
Strongly Regular Grammars and Regular

Approximation of Context-Free Languages

Ömer Eğecioğlu

Department of Computer Science
University of California, Santa Barbara, CA 93106

omer@cs.ucsb.edu

Abstract. We consider algorithms for approximating context–free gram-
mars by regular grammars, making use of Chomsky’s characterization
of non–self–embedding grammars as generating regular languages and a
transformation by Mohri and Nederhof on sets of mutually recursive non-
terminals. We give an exposition of strongly regular grammars and this
transformation, and use it as a subprocedure to obtain tighter regular
approximations to a given context-free grammar. In another direction,
the generalization by a 1–lookahead extends Mohri and Nederhof’s trans-
formation by incorporating more context into the regular approximation
at the expense of a larger grammar.

1 Introduction

The approximation of context-free languages with regular languages is a prob-
lem which has been extensively studied because of its importance in a number
of applications [6,5,4]. A general framework for the approximation of formal lan-
guages by regular languages was studied by Shallit [7]. We consider the case in
which a given context-free grammar is approximated from above by a regular
grammar.

The algorithms discussed here make use of a transformation introduced by
Mohri and Nederhof [4] as a subprocedure to provide tighter regular approxi-
mations. As in [4], the approximating grammar obtained is non–self–embedding.
Such grammars generate regular languages by a result of Chomsky [2].

We assume that the grammar is in appropriate normal form, although for
real-life problems discussed in [4] normal forms would already incur a quadratic
increase in the size of the grammar, and may not be desirable. The starting point
of normal forms is not a necessary assumption but simplifies the exposition: the
resulting regular grammars are easier to keep track of because of the simplicity
of their transition diagrams, for example.

We start with an exposition of the transformation of Mohri and Nederhof
[4] and then discuss its variants that which provide tighter regular approxima-
tions. Regular approximation by two cycle-breaking based methods is presented
in section 6 and approximation by 1–lookahead is discussed in section 7.

2 Notation and Definitions

A context–free grammar (CFG) G is a 4–tuple G = (N, T, P, S), where N and T
are disjoint finite sets of nonterminals and terminals, respectively. P is a finite
set of productions (rules); each production is of the form A → α, where A is
a nonterminal and α is a string of symbols (sentential forms) from V ∗ where
V = N ∪ T . S is the start symbol. The relation → on N × V ∗ is extended to
a relation on V ∗ × V ∗ as usual. The transitive and reflexive closure of → is
denoted by →∗ . The language generated by an A ∈ N is {w ∈ T ∗ |A →∗ w}. The
language generated by G is L(G) = {w ∈ T ∗ |S →∗ w} . A context–free language
(CFL) is a language generated by a CFG. The number of rules in the grammar
G is denoted by |G|. We use the commonly used convention of denoting the set
of nonterminals in N by capital letters A, B, C, . . ., the set of terminals T with
a, b, c, . . ., strings of terminals in T ∗ with u, v, w, . . ., strings of nonterminals and
terminals in V ∗ by α, β, γ, The empty string is denoted by ε. Productions
with left-hand side A ∈ N are referred to as the rules of A or A-rules. The union
of rules of A ∈ M for M ⊆ N are the rules of M .

If all productions of G are of the form A → wB or A → w then G is called
a right–linear grammar. If all productions are of the form A → Bw or A → w
then G is a left–linear grammar. G is a regular grammar if it is either right–linear
or left–linear. Regular grammars characterize regular languages. In addition to
regular grammars, regular languages can be represented in many forms such
as finite automata (1NFA, 1DFA, 2NFA, 2DFA), and regular expressions, each
giving a different insight into the structure of the language. In the Chomsky hi-
erarchy of languages, context–free languages properly contain regular languages.
Thus context–free grammars can generate languages which are non–regular, and
in fact many languages of interest are context–free but non–regular.

A context–free grammar G is self–embedding (SE), if there exists a derivation
A →∗ αAβ, with both α, β non–empty. G is non–self–embedding (NSE) if it is
not self–embedding. By a result of Chomsky [2], any NSE grammar generates
a regular language. For more details on notation and basic properties of CFGs
and CFLs, the reader is referred to Hopcroft and Ullman [3].

3 Mohri and Nederhof’s Transformation

In this section we describe the transformation of Mohri and Nederhof [4]. First,
consider strongly regular CFGs which are defined as follows. Let ℜ be the relation
defined on the set of nonterminals N of G by:

AℜB ⇔ (∃α, β ∈ V ∗ s.t. A →∗ αBβ) ∧ (∃α, β ∈ V ∗ s.t. B →∗ αAβ) .

Note that α and β are not required to be nonempty. ℜ defines an equivalence
relation on N , and partitions N into equivalence classes of nonterminals called
mutually recursive nonterminals. Strongly regular grammars are grammars in
which the rules of each set M of mutually recursive nonterminals are either all
left–linear or all right–linear. In determining whether a rule of M is right–linear

or left–linear, the nonterminals that do not belong to M are treated as if they
are terminals. The class of languages generated by strongly regular grammars
coincide with the class of languages generated by NSE grammars and therefore
these languages are regular.

There are efficient algorithms to construct finite automata from strongly
regular grammars. An offline construction was given by Nederhof in [6]. One may
also construct an alternative, compact representation of the regular language
generated, from which a finite automaton for it may be constructed, as shown
by Mohri and Pereira in [5]. Briefly, the algorithm is as follows:

1. Determine sets of mutually recursive nonterminals by computing the strongly
connected components of the graph of the grammar1.

2. Construct a the automaton K(M) for each equivalence class M of mutually
recursive nonterminals with unspecified initial state (in case M is right–
linear) or unspecified final states (in case M is left–linear). For any A ∈ M ,
the automaton N (A) accepting terminals generated from A can be obtained
from K(M).

3. For each input string w, obtain N (S) from the K(M) that satisfies S ∈
M . This automaton is then expanded in a lazy way by substituting other
automata N (A) for occurrences of A in N (S) that are encountered while
processing w.

In [4], Mohri and Nederhof describe a transformation that yields a strongly
regular grammar from a given context-free grammar: for each class of mutually
recursive nonterminals M such that the corresponding rules are not all right–
linear or not all left–linear with respect to the nonterminals of M , the following
transformation is applied:

1. For each nonterminal A ∈ M , introduce A′ /∈ N and add the production
A′ → ε to the grammar.

2. For each production of the form: A → α0B1α1B2α2 . . . Bmαm with m ≥ 0,
B1, . . . , Bm ∈ M, α0, . . . , αm ∈ (T ∪ (N − M))∗, replace it with

A → α0B1

B′

1 → α1B2

B′

2 → α2B3

...

B′

m−1 → αm−1Bm

B′

m → αmA′

If m = 0, this set of productions only contains A → α0A
′ .

1 The graph of the grammar has a node for each nonterminal, and an edge from node
A to node B iff B appears on the right hand side of a production having A on the
left hand side.

All of the rules for M in the transformed grammar are right–linear. Therefore
the resulting grammar is strongly regular. We will refer to this transformation
as the MN-transformation, and the resulting regular approximation as the MN-

approximation. The MN-approximation L(G) is a superset of L(G).

Since we are interested in how well the resulting regular language approx-
imates the given one, we will consider the effect of the transformation on an
individual equivalence class of mutually recursive set of nonterminals.

Example 1. As an example of the MN-transformation, consider the grammar G
with productions

A → aBa

B → bA | b

in which A is the start state. This grammar generates the nonregular language
{(ab)nan | n > 0} . We can show that the MN-transformation approximates
this language by the regular language (ab)+a∗. In G, A and B form a mutu-
ally recursive set of nonterminals. The transformed grammar G′ consists of the
productions

A → aB

A′ → B′ | ε

B → bA | bB′

B′ → aA′ | ε .

The following derivation in G′ simulates the derivation of ababaa: A → aB →
abA → abaB → ababB′ → ababaA′ → ababaB′ → ababaaA′ → ababaa. For the
nonterminal B, the newly introduced nonterminal B′ serves two purposes:

1. It allows the termination of a derivation from B by replacing B with the
terminals that B derives. In our example, B → b in G is simulated using the
productions B → bB′, B′ → ε from G′.

2. Since the productions are all right–linear, it provides a mechanism to return
back to the branching point from the original production and continue the
derivation.

However, this last point also introduces ambiguities in the grammar. Nonterminal
pairs B and B′ mark the beginning and end of strings generated by B in the
original grammar. This can be used to compile the transformed grammar into a
finite-state transducer that outputs bracketed strings equivalent to parse trees
[4]. At the same time by making use of B′, it is possible to continue the derivation
from the right of B in a current sentential form by any production that has B on
its right hand side, not necessarily the next nonterminal in the sentential form
(see Example 5).

4 The automaton for the MN-approximation

Assume that N itself is a mutually recursive set of nonterminals. The structure
of the transition diagram of the automaton constructed from the right-linear
grammar G′ in the standard way [3] allows us to quickly determine a regular
expression For the MN-approximation, especially when the given grammar is in
Chomsky Normal Form (CNF).

The transition diagram is organized as two rows of states where each state
is labeled with a nonterminal in G′, grouped as follows. (see Figure 1 (a) for the
automaton corresponding to G′ of Example 1.)

Fig. 1. (a) Automaton corresponding to the transformation of the grammar in
Example 1. (b) Transformed CNF rules A → BC | a.

– The nonterminals of the original grammar are represented in the upper part.

– The newly introduced nonterminals are represented in the lower part.

– The final states are the states in the lower part of the automaton.

– Every production of the type A → w induces a transition from the upper
part to the lower part. The transition from B to B′ in Figure 1 (a) that
comes from the rule B → b demonstrates this.

– For every production of the type A → α0B1α1B2α2 . . . Bmαm in G, the first
rule A → α0B1 in G′ induces a transition strictly within the upper part of
the automaton. The transition from A to B in Figure 1 (a) that comes from
the rule A → aBa in this way demonstrates this.

– The last production in B′

m → αmA′ in G′ induces a transition strictly within
the lower part of the automaton. The transition from B′ to A′ in Figure 1
(a) that comes from B′ → aA′ demonstrates this.

– All other intermediate productions in G′ induce transitions from the lower
part of the automaton to the upper part.

In CNF, the productions of G are of the form A → BC or A → a. Assuming
that A, B, C are all in the same set of mutually recursive nonterminals, the
transformation for the above mentioned rules yields:

A → B

B′ → C

C′ → A′

A → aA′ .

The first production leads to an ε-transition in the upper part of the automaton.
The second production leads to an ε-transition from the lower part to the upper
part. The third production leads to an ε-transition within the lower part. Its
only productions of the fourth kind that actually derive all the terminals, and
they result in transitions from the upper part of the automaton to the lower
part. This is illustrated in Figure 1 (b).

5 NSE Grammars

We will assume for the rest of the discussion, that G is in CNF and that N is a
mutually recursive set.

Recall that G is SE if for some nonterminal A, there is a derivation A →∗ αAβ,
with both α, β non–empty. G is NSE if for any nonterminal A and a derivation
A →∗ αAβ, either α = ε or β = ε. In general, it is undecidable if a context–
free grammar generates a regular language [8], or even if L(G) = T ∗. However
whether a context–free grammar is NSE is decidable [1]. By Chomsky’s result,
if G is NSE then L(G) is regular. Of course this leaves open the possibility that
G is SE, but L(G) is nevertheless regular. The property A →∗ αAβ, with α, β 6= ε
enables the grammar to generate terminal strings of the form uixvi. If u and v
are sufficiently complex, then the language has a counting property and cannot
be regular. Therefore the nature of the terminal strings derivable by the self-
embedding in G is the thin line that separates the decidable question of “Is G
NSE?” and the undecidable question of “Is L(G) regular?”.

We make use of some of the ideas from [1]. Define the edge-colored production
graph CP (G) for a grammar G by starting with the nonterminals as vertices.
Since G is in CNF, all productions are of the form: A → BC or A → a. In
CP (G), we are only concerned with productions of the form A → BC. For every
production A → BC, CP (G) has an edge from node A to node B colored l, and
an edge from A to C colored r. We note that in CP (G) self-loops are possible,
and if we ignore the colors on the edges, then the graph is strongly connected.
Also, an l-colored edge can arise from more than one rule, e.g. A → BC | BD.
Similarly for r-colored edges. Therefore the number of l-colored edges is not
necessarily equal to the number of r-colored edges.

Theorem 1. G is NSE iff all cycles in CP (G) are monochromatic.

Proof. Any derivation A1 →∗ αA1β in G corresponds to a cycle in CP (G). If the
cycle containing A1 is monochromatic with color l, then this a derivation is of
the form A1 → A2B2 → A3B3B2 → · · · → AkBkBk−1 · · ·B2 → A1B1Bk · · ·B2

with α = ε. Similarly, if the cycle containing A1 is monochromatic with color
r, then β = ε. Conversely, any cycle with an edge A1 → A2 colored l followed
by an edge A2 → A3 colored r gives a derivation of the form A1 → A2B2 →
B3A3B2 → · · · → αA1β where α starts with B3 and β ends with B2. Therefore
α, β 6= ε, and G is SE.

6 Regular approximation by cycle-breaking

Rather than replacing the rules of the grammar with the appropriate approx-
imations, an alternative approach is to only use the approximation for non–
monochromatic cycles in CP (G), and leave the rest of the graph intact. We
present an example to demonstrate this approach.

Example 2. Let T = {a, b} and consider the CFG G:

A1 → A2A3 | b, A2 → A3A4, A3 → A4A5, A4 → A5A1, A5 → A1A2 | a . (1)

Applying the MN-transformation, the resulting regular grammar G′ is:

A′

1 → ε, A′

2 → ε, A′

3 → ε, A′

4 → ε, A′

5 → ε
A1 → bA′

1

A5 → aA′

5

A1 → A2, A′

1 → A2, A′

1 → A′

4

A2 → A3, A′

2 → A3, A′

2 → A′

5

A3 → A4, A′

3 → A4, A′

3 → A′

1

A4 → A5, A′

4 → A5, A′

4 → A′

2

A5 → A1, A′

5 → A1, A′

5 → A′

3

(2)

To get a sense of the approximation, note that G is equivalent to the grammar

A1 → A5A1A5A5A1A5A1A5 | b

A5 → A1A5A1A5A5A1 | a ,

and in particular L(G) contains no word of length 2, 3, . . . , 7. The automaton
corresponding to G′ is shown in Figure 2. The language accepted is T +. Therefore
the MN-approximation to L(G) is T +. We also note from Figure 2 that any
nonterminal Ai in this example generates T +.

For the approximation using cycle-breaking, we first construct CP (G). This
is shown in Figure 3 (a) for the grammar in Example 2. Using cycle-breaking,
it is possible to devise different regular approximations to L(G). We can use
the MN-approximation itself as a subroutine, for example. Alternatively, we
break non–monochromatic cycles by introducing a new nonterminal for each
edge eliminated. Depending on what we allow these new nonterminal to derive
in the new grammar, we obtain regular approximations that are supersets or
subsets of the given language. It is also possible to mix these two ideas.

We consider cycle-breaking by using the MN-transformation first, and then
describe cycle-breaking based on introduction of new nonterminals.

Fig. 2. The automaton for the grammar in Example 2.

6.1 Cycle-breaking using the MN-transformation

To eliminate an l-colored edge Ai → Aj in CP (G), we proceed as follows. Sup-
pose the Ai-productions of G the form Ai → AjAk are

Ai → AjAk1
| AjAk2

| · · · | AjAkt
(3)

and G′ is the grammar obtained from G by the MN-transformation. Make a
fresh copy of G′ by relabeling each Ak by Bk where a distinct symbol B is is
used for every edge eliminated. G′

j be this grammar with start symbol Bj . We
replace the rules (3) with

Ai → BjAk1
| BjAk2

| · · · | BjAkt
. (4)

Similarly, to eliminate an r-colored edge Ai → Aj , assume that the Ai-rules
of the form Ai → AkAj are

Ai → Ak1
Aj | Ak2

Aj | · · · | Akt
Aj . (5)

Let G′ be the grammar obtained from G by the MN-transformation. Make
a fresh copy of G′ by relabeling each Ak by Ck where a distinct symbol C is is
used for every edge eliminated. Let G′

j be this grammar with start symbol Cj .
Then we replace the rules (5) with

Ai → Ak1
Cj | Ak2

Cj | · · · | Akt
Cj . (6)

Example 3. Let G be the grammar in Example 2. From Figure 3 (b), we see
that eliminating the r-colored edges A4 → A1, A5 → A2 and the l-colored edge
A5 → A1 are sufficient to make all cycles monochromatic in CP (G). Using the
above idea, we obtain the grammar

A1 → A2A3 | b
A2 → A3A4

A3 → A4A5

A4 → A5B1

A5 → D1C2 | a

together with three copies of the productions in (2), one each for nonterminal
B, C and D. From the automaton in Figure 2, we see that every nonterminal in
G′ derives T +. For this example, the grammar G′′ obtained by cycle-breaking
using the MN-transformation generates the language

(T ∗T 3 + aT ∗T)(T ∗T 2 + a)(T ∗T 3 + aT ∗T)2(T ∗T 2 + a) + b , (7)

which generates no word of length 2, 3, . . . , 7, and is strictly contained in the
MN-approximation.

The derivations in the NSE grammar obtained by breaking cycles by using the
MN-transformation can be simulated by the NM-transformation of the original
grammar. Thus

Theorem 2. The regular approximation G′′ produced by breaking all

non–monochromatic cycles of CP (G) using the MN-transformation is finer than

the MN-approximation G′ of G. In other words L(G) ⊆ L(G′′) ⊆ L(G′) .

How close is L(G′′) to L(G′)? The following example gives an idea.

Example 4. For n ≥ 3 and T = {a, b}, consider the grammar Gn with rules A1 →
A2A3 | b, A2 → A3A4, . . . , An−2 → An−1An, An−1 → AnA1, An → A1A2 | a.
Suppose we obtain G′′

n by breaking all l-colored cycles by the MN-transformation,
and let G′

n be grammar of the MN-transformation directly applied to Gn. Then
L(G′

n) = T + regardless of n, whereas

L(G′′

n) =

{

(ε + T ∗T m)b if n = 2m,

(ε + T ∗T n)(b + T ∗T ma) if n = 2m + 1 .

The grammar Gn and the approximations given above are considered in detail
next.

6.2 Cycle-breaking using new nonterminals

We can simplify the resulting grammar by bypassing the MN-transformation for
cycle-breaking. This done at some expense. We still have L(G) ⊆ L(G′′) but the
inclusion L(G′′) ⊆ L(G′) of Theorem 2 is lost.

To eliminate an l-colored edge Ai → Aj in CP (G) with new nonterminals,
we proceed as follows: Suppose the Ai-rules of G the form Ai → AjAk are
Ai → AjAk1

| AjAk2
| · · · | AjAkt

.

1. Replace these by Ai → BjAk1
| BjAk2

| · · · | BjAkt
.

2. Add the productions

Bj → BaBj , ∀a ∈ T,

Ba → a, ∀a ∈ T,

Bj → a, ∀a ∈ T,

where Bj and Ba, (a ∈ T) are new nonterminals.

Elimination of an r-colored edge is done similarly. Call the resulting grammar
G′′. This creates no new non–monochromatic cycles, and the edge Ai → Aj in
CP (G) has been eliminated in CP (G′′). In effect, we are replacing the terminals
derivable from Aj for the Ai-rules that involve Aj , by terminals derivable from
Bj . We generously made Bj derive all of T +, so that the language generated by
G′′ is a superset of the language generated by G. We note that if it is possible
to make each Bj derive a regular language that is contained in what Aj derives
in G, then cycle-breaking gives a regular approximation to L(G) from below.

One obvious way to eliminate non–monochromatic cycles is to break all l-
colored edges in CP (G). For the example grammar G = G5, we can write the
resulting grammar (using T + for any nonterminal that now derives only T + to
simplify notation) by

A1 → T +A3 | b, A2 → T +A4, A3 → T +A5, A4 → T +A1, A5 → T +A2 | a

so that the approximating language is generated by A1 → (T +)5A1 | (T
+)2a | b.

A regular expression for this language is

(ε + T ∗T 5)(b + T ∗T 2a) . (8)

For the same G, eliminating all r-colored edges from CP (G), we obtain the
grammar

A1 → A2T
+ | b, A2 → A3T

+, A3 → A4T
+, A4 → A5T

+, A5 → A1T
+ | a

which is equivalent to A1 → A1(T
+)5 | a(T +)4 | b . Therefore the approximation

is given by the regular expression

(ε + T ∗T 5)(b + aT ∗T 4) . (9)

In either case, the resulting approximating language is properly contained in the
language (a + b)+ of the MN-approximation.

To eliminate non–monochromatic cycles in CP (G), removing all l-colored
edges or all r-colored edges may be an overkill. It suffices to eliminate any
set of edges with the property that all the cycles in the resulting graph are
monochromatic. It would appear that the fewer edges we remove, the closer the
approximation is to the original language, because fewer nonterminals are made
to derive T + instead of what they originally derive in G. However it is possible
that the we make more of an error when breaking a short cycle because T +

may be far from what each of the eliminated nonterminals for this cycle derives,

whereas eliminated edges on a long cycle may be each coming from nonterminals
that derive languages much closer to T +.

Continuing with Example 2, eliminating the r-colored edges A4 → A1, A5 →
A2 and the l-colored edge A5 → A1 are sufficient to make all cycles monochro-
matic in CP (G). The resulting grammar is

A1 → A2A3 | b, A2 → A3A4, A3 → A4A5, A4 → A5T
+, A5 → T +T + | a .

This generates the language denoted by the regular expression in (7). The lan-
guage in (7) is obtained by eliminating 3 edges of CP (G) whereas the regular
expressions in (8) and (9) were both obtained by eliminating 5 edges. Now con-
sider the grammar Gn of Example 4.

Lemma 1. Let G = Gn be the grammar of Example 4. The regular language

L(G′′) obtained from G by eliminating l-colored edges in CP (G) is given by

(ε + T ∗T m)b if n = 2m,

(ε + T ∗T n)(b + T ∗T ma) if n = 2m + 1 .

Proof. By repeated substitutions, we compute that the G′′ is equivalent to the
grammar

A1 → (T +)mA1 | b if n = 2m,

A1 → (T +)nA1 | (T
+)ma | b if n = 2m + 1 ,

from which we obtain

((T +)m)∗b if n = 2m,

((T +)n)∗(b + (T +)ma) if n = 2m + 1 .

From the identities (T +)m = T ∗T m and (T ∗T m)∗ = ε + T ∗T m, the regular
expressions in (1) follow.

A similar result can be obtained for the left-linear grammars constructed by
eliminating r-colored edges.

Remark: In the automaton M of the MN-transformation for the grammar Gn

of Example 4 contains ε-transitions from An to A1, and A′

n to A1; ε-paths from
A1 to An, and from A′

1 to An. Therefore the automaton in Figure 3 (b) sits inside
M , and the language accepted is L(G′) = T +. We have L(G) ⊆ L(G′′) ⊆ L(G′)
where L(G) is the context-free language generated by the grammar G = Gn

of Example 4, L(G′) is the regular approximation from the MN-transformation
and L(G′′) is the regular approximation obtained by eliminating l-colored edges
from CP (G). Since L(G′) = T + independently of n whereas L(G′′) is given as
in Lemma 1, the difference between the former approximation and the latter can
be made as large as we please.

Fig. 3. (a) Edge colored production graph CP (G) for the grammar in Example
2. (b) Transformation of the grammar Gn of Example 4 generates T +.

7 Using a 1–lookahead

In the MN-approximation, there is a certain memory in the rules carried by
symbols such as A′

i which allow us to continue parsing from where we left off. We
can remember more of the context of the branching by using a type of lookahead.
This removes some of the ambiguity and therefore result in a smaller regular
approximation, but it is at the cost of increasing the size of the new grammar.
Mohri and Nederhof’s grammar has size O(|G|). The approximating grammar
we obtain by eliminating all l-colored or all r-colored edges in CP (G) in cycle-
breaking is also O(|G|). The lookahead considered here has O(|G|2) productions,
as the approximating grammar construction in [6] (see also [4]). A k–lookahead
approximation will cost O(|G|k) nonterminals, probably an unrealistically large
bound of theoretical interest only.

For simplicity, in this section we consider the grammar to be in Greibach Nor-
mal Form (GNF). In GNF, all productions are of the form A → aA1A2 . . . An or
A → b. In 1–lookahead, we introduce new nonterminals for pairs of consecutive
nonterminals that appear on the right hand side of a production with nontermi-
nals. For a generic GNF production with a nonterminal right hand side, these
would be A12, A34, The idea is to preserve the memory of the production
from where a branch occurred so that the derivation can continue if the next
nonterminal is also present. This memory is at the odd indices only since we
do not remember A2A3, for example. We will demonstrate the 1–lookahead idea
with the help of an example.

Example 5. Let T = {a, b} and start with the following grammar G:

A1 → aA2A2 | a

A2 → bA2A1 | b

Straightforward MN-transformation results in the right-linear grammar

A′

1 → ε A′

2 → ε
A1 → aA′

1 A2 → bA′

2

A1 → aA2 A2 → bA2

A′

2 → A2 A′

2 → A1

A′

2 → A′

1 A′

1 → A′

2

(10)

In a leftmost derivation from A1, after the first A2 is processed, the end marker
A′

2 allows for the derivation to continue with A2, but also with A1. In the approxi-
mation with 1–lookahead we remember that the current A′

2 should be followed by
processing A2 and not A1. This can be achieved by using the MN-transformation
in the following way. Start with the first production above and introduce new
nonterminals A22 and B2 to indicate that the continuation is by A2. We change
the original production A1 → aA2A2 by using A22 for the first A2 and using
B2 for the second A2 as A1 → aA22B2, and then apply the MN-transformation.
The first column in (10) is replaced by the rules

A′

1 → ε, A1 → aA′

1, A1 → aA22, A′

22 → B2, B′

2 → A′

1 . (11)

The second column of rules in (10) becomes

A′

22 → ε, A22 → bA′

22, A22 → bA22, A′

22 → A1, A′

1 → A′

22 . (12)

The new set of rules in (11) and (12) are the 1–lookahead transformation of the
production A1 → aA2A2 of the original grammar.

For the transformation of the the second production A2 → bA2A1 we intro-
duce two new nonterminals A21 and B1 to indicate that the continuation is by
A1. We change A2 → bA2A1 by using A21 instead of A2 and using B1 instead of
A1, and write A2 → bA21B1. Applying the MN-transformation to this has the
effect of replacing the the second column of (10) by the rules

A′

2 → ε, A2 → bA′

2, A2 → bA21, A′

21 → B1, B′

1 → A′

2 (13)

and replacing the first column of (10) by

B′

1 → ε, B1 → aB′

1, B1 → A21, A′

21 → A21, A′

21 → B′

1 . (14)

The rules in (13) and (14) are the 1–lookahead transformation of the production
A2 → bA2A1 of the original grammar.

Finally, we allow B1 and B2 derive the same sentential forms as A1 and A2

in the MN-approximation (10) by making copies of these rules using Bs for the
corresponding As:

B′

1 → ε B′

2 → ε
B1 → aB′

1 B2 → bB′

2

B1 → aB2 B2 → bB2

B′

2 → B2 B′

2 → B1

B′

2 → B′

1 B′

1 → B′

2 .

(15)

Let G′ denote the MN-transformation of the given CFG G and denote by G′′

the grammar obtained from G by the 1–lookahead transformation. Since any
derivation in the 1–lookahead grammar can be simulated by a derivation in the
original MN-transformation of G, we have

Theorem 3. Let G′ denote the MN-transformation of the CFG G and G′′ the

grammar obtained from G by the 1–lookahead transformation. Then L(G) ⊆
L(G′′) ⊆ L(G′) .

For the grammar G in Example 5, the MN-transformation G′ is given by
(10). In G′, A2 derives b(a + b)∗ and the MN-approximation itself is given by
L(G′) = a(a+ b)∗ . The 1–lookahead transformation gives the grammar G′′ with
L(G′′) = a + ab(a + b)∗ , which is properly contained in L(G′).

8 Summary and remarks

We considered the problem of approximation of a given context-free grammar by
a regular grammar while trying to preserve the structure of the original grammar
as much as possible. The algorithms considered are improvements on Mohri and
Nederhof’s original transformation and make use of the characterization of non–
self-embedding grammars as generating regular languages.

In the approximations based on cycle-breaking, we start with a grammar
in Chomsky normal form as input, and provide a regular grammar as output.
The language generated is a superset of the given language, and a subset of
the original Mohri and Nederhof approximation. We also consider a lookahead
transformation which starts with the Greibach normal form and produces a
regular grammar as its output. This approximation is also a superset of the
given language, and a subset of the Mohri and Nederhof approximation.

References

1. Anselmo, M., Giammarresi, D., Varricchio, S. Non–self–embedding grammars
as representation for regular languages. In CIAA Conference Proceedings (2002).

2. Chomsky, N. A note on phrase structure grammars. Information and Control 4, 2
(December 1959), 386–392.

3. Hopcroft, J. E., Ullman, J. D. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley Publishing Co., Reading Massachusetts, 1979.
4. Mohri, M., Nederhof, M.-J. Regular approximation of context–free grammars

through transformation. In Robustness in Language and Speech Technology, Kluwer
Academic Publishers, 2000, ch. 9, pp. 251–261.

5. Mohri, M., Pereira, F. N. Dynamic compilation of weighted context–free gram-
mars. In 36th Annual Meeting of the ACL and 17th International Conference on

Computational Linguistics (1998), vol. 2, pp. 891–897.
6. Nederhof, M.-J. Regular approximation of cfls: A grammatical view. In Interna-

tional Workshop on Parsing Technologies (MIT, 1997), pp. 159–170.
7. Shallit, J. Automaticity and rationality. J. of Automata, Languages and Combi-

natorics 5 (2000) 3, 255–268.
8. Ullian, J. S. Partial algorithm problems for context free languages. Information

and Control 11 (1967), 80–101.

	Strongly Regular Grammars and Regular Approximation of Context-Free Languages

