
In-Depth Evaluation of Popular Interest Point Detectors on Video Streams
Steffen Gauglitz Tobias Höllerer

Department of Computer Science
University of California, Santa Barbara
{sgauglitz,holl}@cs.ucsb.edu

Technical Report 2009-08

ABSTRACT

We present an in-depth evaluation of popular interest point de-
tectors, which, in contrast to existing evaluations, is targeted to-
wards the application in visual tracking and augmented reality. In
particular, candidate algorithms, testbed, and performance crite-
ria are chosen with respect to the application of visual tracking.
We evaluate the impact of individual algorithm parameters and
present results in terms of repeatability, number of features de-
tected, and computation time. We also describe our method to semi-
automatically generate ground truth in detail.

1 INTRODUCTION

Visual tracking is a core component for visual odometry [20, 26, 6],
visual Simultaneous Localization and Mapping (SLAM) [7] and
augmented reality (AR) [13]. While some of the underlying tech-
niques and algorithms have been known for a longer time, visual
tracking at the framerates needed by AR is a fairly young endeavor,
enabled by the rapid increase in computation power of modern
hardware and the availability of compact and cheap cameras.

Although some visual odometry systems work with optical flow,
most tracking applications use feature-based visual tracking. In this
case, interest point detection and feature description are the first
steps of the system. Many algorithms have been proposed to tackle
these tasks, and existing visual tracking systems use different ap-
proaches.

Existing evaluations [29, 22, 21, 25] are geared towards ob-
ject recognition and image retrieval: they use low-noise, high-
resolution, still images, large databases to match features against,
and/or potentially very expensive algorithms; hence their results
have limited validity for visual tracking. In particular, we are not
aware of any work that compares the respective algorithms on video
streams, which is the setup of interest for most visual tracking ap-
plications in general and AR in particular.

Our work evaluates existing interest point detectors and with re-
spect to their application in real-time visual tracking. Our testbed
consists of video streams with several thousand frames total that
exhibit different motion patterns; the algorithms are tested for
both consecutive frames of smooth motion and randomly shuf-
fled frames, revealing performance in the presence of translational
movement, in-plane and out-of-plane rotation, scale changes and
motion blur. We also evaluate the impact of individual algorithm
parameters and similarity measures. For this evaluation, a setup to
semi-automatically obtain stable ground truth for video streams is
proposed and explained in detail.

Outline
This report is structured as follows: Section 2 discusses existing
literature on evaluations of interest point detectors and explains the
differences to our work. Section 3 reviews the detectors that are
evaluated in this report. Section 4 describes the setup for the evalu-
ation in detail and Section 5 presents the obtained results. Finally,

Detector Scale
invariant

Subpixel
accurate

Output Ref.

Harris no no (x,y) [9]
Shi-Tomasi no no (x,y) [31]
DoG yes yes (x,y,σ) [17]
Fast Hessian yes yes (x,y,σ) [3]
FAST no no (x,y) [28]

Table 1: Tested interest point detectors. (x,y) = location, σ =scale.

Section 6 concludes.

2 EXISTING EVALUATIONS

Schmid et al. [29] compared interest point detectors on two still im-
ages for changes in rotation, viewpoint and illumination, as well as
with artificially added image noise. They found that the Harris Cor-
ner Detector [9] outperformed other existing approaches in 2000.
Mikolajczyk et al. [22] compared affine invariant detectors. The
evaluation of Moreels and Perona [25] contains two novel contribu-
tions: they explored the performance of combinations of detectors
and descriptors, and their testbed consists of three-dimensional ob-
jects rather than flat pictures.

However, all comparisons mentioned above are geared towards
object recognition and image retrieval rather than tracking. This
becomes clear from the chosen testbeds, the performance measures
chosen to evaluate the algorithms, and the set of detectors that
are tested. Execution time, a criterion crucial for designing real-
time systems, receives no [29, 21] or only little [22, 25] attention:
Moreels and Perona [25] mentioned execution times in the order
of one second to one minute per image1; Mikolajczyk et al. [22]
listed execution times between 0.5 seconds (MSERs of Matas et al.
[19]) and and several minutes (salient regions of Kadir et al. [12])
per image2, which is intractable for real-time tracking. In contrast,
the evaluation in this work aims at visual tracking in all of the fac-
tors mentioned above: the detectors and evaluated are suitable for
use in real-time applications, the performance measures are chosen
with respect to the application of visual tracking. Most notably, the
testbed consists of video streams affected by noise and motion blur
rather than high-resolution, low-noise photographs.

3 INTEREST POINT DETECTORS

The interest point detectors that are evaluated in this work are listed
in Table 1. Many other detectors have been proposed in the lit-
erature. The reasons for the selection above are as follows: these
detectors have been widely used, they were previously shown to
outperform other detectors [29, 28, 3], and they are used in state-
of-the-art visual tracking systems.

13 GHz PC, image size 1024x178 [25]
2Pentium 4 2GHz, image size 800x640 [22]

1

Gauglitz, Höllerer: In-Depth Evaluation of Popular Interest Point Detectors on Video Streams. TR 2009-08

Figure 1: Filter kernels to compute image gradients Ix, Iy. Left: most
elementary kernel, right: Sobel kernel.

In the following, we will briefly review these algorithms. In par-
ticular, we will explain the role of each of the algorithms’ parame-
ters, as their impact on the algorithm’s performance is individually
evaluated.

3.1 Harris Corner Detector

Based on Moravec’s corner detector [24], Harris and Stephens [9]
developed the following algorithm: Given an image I, the algorithm
first computes matrix M for every pixel (x,y):

M(x,y) = ∑
u,v

wu,v · [Ix(xr,yr)]2 ∑
u,v

wu,v · Ix(xr,yr)Iy(xr,yr)

∑
u,v

wu,v · Ix(xr,yr)Iy(xr,yr) ∑
u,v

wu,v · [Iy(xr,yr)]2

(1)

Ix and Iy denote the derivatives of image I, (xr,yr) := (x+u,y+v),
and w(u,v) is a window and weighting function. In the simplest
case, w(u,v) can be a binary rectangular filter. Harris and Stephens
[9] propose to use a Gaussian window:

w(u,v) = exp
{
−(u2 + v2)/2σ

2
}

Matrix M is called the second-order moment matrix [25] and is an
approximation to the auto-correlation function of image I (cf. Ap-
pendix A of [29]). Depending on the eigenvalues λ1,λ2 of M, the
region can be classified as either flat (λ1 and λ2 small), edge region
(one small, one large eigenvalue) or corner region (both large). To
avoid the explicit computation of λ1,λ2 which is costly, the follow-
ing corner score c(x,y) is used, which is derived based on λ1,λ2,
but can be expressed without them:

c(x,y) = λ1λ2− k · (λ1 +λ2)2

= det(M(x,y))− k · [trace(M(x,y))]2
(2)

Subsequently, 8-neighborhood non-maximum suppression is ap-
plied and all pixels with a response of less than a predefined thresh-
old of the maximum response encountered, c(x,y) < threshold ·
maxx,y {c(x,y)}, are ignored.

Apart from the threshold and parameters k and w(u,x), one also
has to choose a kernel to compute the image gradients Ix and Iy.
Figure 1 shows two possible choices: the most elementary kernel,
which is suggested to use by Harris and Stephens [9], and the Sobel
kernel (used, for example, in the OpenCV implementation). Fur-
thermore, if using a per se infinite Gaussian window for w(u,x), the
kernel has to be truncated for practical reasons. As the decrease in
influence is determined by σ , the kernel size is normally given in
σ ’s.

3.2 Shi-Tomasi’s “Good Features To Track”

Based on a theoretical analysis of which features will be “good
to track”, Shi and Tomasi [31] derive an image motion model for
affine motion and pure translation, which they use for tracking and
monitoring the tracked features. For tracking, they suggest using
the translation model, where the matrix involved is equivalent to M

(Eq. (1)). With the same reasoning as above, the eigenvalues λ1,λ2
of M are computed and a candidate point is accepted if

c(x,y) = min(λ1,λ2) > λth := threshold ·maxx,y {c(x,y)} (3)

Compared to the Harris score (Eq. (2)) this requires a additional
square root operation per pixel.

3.3 Difference of Gaussians

As part of the Scale Invariant Feature Transform (SIFT), Lowe
[16, 17] proposed to use the local extrema of the image filtered
with differences of Gaussians (DoG): To achieve invariance against
changes in scale, the detector builds a pyramid of images by convo-
luting the image I with differences of Gaussians at different scales
σ :

DoGk,σ (x,y) = G(x,y,kσ)−G(x,y,σ)

=
1

2π(kσ)2 exp
{
− x2 + y2

2(kσ)2

}
− 1

2πσ2 exp
{
−x2 + y2

2σ2

}
(4)

In practice, this is done by first convoluting with the Gaussian
kernels G(σ) and then computing differences of the resulting im-
ages:

D0 = I ∗DoGk,σ0 = I ∗G(kσ0) −I ∗G(σ0)
D1 = I ∗DoGk,kσ0 = I ∗G(k2σ0) −I ∗G(kσ0)

...

Doubling σ corresponds to a scale change of one octave, k deter-
mines the “scale resolution” of the image pyramid, i.e. the number
of levels that are used per octave (k = 2→ one level, k =

√
2→ two

levels etc.).
As feature points, the algorithm selects local extrema, which are

found by comparing each sample to its eight neighbors in the cur-
rent image Dn and the 18 neighbors “above” (in Dn−1) and “be-
low” (in Dn+1). The feature point locations are then refined to
subpixel accuracy by fitting a parabola to the sample point and its
immediate neighbors [5]. Feature points with low contrast, i.e.,
|D(x̂)| < thcontr, where x̂ = (x,y,σ)T is the refined extremum lo-
cation, are rejected. The ratio of the principal curvatures are es-
timated using the eigenvalue approach from Harris and Stephens
[9], cf. Section 3.1, and feature points with an “edge response”,
i.e., where the ratio of the two principal curvatures is larger than a
threshold thedge, are rejected as well.

As the input image is smoothed before any feature points are
detected, the highest spatial frequencies are ignored. To overcome
this, the algorithm optionally upsamples the image by a factor of
two at the beginning. The tracking systems that use DoG [15, 30]
omit this step, as the execution time increases significantly.

3.4 Fast Hessian

Bay et al. [3] developed Speeded Up Robust Features (SURF) based
on the observation that some approximations can drastically de-
crease the time of computation without sacrificing too much ac-
curacy, if any. A key element to speed up computation is the usage
of integral images as introduced by Viola and Jones [32]:

Iint(x,y) =
x

∑
i=0

y

∑
j=0

I(i, j) (5)

Once Iint is computed, filtering the image with a box filter takes,
at any given point, only four additions regardless of the size of the
filter.

2

Gauglitz, Höllerer: In-Depth Evaluation of Popular Interest Point Detectors on Video Streams. TR 2009-08

Figure 2: Filters composed of box filters as used by SURF as ap-
proximations to second order derivatives of Gaussians. Left to right:
filters for obtaining Dxx, Dxy, Dyy at the lowest scale (σ = 1.2). Weights
of black and white regions as denoted, grey regions have weight zero.
Figure adapted from Bay et al. [3].

Figure 3: Bresenham circle. The black point is the current candidate
point p, the 16 grey points are the discretized approximation of the
outlined circle around it. Figure adapted from Rosten and Drummond
[28].

SURF’s detector, named Fast Hessian [3], is based on the deter-
minant of the Hessian matrix, which at scale σ is defined as follows:

H(x,y,σ) =

[
∂ 2

∂x2 G(σ)∗ I(x,y) ∂

∂x
∂

∂y G(σ)∗ I(x,y)
∂

∂x
∂

∂y G(σ)∗ I(x,y) ∂ 2

∂y2 G(σ)∗ I(x,y)

]
(6)

As convolution with the Gaussian second order derivatives is very
costly especially for higher scales, Bay et al. approximate them by
filters that are composed of simple box filters and can therefore be
computed in constant time using the integral image. The computed
candidate score then is

c(x,y,σ) = Dxx(σ) ·Dyy(σ)− (0.9Dxy(σ))2

≈ det [H(x,y,σ)] (7)

where Dxx, Dxy and Dyy are the results of convoluting the im-
age with the filters depicted in Figure 2, and the factor 0.9 helps
approximate det [H(x,y,σ)] more closely. 26-neighborhood non-
maximum suppression and subpixel refinement are then applied as
for the DoG detector. Likewise, candidates with c below a prede-
fined threshold are rejected. To speed up the computation, one may
optionally increase the sampling intervals, i.e. compute c only for
every second, third... pixel [3].

3.5 Features from Accelerated Segment Test (FAST)
Rosten and Drummond [27, 28] developed a high-speed corner de-
tector which they coined FAST, for Features from Accelerated Seg-
ment Test. The algorithm operates on a discretized circle around a
candidate point p as shown in Figure 3. p is classified as a corner if
there exists a contiguous arc of at least 9 pixels that are all brighter
or all darker than p by a threshold t. The algorithm was further
accelerated by training a decision tree to test as few pixels as possi-
ble for classifying a candidate pixel as corner or non-corner. With
this decision tree, only 2.26 pixels are tested for each candidate,
whereas with the naı̈ve algorithm, 2.8 are tested [28].

In contrast to all aforementioned detectors, detection with the
FAST algorithm does not inherently provide a measure of the
“strength” of a feature. In order to apply non-maximum suppres-
sion, the following score is computed for each candidate point:

c(p) = max

{
∑

q∈S+

|Iq− Ip|− t, ∑
q∈S−

|Iq− Ip|− t

}
(8)

Figure 4: xi = Pi ·X and x j = Pj ·X are the projections of world point X
onto camera frames i and j, respectively. For all X on a planar surface
q, xi and x j are related by the homography Hi j(q) [10, 29].

where S+ is the subset of pixels on the circle that are brighter than p
(by t) and S− the subset of pixels that are darker than p (by t) [28].
Note that FAST therefore only has a single parameter, threshold t.

4 EVALUATION SETUP

4.1 Ground truth
To evaluate the algorithms’ performance on images taken with
a moving camera, ground truth information is needed, specify-
ing which point x j in frame j corresponds to point xi in frame
i. For general 3D scenes, this is very difficult to obtain without
a 3D model of the scene. Therefore, most existing evaluations
[21, 22, 28, 29] use planar or near-to-planar scenes, where xi and x j
are related by a homography Hi j(q) ∈ℜ3x3 [10, 29] (cf. Figure 4):

x j = Hi j(q) · xi (9)

where xi/ j are in homogeneous coordinates: xi = (x,y,1)T . Exist-
ing comparisons solve for Hi j by either projecting a known pattern
onto a static scene [29] or aligning a small dataset of photographs
by hand [28]. Neither is feasible for non-static video streams with
several thousand frames. Moreels and Perona [25] describe a setup
that is not restricted to planar scenes, but their setup is not feasible
for arbitrary camera motion.

One option to obtain a reference coordinate frame is using fidu-
cial markers (e.g., ARTag [8]). However, they occlude a significant
part of the image, rendering it unavailable for the evaluation, and
require a minimum viewing angle for detection. For this work, we
used small (∅ = 15mm) bright red balls as markers (which look
the same from any direction) and implemented the following semi-
automatic algorithm to detect them in the images:

1. The user indicates the position of the balls to be tracked in the
first frame of the sequence.

2. The computer initializes an adaptive color model in HSV
color space (cf. Bradski [4] and the skin color model in Lee
and Höllerer [14]). Applied to a new frame, this color model
produces a “probability map” that a given pixel belongs to the
colored ball (Figure 5 middle).

3. A template of the object to find (e.g., a “white” circle of appro-
priate size) is convoluted with the probability map. Together
with distance constraints, the most probable positions of the
balls are identified.

4. The adaptive color model learns the appearance of the balls in
the new frame. For subsequent frames, a mixture model using
both the model from the first and the previous frame is used
to avoid long-term drift.

3

Gauglitz, Höllerer: In-Depth Evaluation of Popular Interest Point Detectors on Video Streams. TR 2009-08

Figure 5: Adaptive color model. The image in the middle shows
the “probability map” that the adaptive color model generated for the
image on the left. The small white circles in the left image indicate
the estimated positions of the balls. The image is then warped into a
canonical frame in which the balls form a rectangle (right image).

Figure 6: Image alignment. Images from left to right: warped current
frame, difference to reference frame before image alignment, differ-
ence to reference frame after image alignment. The area outside the
green rectangles is ignored both during alignment and when evaluat-
ing the detectors, as the computed homography is invalid here. The
alignment was substantially improved, as the image inside the rect-
angle turned nearly completely black, indicating a very small image
difference. The residuals are due to change in appearance (lighting
effects), sensor noise and interpolation artifacts.

5. Using the positions of four balls, a homography is computed
that warps the current image into a canonical frame (Figure 5
right).

6. The warp is refined using Lucas-Kanade image alignment [18,
1] between the first and the current frame (Figure 6).

The image alignment step works as follows: Given a template
T (x,y) and an image I(x,y), it tries to find the parameters p for a
warp W (x,y; p) that minimize the following expression [2]:

∑
x,y

[I(W (x,y; p))−T (x,y)]2 (10)

For this problem, there exists a family of similar iterative algo-
rithms which Baker and Matthews [2] classify in “forwards” vs.
“inverse” and “additive” vs. “compositional”. The original algo-
rithm by Lucas and Kanade [18] (“forwards-additive” in above tax-
onomy) starts with an estimate p0 of the parameters and iteratively
solves for increments ∆p: pi← pi−1 +∆p. The iteration stops if ∆p
or the error of Eq. (10) fall below predefined thresholds. Using a
first-order Taylor expansion on I(W (x,y; p+∆p)) for the minimiza-
tion of Eq. (10), the algorithm involves computation of the image
gradients as well as the Jacobian ∂W/∂ p of the warp [2]:

∂W (x,y; p)
∂ p

=

 ∂Wx
∂ p1

∂Wx
∂ p2

. . .

∂Wy
∂ p1

∂Wy
∂ p2

. . .

 (11)

The homography H in Eq. (9) can be parametrized as non-linear
warp W as follows [11]:

WH(x,y; p) =
1

p3x+ p6y+1

(
p1x+ p4y+ p7

p2x+ p5y+ p8

)
(12)

Using this parametrization and the abbreviations

ξ =p1 x+ p4 y+ p7 (13)
η =p2 x+ p5 y+ p8 (14)
ζ =p3 x+ p6 y+1 (15)

Eq. (11) becomes [11]:

∂WH(x,y; p)
∂ p

=
1
ζ

 x 0 −x ξ

ζ
y 0 −y ξ

ζ
1 0

0 x −x η

ζ
0 y −y η

ζ
0 1

(16)

With this Jacobian, the algorithm outline can be found in any of
[18, 1, 2].

Applied to a whole image, this algorithm is too slow for real-time
processing and can only correct for reasonably small image distor-
tions, but it is perfectly suited as a refinement step in addition to the
tracking system described above. Figure 6 illustrates the effect of
this addition.

If any of the above steps produces a suspicious result (e.g., large
jumps or differences in position or color distribution, the image
alignment algorithm has not converged), the user is asked for as-
sistance. Overall, this semi-automatic tracking system produced
stable warped video streams. Examples of its output are depicted
in Figures 6 and 7. For evaluation of the detectors, only the planar
area inside the markers is used (green rectangle in Figure 6 right),
not including the markers (which violate the assumption of an un-
prepared environment) and the surrounding area (for which the ho-
mographic warp is incorrect, as may be seen from the high intensity
differences in Figure 6 right along the right border).

4.2 Testbed

The testbed consists of 36 different video streams, showing six
different planar textures in six different motion patterns each, all
recorded with a unibrain Fire-i camera with a resolution of 640x480
pixels. The textures are shown in Figure 8, the motion patterns are
as follows:

• “unconstrained”: free movement of a hand-held camera, un-
constrained except that the object of interest has to stay in
the field of view. The motion is mostly smooth, some parts
exhibit quick movements and motion blur. Figure 9a shows
a reconstruction of one of the flight paths, Figure 7 shows a
few frames together with the warped images that are used as
ground truth (6x 300 frames).

• “translation”: hovering about 1m above the object of interest,
the camera slowly rotates perpendicular to its optical axis, ef-
fectively causing the object to move from the left to the right
of the frame with very little distortion (6x 50 frames).

• “in-plane rotation”: position roughly 1m above the object of
interest, the camera is rotating around its optical axis from
0◦ to 90◦, resulting in in-plane rotation of the object (6x
50 frames).

• “out-of-plane rotation”: starting above the object, the camera
goes down in an arc, resulting in out-of-plane rotation of the
object, cf. the flight path shown in Figure 9b (6x 50 frames).

• “zoom”: the camera moves perpendicularly away from the
object (6x 50 frames).

• “motion blur”: the camera sways rather quickly above the ob-
ject, resulting in heavy motion blur (6x 50 frames).

4

Gauglitz, Höllerer: In-Depth Evaluation of Popular Interest Point Detectors on Video Streams. TR 2009-08

Figure 7: Top row: a few frames of one of the video streams; bottom row: the same frames, warped to the reference frame. This sequence
illustrates some of the challenges the detectors have to face: scale change, rotation, motion blur, small viewing angle. The black-and-white
pattern on the border was added to help the image alignment algorithm (cf. Section 4.1). For the evaluation, only the area inside is used.

Figure 8: Used textures. From left to right: “wood”, “bricks”, “build”, “paris”, “mission”, “sunset”.

−400
−200

0
200

400
0

200
400

600

0

200

400

600

800

(a) “unconstrained”

−200
0

200 −200
0

200
400

600
0

200

400

600

800

(b) “out-of-plane rotation”

Figure 9: Flight paths of selected video streams, all axes in millime-
ters.

It should be noted that all motions were conducted with a hand-
held camera and are therefore approximate, i.e. the motion pattern
“rotation” will also contain a certain amount of translational move-
ment. As these conditions are exactly the same for all algorithms
and we desire robustness against all kind of motions, this does not
affect the comparison. The camera movement is reconstructed from
the known position of the markers for the purposes of illustration
(Figure 9) and binning the results according to the change in cam-
era positions.

The algorithms’ performance was measured between consecu-
tive frames, simulating continuous tracking during smooth motion,
as well as between randomly chosen frames of a sequence, sim-
ulating tracking recovery after failure or re-visiting a previously
mapped scene.

It turned out that the contrast of the texture “wood” was too low
so that none of detectors was capable of finding repeatable features
(to repeatedly detect the weak features, the respective thresholds
had to be set so low that they detected a lot of noise and became
unusable especially for the other textures), so it was not used for
the evaluation. From the other streams, a total of 39 frames were

ignored because the ground truth algorithm (cf. Section 4.1) failed
to converge. Therefore, all algorithms were run on 2711 different
frames, and—including the randomized order—evaluated for about
30,000 frame pairs.

4.3 Performance measures
The criterion that is most relevant for visual tracking as well as for
other domains [3] is repeatability [29]3:

repeatability =
|{(xi,x j) |‖Hi1 · xi−H j1 · x j‖< ε}|

|Si|
(17)

where Si, S j are the sets of points detected in frames i and j, re-
spectively, xi ∈ Si,x j ∈ S j, and Hi1 is the homography between the
ith and the first frame (Eq. (9)). Even with perfect ground truth, a
re-detected point will not be at exactly the same position as in the
old frame [28]: This is most obvious in the case of detectors that
do not work with subpixel refinement, where the detected point has
to “jump” to the next pixel at some point when the object is moved.
For the comparisons in Section 5, ε is set to 2.

Unfortunately, the repeatability criterion is biased in favor of al-
gorithms that return many keypoints, as will be visualized in Fig-
ure 15a: as a trivial example, an algorithm that simply “detects” ev-
ery single pixel has a repeatability of 100%. Alternative measures
have been proposed [23], but they are specific to corner detectors,
rely on subjective decisions and are not relevant for visual track-
ing as an application. In some studies, the algorithm parameters
are adjusted so that all detectors return the same number of points
(e.g., [3]), however, this assumes that all detectors work equally
well for any number of features, which is not the case as Section 5
will show: The optimal number of points can differ by an order of
magnitude for different detectors. Moreover, the number of features

3In the definition of Schmid et al. [29], the denominator of Eq. (17) is
defined as min{|Si|, |S j|}. This however leads to a seemingly perfect re-
peatability of 1 if the detectors returns 100 points in the first frame and only
one point in the second frame, as long as this single point is among the 100
detected earlier.

5

Gauglitz, Höllerer: In-Depth Evaluation of Popular Interest Point Detectors on Video Streams. TR 2009-08

that a detector returns might be an important factor in the decision
of which detector to use in a specific application, so instead of try-
ing to equalize this value, we will report this number together with
the repeatability.

4.4 Implementation
For the evaluated algorithms, the implementations of the original
authors were used where available:

• Harris and Shi-Tomasi: Implementations of these algo-
rithms are provided with the OpenCV library. Additionally,
Edward Rosten made available his implementation of the Har-
ris detector, which was used in the comparison in [28]. The in-
terface of the implementation in OpenCV only allows binary
rectangular windows for w(u,v) (see Section 3.1), so the code
was modified to reveal hidden parameters. After this change,
both implementations were found to be equivalent (i.e. detect
the same points). For the comparison, OpenCV’s implemen-
tation was used, as it was slightly faster.

• DoG (SIFT): The original SIFT implementation is only avail-
able as a binary executable4 which does not allow the flexibil-
ity needed for this evaluation. Instead, two publicly available
SIFT implementations were used, from Rob Hess5 and An-
drea Vedaldi6. Due to the very complex algorithm and sub-
tleties e.g. in the location refinement (cf. Section 3.3), the im-
plementations are not exactly equivalent. Initially, Hess’ code
was faster due to more efficient convolution functions. After
using the same functions in Vedaldi’s code, this implementa-
tion was slightly faster than Hess’. Also, its repeatability is
slightly higher, so it was used for the comparison.

• Fast Hessian (SURF): The original implementation was pro-
vided as compiled library.

• FAST: The original implementation is available as source
code7.

The software framework for this evaluation was implemented in
C++ and compiled with gcc 4.3.2. All experiments were conducted
under Linux on an IBM Thinkpad T60 with 1.83 GHz Dual Core
CPU. Execution time is measured only for the core part of the algo-
rithms, that is, without the unifying interface and any initialization
steps, e.g. format conversions, algorithm initialization and memory
allocations.

5 RESULTS

5.1 Algorithm parameters
First, a total of 20 parameters of the five detector algorithms were
evaluated in terms of their impact on the performance of the al-
gorithm, namely, execution time, number of detected features and
repeatability. We used the five “unconstrained” video streams, re-
peatability was evaluated for all consecutive frame pairs as well
as 5x 3000 randomly selected frame pairs (3000 per texture). For
each algorith, we set all parameters to their respective default val-
ues (as given by the original authors, if available), and then varied
one parameter at a time across a large range of values. We made
two exceptions from this rule: 1. for Harris and Shi-Tomasi, we
first evaluated (all combinations of) gradient kernel and w(u,x), and
then evaluated the remaining parameters using the chosen new val-
ues, 2. for Fast Hessian, we first evaluated the number of octaves
and the sampling step, and then evaluated the threshold for the new

4http://www.cs.ubc.ca/∼lowe/keypoints/
5http://web.engr.oregonstate.edu/∼hess/
6http://vision.ucla.edu/∼vedaldi/code/siftpp/siftpp.html
7http://svr-www.eng.cam.ac.uk/∼er258/work/fast.html

Detector Parameter Initial valuea Final valueb

Harris k 0.06c

th 0.01c

w(u,v) exp
{
−(u2+v2)

2σ 2

}
σ 2c 1.5
kernel size 2σd 1.5σ

grad. kernel [-1 0 1] Sobel

Shi-Tomasi th 0.01 0.05
other parameters as for Harris

DoG octaves variese 2
levels 3
σ0 1.6
thedge 10
thcontr 0.03 0.1

Fast Hessian octaves 4 2
threshold 4 24
sampling 2 1

FAST threshold 20f 40
a the initial value is the default value as given in the respective original

paper, unless denoted differently.
b if a field is left blank, the respective initial value is used.
c no value provided in original paper, value from Schmid et al. [29].
d no value provided in original paper, value from implementation used

in Rosten and Drummond [28].
e the default number of octaves is derived from the resolution of the

image, see [17] for details. For image of size 640x480, the default
value is 5.

f see http://svr-www.eng.cam.ac.uk/∼er258/work/README-win32.

Table 2: Parameter values.

values. The complete results are shown in Figures 10-14, the pa-
rameters that were evaluated are listed in Table 2 along with the
initial values and the chosen final values.

5.1.1 Strategy for choosing the “final” parameters
As a result of the thorough parameter analysis we faced the prob-
lem of choosing one set of parameters for the comparison. With
three different criteria and several different conditions (image res-
olution, consecutive vs. randomized frames), there is no single op-
timal value. Instead, several points in parameter space can be con-
sidered Pareto-optimal. We followed the following guidelines to
choose the values:

1. we want one set of parameters to work well for all conditions
(i.e. both image resolutions and both consecutive and rano-
mized frames);

2. repeatability is considered the most important criterion, i.e.
gains in repeatability justify longer execution time unless the
gain is very small compared to the increase in time;

3. we assume that the default parameters have been carefully
chosen (even if this might have happened with respect to a
different application), hence they get a certain “inertia” to re-
main unchanged: we only change the values if the benefit on
at least one of the criteria is obvious (less so if the default
value is not from the original paper, for example, σ for Harris
and Shi-Tomasi).

It should be noted that the times reported in Figure 13 for the
Fast Hessian detector are not representative: comparison with exe-
cution times on Microsoft Windows XP revealed that all other ex-
ecution times were very similar across the different platforms and

6

http://www.cs.ubc.ca/~lowe/keypoints/
http://web.engr.oregonstate.edu/~hess/
http://vision.ucla.edu/~vedaldi/code/siftpp/siftpp.html
http://svr-www.eng.cam.ac.uk/~er258/work/fast.html
http://svr-www.eng.cam.ac.uk/~er258/work/README-win32

Gauglitz, Höllerer: In-Depth Evaluation of Popular Interest Point Detectors on Video Streams. TR 2009-08

0 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.1
0

5

10

15

20

25

30

35

40

45

threshold

tim
e

[m
s]

0 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.1
0

50

100

150

200

250

300

350

threshold

of
 fe

at
ur

es

rect/[−1 0 1]

rect/sobel

gauss/[−1 0 1]

gauss/sobel

0 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.1
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

threshold

re
pe

at
ab

ili
ty

0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

30

35

40

45

k

tim
e

[m
s]

0 0.05 0.1 0.15 0.2 0.25
0

20
40
60
80

100
120
140
160
180
200

k

of

 fe
at

ur
es

0 0.05 0.1 0.15 0.2 0.25
0.2

0.3

0.4

0.5

0.6

0.7

k

re
pe

at
ab

ili
ty

1 2 3 4 5 6 7
0

10

20

30

40

50

60

σ

tim
e

[m
s]

1 2 3 4 5 6 7
0

20
40
60
80

100
120
140
160
180
200

σ

of

 fe
at

ur
es

1 2 3 4 5 6 7
0.1

0.2

0.3

0.4

0.5

0.6

σ

re
pe

at
ab

ili
ty

1 2 3 4 5 6 7
0

10

20

30

40

50

60

kernel size [σ’s]

tim
e

[m
s]

1 2 3 4 5 6 7
0

20
40
60
80

100
120
140
160
180
200

kernel size [σ’s]

of

 fe
at

ur
es

1 2 3 4 5 6 7
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

kernel size [σ’s]

re
pe

at
ab

ili
ty

Figure 10: Harris: impact of varying threshold t, w(u,v) and gradient kernel (top row), k (second row), σ (third row), and kernel size (in σ ’s,
last row), on computation time (left), number of features (middle), and repeatability (right). Legend for Figures 10-14: Blue: image resolution
640x480, light cyan: resolution 320x240. Dashed red line indicates initial value (cf. Table 2), dashed green indicates final value (dashed black
if initial value=final value). In the last column, solid lines show repeatability for consecutive frames, dashed lines show repeatability for 5x 3000
random frame pairs.

7

Gauglitz, Höllerer: In-Depth Evaluation of Popular Interest Point Detectors on Video Streams. TR 2009-08

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

50

60

threshold

tim
e

[m
s]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

50
100
150
200
250
300
350
400
450
500

threshold

of

 fe
at

ur
es

rect/[−1 0 1]

rect/sobel

gauss/[−1 0 1]

gauss/sobel

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.1

0.2

0.3

0.4

0.5

0.6

threshold

re
pe

at
ab

ili
ty

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

σ

tim
e

[m
s]

1 2 3 4 5 6 7
0

50

100

150

200

250

300

σ

of

 fe
at

ur
es

1 2 3 4 5 6 7
0.1

0.2

0.3

0.4

0.5

0.6

σ

re
pe

at
ab

ili
ty

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

kernel size [σ’s]

tim
e

[m
s]

1 2 3 4 5 6 7
0

50

100

150

200

250

300

kernel size [σ’s]

of

 fe
at

ur
es

1 2 3 4 5 6 7
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

kernel size [σ’s]

re
pe

at
ab

ili
ty

Figure 11: Shi-Tomasi: impact of varying threshold t, w(u,v) and gradient kernel (top row), σ (second row), and kernel size (in σ ’s, last row), on
computation time (left), number of features (middle), and repeatability (right). Legend see caption to Figure 10.

8

Gauglitz, Höllerer: In-Depth Evaluation of Popular Interest Point Detectors on Video Streams. TR 2009-08

1 2 3 4 5 6
0

20

40

60

80

100

120

140

octaves

tim
e

[m
s]

1 2 3 4 5 6
0

20

40

60

80

100

120

octaves

of

 fe
at

ur
es

1 2 3 4 5 6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

octaves

re
pe

at
ab

ili
ty

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

levels

tim
e

[m
s]

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

levels

of

 fe
at

ur
es

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

levels

re
pe

at
ab

ili
y

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

σ
0

tim
e

[m
s]

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

0

10
1

10
2

10
3

10
4

σ
0

of

 fe
at

ur
es

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

σ
0

re
pe

at
ab

ili
ty

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

th
edge

tim
e

[m
s]

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

th
edge

of

 fe
at

ur
es

0 5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

th
edge

re
pe

at
ab

ili
ty

0 .02 .04 .06 .08 0.1 .12 .14 .16 .18 0.2
0

50

100

150

th
contr

tim
e

[m
s]

0 .02 .04 .06 .08 0.1 .12 .14 .16 .18 0.2
0

20

40

60

80

100

120

140

th
contr

of

 fe
at

ur
es

0 .02 .04 .06 .08 0.1 .12 .14 .16 .18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

th
contr

re
pe

at
ab

ili
ty

Figure 12: DoG: impact of varying the number of octaves (top row), number of levels per octave (second row), σ0 for smoothing the first image
(third row), thedge (fourth row), and thcontr (bottom row), on computation time (left), number of features (middle), and repeatability (right). Legend
see caption to Figure 10.

9

Gauglitz, Höllerer: In-Depth Evaluation of Popular Interest Point Detectors on Video Streams. TR 2009-08

1 2 3 4 5 6
0

20

40

60

80

100

120

140

octaves

tim
e

[m
s]

1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

octaves

of

 fe
at

ur
es

1 2 3 4 5 6

0.2

0.3

0.4

0.5

0.6

0.7

octaves

re
pe

at
ab

ili
ty

1 2 3 4 5 6
10

0

10
1

10
2

10
3

sampling step

tim
e

[m
s]

1 2 3 4 5 6
0

50

100

150

200

250

sampling step

of

 fe
at

ur
es

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

sampling step

re
pe

at
ab

ili
ty

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

threshold

tim
e

[m
s]

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

threshold

of

 fe
at

ur
es

0 5 10 15 20 25 30 35 40
0.2

0.3

0.4

0.5

0.6

0.7

0.8

threshold

re
pe

at
ab

ili
ty

Figure 13: Fast Hessian: impact of varying the number of octaves (top row), size of sampling step (second row), on computation time (left),
number of features (middle), and repeatability (right). Legend see caption to Figure 10. Please see comments in Section 5.1 on the times
reported in this figure.

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

threshold

tim
e

[m
s]

0 20 40 60 80 100 120
10

0

10
1

10
2

10
3

10
4

threshold

of

 fe
at

ur
es

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

threshold

re
pe

at
ab

ili
ty

Figure 14: FAST: impact of varying the threshold t on computation time (left), number of features (middle), and repeatability (right). Legend see
caption to Figure 10.

10

Gauglitz, Höllerer: In-Depth Evaluation of Popular Interest Point Detectors on Video Streams. TR 2009-08

compilers while Fast Hessian was surprisingly slow. We assumed
that this was due to a non-optimized library (note that Fast Hessian
is the only algorithm for which we do not have the source code) and
requested a new compilation, which was indeed much faster (while
being exactly equivalent in terms of detected points). We used this
version for the comparison and will report more realistic times in
the next section, but considered it not necessary to repeat the pa-
rameter evaluations, as the times here are only used to compare
different versions of Fast Hessian to each other.

5.2 Comparison
Figure 15 shows results for the motion pattern “unconstrained”:
Figure 15a shows the repeatability vs. the number of detected points
(in the region of interest) achieved by the detectors by varying the
respective threshold parameter. For comparison, the dashed gray
line shows the “repeatability” of randomly selected points8, thus
visualizing the criterion’s bias (cf. Section 4.3). Although the re-
peatability of FAST keeps to increase the more points it returns,
it becomes clear from the comparison with the random points’ re-
peatability that the average “quality” of the features actually de-
creases beyond a certain threshold. For all following evaluations,
the threshold was fixed to the position of the respective marker.

For consecutive frames of (mostly) smooth motion, Figure 15b
shows a clear trade-off between fast execution, but mediocre re-
peatability (FAST) and slow execution, but high repeatability (DoG,
Fast Hessian). Downsampling the image, while resulting in the
expected substantial speedup, does not decrease the For the DoG
detector, downsampling is equivalent to setting the first sampling
octave to 1 (instead of 0), as we validated experimentally. For Fast
Hessian, setting the sampling step to 2 results in a similar speed-up,
but worse performance, as may be seen in the parameter evaluation
in Figure 13.

For randomly selected frame pairs (Figure 15c), the repeatability
of all detectors is considerably lower, however, the performance of
DoG and Fast Hessian dropped much further. This is confirmed in
Figure 16a: For small baseline distances between the camera po-
sitions of the two frames, DoG and Fast Hessian perform best, but
their repeatability drops below the repeatability of the corner de-
tectors as the distance increases. This effect is investigated further
using the isolated motion patterns:

• near-translational movement (Figure 16b): the repeatablity
is fairly constant on high levels for all detectors.

• scale changes (Figure 16c): In terms of the set of detected
points, neither DoG nor Fast Hessian can confirm the claimed
scale invariance (note that this does not make any statemet
about wether or not the scale information returned by each
keypoint is accurate and/or useful).

• in-plane rotation (Figure 16d): DoG and Fast Hessian per-
form better than the corner detectors, although the latter also
show a certain degree of rotational invariance in that the re-
peatability is very constant for 10-90.

• out-of-plane rotation (Figure 16e): the performance of DoG
and Fast Hessian quickly falls below the performance of the
corner detectors. This result is important, as out-of-plane rota-
tion and the resulting perspective distortion are very common
for many camera paths. As it occurs in the “unconstrained”
motion too, we attribute the trend shown in Figure 16a mainly
to the trend here.

• motion blur (Figure 16f): Fast Hessian copes best with heavy
motion blur.

8 Values were experimentally obtained using the exact same methods as
for the detector algorithms.

6 CONCLUSIONS

We presented a comprehensive evaluation of five popular interest
point detectors with respect to their application in real-time visual
tracking. We used a testbed relevant to visual tracking, namely,
video streams affected by motion blur and noise, with several thou-
sand frames total, and explicitly evaluated a total of 20 algorithm
parameters as well as comparing the five detectors to each other.

When comparing the detectors, we found that the more expen-
sive detectors DoG and Fast Hessian do on average have a higher re-
peatability than the corner detectors Harris, Shi-Tomasi, and FAST
if evaluated for smooth motion. However, for increasing perspec-
tive distortion (which is very likely to occur frequently in any visual
tracking application), they quickly lose that advantage. Especially
for Harris and Shi-Tomasi, downsampling the image proves a very
effective way of reducing the computation time without decreasing
repeatability.

We believe that the results of our parameter evaluation are im-
mensely helpful in “tuning” a particular algorithm for any partic-
ular application (note that the optimal parameters might be very
different from the parameters we chose for the comparison), but
also to gain insight into how the algorithms work. The comparison
provides quantitative support for the decision of which detector to
choose for designing new tracking applications.

REFERENCES

[1] S. Baker and I. Matthews. Equivalence and efficiency of im-
age alignment algorithms. In Proc. 2001 IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR’01), vol. 1, pp.
1090 – 1097, December 2001.

[2] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A
unifying framework: Part 1. Technical Report CMU-RI-TR-
02-16, Robotics Institute, Carnegie Mellon University, Pitts-
burgh, PA, July 2002.

[3] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up
robust features. In Proc. 9th European Conf. on Computer
Vision (ECCV’06), pp. 404–417, Graz, Austria, May 2006.

[4] G. R. Bradski. Computer vision face tracking for use in a
perceptual user interface. Intel Technology Journal, Q2:15,
1998.

[5] M. Brown and D. Lowe. Invariant features from interest
point groups. In Proc. 2002 British Machine Vision Conf.
(BMVC’02), 2002.

[6] Y. Cheng, M. W. Maimone, and L. Matthies. Visual odome-
try on the mars exploration rovers - a tool to ensure accurate
driving and science imaging. IEEE Robotics & Automation
Magazine, 13(2):54–62, 2006.

[7] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.
MonoSLAM: Real-time single camera SLAM. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 29(6):1052–
1067, 2007.

[8] M. Fiala. ARTag, a fiducial marker system using digital tech-
niques. In Proc. 2005 IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR’05), vol. 2, pp. 590–596, Wash-
ington, DC, USA, 2005.

[9] C. Harris and M. Stephens. A combined corner and edge de-
tector. In Proc. 4th ALVEY Vision Conf., pp. 147–151, 1988.

[10] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, second edi-
tion, 2004.

[11] H. S. Hong and M. J. Chung. Expansion of hager bel-
humeur inverse additive algorithm to homographies. Proc.

11

Gauglitz, Höllerer: In-Depth Evaluation of Popular Interest Point Detectors on Video Streams. TR 2009-08

0 100 200 300 400 500

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

of detected points

re
pe

at
ab

ili
ty

(a) repeatability vs. number of features

1 10 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time [ms]

(b) consecutive frames

1 10 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time [ms]

(c) random frame pairs

Harris

Shi−Tom

DoG

FHess

FAST

Figure 15: Repeatability of detectors (motion pattern “unconstrained”, averaged for all frame pairs and textures). (a) Repeatability vs. number
of detected points (in the planar region of interest), varying the respective threshold parameter. For comparison, the dashed gray line shows
the repeatability of randomly selected points. (b) Repeatability vs. execution time for consecutive frames, for frames of 640x480 pixels (empty
markers) and 320x240 pixels (filled). (c) Repeatability vs. execution time for 3000 pairs of randomly selected frames for each texture.

0 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

baseline distance [cm]

re
pe

at
ab

ili
ty

(a) “unconstrained”

0 2 4 6 8 10 12 14 16
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

rotation of camera [degrees]

(b) “translation”

0.6 0.8 1 1.2 1.4 1.6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

scale change

(c) “zoom”

0 10 20 30 40 50 60 70 80 90
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

rotation [degrees]

re
pe

at
ab

ili
ty

(d) “in-plane rotation”

0 5 10 15 20 25 30 35 40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

rotation [degrees]

(e) “out-of-plane rotation”

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

motion blur

(f) “motion blur”

Harris

Shi−Tom

DoG

FHess

FAST

Figure 16: Repeatability as function of the baseline distance (a) and for specific camera motions (b-f). For (a), repeatability was evaluated for
5x 3000 random frame pairs of the motion pattern “unconstrained” (3000 pairs per texture) and subsequently binned and averaged according to
the relative change in the camera’s position between the two frames. For (b)-(f), 5x 500 random frame pairs of the specified motion pattern were
used.

12

Gauglitz, Höllerer: In-Depth Evaluation of Popular Interest Point Detectors on Video Streams. TR 2009-08

9th Intl. Conf. on Control, Automation, Robotics and Vision
(ICARCV’06), pp. 1–4, Dec. 2006.

[12] T. Kadir, A. Zisserman, and M. Brady. An affine invariant
salient region detector. In Proc. 8th European Conf. on Com-
puter Vision (ECCV’04), pp. 228–241, 2004.

[13] G. Klein and D. Murray. Parallel tracking and mapping for
small AR workspaces. In Proc. Sixth IEEE and ACM Intl.
Symposium on Mixed and Augmented Reality (ISMAR’07),
Nara, Japan, November 2007.

[14] T. Lee and T. Höllerer. Handy AR: Markerless inspection of
augmented reality objects using fingertip tracking. In Proc.
11th IEEE Intl. Symposium on Wearable Computers, pp. 83–
90, Oct. 2007.

[15] T. Lee and T. Höllerer. Hybrid feature tracking and user inter-
action for markerless augmented reality. In Proc. 2008 IEEE
Virtual Reality Conf. (VR’08), pp. 145–152, March 2008.

[16] D. G. Lowe. Object recognition from local scale-invariant
features. In Proc. 1999 IEEE Intl. Conf. on Computer Vision
(ICCV’99), pp. 1150–1157, Corfu, 1999.

[17] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. Intl. Journal of Computer Vision, 60(2):91–110,
November 2004.

[18] B. D. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision (ijcai). In Proc.
7th Intl. Joint Conf. on Artificial Intelligence (IJCAI’81), pp.
674–679, April 1981.

[19] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide
baseline stereo from maximally stable extremal regions. In
Proc. British Machine Vision Conf. (BMCV’02), pp. 384–393,
2002.

[20] L. Matthies and S. A. Shafer. Error modeling in stereo navi-
gation. IEEE Journal of Robotics and Automation, 3(3):239–
248, June 1987.

[21] K. Mikolajczyk and C. Schmid. A performance evaluation of
local descriptors. IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence, 27(10):1615–1630, Oct. 2005.

[22] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,

J. Matas, F. Schaffalitzky, T. Kadir, and L. van Gool. A com-
parison of affine region detectors. Intl. Journal of Computer
Vision, 65(7):43 – 72, November 2005.

[23] F. Mohanna and F. Mokhtarian. Performance evaluation of
corner detectors using consistency and accuracy measures.
Computer Vision and Image Understanding, 102(1):81–94,
April 2006.

[24] H. Moravec. Obstacle avoidance and navigation in the real
world by a seeing robot rover. Technical Report CMU-RI-
TR-80-03, Robotics Institute, Carnegie Mellon University,
September 1980.

[25] P. Moreels and P. Perona. Evaluation of features detectors and
descriptors based on 3D objects. Intl. Journal of Computer
Vision, 73(3):263–284, 2007.

[26] D. Nistér, O. Naroditsky, and J. Bergen. Visual odome-
try. Proc. 2004 IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR’04), 1:652–659, July 2004.

[27] E. Rosten and T. Drummond. Fusing points and lines for high
performance tracking. In Proc. 2005 IEEE Intl. Conf. on Com-
puter Vision (ICCV’05), vol. 2, pp. 1508–1511, October 2005.

[28] E. Rosten and T. Drummond. Machine learning for high-
speed corner detection. In Proc. 2006 European Conf. on
Computer Vision (ECCV’06), vol. 1, pp. 430–443, May 2006.

[29] C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of interest
point detectors. Intl. Journal of Computer Vision, 37(2):151–
172, 2000.

[30] S. Se, D. Lowe, and J. Little. Mobile robot localization and
mapping with uncertainty using scale-invariant visual land-
marks. The Intl. Journal of Robotics Research, 21(8):735–
758, 2002.

[31] J. Shi and C. Tomasi. Good features to track. In Proc.
1994 IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR’94), pp. 593–600, 1994.

[32] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR’01), vol. 1, p. 511, Los
Alamitos, CA, USA, 2001.

13

	Introduction
	Existing Evaluations
	Interest Point Detectors
	Harris Corner Detector
	Shi-Tomasi's ``Good Features To Track''
	Difference of Gaussians
	Fast Hessian
	Features from Accelerated Segment Test (FAST)

	Evaluation Setup
	Ground truth
	Testbed
	Performance measures
	Implementation

	Results
	Algorithm parameters
	Strategy for choosing the ``final'' parameters

	Comparison

	Conclusions

