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Abstract

We discuss multicasting for the n-cube network and its close variants, the Chord and the Binomial Graph

(BNG) Network. We present simple transformations and proofs that establish that the sp-multicast (shortest

path) and Steiner tree problems for the n-cube, Chord and the BNG network are NP-Complete.
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1 Introduction

Multicasting is a communication primitive that allows a node in a network to send a message to multiple

destination nodes. There are many ways in which multicasting can be implemented. For example, when an

e-mail is sent to k destinations, e-mailing systems make k copies of the message and send each copy separately

to the destinations (k unicasting operations). This is an efficient implementation when sending a message to

neighbors. But when all the destinations are far away from the source, the implementation is not an efficient

one. In this scenario, sending the message to one of the destinations and then forwarding it from there to

the remaining k − 1 destinations would be a more efficient solution, especially when the message being sent

is large. The communication in this case is modeled by a tree. A tree connects (directly or indirectly) the
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source node to all the destination nodes, and may include other nodes in the network. There are many

different multicasting trees and objective functions. In this paper we consider regular architectures without

link weights (or costs). The first type of trees have the minimum number of links (edges). The problem of

generating this type of trees is known as the minimum Steiner tree (MST) problem1. The second type is to

minimize link usage provided that every path from the source node to a destination node is a shortest path

in the original network. We refer to this problem as the shortest path multicast(sp-multicast) problem.

The decision version of these problems are formally defined below. The Steiner tree (ST) decision problem

is given an undirected graph G = (V, E), a subset of vertices, K = {u0, u1, . . . , uk} ⊆ V , and a positive

integer r, find a subtree T = (VT , ET ) of G (i.e., VT ⊆ V and ET ⊆ E) such that (a) K ⊆ VT , and (b) the

number of edges in ET is at most r.

The sp-multicast tree decision problem is the Steiner tree decision problem with the added constraint

dT (u0, ui) = dG(u0, ui) for 1 ≤ i ≤ k, where dT (a, b) and dG(a, b) is the number of edges in a shortest path

from a to b in T and G, respectively.

Graham and Foulds [1] studied the MST problem for the n-cube in order to determine the possibility of

computing specific biological sciences problems in reasonable time. Their work resulted in a complex proof for

the NP-Completeness of the decision version of the Steiner tree problem for the n-cube. Later on, a complex

transformation and proof was used to establish that the sp-multicast problem for the n-cube is NP-Complete

[2, 3]. In this paper we present simple transformations and proofs that establish the NP-Completeness of

these two problems.

An n-cube (hypercube) consists of 2n vertices or processors. Every vertex in the n-cube is represented by

an n-bit string and there is an edge between two vertices if their bit representation disagrees in exactly one

bit.

For the n-cube graph we refer to the above problems as the n-cube Steiner tree problem and the n-cube sp-

multicast tree problem. There is a trivial algorithm to implement optimum unicasting in the n-cube. Optimal

polynomial time algorithms for unicasting have been developed for both the Chord and the binomial graph

network [4, 5]; however, there has not been a lot of work on multicast in these topologies. It was conjectured

1Traditionally Steiner tree problems are defined for weighted graphs with the objective being to minimize the total weight

of the edges in the tree.
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that optimum sp-multicast trees for the binomial graph network can be constructed by simply using the

unicast algorithm from the source to all destinations while choosing intermediate vertices that decrease

network traffic [5]. While this explanation does describe a procedure to construct minimum sp-multicast

trees, there is no known polynomial time algorithm that can implement it because there is no known efficient

algorithm to choose intermediate vertices that decrease network traffic. We prove that no such polynomial

time implementation exists if P 6= NP . In this paper we present proofs of NP-Completeness for the MST

and sp-multicast tree for the Chord and the BNG by simple modifications of our new transformations for

the n-cube.

BiNomial Graph (or n-BNG) networks consists of n vertices. The vertices are denoted {0, 1, . . . , n − 1}.

Let k be the largest integer such that 2k ≤ n−1. Every vertex i in the n-BNG network has (clockwise) edges

to vertices {(i + 20) mod n, (i + 21) mod n, . . . , (i + 2k) mod n} and (counterclockwise) edges to vertices

{(i − 10) mod n, (i − 21) mod n, . . . , (i − 2k) mod n}. The n-BNG network is referred to as the k-Chord

(or simply the Chord) when n = 2k for some integer k ≥ 1.

It is simple to show that deleting some edges from an n-Chord results in an n-cube. Therefore, message

communication in the n-Chord is more efficient than in the n-cube, but the number of edges (links) in the

n-Chord is twice the number of edges in the n-cube and therefore more expensive to deploy. The BNG

network has properties similar to the Chord.

Since any sp-multicast tree is a Steiner tree we know that an optimum solution to the n-cube Steiner

tree has at most as many edges as an optimum n-cube sp-multicast tree. For some problem instances it has

fewer. This also holds for the n-Chord and the n-BNG networks.

To prove our NP-Completeness results we use the vertex cover problem. The Vertex Cover (VC) decision

problem is given an undirected graph G = (V = {1, 2, . . . , n}, E) and an integer c, find vertex cover V ′ with

cardinality at most c, i.e., find a set of vertices V ′ such that V ′ ⊆ V and every edge e ∈ E is incident upon

at least one vertex in V ′.

2 NP-Completeness Results

In this section we establish our NP-Completeness results.
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Theorem 2.1 The n-cube sp-multicast tree decision problem is NP-Complete even when every vertex in

K/{u0} is at a distance two from the source vertex u0.

Proof: Our polynomial time transformation from the VC decision problem is defined as follows. Let

G = (V, E) be an undirected graph and c a positive integer be any instance of the VC decision problem Let

n = |V | and m = |E|. We construct the instance (K = {u0, u1, . . . , uk}, r) of the n-cube sp-multicast tree

decision problem as follows. The vertex u0 is the vertex in the n-cube represented by the string of n 0-bits.

For every edge el = {i, j} in G we define the vertex ul in the n-cube represented by the string of n 0-bits

except for two bits that are 1-bits at positions i and j. Clearly, k = m and let r = c + k.

We now prove our transformation is correct. Let integers i1, i2, . . . , ic represent the vertices in a vertex

cover with cardinality c for G. Now lets define the set of vertices {j1, j2, . . . jc}. Vertex jl (in the n-cube)

is represented by the string of n 0-bits except for a 1-bit at position il. Since every edge el is incident to at

least one vertex in {i1, i2, . . . , ic}, then vertex ul is a neighbor of at least one vertex in {j1, j2, . . . , jc} in the

n-cube. Define the sp-multicast tree MT by the set of vertices K ∪ {j1, j2, . . . , jc} and the set of edges of

the from {u0, ji} plus one edge from each vertex ul to a vertex in {j1, j2, . . . , jc}. These edges exist in the

n-cube as {i1, i2, . . . , ic} is a vertex cover for G. The number of edges in the tree is r = k + c. Therefore,

(K, r) has an sp-multicast tree with at most r edges.

Conversely, let T be an sp-multicast tree with at most r edges for the instance (K, r). Clearly all the

edges join a vertex with exactly one 1-bit to either a vertex with zero 1-bits (vertex u0), or a vertex with

exactly two 1-bits (ul vertex). Therefore every vertex in {u1, u2, . . . , uk} has an edge to a vertex in the

n-cube with exactly one 1-bit for a total of k edges. Let {j1, j2, . . . , jf} be the vertices with exactly one 1-bit

in T . All of these vertices are neighbors of u0 in the n-cube, so the f edges to join them to u0 must be in

T . In order for the tree to have at most r edges, it must be that f ≤ c. For 1 ≤ l ≤ f define il = b, where il

has its 1-bit at position b. Clearly, the set {i1, i2, . . . if} is a vertex cover for G with cardinality at most c.

2

Before we establish that the n-cube Steiner tree decision problem is NP-Complete, we establish the

following two lemmas.

Lemma 2.1 Let y be a vertex with exactly three 1-bits and let Γ be a non-empty subset of vertices each
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with exactly two 1-bits that are neighbors of y in the n-cube. Let γ be the number of vertices in Γ. Then,

1 ≤ γ ≤ 3, and there is an sp-multicast tree rooted at u0 = 00 . . . 0 that includes all the vertices in Γ with at

most ⌊4γ/3⌋+ 1 edges.

Proof: Figure 1, after deleting all the vertices of the form A1B∗, shows an sp-multicast tree for the case

when γ equals to 3 with 5 edges which is ⌊4γ/3⌋+1. When γ equals two, the two elements in Γ must have a

1-bit at the same position. Therefore there is an sp-multicast tree with 3 edges, which is ⌊4γ/3⌋+ 1. When

γ equals to one there is an sp-multicast tree with 2 edges, which is ⌊4γ/3⌋+ 1.

2

Lemma 2.2 Let x be a vertex with exactly four 1-bits and let Γ be a non-empty subset of vertices each with

exactly two 1-bits which are in common with the 1-bits in x. Let γ be the number of vertices in Γ. Then,

1 ≤ γ ≤ 6 and there is an sp-multicast tree rooted at u0 that includes all the vertices in Γ with at most γ + 3

edges.

Proof: Figure 1 shows an sp-multicast tree for the case when γ equals to 6 with γ + 3 edges. When γ

is less than six just delete from Figure 2 the vertices that are not in Γ and that is a multicast tree with at

most γ + 3 edges.

2

A 1 B 1 C 0 D 0 E

A 0 B 0 C 0 D 0 E

A 1 B 0 C 1 D 0 E A 1 B 0 C 0 D 1 E A 0 B 1 C 1 D 0 E A 0 B 1 C 0 D 1 E A 0 B 0 C 1 D 1 E

A 1 B 0 C 0 D 0 E A 0 B 1 C 0 D 0 E A 0 B 0 C 1 D 0 E

Figure 1: An sp-multicast tree for u0 and six vertices each with two 1-bits in two of four possible positions.

The symbols, A, B, C, D, and E represent strings of zeros.

Theorem 2.2 The n-cube Steiner tree decision problem is NP-Complete.

Proof: Our polynomial time transformation is the same one as the one used in Theorem 2.1. To establish

that this is a valid transformation we use the proof of Theorem 2.1 and prove that if there is a Steiner tree
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with at most r edges, then there is also an sp-multicast tree with at most r edges.

Let f(I) be any problem instance generated by the polynomial transformation. Let ST be a Steiner

tree with at most r edges that is not an sp-multicasting tree. Assume without loss of generality that when

viewing the tree ST as a tree rooted at u0 all its leaves are elements of the set {u1, u2, . . . , uk}. We now

show that instance f(I) has an sp-multicast tree with at most r edges. Let sp(ST ) be the number of

vertices in {u1, u2, . . . , uk} that have a path in ST to u0 with exactly two edges. Clearly sp(ST ) < k. Our

approach is to show that ST can be transformed into another Steiner tree ST ′ with at most r edges such

that sp(ST ′) > sp(ST ). After applying this argument at most k times we know that instance f(I) has an

sp-multicast tree with at most r edges.

Let u ∈ {u1, u2, . . . , uk} be a vertex whose shortest path in ST from u0 to u is the largest. Let P be that

shortest path in ST that starts at u0 and ends at u. Clearly, path P has more than two edges. Let w, x and

y be the last three vertices just before u in path P , i.e., the path from u0 to u visits first vertex w, then it

is followed by the edges {w, x}, {x, y} and {y, u}, to reach vertices x, y and u in that order.

If the number of 1-bits of y is equal to 1, then define ST ′ as ST after deleting edge {x, y} and adding

edge {u0, y}. Consider now the case when the number of 1-bits of y is equal to three. The subtree STw is

defined as ST after deleting all the subpaths originating at vertex u0 that do not include vertex w. It is

convenient to visualize STw as a tree rooted at w. All the neighbors of w are said to be the children of w.

A similar relationship holds for all the children of w and so on. Every leaf in STw is at a distance at most

three from w and it is a vertex in {u1, u2, . . . , uk}. There are two cases depending on the number of 1-bits

of x.

Case 1: The number of 1-bits of x is two. Let α be the number of children of y in STw. Since the

parent of y and all the children of y in STw have exactly two 1-bits and y has three 1-bits, it must be that

1 ≤ α ≤ 2. By Lemma 1 we know there is an sp-multicast tree rooted at u0 that includes all the children of

y in STw with α+1 edges (as α ≤ 2). Define ST ′ as ST after deleting edges incident to vertex y and adding

the sp-multicast tree just defined.

Case 2: The number of 1-bits of x is four. Let β be the number of children of x in STw Let α be the

number of vertices in {u1, u2, . . . , uk} that are descendants of x in the subtree STw. If β = 1, then α is at
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most three. By Lemma 1 we know there is an sp-multicast tree rooted at u0 that includes all the children of

y in STw with α + 2 edges. Define ST ′ as ST after deleting the edge {w, x} as well as all the edges incident

to vertex y and adding the sp-multicast tree just defined. On the other hand if β > 1, then by Lemma 2 we

know there is an sp-multicast tree rooted at u0 that includes all the leaves that are descendants of x in STw

with α + 3 edges, as x has four 1-bits. Define ST ′ as ST after deleting the edge {w, x} as well as all the

edges from x to a descendant of x in STw and adding the sp-multicast tree just defined.

In all cases ST ′ does not have more edges than ST and sp(ST ′) > sp(ST ). Eventually sp(ST ′) will be

equal to k and ST ′ will be an sp-multicast tree. This concludes the proof of the theorem.

2

We now establish that the Chord sp-multicast tree decision problem is NP-Complete.

Theorem 2.3 The Chord sp-multicast and Steiner tree decision problems are NP-Complete even when every

vertex in K/{u0} is at a distance two from the source vertex u0.

Proof: The reductions are similar to the ones in the previous theorems. The difference is that between

every pair of bits of the vertices in K in the previous reduction, which we call box bits, we add a bit pattern

called the signature.

Let G = (V, E) be an undirected graph and c a positive integer be any instance of the VC decision

problem. Let n = |V | and m = |E|. We construct the instance (K = {u0, u1, . . . , uk}, r) of the t-Chord

multicast tree decision problem as follows. Let k = m, r = c+m, and t = n+(n−1)∗ (2r+3). Every vertex

in K in our reduction consists of n box bits and n − 1 signatures arranged in the order b, s, b, s . . . , b, s, b,

where b is a box bit, and s is the signature. The signature is the 2r+3 bit pattern 0101 . . .010. Vertex u0 in

the t-Chord has all the box bits equal to zero. For every edge el = {i, j} in G we define the vertex ul in the

t-Chord with all the box bits equal to zero, except for the ith and jth box bits which are 1-bits. Therefore,

k is equal to m.

The proof that the transformation is correct is based is based on Theorems 2.1 and 2.2, and the argument

that in a tree with r edges one cannot change two or more box bits in one step. The reason for this is that

in order to change two or more box bits one must make at least one of the signatures equal to all zeros or

all ones. But each signature has r + 1 1-bit runs and at each step one can reduce the number of 1-bit runs
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in a signature by at most one. Since the whole tree has at most r edges, transforming one signature into all

ones or all zeros is not possible as this would take more than r edges.

2

3 Discussion

We presented simple proofs to establish that the Steiner and sp-multicast tree decision problems on the

n-cube, Chord and BNG networks are NP-Complete. Our reductions and the ones in Refs. [1, 2, 3] define

problem instances where the number of bits is the n-cube is proportional to size n of the NP-Complete

problem being reduced. However this implies that the n-cube has 2n vertices, though at most O(n2) vertices

are used as input to the n-cube problem. An important open problem is to determine whether or not our

problems remain NP-Complete when the reduction is for an n-cube with O(P (n)) vertices, where P (n) is a

polynomial on n. Gonzalez and Serena [6] have shown that some problems defined over the hypercube are

NP-Complete even under this condition. Our reductions can be extended to the (k, n)-cube network, where

links exist between vertices that differ in at most k bits in their binary representation.
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