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Abstract

Given a program and an attack pattern (specified
as a regular expression), we automatically generate
string-based vulnerability signatures, i.e., a charac-
terization that includes all malicious inputs that can
be used to generate attacks. We use an automata-
based string analysis framework. Using forward reach-
ability analysis we compute an over-approximation
of all possible values that string variables can take
at each program point. Intersecting these with the
attack pattern yields the potential attack strings if the
program is vulnerable. Using backward analysis we
compute an over-approximation of all possible inputs
that can generate those attack strings. In addition to
identifying existing vulnerabilities and their causes,
these vulnerability signatures can be used to filter
out malicious inputs. Our approach extends the prior
work on automata-based string analysis by providing
a backward symbolic analysis that includes a sym-
bolic pre-image computation for deterministic finite
automata on common string manipulating functions
such as concatenation and replacement.

1. Introduction

Web applications provide critical services over the
Internet and frequently handle sensitive data. Unfor-
tunately, Web application development is error prone
and results in applications that are vulnerable to at-
tacks by malicious users. According to the Open Web
Application Security Project (OWASP)’s top ten list
that identifies the most serious web application vul-
nerabilities, the top three vulnerabilities are: 1) Cross
Site Scripting (XSS), 2) Injection Flaws (such as SQL
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injection) and 3) Malicious File Execution. All these
vulnerabilities are due to improper string manipulation.
Programs that propagate and use malicious user inputs
without sanitization or with improper sanitization are
vulnerable to these well-known attacks.

In this paper, we propose a string analysis approach
that 1) identifies if a web application is vulnera-
ble to attacks, and 2) if it is vulnerable, generates
a characterization of user inputs that might exploit
that vulnerability. Such a characterization is called
a vulnerability signature. We focus on vulnerabilities
related to string manipulation such as the ones listed
above. Vulnerabilities related to string manipulation
can be characterized as attack patterns, i.e., regular
expressions that specify vulnerable values for sensitive
operations (called sinks).

Given an application, vulnerability analysis identi-
fies if there are any input values that a user can provide
to the application that could lead to a vulnerable value
to be passed to a sensitive operation. Once a vulnera-
bility is identified, the next important question is what
set of input values can exploit the given vulnerability.
A vulnerability signature is a characterization of all
such input values. A vulnerability signature can be
used to identify how to sanitize the user input to
eliminate the identified vulnerability, or it can be used
to dynamically monitor the user input and reject the
values that can lead to an exploit.

We use automata-based string analysis techniques
for vulnerability analysis and vulnerability signature
generation. Our tool takes an attack pattern specified
as a regular expression and a PHP program as input
and 1) identifies if there is any vulnerability based on
the given attack pattern, 2) generates a DFA charac-
terizing the set of all user inputs that may exploit the
vulnerability.

Our string analysis framework uses deterministic
finite automaton (DFA) to represent values that string



1 <?php
2 $www = $_GET["www"];
3 $l_otherinfo = "URL";
4 $www = preg_replace(

"/[ˆA-Za-z0-9 .-@://]/",
"",
$www);

5 echo $l_otherinfo . ": " . $www ;
6 ?>

Figure 1. A Small Example

expressions can take. At each program point, each
string variable is associated with a DFA. To deter-
mine if a program has any vulnerabilities, we use a
forward reachability analysis that computes an over-
approximation of all possible values that string vari-
ables can take at each program point. Intersecting the
results of the forward analysis with the attack pattern
gives us the potential attack strings if the program is
vulnerable.

The backward analysis computes an over-
approximation of all possible inputs that can
generate those attack strings. The result is a DFA for
each user input that corresponds to the vulnerability
signature. We implemented our approach in a tool
called Stranger (STRing AutomatoN GEneratoR) that
analyzes PHP programs. Stranger uses the front-end of
Pixy, a vulnerability analysis tool for PHP that is based
on taint analysis [1]. Stranger also uses the automata
package of MONA tool [2] to store the automata
constructed during string analysis symbolically.
We used Stranger to analyze four real-world web
applications. Our results demonstrate that our tool can
detect vulnerabilities in Web applications and identify
the corresponding vulnerability signatures.

2. An Overview

In this section we will give an overview of our anal-
yses using the simple PHP script shown in Figure 1.
This script is a simplified version of code from a real
web application that contains a vulnerability. The script
starts with assigning the user input provided in the
_GETarray to thewwwvariable in line 2. Then, in line
3, it assigns a string constant to thel_otherinfo vari-
able. Next, in line 4, the user input is sanitized using
the preg_replace command. This replace command
gets three arguments: the match pattern, the replace
pattern and the target. The goal is to find all the
substrings of the target that match the match pattern
and replace them with the replace pattern. In the
replace command shown in line 4, the match pattern
is the regular expression[ˆA-Za-z0-9 .-@://] , the

replace pattern is the empty string (which corresponds
to deleting all the substrings that match the match
pattern), and the target is the variablewww. After
the sanitization step, the PHP program outputs the
concatenation of the variablel_otherinfo , the string
constant": " , and the variablewww.

The echo statement in line 5 is a sink statement
since it can contain a Cross Site Scripting (XSS) vul-
nerability. For example, a malicious user may provide
an input that contains the string constant<script

and execute a command leading to a XSS attack. The
goal of the replace statement in line 4 is to remove
any special characters from the input to prevent such
attacks.

Using string replace operations to sanitize user input
is common practice in web applications. However, this
type of sanitization is error prone due to complex
syntax and semantics of regular expressions. In fact,
the replace operation in line 4 in Figure 1 contains
an error that leads to a XSS vulnerability. The er-
ror is in the match pattern of the replace operation:
[ˆA-Za-z0-9 .-@://] . The goal of the programmer
was to eliminate all the characters that should not
appear in a URL. The programmer implements this by
deleting all the characters that do not match the charac-
ters in the regular expression[A-Za-z0-9 .-@://] ,
i.e., eliminate everything other than alpha-numeric
characters, and the ASCII symbols. , - , @, : , and / .
However, the regular expression is not correct. First,
there is a harmless error. The subexpression// can
be replaced with/ since repeating the symbol/ twice
is unnecessary. More serious error is the following:
The expression.-@ is the union of all the ASCII
symbols that are between the symbol. and the symbol
@ in the ASCII ordering. The programmer intended
to specify the union of the symbols. , - , and @but
forgot that symbol- has a special meaning in regular
expressions when it is enclosed with symbols[ and] .
The correct expression should have been.\-@ . This
error leads to a vulnerability because the symbol<

(which can be used to start a script to launch a XSS
attack) falls between the symbol. and the symbol@
in the ASCII ordering. So, the sanitization operation
fails to delete the< symbol from the input, leading to
a XSS vulnerability.

Now, we will explain how our approach automati-
cally detects this vulnerability. First, the attack pattern
for the XSS attacks can be specified asΣ∗ <script

Σ∗, i.e., any string that contains the substring<script

matches the attack pattern. If, during the program
execution, a string that matches the attack pattern
reaches a sink statement, then we say that the program
is vulnerable. For our small example, we simplify the



attack pattern asΣ∗ < Σ∗. Our analysis first generates
the dependency graph for the input PHP program.
Figure 2 shows the dependency graph for the PHP
script in Figure 1. (the program segment that corre-
sponds to a node and the corresponding line number
are shown inside the node). Nodes 1 and 2 correspond
to the assignment statement in line 2, nodes 3 and
4, correspond to the assignment statement in line 3,
nodes 5, 6, 7 and 8 correspond to the replace statement
in line 4, and nodes 9, 10, 11, and 12 correspond to
the concatenation operations and the echo statement
in line 5. Under each node we show the result of the
forward and backward symbolic analyses as a regular
expression.

During forward analysis we characterize all the user
input asΣ∗, i.e., the user can provide any string as
input. Then, using our automata-based forward sym-
bolic reachability analysis, we compute all the possible
values that each string expression in the program can
take. For example, during forward analysis, node 2,
that corresponds to the value of the string variable
wwwafter the execution of the assignment statement in
line 2, is correctly identified asΣ∗. More interestingly,
node 8, the value of the the string variablewwwafter
the execution of the replace statement in line 4, is
correctly identified as[A-Za-z0-9 .-@:/] * since
any character that does not match the characters in the
regular expression[A-Za-z0-9 .-@://] has been
deleted.

Node 12 is the sink node. The result of the forward
analysis identifies the value of the sink node as
URL:[A-Za-z0-9 .-@:/] * . Next, we take the
intersection of the result of the forward analysis
with the attack pattern to identify if the program
contains a vulnerability. If the intersection is empty
then the program is not vulnerable with respect
to the given attack pattern. Since our analysis is
sound, this means that there is no user input that
can generate a string that matches the attack pattern
at the sink node. However, in our example, the
intersection of the attack pattern and the result of the
forward analysis for the sink node is not empty and
is characterized by the following regular expression:
URL:[A-Za-z0-9 .-;=-@:/] * <[A-Za-z0-9 .-@:/] * .
The backward analysis starts from this intersection
and traverses the dependency graph backwards to find
out what input values can lead to string values at the
sink node that falls into this intersection. Note that
during backward analysis we do not need to compute
any value for the nodes that are not on a path between
an input node and a sink node. This means that during
backward analysis we do not compute values for the
nodes 3, 4, 5, 6, 9 and 10. The final result of the

backward analysis is the result for the input node 1,
which is characterized with the regular expression:
[ˆ<] * <Σ∗, i.e., any input string that contains the
symbol< can lead to a string value at a sink node that
matches the attack pattern. Using this information, the
programmer can eliminate the vulnerability either by
fixing the erroneous replace statement in line 4 or by
adding another replace statement that removes the<

symbol from the input.

3. Automata-Based String Analyses

In this section, we first define the dependency graphs
and then describe how to perform forward and back-
ward symbolic string analyses on dependency graphs.
We describe the pre-image computations on string
manipulating functions at the end of this section, which
are essential for the backward analysis.

3.1. Dependency Graph

A dependency graph specifies the data flow in
the program. Formally speaking, a dependency graph
G = 〈N, E〉 is a directed graph, whereN is a finite
set of nodes andE ⊆ N × N is a finite set of
directed edges. An edge(ni, nj) ∈ E identifies that
the value ofnj depends on the value ofni. Each
node n ∈ N can be (1) anormal node including
input , constant , variable , or (2) anoperation

node includingconcat andreplace . An input node
identifies the data from untrusted parties, e.g., an input
from web forms. Aconstant node is associated with
a constant value. Both nodes have no predecessors.
A concat node n has two predecessors labeled as
the prefix node (n.p) and the suffix node (n.s), and
stores the concatenation of any value of the prefix node
and any value of the suffix node inn. A replace

node has three predecessors labeled as the target node
(n.t), the match node (n.m), and the replacement node
(n.r). It performs the following operations for each
value of n.t: (1) identifies all the matches, i.e., any
value ofn.m, that appear inn.t, (2) replaces all these
matches inn.t with any value ofn.r, and (3) stores
the replaced result inn. We define the following: For
n ∈ N , Succ(n) = {n′ | (n, n′) ∈ E} is the set
of successors ofn. Pred(n) = {n′ | (n′, n) ∈ E}
is the set of predecessors ofn. If n is a concat

node,Pred(n) = {n.p, n.s}. If n is a replace node,
Pred(n) = {n.t, n.m, n.r}. For a dependency graph
G, we also defineRoot(G) = {n | Pred(n) = ∅} and
Leaf(G) = {n | Succ(n) = ∅}.



Figure 2. Results of Forward and Backward Analyses

3.2. Vulnerability Analysis

Our vulnerability analysis takes the following inputs:
a dependency graph (denoted asG), a set of sink nodes
(denoted asSink), and an attack pattern (denoted as
Attk). Sink denotes the nodes that are associated with
sensitive functions that might lead to vulnerabilities.
Attk is a regular expression represented as a DFA that
accepts the set of attack strings.

Our vulnerability analysis is shown in Algorithm 1.
The analysis consists of two phases. In the first phase,
we perform a forward symbolic reachability analysis
from root nodes to compute all possible values that
each node can take (by calling forward analysis at
line 3). We use this information to collect vulnerable
program points, as well as the reachable attack strings
of those vulnerable program points (at line 4-10).
If the program is vulnerable, i.e., there exists some
vulnerable program points, we proceed to the second
phase (by calling backward analysis at line 12). In the
second phase, we perform a backward symbolic reach-
ability analysis from the vulnerable program points to
compute all possible values of their predecessors that
will result in attack strings at these vulnerable program
points.

Our analysis is an automata-based analysis. The set
of string values is approximated as a regular language

and represented symbolically as a DFA that accepts the
language. To associate each node with its automata,
we create two automata vectorsPOSTand PRE. The
size of both is bounded by|N |. POST[n] is the DFA
accepting all possible values that noden can take.
PRE[n] is the DFA accepting all possible values that
noden can take to exploit the vulnerability. Initially,
all these automata accept nothing, i.e., their language
is empty.V ul ⊆ Sink is the set of vulnerable program
points and initially is set to an empty set.

At line 3, we first computePOST by calling the
forward analysis. At line 4, for each noden ∈ Sink,
we generate a DFAtmp by intersecting the attack
pattern and the possible values ofn. If L(tmp) is
not empty, we identify thatn is a vulnerable program
point and add it toV ul at line 7. In fact,tmp accepts
the set of reachable attack strings at noden that can
be used to exploit the vulnerability. Hence, we assign
tmp to PRE[n] at line 8. If V ul is not empty, we
computePREby calling our backward analysis at line
12. (We will discuss the backward analysis later.) Note
that forn ∈ V ul, PRE[n] has been assigned. We report
vulnerability signatures for eachinput node based on
PRE at line 13-15. IfV ul is an empty set, we report
that the program is secure with respect to the attack
pattern.



Algorithm 1 VUL ANALYSIS(G, Sink, Attk)
1: Init(POST, PRE);
2: setV ul := {};
3: FWDANALYSIS(G, POST);
4: for eachn ∈ Sink do
5: tmp: = POST[n] ∩ Attk;
6: if L(tmp) 6= ∅ then
7: V ul := V ul ∪ {n};
8: PRE[n] := tmp;
9: end if

10: end for
11: if V ul 6= ∅ then
12: BWDANALYSIS(G,POST, PRE, V ul);
13: for eachinput n do
14: Report the vulnerability signaturePRE[n];
15: end for
16: return ”Vulnerable”;
17: else
18: return ”Secure”;

19: end if

3.3. Forward Analysis

The forward symbolic reachability analysis is based
on a standard work queue algorithm (Algorithm 2).
We iteratively update the automata vectorPOSTuntil
a fixpoint is reached. At line 6,CONSTRUCT(n) returns
a DFA that: (1) accepts arbitrary strings ifn is an
input node, (2) accepts an empty string ifn is a
variable node, or (3) accepts the constant value if
n is a constant node. At line 8 and line 10, we
incorporate two automata-based string manipulating
functions [3]:

• CONCAT(DFA M1, DFA M2) returns a DFAM

that accepts{w1w2 | w1 ∈ L(M1), w2 ∈
L(M2)}.

• REPLACE(DFA M1, DFA M2, DFA
M3) returns a DFA M that accepts
{w1c1w2c2 . . . wkckwk+1 | k > 0,

w1x1w2x2 . . . wkxkwk+1 ∈ L(M1), ∀i, xi ∈
L(M2), wi does not contain any substring
accepted byM2, ci ∈ L(M3)}.

At line 14, we incorporate the automata widening
operator∇ to accelerate the fixpoint computation [4].
Upon termination,POST[n] records the DFA whose
language includes all possible values thatn can take.
This information is then passed to our backward anal-
ysis.

3.4. Backward Analysis

Backward analysis uses the results of the forward
analysis. Particularly, we are interested in computing
all possible values of each noden that can exploit
the identified vulnerability. The first challenge of the

Algorithm 2 FWDANALYSIS(G, POST)
1: queueWQ := NULL;
2: WQ.enqueue(Root(G));
3: while WQ 6= NULL do
4: n := WQ.dequeue();
5: if n ∈ Root(G) then
6: tmp := CONSTRUCT(n);
7: else if n is concat then
8: tmp : = CONCAT(POST[n.p], POST[n.s]);
9: else if n is replace then

10: tmp : = REPLACE(POST[n.t], POST[n.m],
POST[n.r]);

11: else
12: tmp : =

⋃
n′∈Pred(n)

POST[n′];
13: end if
14: tmp := (tmp ∪ POST[n])∇POST[n];
15: if tmp 6⊆ POST[n] then
16: POST[n] := tmp;
17: WQ.enqueue(Succ(n));
18: end if

19: end while

backward analysis comes from the pre-image compu-
tation on string manipulating functions. To tackle this
challenge, we develop the following automata-based
functions.

• PRECONCATPREFIX(DFA M , DFA M2) returns a
DFA M1 so thatM = CONCAT(M1, M2).

• PRECONCATSUFFIX(DFA M , DFA M1) returns a
DFA M2 so thatM = CONCAT(M1, M2).

• PREREPLACE(DFA M , M2, M3) returns a DFA
M1 so thatM = REPLACE(M1, M2, M3).

We discuss how to implement these functions at the
end of this section. The backward analysis is shown
in Algorithm 3. For n ∈ V ul, PRE[n] is set to the
intersection ofPOST[n] andAttk before the backward
analysis starts. The predecessors ofn ∈ V ul are
the starting points of the backward analysis. Similar
to the forward analysis, the computation is based on
a standard work queue algorithm. We first put the
predecessors ofn ∈ V ul into the work queue as shown
at line 2-4. We iteratively update thePRE array (by
adding pre-images) until we reach a fixpoint. If the suc-
cessor ofn is an operation node, the pre-image (tmp)
of n is computed by calling the defined automata-based
functions. (line 11, 13, 17). Otherwise, the pre-image
of n is directly derived from the successor ofn (line
20). Note thatPOST[n] records all possible values
that n can take. We use this information during the
pre-image computation by restricting the arguments of
operations such as replace. We union the pre-images
of n as tmp′ at line 22. Since we are interested only
in reachable values ofn, i.e., PRE[n] ⊆ POST[n] by
definition, we intersecttmp′ with POST[n] at line 24.
Similar to the forward analysis, we widen the result at
line 25 to accelerate the fixpoint computation. At line



26, we intersecttmp′ with POST[n] again to remove
unreachable values (that might have been introduced
due to widening) at noden. If tmp′ accepts more
values thanPRE[n], we updatePRE[n] at line 28 and
add the predecessors ofn to the working queue at line
29. Upon termination,PRE[n] records the DFA that
accepts all possible values ofn that may exploit the
identified vulnerability.

Algorithm 3 BWDANALYSIS(G, POST, PRE, V ul)
1: queueWQ = NULL;
2: for eachn ∈ V ul do
3: WQ.enqueue(Pred(n));
4: end for
5: while WQ 6= NULL do
6: n := WQ.dequeue();
7: tmp′ := NULL;
8: for eachn′ ∈ Succ(n) do
9: if n′ is concat then

10: if n is n′.l then
11: tmp := PRECONCATPREFIX(PRE[n′],

POST[n′.r]);
12: else
13: tmp := PRECONCATSUFFIX(PRE[n′],

POST[n′.l]);
14: end if
15: else if n′ is replace then
16: if n is n′.t then
17: tmp := PREREPLACE(PRE[n′], POST[n′.m],

POST[n′.r]);
18: end if
19: else
20: tmp := PRE[n′];
21: end if
22: tmp′ := tmp′ ∪ tmp;
23: end for
24: tmp′ := tmp′ ∩ POST[n];
25: tmp′ := (tmp′ ∪ PRE[n])∇PRE[n];
26: tmp′ := tmp′ ∩ POST[n];
27: if tmp′ 6⊆ PRE[n] then
28: PRE[n] := tmp′;
29: WQ.enqueue(Pred(n));
30: end if

31: end while

3.5. Pre-image Computation

In this section, we discuss how to compute the pre-
images of string manipulating functions, as well as the
implementation of the following functions:PRECON-
CATPREFIX( Mx, Mz), PRECONCATSUFFIX( Mx, My),
and PREREPLACE( Mx, Mm, Mr).

3.5.1. Concatenation.To compute the pre-image of
concatenation nodes, we introduce concatenation trans-
ducers to specify the relation among its output and
two input nodes. A concatenation transducer is a DFA
over the alphabet that consists of 3 tracks. The 3-track
alphabet is defined asΣ3 = Σ×(Σ∪{λ})×(Σ∪{λ}),
whereλ 6∈ Σ is a special symbol for padding. We use

w[i] (1 ≤ i ≤ 3) to denote theith track of w ∈ Σ3.
All tracks are aligned.w[1] ∈ Σ∗, w[2] ∈ Σ∗λ∗ is left
justified, andw[3] ∈ λ∗Σ∗ is right justified. We use
w′[1], w′[2] ∈ Σ∗ to denote theλ-free prefix ofw[1]
and theλ-free suffix ofw[2]. We sayw is accepted by
a concatenation transducerM if w[1] = w′[2].w′[3].
Note that a concatenation transducer binds the values
of different tracks character by character and hence is
able to identify the prefix and suffix relations precisely.

Below we show two examples of concatenation
transducers. Letα indicate any character inΣ. In
Figure 3, the third track ofM can be used to identify
all suffixes ofX that follow any string in(ab)+. In
Figure 4, the second track ofM can be used to identify
all prefixes ofX that are followed by any string in
(ab)+.

Figure 3. A transducer M for X = (ab)+.Z

Figure 4. A transducer M for X = Y.(ab)+

In the following, we describe how to construct these
transducers in general, how to removeλ, and how to
compute the pre-images of a concatenation node using
concatenation transducers.

Prefix: We first consider how to compute the pre-
image of the prefix node, i.e.,Y in X := Y Z,
given regular sets characterizing possible values of the
output nodeX and the suffix nodeZ. Let Mx =
〈Qx, Σ, δx, qx0, Fx〉, Mz = 〈Qz , Σ, δz, qz0, Fz〉 ac-
cept values ofX andZ respectively.PRECONCATPRE-
FIX(Mx, Mz) returnsMy.

• Extend Mx to a 3-track DFAM ′, so thatM ′

accepts{w | w[1] ∈ L(Mx)}.
• Construct the concatenation transducerM that

accepts{w | w[1] = w′[2].w′[3], w′[3] ∈ L(Mz)}.
M = 〈Q, Σ3, δ, q0, F 〉, where:

– Q = {q0} ∪ Qz,



– ∀a ∈ Σ, δ(q0, (a, a, λ)) = q0,
– ∀a ∈ Σ, δ(q0, (a, λ, a)) = q′ if δz(qz0, a) =

q′.
– ∀q, q′ ∈ Qz, ∀a ∈ Σ, δ(q, (a, λ, a)) = q′ if

δz(q, a) = q′.
– F = {q0} ∪ Fz if qz0 ∈ Fz . F = Fz ,

otherwise.
• Intersect M ′ with M . The result accepts

{w | w[1] = w′[2].w′[3], w[1] ∈ L(Mx), w′[3] ∈
L(Mz)}. We then project away the first and the
third tracks. Let the result beM ′

y = 〈Qy, Σ ∪
{λ}, δ, q′y0, F

′

y〉.
• Remove λ tails if any. We constructMy =

〈Qy, Σ, δy, qy0, Fy〉 as below.
– ∀q, q′ ∈ Qy, ∀a ∈ Σ, δy(q, a) = q′ if

δ′y(q, a) = q′.
– Fy = F ′

y ∪ Fλ, where Fλ = {q | ∃q′ 6=
sink, δ′y(q, λ) = q′}.

Suffix: We next consider how to compute the pre-
image of the suffix node, i.e.,Z in X := Y Z, given
regular sets characterizing possible values ofX and the
prefix nodeY . Again, letMx = 〈Qx, Σ, δx, qx0, Fx〉,
My = 〈Qy, Σ, δy, qy0, Fy〉 accept values ofX andY

respectively.PRECONCATSUFFIX( Mx, My) returnsMz.
• Extend Mx to a 3-track DFAM ′, so thatM ′

accepts{w | w[1] ∈ L(Mx)}.
• Construct the concatenation transducerM that ac-

cepts{w | w[1] = w′[2].w′[3], w′[2] ∈ L(My)}.
M = 〈Q, Σ3, δ, qy0, F 〉, where:

– Q = Qy ∪ {qf}
– ∀q, q′ ∈ Qy, ∀a ∈ Σ, δ(q, (a, a, λ)) = q′ if

δy(q, a) = q′.
– ∀q ∈ Fy, ∀a ∈ Σ, δ(q, (a, λ, a)) = qf .
– ∀a ∈ Σ, δ(qf , (a, λ, a)) = qf .
– F = {qf} ∪ Fy .

• Intersect M ′ with M . The result accepts
{w | w[1] = w′[2].w′[3], w[1] ∈ L(Mx), w′[2] ∈
L(My)}. We then project away the first and the
second tracks. Let the result beM ′

z = 〈Q′

z, Σ ∪
{λ}, δ′z, q

′

z0, F
′

z〉.
• Removeλ heads if any. This final step can be

done by constructingMz = 〈Qz, Σ, δz, qz0, Fz〉
as below.

– Qz = q0 ∪ Q′

z.
– ∀q ∈ Q′

z, ∀a ∈ Σ, δz(q, a) = q′ if there exists
q′ ∈ Q′

z, δ
′

z(q, a) = q′.
– ∀q ∈ Q′

z, ∀a ∈ Σ, δz(q0, a) = q′ if there
exists q′, q′′ ∈ Q′

z, δ′z(q
′′, λ) = q and

δ′z(q, a) = q′.
– Fz = {q0} ∪ F ′

z , if ∃q ∈ F ′

z and there
existsq′, q′′ ∈ Q′

z, so thatδ′z(q
′′, λ) = q and

δ′z(q, a) = q′. Fz = F ′

z , otherwise.

3.5.2. Replacement.Recall that areplace node has
three input nodes: target, match, and replacement.
We only consider the pre-image of the target node
given regular sets characterizing possible values of
the output node, the match node, and the replacement
node. Let Mx = REPLACE(Mt, Mm, Mr). We are
interested in computingMt, givenMx, Mm, andMr.
An intuitive solution of PREREPLACE(Mx, Mm, Mr)
is REPLACE(Mx, Mr, Mm). However, since not all
matches ofMr that appear inMx are due to the
replacement operation, this may break the soundness
of our approach. Consider a simple example.Mt, Mm

andMr accept{aab}, {b}, and{a}, respectively.Mx

= REPLACE(Mt, Mm, Mr) accepts{aaa}. M ′

t = RE-
PLACE(Mx, Mr, Mm) accepts{bbb}. Since{bbb} does
not include{aab}, this intuitive approach is not sound.
Instead, we conservatively modelPREREPLACE(Mx,
Mm, Mr) asREPLACE(Mx, Mr, Mm∪Mr). The result
is an over approximation of the pre-image of the target
node. For the simple example,M ′

t = REPLACE(Mx,
Mr, Mm∪Mr) accepts(a|b)(a|b)(a|b), which includes
all L(Mt) such thatREPLACE(Mt, Mm, Mr) accepts
{aaa}.

Deletion REPLACE(Mt, Mm, Mr) performs dele-
tion if Mr accepts the empty string. I.e., it will
delete all the matches inL(Mt). In this case, to
compute the pre-image of the target, we would not
be able to find a match ofMr (an empty string
in this case) to replace withMm. In this case,RE-
PLACE(Mx, Mr, Mm ∪ Mr) will return Mx. To deal
with deletion, we conservatively generate a DFAM

that acceptsL(Mm) to be repeated many times be-
tween any character ofL(Mx). Formally speaking,
M accepts{w0c0w1c1 . . . wncnwn+1 |c0c1 . . . cn ∈
L(Mx), ∀i, wi ∈ L∗(Mm)}, where L∗(Mm) de-
notes the closure ofL(Mm). To constructM =
〈Q, Σ, δ, q0, F 〉, the basic idea is insertingMm to
each state ofMx. |Q| is bounded by|Qm| × |Qx|.
Depending onMm, we consider two cases to insert
Mm. First, let σm = L(Mm) ∩ Σ be the set of
accepted single characters. Ifσm 6= ∅, we insert
a self loop for eacha ∈ σm for all q ∈ Qx,
i.e., ∀q ∈ Qx, a ∈ σm, δ(q, a) = q. Second, let
M ′

m = 〈Q′

m, Σ, δ′m, q′m0, F
′

m〉 acceptL(Mm)\σm. If
L(M ′

m) 6= ∅ (i.e.,Mm accepts some words that are not
single character), we insertM ′

m for all q ∈ Qx, which
can be done by setting (1)δ(q, a) = q′ if there exists
q′ ∈ Q′

m, δ′m(q′m0, a) = q′, and (2)δ(q′, a) = q if there
existsq′, q′′ ∈ Q′

m, δ′m(q′, a) = q′′ andq′′ ∈ F ′

m.
In sum,PREREPLACE(Mx, Mm, Mr) returns:
• REPLACE(Mx, Mr, Mm ∪Mr) if Mr accepts non

empty strings, and
• M if Mr accepts an empty string.



4. Stranger: A String Analysis Tool for
PHP Programs

We built a tool called Stranger (STRing AutomatoN
GEneratoR) based on the string analysis techniques
explained above. Stranger uses Pixy [1] as a front
end and MONA [2] automata package for automata
manipulation. Stranger takes a PHP program as input
and automatically analyzes it and outputs the possible
XSS and SQL injection vulnerabilities in the program.
For each input that leads to a vulnerability, it also
outputs an automaton in a dot format that characterizes
all possible string values for this input which may
exploit the vulnerability, i.e., it outputs the vulner-
ability signatures. In the following sections we will
give a general overview of the tool architecture and
the vulnerability and string analysis implementation
details.

The architecture of Stranger is shown in Figure 5.
The tool consists of three parts. ThePHP Parser
which parses the PHP code and constructs a control
flow graph (CFG). TheTaint Analyzerwhich performs
alias and dependency analyses, builds the dependency
graphs, analyzes them and outputs tainted ones in
which tainted user input is not properly sanitized.
TheString Analyzerimplements vulnerability (forward
and backward) analysis on dependency graphs (as
described in the previous section) for all sensitive
sinks that are found to be tainted by taint analysis.
If a sink is found to be secure by the string analyzer
(with respect to the specified attack pattern), then
it is guaranteed to be secure. If a sink is found to
be vulnerable, then backward analysis computes the
vulnerability signature.

4.1. Taint Analysis

The first step in our analysis is to parse the PHP
program and construct the control flow graph (CFG).
PHP programs do not have a single entry point as
in some other languages such as C and Java, so
we process each script by itself along with all files
included by that script. The CFG is passed to the
taint analyzer in which alias and dependency analyses
are performed and dependency graphs are analyzed
to identify tainted ones. If taint analysis reports a
dependency graph to be secure, then it is guaranteed
to be secure. Otherwise tainted dependency graphs are
passed to the string analyzer for more inspection. We
restrict the previous definition for dependency graph
in our implementation to the ones that have only one
sensitive sink node.

4.2. String Analyzer

The string analyzer implements the string analysis
technique explained earlier. We will concentrate here
on details related to Stranger implementation.

4.2.1. Pre-analysis Preparation.Before starting the
analysis process, the dependency graphs are processed
to optimize the analysis. First, a new acyclic depen-
dency graph is built in which all cycles are removed.
All the nodes in a cycle are replaced by a single
strongly connected component node and a mapping is
constructed from each SCC node to the set of nodes
inside that cycle. Then, the acyclic graph is topolog-
ically sorted starting from the sink node towards the
root nodes by reversing the edges in the dependency
graph. This is possible as we only have one sink node
per each dependency graph.

4.2.2. Forward Analysis Implementation. We have
partially changed the previously specified algorithm
when we implemented it to optimize the computation.
The analysis is conducted on the acyclic graph instead
of the original one so that we only need to process
the nodes that are not in a cycle once. We start from
the nodes that are last in the topological order (since
the topological order starts from the sink node). We
decorate the root nodes (which do not depend on
any other nodes) with their initial forward analysis
automaton value according to their types as follows:

• If the node represents a user input then wealways
consider it as tainted (untrusted) and initialize it to
Σ∗. User input includes values from web forms,
database and files.

• If the node represents an uninitialized variable
then depending on an option to enable or disable
register globals in PHP we initialize it toΣ∗ or ǫ

following the PHP semantics in which an unini-
tialized variable that is used in a string operation
is considered to be empty string.

After processing the root nodes, we complete the
decoration of the nodes following their topological
order. When we hit an SCC node then we switch to a
work queue fixpoint computation algorithm based on
Algorithm 2, initializing the queue to the predecessors
of the SCC node. The only differences in the imple-
mentation are:

• We enqueue a node when it is an element in the
cycle and its new calculated value changes.

• When we dequeue a node, we calculate the new
values for all of its successors.

During the fixpoint computation we need to apply
widening to try to avoid infinite computation and reach



Figure 5. The Architecture of Stranger

a fixpoint. The problem with widening is that analysis
looses some precision after its application. So we have
added the ability to choose the number of iterations
before applying the widening operator. This is to allow
for more precision as the computation may converge
after a certain number of iterations without the need for
the widening. We also have an option to choose when
to apply a coarser version of the widening operator
to further accelerate the convergence of the fixpoint
computation.

4.2.3. Backward Analysis Implementation. The
changes to the implementation of backward analysis
are pretty similar to the ones done to the forward
analysis including topological sorting and the applica-
tion of widening operator on multiple stages. We also
performed an additional optimization by working on a
slice of the dependency graph for each input that only
includes the nodes on the paths from that input node
to the sink.

4.2.4. Modeling PHP String Manipulating Func-
tions. As part of our analysis, we need to model the
PHP string manipulating functions for both taint and
string analyzers to correctly simulate their semantics
during our analysis. For the taint analyzer, we have
two types of functions: (1)Safe functionsthat are
guaranteed to produce safe string values even when
they are mixed within other strings in the program.
These functions are considered to be strong saniti-
zation functions that produce untainted output. An
example of such functions ismd5. (2) Dangerous
functionsthat may output insecure string values even
after they try to sanitize the input. These functions
are considered to output insecure tainted string values.
These include weak sanitization functions that sanitize
the input but do not guarantee its safety when it is
mixed within other strings in the program. As an
example, suppose that an attacker can exploit a vul-
nerability in a web application when a string variable
reaches a sink with the string value<script . Suppose
that a sanitization function works by replacing all

<script with ǫ. In this case, if the attacker passes
<<scriptscript as an input, the web application
will be exploited as the string value that reaches the
sink is going to be<script . For the string analyzer,
functions are modeled using a set of core string op-
erations such asconcat and replace. For example,
function stripslashes is modeled as two consecutive
replace operations as:replace("\‘","‘") followed
by replace("\\","\") . Using the previous opera-
tions, we can not guarantee a precise modeling for
the semantics of all functions. So we may sometimes
output an over approximation of the semantics of
the original function. Note that some of the string
manipulating functions are modeled to return the same
output as the input. These functions do not affect
the final value of the string analysis computation.
An example for such functions isstrtoupper which
returns the upper case of the input string. Finally, for
replace functions that uses regular expressions such
as preg replace, we use a regular expression parser
that supports a large subset of PHP regular expression
syntax.

4.3. String Manipulation Library

String manipulation library (SML) handles all
core string and automata operations such asunion,
intersection, concatenation, etc. During vulnerabil-
ity analysis, all string and automaton manipulation
operations that are needed to decorate a node in a
dependency graph are sent to SML along with the
string and/or automaton parameters. SML, then, ex-
ecutes the operation and returns back the result as an
automaton. A Java class calledStrangerAutomaton

has been used as the type of the parameters and results.
The class follows a well defined interface so that
other automaton packages can be plugged in and used
with the string analyzer instead of SML. SML is also
decoupled from the vulnerability analysis component
so that it can be used with any other string analysis
tools for any other language.StrangerAutomaton

encapsulateslibstranger.so shared library that is writ-



ten in C and has the actual string manipulation code.
We used JNA (Java Native Access) to bridge the two
languages. The core string and automaton operations
are written in C to get a faster computation and a
tight control on memory. Stranger, also, has an option
to produce a C trace of all string and automaton
operations performed during a run to allow us to debug
the code directly in gdb. This can be generalized to
produce a higher intermediate language that can be
used with other string analysis backends that can not
be plugged directly into Stranger.

5. Experiments

We experimented with Stranger on a number of
benchmarks extracted from known vulnerable web
applications: (1)MyEasyMarket-4.1 (a shopping cart
program), (2)PBLguestbook-1.32 (a guestbook ap-
plication), (3) BloggIT-1.0 (a blog engine), and (4)
proManager-0.72 (a project management system). The
taint analyzer automatically generates the tainted de-
pendency graphs and identifies that all of them may be
vulnerable. In Table 1, we show the result of the taint
analysis and some data about these graphs: #sinks in-
dicates the number of sensitive sinks, #inputs indicates
the number ofinput nodes. Since the application is
identified as vulnerable by taint analysis, both values
are at least one. #literals is the sum of the length of
constant strings that are used in the graph. Note that
these dependency graphs are built for sensitive sinks
where unrelated parts have been shrunk. Hence, their
sizes are much smaller than the original programs.

vul #nodes #edges #sinks #inputs #literals

1 1(xss) 21 20 1 1 51
2 1(sql) 41 44 1 2 99
3 1(xss) 32 31 1 1 142
4 3(xss) 119 117 3 3 450

Table 1. Dependency Graphs

In our experiments, we used an Intel machine with
3.0 GHz processor and 4 GB of memory running
Ubuntu Linux 8.04. We use 8 bits to encode each
character in ASCII. The performance of our vulner-
ability analysis is shown in Table 2. The backward
analysis dominates the execution time from 77% to
96%. Taking a closer look, Table 3 shows the fre-
quency and execution time of each of the string
manipulating functions.PRECONCAT (including prefix
and suffix) consumes a large portion, particularly for
(4) proManager-0.72 that has a large size of constant
literals involved. One reason is generating concatena-
tion transducers during the computation. Note that the

transducer has 3-tracks and uses 24 bits to encode its
alphabet. On the other hand, our computation does
not suffer exponential blow-up as expected for explicit
DFA representation. This shows the advantage of using
symbolic DFA representation (provided by the MONA
DFA library), in which transition relations of the DFA
are represented as Multi-terminal Binary Decision Di-
agrams (MBDDs).

total time(s) fwd time(s) bwd time(s) mem(kb)

1 0.569 0.093 0.474 2700
2 3.449 0.124 3.317 5728
3 1.087 0.248 0.836 18890
4 16.931 0.462 16.374 116097

Table 2. Total Performance

CONCAT REPLACE PRECONCAT PREREPLACE

#operations/time(s)

1 6/0.015 1/0.004 2/0.411 1/0.004
2 19/0.082 1/0.004 11/3.166 1/0.0
3 22/0.038 4/0.112 2/0.081 4/0.54
4 14/0.014 12/0.058 26/11.892 24/3.458

Table 3. String Function Performance

Finally, Table 4 shows the data about the DFAs that
Stranger generated. Reachable Attack is the DFA that
accepts all possible attack strings at the sink node.
Vulnerability Signature is the DFA that accepts all pos-
sible malicious inputs that can exploit the vulnerability.
We closely look at the vulnerability signature of (1)
MyEasyMarket-4.1 . The signature actually acceptsα∗

<α∗ sα∗ cα∗ r α∗ i α∗ pα∗ t α∗ with respect to the
attack patternΣ∗ <script Σ∗. α is the set of charac-
ters, e.g.,! , that are deleted in the program. An input
such as<!script can bypass the filter that rejectsΣ∗

<script Σ∗ and exploit the vulnerability. This shows
that simply filtering out the attack pattern can not
prevent its exploits. On the other hand, the exploit can
be prevented using our vulnerability signature instead.

It is also worth to note that both vulnerability
signatures of (2)PBLguestbook-1.32 accept arbitrary
strings. By manually tracing the program, we find
that both inputs are concatenated to an SQL query
string without proper sanitization. Since an input can
be any string, the pre-image of one input is the prefix
of Σ∗ OR ’1’=’1’ Σ∗ that is equal toΣ∗, while
the pre-image of another input is the suffix ofΣ∗

OR ’1’=’1’ Σ∗ that is also equal toΣ∗. This case
shows a limitation in our approach. Since we do not
model the relations among inputs, we can not specify
the condition that one of the inputs must contain
OR ’1’=’1’ .



Reachable Attack (Sink) Vulnerability Signature (Input)
#states #bdd nodes #states #bdd nodes

1 24 225 10 222
2 66 593 2 9

2 9
3 29 267 92 983
4 131 1221 57 634

136 1234 174 1854
147 1333 174 1854

Table 4. Attack and Vulnerability Signatures

6. Related Work

Due to its importance in security, string analysis
has been widely studied. Christensen, Møller and
Schwartzbach [5] proposed a grammar-based string
analysis (implemented in a tool called JSA) to stat-
ically determine the values of string expressions in
Java programs. They convert the flow graph into a
context free grammar where each string variable cor-
responds to a nonterminal, and each string operation
corresponds to a production rule. Then, they convert
this grammar to a regular language by computing an
over-approximation. Gould et al. [6] use this grammar-
based string analysis technique to check for errors
in dynamically generated SQL query strings in Java-
based web applications [5]. Christodorescu et al. [7]
present an implementation of the grammar-based string
analysis technique for executable programs for the x86
architecture. There are some other tools for string anal-
ysis [10], [11], [12], [13]. Shannon et al. [12] propose
forward bounded symbolic execution to perform string
analysis on Java programs. Similar to our approach,
automata are used to trace path constraints and encode
the values of string variables. They support trim and
substring operations. Xie and Aiken [10] support string
assignment and validation operations. Fu et al. [13] and
Choi et al. [11] support string-based replacement (as
opposed to language-based replacement). None of the
tools mentioned above addresses language-based re-
placement operations which causes the approximations
computed by these tools to be too coarse for analyzing
some sanitization routines.

Minamide [8] proposes a grammar-based string
analysis that supports language-based replacement op-
erations by escaping replace operations to finite-state
transducers. Instead of approximating the grammar to
a regular language, Minamide performs string opera-
tions on context-free grammars and is able to validate
HTML pages generated by web applications. Wasser-
mann et al. [9] combine taint propagation with Mi-
namide’s string analysis [8] to detect SQL injections,

and identify several vulnerabilities in real-world web
applications written in the PHP language.

Wassermann et al. [14] use string analysis in test
input generation for Web applications. Their approach
is based on concolic execution [15], where results of
a concrete execution is used to collect constraints on
program execution. These constraints are then used
to generate new test cases. They use an automata
based backward image computation similar to our
backward analysis to propagate constraints. However,
they do not discuss replacement operations which are
crucial for string manipulation, and their approach
targets test generation rather than generating a sound
approximation of all possible inputs that can exploit
a vulnerability. For example, their approach does not
provide a sound approximation in the presence of
loops.

None of the tools mentioned so far address the
vulnerability signature generation problem. There has
been earlier work on vulnerability signature genera-
tion [16], [17], [18]. The techniques discussed in [16]
and [17] require an input that exploits a vulnerability
(i.e., an exploit) in order to generate the vulnerability
signatures. For example, in [16], this is obtained by
running an instrumented version of the program. Our
approach does not need an exploit as input since we
combine forward and backward symbolic analysis. The
approach presented in [18] is a backward analysis
similar to second phase of our analysis. However,
they require loop invariants to be provided by the
user in order to handle loops whereas we use an
automated approach based on widening. Also, they
focus on weakest precondition computation for binary
programs. None of the earlier results on vulnerability
signature generation [16], [17], [18] focus on string
manipulation operations. Instead, they use existing
symbolic execution engines which cannot handle the
string manipulation operations that we focus on in this
paper. In order to analyze vulnerabilities of PHP ap-
plications it is necessary to handle string manipulation
operations faithfully as we do in our work.

The techniques proposed in this paper build on our
earlier results on string analysis reported in [3], [19].
These earlier results only discuss forward symbolic
analysis and do not address vulnerability signature gen-
eration problem. Our key contributions in this current
paper are 1) The backward symbolic analysis based
on backward image computation for string operations
such as concatenation and replacement, 2) A new
approach to vulnerability signature generation problem
that combines symbolic forward and backward analy-
sis, 3) A tool that implements our symbolic analysis
techniques and combines it with a PHP front end.



7. Conclusion

We presented symbolic string analysis techniques for
identifying vulnerabilities and vulnerability signatures.
Our approach is based on automata-based symbolic
forward and backward reachability computations. We
implemented our approach in a tool for automated
analysis of PHP programs. Our tool successfully finds
vulnerabilities in existing web applications and gen-
erates vulnerability signatures identifying how these
vulnerabilities can be eliminated.
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