices have−0.5 ≤ ρ ≤ 0.5. Additionally, note
that higher the average out degree (refer to Table3 for the average

S. Das et al.,Anonymizing Edge-Weighted Social Network Graphs

Flickr LJ Orkut Youtube
10

5

10
6

10
7

10
8

N
um

be
r o

f I
ne

qu
al

iti
es

 (l
og

 s
ca

le
)

Quadratic Optimized

(a) Complexity of the model.
Flickr LJ Orkut Youtube

10
0

10
1

10
2

10
3

Ti
m

e
(in

 s
ec

s)
, l

og
 s

ca
le

Quadratic Optimized

(b) Time to build the model.

Figure 7: Performance of the models for theall pairs problem.

Quadratic Model Optimized Model
Data Number Inequalities Time Number of Inequalities Time Unconstra-
Sets Cat I Cat II Cat III Total Taken (s) Merge Trees Total Taken (s) ined Edges
Flickr 3,645,749 85,824,651 1,813,512 91,283,912 926.71 10,837,381 1,813,512 12,650,893 172.66 60,166
LJ 2,330,938 25,847,924 2,107,957 30,286,819 320.42 7,588,195 2,107,957 9,696,152 132.31 15,003
Orkut 1,428,809 26,907,339 1,088,890 29,425,038 277.33 4,377,502 1,088,890 5,466,392 72.32 23,018
Youtube 2,762,305 38,902,975 2,756,994 44,422,274 473.945 9,163,912 2,756,994 11,920,906 151.04 22,802

Table 5: Experimental evaluation of all pairs shortest paths problem for the community driven data sets.

degrees of the graphs in the data sets), the lesser is the correlation
between the original and the anonymized orders.

Therefore, these experiments demonstrate the robustness of the
privacy models, and show how hard it is for an adversary to deter-
mine the original edge weight, to uniquely identify edge weights,
or to determine the original ordering of the weights, thereby effec-
tively preserving the sensitivity of the weights.

7. RELATED WORK
The need to protect the privacy of social entities involved in so-

cial networks has given rise to active research in anonymization
techniques for social network graphs. This interest has been pri-
marily driven by the findings of Backstrom et al. [3] and Korolova
et al. [15]. Backstrom et al. [3] described a technique based on
the structural properties of graphs such as isomorphism and auto-
morphism to re-identify vertices in the anonymized graph. Their
technique was based on implanting unique structures in the graph
which can be re-identified in the anonymized graph with very high
probability. On the other hand, Korolova et al. [15] devised an at-
tack where a node can be re-identified based in part on background
information regarding the neighborhood. As a result, a lot of re-
search has focused onnode identity anonymizationandstructural
anonymization. A comprehensive survey is provided in [18].

A class of proposals, by Hay et al. [12], Zhou et al. [31], and
Liu et al. [19], suggest different methods for anonymization that
are based on the addition and/or deletion of edges in the graph
for altering the structure of the graph and the prevention of re-
identification in the anonymized graph. On the other hand, Cor-
mode et al. [6] suggest a technique for the anonymization of bipar-
tite graphs based on safe groupings, Ying et al. [29] propose a ran-
domization based spectrum preserving approach which effectively
preserves the properties of the eigenvalues of the network, while
anonymizing the edges, and Campan et al. [5] suggest a cluster-
ing based approach for node anonymization. Along different lines,
Zheleva et al. [30] formulate the problem of edge re-identification
in an unweighted graph, where the edge labels are sensitive infor-
mation and need to be anonymized.

A large portion of existing work considers unweighted graphs
for node identity and structural anonymization. But as reflected by
recent work [28, 17], the weighted social network model is gradu-
ally gaining importance, and edge weight anonymization is gaining
significance. Liu et al. [20] suggest a probabilistic technique for
anonymizing edge weights by perturbing the actual edge weights
by a smallσ obtained from a probability distribution. The goal
here is to keep the total cost of the shortest path close to the cost
of the path in the original graph. However with this approach, the
anonymized weights are close to the original edge weights, and
hence may reveal sensitive information about the original values.
Our proposed technique aims at preserving general linear proper-
ties of the graph. For the shortest paths, our goal is to preserve the
paths rather than the values and for most applications, the ability to
reconstruct the actual path is more important than maintaining ap-
proximate values. In addition, if necessary, our model can approx-
imately preserve the cost of the shortest paths as well by adding
constraints of the formf(u, . . . , v) = D[u, v]± ǫ. Note that since
the edge weights are only perturbed by a small value, the technique
of [20] can neither significantly improvek-anonymity, nor can it
scramble the ordering of edge weights.

8. CONCLUSION
The huge amount of information contained in weighted social

networks spawned a renewed interest in information extraction and
data mining. Due to privacy issues, this has resulted in the need
for effective techniques for the anonymization of social network
graphs. In this paper, we propose a technique for edge anonymiza-
tion of a weighted social network graph such that linear properties
of the edge-weights are preserved across anonymization, while re-
vealing little information about the actual magnitude of the edge
weights. Since many important algorithms of interest are functions
that depend upon linear properties of edge-weights, our approach
provides an anonymization methodology that preserves substruc-
tures of interest in the given social graph.

In this paper, we provide a solution for effective anonymization
of weighted social network graphs. We first present an abstract

UCSB Computer Science Technical Report 2009-03.

100 vertices 200 vertices Optimized All Pairs Percent Reduction
Number of Unconstra- Number of Unconstra- No. of ineq- Uncons- 100 200

Data Sets Inequalities ined Edges Inequalities ined Edges qualities trained edges vertices vertices
Flickr-comm 513,414 64,186 1,177,428 63,433 12,650,893 60,166 95.94 90.69
LJ-comm 314,107 18,339 732,212 17,819 9,696,152 15,003 96.76 92.45
Orkut-comm 253,002 25,709 562,005 25,429 5,466,392 23,018 95.37 89.72
Youtube-comm 374,516 25,596 835,831 25,162 11,920,906 22,802 96.86 92.99

Table 6: Experimental evaluation of all pairs shortest paths between a subset of vertices for the community driven data sets.

2 4 6 8 10
0

20

40

60

80

100

k

P
er

ce
nt

ag
e

of
 e

dg
es

Flickr Orig
Flickr Anon
Orkut Orig
Orkut Anon

(a) k anonymityfor single source shortest paths tree
for user data sets andµ = 1

2 4 6 8 10
0

20

40

60

80

100

k

P
er

ce
nt

ag
e

of
 e

dg
es

Flickr Orig
Flickr Anon
Orkut Orig
Orkut Anon

(b) k anonymityfor single source shortest paths tree
for community data sets andµ = 1

2 4 6 8 10
0

20

40

60

80

100

k

P
er

ce
nt

ag
e

of
 e

dg
es

Flickr Orig
Flickr Anon
Orkut Orig
Orkut Anon

(c) k anonymityfor single source shortest paths tree
for user data sets andµ = 3

2 4 6 8 10
10

20

30

40

50

60

70

80

90

100

k

P
er

ce
nt

ag
e

of
 e

dg
es

Flickr Orig
Flickr Anon
Orkut Orig
Orkut Anon

(d) k anonymityfor single source shortest paths tree
for community data sets andµ = 3

Figure 8: Evaluating k-anonymityfor single source shortest pathstree model.

model that can effectively preserve any linear property of edge
weights. As a proof of concept, we consider theshortest paths
problemand show how off-the-shelf linear programming libraries
can be used to effectively anonymize the graphs. We also prove the
correctness of the proposed models, analyze their complexity, and
experimentally validate our claims using real social network data.
Our experiments demonstrates the effectiveness of the anonymiza-
tion achieved by the proposed techniques by using two well known
measures:k-anonymityandSpearman rank correlation coefficient.

The proposed abstract technique can model any linear property
of the edge weights. As examples, we considered the two most
common applications, thesingle source shortest paths tree(which
subsumes thek nearest neighbors), and all pairs shortest paths
problem. In future work, we would like to explore the extensions of
the abstract models for other applications such as graph clustering,
graph summarization, etc., which also rely on linear combinations
of edge weights.

9. ACKNOWLEDGEMENTS
The authors would like to thank Divyakant Agrawal, Pamela

Bhattacharya, and Sayan Ranu for their insightful comments on

the earlier versions of the paper which has helped in improving this
paper. The authors would also like to thanks Alan Mislove for pro-
viding the data sets used for the experiments. This work is partially
supported by NSF Grant IIS-0744539.

10. REFERENCES
[1] Y.-Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong.

Analysis of topological characteristics of huge online social
networking services. InWWW, pages 835–844, New York,
NY, USA, 2007. ACM.

[2] S. Amer-Yahia, L. V. S. Lakshmanan, and C. Yu.
Socialscope: Enabling information discovery on social
content sites. InCIDR, 2009.

[3] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore Art
Thou R3579X?: Anonymized Social Networks, Hidden
Patterns, and Structural Steganography. InWWW, pages
181–190, 2007.

[4] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan.
Group formation in large social networks: membership,
growth, and evolution. InKDD, pages 44–54, New York, NY,
USA, 2006. ACM.

S. Das et al.,Anonymizing Edge-Weighted Social Network Graphs

2 4 6 8 10
0

20

40

60

80

100

k

P
er

ce
nt

ag
e

of
 e

dg
es

Flickr Orig
Flickr Anon
Orkut Orig
Orkut Anon

(a) k anonymityfor incremental all pairs shortest
paths for community data sets andµ = 1

2 4 6 8 10
10

20

30

40

50

60

70

80

90

100

k

Pe
rc

en
ta

ge
 o

f e
dg

es

Flickr Orig
Flickr Anon
Orkut Orig
Orkut Anon

(b) k anonymityfor incremental all pairs shortest
paths for community data sets andµ = 3

Figure 9: Evaluating k-anonymityfor the all-pairs shortest pathstree models. For incremental all pairs, algorithm is terminated after
50 vertices.

−1 −0.5 0 0.5 1
0

10

20

30

40

50

60

Spearman rank correlation coefficient ρ

Pe
rc

en
ta

ge
 o

f v
er

tic
es

Flickr−user−3
Orkut−user−3
Flickr−comm
Orkut−comm

(a) Spearman rank correlation coefficient for single
source shortest paths tree.

−1 −0.5 0 0.5 1
0

5

10

15

20

25

30

35

40

Spearman rank correlation coefficient ρ

Pe
rc

en
ta

ge
 o

f v
er

tic
es

Flickr−comm
LJ−comm
Orkut−comm
Youtube−comm

(b) Spearman rank correlation coefficient for incre-
mental all pairs shortest paths.

Figure 10: Evaluating Spearman rank correlation coefficientfor the models. For incremental all pairs, algorithm is terminated after
50 vertices.

[5] A. Campan and T. M. Truta. A Clustering Approach for Data
and Structural Anonymity in Social Networks. InPinKDD,
pages 1–10, 2008.

[6] G. Cormode, D. Srivastava, T. Yu, and Q. Zhang.
Anonymizing bipartite graph data using safe groupings.
Proc. VLDB Endow., 1(1):833–844, 2008.

[7] E. W. Dijkstra. A note on two problems in connexion with
graphs.Numerische Mathematik, 1:269–271, 1959.

[8] R. W. Floyd. Algorithm 97: Shortest path.Commun. ACM,
5(6):345, 1962.

[9] L. Getoor and C. P. Diehl. Link mining: a survey.SIGKDD
Explor. Newsl., 7(2):3–12, 2005.

[10] M. Girvan and M. E. Newman. Community structure in
social and biological networks.Proc Natl Acad Sci U S A,
99(12):7821–7826, June 2002.

[11] M. Granovetter. Threshold models of collective behavior.
The American Journal of Sociology, 83(6):1420–1443, 1978.

[12] M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis.
Resisting structural re-identification in anonymized social
networks.Proc. VLDB Endow., 1(1):102–114, 2008.

[13] S. Hill, F. Provost, and C. Volinsky. Network-based
marketing: Identifying likely adopters via consumer
networks.Statistical Science, 22(2):256–275, 2006.

[14] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the
spread of influence through a social network. InKDD, pages
137–146, 2003.

[15] A. Korolova, R. Motwani, S. Nabar, and Y. Xu. Link Privacy
in Social Networks. InICDE, pages 1355–1357, 2008.

[16] J. B. Kruskal. On the shortest spanning subtree of a graph
and the traveling salesman problem.Proceedings of the
American Mathematical Society, 7(1):48–50, February 1956.

[17] J. M. Kumpula, J. P. Onnela, J. Saramaki, K. Kaski, and
J. Kertesz. Emergence of communities in weighted networks.
Physical Review Letters, 99:228701–1–228701–4, 2007.

[18] K. Liu, K. Das, T. Grandison, and H. Kargupta.
Privacy-Preserving Data Analysis on Graphs and Social
Networks, chapter 21, pages 419–437. CRC Press, December
2008.

[19] K. Liu and E. Terzi. Towards identity anonymization on
graphs. InSIGMOD, pages 93–106, 2008.

[20] L. Liu, J. Wang, J. Liu, and J. Zhang. Privacy preservation in
social networks with sensitive edge weights. InSDM, pages
954–965, 2009.

[21] LPSolve 5.5.
http://lpsolve.sourceforge.net/5.5/.

[22] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee. Measurement and analysis of online social
networks. InIMC, pages 29–42, 2007.

[23] V. Rastogi, D. Suciu, and S. Hong. The boundary between
privacy and utility in data publishing. InVLDB, pages
531–542, 2007.

[24] M. K. Sparrow. The application of network analysis to

http://lpsolve.sourceforge.net/5.5/

UCSB Computer Science Technical Report 2009-03.

criminal intelligence: An assessment of the prospects.Social
Networks, 13:251–274, 1991.

[25] C. Spearman. The proof and measurement of association
between two things.American J. of Psychology, 15:72–101,
February 1904.

[26] L. Sweeney. k-anonymity: A model for protecting privacy.
Int. J. Uncert. Fuzziness Knowl.-Based Syst., 10(5):557–570,
2002.

[27] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su.
Arnetminer: extraction and mining of academic social
networks. InKDD, pages 990–998, New York, NY, USA,
2008. ACM.

[28] R. Toivonen, J. M. Kumpula, J. Saramäki, J.-P. Onnela,
J. Kertész, and K. Kaski. The role of edge weights in social
networks: modelling structure and dynamics.Noise and
Stochastics in Complex Systems and Finance,
6601(1):B1–B8, 2007.

[29] X. Ying and X. Wu. Randomizing social networks: a
spectrum preserving approach. InSDM, pages 739–750,
2008.

[30] E. Zheleva and L. Getoor. Preserving the Privacy of Sensitive
Relationships in Graph Data. InPinKDD, pages 153–171,
2007.

[31] B. Zhou and J. Pei. Preserving Privacy in Social Networks
Against Neighborhood Attacks. InICDE, pages 506–515,
2008.

	Introduction
	Abstract Model
	Data Sensitivity and Privacy Preservation
	Single Source Shortest Paths
	Linear model
	Reduced model

	All Pairs Shortest Paths
	Naïve composition of single source model
	Quadratic solution
	Optimized solution
	Incremental Algorithm
	Implementation Issues

	Experimental Evaluation
	Datasets
	Single source shortest paths
	All pairs shortest paths
	Evaluating shortest paths between all pairs
	Shortest paths for a subset of vertices

	Overall time overhead
	Evaluating Data privacy

	Related work
	Conclusion
	Acknowledgements
	References

