This report describes Peterson Trethewey’s MS project work, which was completed April 2008

Interactive Manipulation of Large Graph Layouts

Peterson Trethewey, Tobias Hollerer

Abstract—We present two techniques for interactive graph layout manipulation which take inspiration from the fields of 3D modeling,
mesh deformation, and static graph drawing. The first technique uses a multigrid method for modeling and animating large 3D
meshes, the second employs ideas from a simpler mesh deformation scheme together with a basic graph searching algorithm and
a user interface to control region of influence. We show how these techniques along with a set of basic graph refinement tools can
be used interactively to produce informative visualizations based on graph connectivity alone, and then fine tune existing layouts to
reveal insights into specific focus regions. We assume arbitrary, large, connected, undirected graphs, and draw the entire graph in
3D. Our techniques are designed to run at interactive rates on a standard desktop or laptop computer, even for graphs with hundreds
of thousands of nodes. We present timing results and images of layouts generated by our techniques.

Index Terms—Graph Visualization, Multigrid, Interaction, User Interfaces

1 INTRODUCTION

Algorithms for drawing a graph in 2D or 3D based on vertex connec-
tivity alone, i.e. in absence of an initial spatial layout of the vertices,
have been well explored [6]. In this paper, we focus on the problem of
interactively manipulating existing graph layouts. We propose and de-
velop fast interaction techniques that allow a user to explore, improve,
and even generate from scratch, meaningful graph layouts interactively
in real time, even for very large graphs with hundreds of thousands
of vertices. For large graphs, interactivity has commonly been lim-
ited to multi-scale representations, folding entire node clusters into a
single vertex for manipulation and display purposes [12, 9, 1]. For
small to medium-sized graphs, interactive manipulation of graphs has
been shown to provide useful insights into graph structure and topol-
ogy [13]. We claim that for large graphs the same is true provided
sufficient screen real estate, an appropriate scheme for deforming the
entire graph in a natural way given adjustments to only a few vertices,
and interaction methods that run in real time. This paper presents
such interaction methodology. Similar solutions arise in the field of
3D modeling where a user deforms a large polygon mesh by manip-
ulating handles on vertices or patches of vertices. Many techniques
have been proposed for deforming large meshes in this way. Mesh
deformation and static graph drawing often make use of very similar
numerical calculations such as solving laplacian systems on the ver-
tices. We propose two techniques which apply ideas from both fields
to the following problem: Given an arbitrary connected, undirected,
unweighted graph with no self loops or multiple edges, draw the en-
tire graph in 3D with a straight line representing each edge, and then
allow the user to modify the layout to explore the graph’s properties,
extract more information, or make the layout more aesthetic. Ideally
the user is able to modify the graph by adjusting only a few vertices,
and the entire graph deforms to match the user’s adjustments in a way
that reflects inherent graph properties.

1.1 Related Work

The problem of drawing an arbitrary graph in an informative way given
no initial layout information has received much attention in the last
decade. Many algorithms for drawing a graph in the plane with a
straight line representing each edge have been developed. Some of
these methods are compared in running time and aesthetic quality in
[6].

One of the observations in [6] is that algebraically motivated graph
layout algorithms like the ACE method [8] scale better than classi-
cal force-directed models such as [4]. Multilevel, physically-based
models have also been developed [5] which scale better than classical

o Peterson Trethewey is a Mathematics PhD student and a Computer
Science Masters student at UC Santa Barbara.
o Tobias Hollerer is a professor of Computer Science at UC Santa Barbara.

ones. However, ACE, a multigrid method, still beats them in speed
and often produces comparably aesthetic results [6]. In Section 2.2 we
present a multigrid method which solves a system like the one in ACE
but aimed at the application of graph layout manipulation rather than
graph drawing.

The ACE method uses an algebraic multigrid scheme to solve a
laplacian system minimizing a quadratic energy function on the ver-
tices. Many techniques in computer graphics have been developed
which use laplacian systems to produce natural looking mesh defor-
mations [2] [15] [7]. The ACE method is similar in spirit to the method
described in [10] which uses a scheme based on Ruge-Stuben AMG to
achieve natural looking deformations of surfaces at interactive rates.

In [14], Zayer et al propose a mesh deformation scheme which com-
putes a scalar harmonic field in an initial calculation to determine inter-
polation coefficients, and then in subsequent iterations, approximates
solutions by interpolating. In [10], Shi et al adopt a similar scheme
and show that for their application, results are visually indistinguish-
able. This technique inspires our interpolation technique described in
Section 3, but rather than using harmonic coefficients, we compute
coefficients based on the graph metric.

2 MULTIGRID METHOD

Multigrid methods are fast linear solvers that work best on geomet-
rically motivated problems such as partial differential equations. In
this section, we present a brief overview of the general multigrid ap-
proach we follow. For a more complete discussion of algebraic multi-
grid methods, see [3].

2.1 Classical AMG

Geometric multigrid methods were first developed to solve numeri-
cal PDEs. These multigrid schemes work by discretizing the domain
of the PDE in a hierarchy of coarser and coarser grids. Solutions on
coarse grids are prolongated to get good initial guesses on fine grids.
These multigrid schemes are particularly well equipped to solve equa-
tions of the form:

Ap=f

The Algebraic Multigrid Method, AMG, was developed to solve
arbitrary graph laplacian systems, i.e. systems of the form:

Lx=b

where L is the n x n laplacian matrix of a graph (with adjustments for
constraints). AMG is mechanically similar to geometric multigrid,
but motivated by linear algebra. It assumes that a matrix L is given
and uses the underlying graph structure of L to compute a matrix P



which acts like the prolongation operator in geometric multigrid. Then
it approximates a solution to the system:

PTLPY =PTp

The vector Px’ gets used as an initial guess in an iterative scheme
to solve Lx = b. In general, P is selected to have about half as many
columns as L, so AMG recursively defines smaller and smaller sys-
tems until it reaches one that can be solved directly.

2.2 Our Multigrid Method

If L is SPD (symmetric and positive definite) then PTLP is SPD as
well, provided P has full rank. The matrix PTLP is not always the
laplacian matrix of a graph, but since it is SPD, it can be expressed
as the sum of a laplacian matrix of a weighted graph and a diagonal
matrix. In our implementation, rather than compute that sparse ma-
trix at every level we compute the appropriate weighted graph G and
encode the matrix PT LP as G together with an array representing the
entries of the diagonal matrix. The Gauss-Seidel smoothing step of
the multigrid scheme can be done by iterating through this graph.

To determine P at each level, we pick a subset S of the vertices of
the graph G. Entries in x’ correspond to values at vertices in S, and
entries in x correspond to values at vertices in all of G. We then pick
P to be the operator assigning to each vertex v in G the value already
there if v € S and the weighted average of the one-ring neighbors of v
which are in S if v ¢ S. For most graphs, a maximal independent set
makes a good choice for S. If S is a maximal independent set, then
every vertex in G — S has at least one neighbor in S so the weighted
average is never singular.

Our method is inspired by the mesh deformation scheme presented
by Shi et al in [10]. Their method allows a user to constrain the posi-
tion, normal and binormal vectors at some of the vertices of a mesh,
and the entire mesh deforms to meet those constraints. This method
performs two passes per iteration. The first pass computes a harmonic
quaternion field which is used to find smoothly changing orthonormal
frames on all of the vertices. This allows normal and binormal con-
straints to propagate over the entire model. For a graph layout, there
is no concept of a surface normal, so we eliminate this step. Instead,
we perform one pass of multigrid solving a 3-dimensional vector val-
ued laplacian system and interpret each vector as the literal position
of the vertex. Assuming an initial layout of the graph, we form the
right-hand-side of the laplacian system from the laplacian of the orig-
inal embedding. To improve interactivity, we perform just one v-cycle
of the method per frame rather than wait in each frame for the method
to converge. This way the frame rate stays uniform, and the method
often converges in few enough frames that any lag of the graph behind
the cursor is negligible to the user.

Solving a laplacian system on a graph requires that at least one ver-
tex’s value be constrained, otherwise the system is rank-deficient. In
our software, we present the user with a graph in some initial layout,
whereupon each click on a vertex adds a position constraint on that
vertex and we call the vertex fixed. (Note that fixed does not mean
that vertex cannot move, it means that the vertex is not solved for in
passes of multigrid, instead it contributes to the right-hand side of the
Laplacian system.) We run iterations of multigrid only when at least
one vertex is fixed. Vertices which are not fixed are solved for to attain
discrete laplacian equal to what it was in the embedding just before
the click. This way, the vertex getting dragged moves exactly where
the user intends, fixed vertices not being dragged remain in position,
and every other vertex’s position relative to its neighbors changes min-
imally. To free the user from the job of unfixing vertices, we limit the
number of fixed vertices to some number m (= 10). Each click adds
a fixed point, and if as many as m fixed points already exist, the least
recently fixed point gets unfixed automatically. In practice we have ob-
served that for big enough m this happens transparently to the user, be-
cause by the time m vertices have been fixed, the user has often moved
on to a different part of the graph. At the same time, vertices recently

moved into position stay put which makes gives a useful amount of
control over position.

3 INTERPOLATION METHOD

In [14], Zayer et al employ a short cut using a scalar-valued lapla-
cian system in an initial pass to compute interpolation weights, and
then interpolate in subsequent iterations to approximate solutions. For
our second graph layout manipulation technique, we propose a similar
scheme except that instead of using a harmonic scalar field for inter-
polation weights, we derive weights from the combinatorial distance
from the vertex the user clicks on.

Whenever the user clicks on a vertex v, we perform a breadth-frist
search originating from v and record the combinatorial distance to each
other vertex in the graph. Then we apply an appropriate affine func-
tion to get weights in the interval [0, 1] (see Figure 1). We then apply
another function f to the weights to improve the appearance. By de-
fault, f is the cubic s-curve y = 3x> — 2x3, but since applying f only
requires one pass through the vertices, we give the user control over
the function f. This allows the user to adjust the radius of influence of
each click (see Figure 2).

Fig. 1. The user clicks on the indicated vertex above in panel 1. In panel
2, the DFS computes combinatorial distances to each other vertex. The
distance to the vertex the user clicked on is 0. In panel 3, an affine
function is applied to get interpolation weights in [0,1]. The weight 1
on the vertex the user clicked on means that that vertex will follow the
cursor most. The weight 0 means the vertex stays put.

Fig. 2. A square grid is deformed by the same movement of a vertex
but with different functions applied to the interpolation weights. In each
panel, a graph of the function in the unit square is shown in the lower
right.

Let vy ...v, denote the positions of the n vertices of the graph just
before a vertex gets clicked. Let wy...w, be the weights computed
by the above scheme. In each iteration of the mouse-drag that fol-
lows, denote by u the vector pointing from the original location of the
clicked-on vertex and the dragged location of the clicked-on vertex.
Then the new positions of the vertices pj ... p, are determined in each
iteration by the formula:

Pi=vitwiu

One advantage of this manner of interpolation is that after the initial
computation of weights, each iteration of the drag requires only a lin-
ear pass through the vertices of the graph, not the edges. This method
also completely frees the user from having to think about fixed points,



This report describes Peterson Trethewey’s MS project work, which was completed April 2008

the user simply clicks and drags vertices and the graph deforms in a
natural looking way.

4 METRIC

Given an embedding of a graph G, we propose a metric for how good
the embedding is, or rather how bad it is, since for an embedding with
uniform edge lengths, our metric is close 0. Let E denote the set of
edges in G. Let /(e) denote the length of the edge e in the embedding,
and let [ denote the average length of all edges in the embedding. Let
62 denote the variance of the edge lengths given by the following for-
mula.

Let R be the maximum distance (in R3) from a vertex v the centroid
of the vertices. Then we measure the badness M of the embedding by
the following formula:

Some properties of this metric:
e [t is scale invariant.

e For a random embedding of a graph of any size, M is typically
between 1 and 2.

e If all edges are of the same non-zero length, M = 0.

Note that M is undefined when all vertices are in the same position.
Also, some embeddings with M = 0 are not intuitively the best. If
G is a tree for instance, the vertices can be placed on integer points
on the x-axis such that all edge lengths are 1, but this is not a good
way to present the graph. In the case of a tree, however, there are cer-
tainly other embeddings which have uniform edge lengths and which
are more human-readable.

5 OTHER TooOLS
5.1 Perturbing Interpolation Weights

In the interpolation coefficients method, it sometimes happens that ver-
tices stick together simply because they are the same distance from
the dragged vertex. This can lead to deceiving layouts where many
vertices are in the same location. To fix this problem, we propose
artificially perturbing the combinatorial distance to each vertex by a
random amount that does not exceed % in absolute value. That way,
interpolation weights are not limited to a discrete set, but rather they
are uniformly distributed across an interval. With this random pertur-
bation, it is likely that every vertex moves at a slightly different rate
as the user drags the clicked vertex, so individual vertices are more
visible.

5.2 Gauss-Seidel Smoothing

A single iteration of Gauss-Seidel on the system Lx = 0 with no con-
straints can make the embedding much more aesthetic. It is well
known that Gauss-Seidel converges after a large number of iterations.
Convergence in this case means that every vertex moves closer to
some constant point, but the first few iterations only eliminate high-
frequencey noise. High-frequency noise includes artifacts of the ran-
dom perturbation described above, creases in mesh like graphs that
should be flat and spikes in the graph resulting from isolated fixed
points in the multigrid scheme.

5.3 Metric-Driven Layout

Using the metric described in Section 4, we implemented an auto-
mated scheme which switches between Gauss-Seidel smoothing and
pulling random vertices in random directions using the interpolation
method in Section 3. The automated scheme is meant to mimic what
in practice we observed to be a typical procedure for producing layouts
interactively: pulling vertices in three orthogonal directions, and then
smoothing to reduce visual artifacts. Each iteration, we either pull or
smooth and favor the layout if M is strictly smaller. If M for the new
layout is not smaller, we throw it out and try again. For many graphs
this can make M drop dramatically after only a few iterations, but it
usually fails to produce as aesthetic a layout as human interaction can.

6 RESULTS

Graphs used in the following examples come mainly from Chris Wal-
shaw’s Graph Partitioning Archive [11]. For those graphs, the name
given is the name of the file on that site. The binary tree, torus and
grid examples were produced procedurally.

6.1 Layouts

First we compare the two methods: multigrid and interpolation. Fig-
ure 3 shows how similar motions with the two methods can yield vis-
ibly different results. In this example, a simple 50 x 50 square-laid
grid is shown with flat initial configuration. The next two panels show
the result of dragging a particular vertex upward one with the multi-
grid method and one with the interpolation method. In the multigrid
method, to achieve a comparable effect, the four corners of the square
grid are fixed into position first, otherwise dragging just one vertex
would translate the entire graph. The result of the multigrid method
appears smoother. Creases appear in the interpolation method which
make it perhaps less aesthetic, but recall that interpolation weights are
computed based on the distance from the dragged point. The n-ring
neighborhood of a vertex in the graph metric is diamond shaped in
the embedding, so the creases actually reflect a property of the graph
metric.

Fig. 3. A 50 x50 grid is shown with one vertex displaced using the
multigrid method and then the interpolation method for comparison. The
initial layout appears on the left, the multigrid method is shown in the
middle, and the interpolation method is on the right. In the multigrid
method, to get a comparable effect, the four corners of the grid are fixed
into position before dragging the interior vertex upward.

The effect of perturbing interpolation weights can be seen in figures
4 and 5. In Figure 4, a graph representing a network of scientific papers
and their authors is shown. This graph is almost a tree, it has only a few
cycles, and some vertices have numerous twigs attached (by a twig,
we mean an edge connecting a vertex to another vertex of valence 1).
When perturbation is turned off, all vertices of valence one connected
by twigs to the same center vertex move together. As a result, the twigs
are completely hidden. When perturbation is turned on, each vertex
moves at a slightly different rate, and all the twigs become visible. In
Figure 5, the graph used is a wireframe torus with 50 meridians and
50 parallels. The first panel shows the embedding generated when
perturbation is turned on. Artifacts of the random perturbation are
visible. These quickly disappear, however, after only a few iterations
of Gauss-Seidel smoothing.

The interpolation method can be used to reveal global topological
information about a graph. In Figure 6, we show a wireframe torus



Fig. 4. A very tree-like graph laid out using the interpolation technique in
three interactive steps once without perturbing the interpolation weights,
and once with. In the layout on the left, perturbation is turned off, the
valence 1 endpoints of spurs stick together and wind up hidden in the
resulting layout. The layout on the right shows the result with perturba-
tion turned on. Numerous spurs are visible yet the global layout remains
similar.

Fig. 5. A wireframe torus is laid out using the interpolation technique in
three clicks with perturbation of the interpolation weights turned on. The
panel on the left shows the resulting embedding and the panel on the
right shows the artifacts of the random perturbation removed by three
passes Gauss-Seidel smoothing.

with 50 meridians and 50 parallels getting deformed using the interpo-
lation method starting from a random embedding. In just a few pulls,
the inherently round nature of the graph becomes apparent, and by the
end, the handle of the torus can be seen. A few Gauss-Seidel smooths
in the last couple panels massage away residual artifacts of the origi-
nal random embedding. In examples farther on, we deform graphs by
a similar process, but figures show fewer panels.

For a less contrived example than a torus, the graph called “3elt”
from [11] is shown in figure 7. In this example, the graph is first
pulled into place using the interpolation method. A few smooths get
performed to eliminate artifacts of the random embedding, and then in
figure 8, the multigrid method gets used to stretch out potions of the
graph which were folded up by the first few motions in the interpola-
tion method. As a result, more detail can be seen in those areas.

In Figure 9, we show the graph “t60k™ getting modified using the
interpolation technique only. This example shows the utility of be-
ing able to control the function that gets applied to the interpolation
weights. As the embedding begins to look better on a global level, the
user shortens the radius of influence of each click so that moving ver-
tices only affect the embedding locally. Also in this example we show
how the metric M described in Section 4 rapidly decreases as the user
improves the embedding and then stays small as the user refines the
embedding.

Finally, in Figure 10, we show six graph layouts each created us-
ing the multigrid and interpolation methods together. These examples
show the diversity of graphs that the two methods together can handle.
The graph called “Binary Tree” is a procedurally generated binary tree,
the rest of the graphs are from [11]. The binary tree and graphs cs4
and add32 differ from previous examples in that they are not simply
wireframe meshes. In particular, cs4 looks mesh-like in the figure but
it has a complex, internal 3-dimensional structure.

Fig. 6. The wireframe torus graph from Figure 5 is manipulated using the
interpolation technique to produce an informative layout starting from
a random initial layout. In panels 1 through 5, various vertices of the
graph are pulled outward to spread out the vertices. In panel 6 the
viewing angle is changed and in panel 7, the embedding is pulled out
of the plane. In panels 8, 9 and 10 the layout is adjusted further. In the
panel 11, an iteration of Gauss-Seidel is applied to smooth out residual
artifacts of the random initial embedding. In the panel 12, the handle of
the torus is apparent.

Fig. 7. Four intermediate steps of interactive manipulation of the graph
3elt starting from a random initial layout. The penultimate panel shows
the graph after a few vertices have been pulled into position, and the last
panel shows the result of a a few more adjustments plus one Gauss-
Seidel smooth.

6.2 Timing

Table 1 presents timing results in seconds for both the interpolation
and multigrid methods on a collection of graphs of varying sizes. Tests
were run on a Lenovo ThinkPad T61 laptop with 2.0GHz Intel Core
2 Duo T7300 processor, 1GB of RAM, and an NVIDIA NVS 140M
graphics chip with 128MB of video memory. Our program runs on
Ubuntu 7.10 (Gutsy Gibbon). Each test was conducted 20 times by
a script, and running times were averaged to get the numbers in the
table. For each test, we allowed the graph to draw, but the times pre-
sented in the table do not include drawing time, only computational
time. For the interpolation technique, we separately list the time taken
to compute the interpolation weights (has to be performed once on
mouse-down) and the average time taken by one frame of dragging a
vertex. For the multigrid technique, we simply list the time taken by
one v-cycle of the method. The reported time information clearly al-
lows for interactive exploration of graphs with hundred of thousands of
nodes and over one million edges: for the first five graphs we achieve
frame rates of 80fps or higher for the interpolation technique and 40fps
or higher for the multigrid method. The last two graphs can still be ex-
plored at about 10fps or higher with the interpolation scheme, while
the multigrid method slows down to 2-4 fps. All these update rate cal-



This report describes Peterson Trethewey’s MS project work, which was completed April 2008

Fig. 8. The graph 3elt is shown with initial embedding gotten from the
interpolation method as in Figure 7. Here, the graph layout is fine tuned
by positioning fixed points using the multigrid method. In panel 2, the
graph is rotated to bring the thin part in the lower left to the front, and
the thin part is stretched out to expose details. In panel 3, the pointy
artifacts the fixed points leave behind get smoothed out with an iteration
of Gauss-Seidel. In panel 4, the graph is shown from a viewing angle
closer to panel 1, but with the new detail showing.

M=1.0983

M=0.1185 M=0.0491 M=0.0057

M=0.0060

M=0.0057 M=0.0074

M=0.0071

Fig. 9. The graph t60k is laid out using the interpolation technique only
but with varying functions applied to the weights to attain different radii
of influence for each click. The first three panels show the results of
a few pulls with the function set to the default s-curve (see Section 3).
Panel 4 shows shows the result of smoothing. In panel 5, the radius
of influence is adjusted to be closer to half the diameter of the graph.
And the right half of the embedding is modified to pull apart sections
of the graph which were compressed in the initial interaction. In panels
6 through 8, the graph is viewed from a different angle, the radius of
influence is reduced even further and the graph is manipulated to show
even more detail. Each panel shows the value of M for the embedding
shown.

culations do not count the time necessary to draw the edges and ver-
tices, but a state-of-the-art graphics card can handle such numbers in
real time. (The video accompanying this paper demonstrates a slightly
older version of our program running on an Apple Macintosh G5.)

Table 1. Method Running Times

Graph \Y E weights  interp  v-cycle
data 2851 15093 .0011 .0004 .0014
3elt 4720 13722 .0020 .0007 .0021

uk 4824 6837 .0017 .0007 .0037

add32 4960 9462 .0019 .0007 .0022
t60k 60005 89440 .0298 .0128 .0253

ml4b 214765 1679018 .2360 0515 2111
auto 448695 3314611 .5807 .1067 .5872

7 DISCUSSION

Because static graph layout generation is a well studied problem, we
focused our attention on interactive graph layout generation allowing
the user to manipulate the graph by hand to attain an intuitive layout
even on graphs with hundreds of thousands of nodes. Although our
methods can be used to create informative layouts for a diverse range
of simple graphs, for graphs with multiple edges, weighted edges or
self loops, extending our method would be a non-trivial task. For the
multigrid method, weighted edges are implicit in each level of the
graph, so the method can take edge weights into account, but we found
the multigrid method useful mostly for fine tuning layouts generated
by the interpolation method to reveal more detail in congested areas.

cs4 add32
V=22499 E=43858 V=4960 E=9462
M=0.0678 M=0.0404

3elt Binary Tree

V=4720 E=13722 \/=2047 E=2046
M=0.0564 M=0.0347

data ml4b

V=2851 E=15093 V=214765 E=1679018
M=0.1452 M=0.1500

Fig. 10. Layouts for a diverse collection of graphs created using our two
methods. Each layout is labeled with the name of the graph (This is the
name of the file if the graph comes from [11].), the number of vertices V,
the number of edges E and the value of the metric M for the embedding
shown.

In the interpolation scheme, on the other hand, the natural extension
of the method to account for weighted edges would require comput-
ing the distance from vertex v to each other vertex in a weighted graph.
This is an inherently more difficult problem and might not scale as well
as our method. Plus, it is not necessarily the case that the weights in an
arbitrary weighted graph are best interpreted as distances. In our multi-
grid method, we have found that certain graphs are ill-conditioned to
the scheme for computing coarse grids, trees for instance. However,
it is widely acknowledged in multigrid literature that no one multigrid
scheme works on all graphs. Our methods still struggle with the in-
herently difficult problem of laying out a highly connected graph. We
tested the interpolation scheme with a graph of Wikipedia sites with
average valence near 40. With this graph, meaningful global connec-
tivity information was difficult to attain. Graphs like these are, how-
ever, difficult to draw in an informative way in general.

Despite the simplicity of our interpolation technique, it can pro-
duce surprisingly informative layouts. We found that the interpolation
method works best for revealing global connectivity data of a graph,
especially when that graph has some inherent topology such as: a pla-
nar graph, a tree, the 1-dimensional skeleton of a surface mesh or a
graph with a natural 3-dimensional embedding like cs4 in Panel 1 of



Figure 10. For these sorts of graphs, the method can expose infor-
mation in only a few interactive steps. The benefit of our interpola-
tion scheme is also quantifiable as pulling vertices in the interpolation
method to make the embedding more visually pleasing tends also to
make our metric M decrease. Gradually reducing the radius of influ-
ence of each click can allow more localized editing, and this tends
to keep M low. The multigrid method is often even more useful for
local editing since each vertex dragged stays put and therefore gives
the user more control over positioning. Smoothing out the graph with
Gauss-Seidel is a very simple operation and therefore runs quite fast.
It eliminates high frequency noise which has the effect of making the
graph layout more aesthetic and in general decreases M as well. This
makes a good finishing touch on a layout.

Our methods also scale well up to graphs of hundreds of thousands
of vertices, especially the interpolation technique. We contend that
because we draw and manipulate the entire graph without appealing to
supergraphs where a vertex represents many vertices of the graph of
interest, our methods have the potential to visualize very large graphs
on high resolution displays showing all vertices and edges.

8 CONCLUSIONS AND FUTURE WORK

We have shown two methods for interactive graph layout manipulation
which can be used together to generate embeddings of large graphs in
3D with a manageable amount of interaction. Our techniques draw the
entire graph and allow the user to control the layout by moving only a
few vertices. In general, we envision improvements to the software
which benefit performance by localizing operations which are cur-
rently always performed on the whole graph. In our implementation,
the multigrid method recomputes the entire grid hierarchy whenever
the user clicks a fixed point, it would help to implement an incremen-
tal scheme which changes only the part of the grid hierarchy affected
by the click. The interpolation technique has similar overhead on the
first click due to the initial search that must be performed to compute
interpolation weights. In the case where the user has decreased the
effective radius of interaction by adjusting the function applied to the
interpolation weights, we still compute weights for every vertex, even
though many of them are zero. Pruning distant vertices in that search
would yield a performance benefit and better equip the method for
much larger graphs. We are also in the process of extending our algo-
rithm to support weighted edges as well as edge and node annotations.

ACKNOWLEDGEMENTS

This project was funded by the National Science Foundataion. We
would like to thank Nathan Bell for helping with our implementation
of AMG.

REFERENCES

[1] D. Archambault, T. Munzner, and D. Auber. Topolayout: Multi-level
graph layout by topological features. IEEE Transactions on Visualization
and Computer Graphics, 13(2):305-317, March/April 2007.

[2] O. K.-C. Au, C.-L. Tai, L. Liu, and H. Fu. Dual laplacian editing for
meshes. [EEE Transactions on Visualization and Computer Graphics,
12(3):386-395, 2006.

[3] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial
(2nd ed.). Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2000.

[4] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-
directed placement. Software - Practice and Experience, 21(11):1129—
1164, 1991.

[5] S. Hachul and M. Jiinger. Drawing large graphs with a potential-field-
based multilevel algorithm. In Graph Drawing, pages 285-295, 2004.

[6] S.Hachul and M. Jiinger. An experimental comparison of fast algorithms
for drawing general large graphs. In P. Healy and N. S. Nikolov, editors,
Graph Drawing, Limerick, Ireland, September 12-14, 2005, pages pp.
235-250. Springer, 2006.

[7] J.Huang, X. Shi, X. Liu, K. Zhou, L.-Y. Wei, S.-H. Teng, H. Bao, B. Guo,
and H.-Y. Shum. Subspace gradient domain mesh deformation. ACM
Trans. Graph., 25(3):1126-1134, 2006.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

Y. Koren, L. Carmel, and D. Harel. Ace: A fast multiscale eigenvectors
computation for drawing huge graphs. Technical Report MCS01-17, The
Weizmann Institute of Science, 2001.

J. F. Rodrigues, H. Tong, A. J. M. Traina, C. Faloutsos, and J. Leskovec.
Gmine: a system for scalable, interactive graph visualization and mining.
In VLDB’2006: Proceedings of the 32nd international conference on Very
large data bases, pages 1195-1198. VLDB Endowment, 2006.

L. Shi, Y. Yu, N. Bell, and W.-W. Feng. A fast multigrid algorithm for
mesh deformation. In SSIGGRAPH '06: ACM SIGGRAPH 2006 Papers,
pages 1108-1117, New York, NY, USA, 2006. ACM.

C. Walshaw. The graph partitioning archive.

C. Walshaw. A multilevel algorithm for force-directed graph drawing. In
J. Marks, editor, Proc. 8th Int. Symp. Graph Drawing, GD, volume 1984,
pages 171-182. Springer-Verlag, 20-23 2000.

P. C. Wong, G. Chin, H. Foote, P. Mackey, and J. Thomas. Have green —
a visual analytics framework for large semantic graphs. Visual Analytics
Science And Technology, 2006 IEEE Symposium On, pages 67-74, Oct.
2006.

R. Zayer, C. Rossl, Z. Karni, and H.-P. Seidel. Harmonic guidance for
surface deformation. In M. Alexa and J. Marks, editors, The European
Association for Computer Graphics 26th Annual Conference : EURO-
GRAPHICS 2005, volume 24 of Computer Graphics Forum, pages 601—
609, Dublin, Ireland, 2005. Eurographics, Blackwell.

K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, and H.-Y. Shum.
Large mesh deformation using the volumetric graph laplacian. ACM
Trans. Graph., 24(3):496-503, 2005.



