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Abstract—Dynamic spectrum auction is an effective solution to
manage spectrum across many small networks. As the number
of participants grows, collusion poses a serious threat to auction
performance. Small groups of colluding bidders can make use
of the interference constraints to manipulate auction outcomes,
leading to unfair spectrum distribution and significant loss in
auction revenue. Prior designs, however, are either forced to give
up spatial reuse for collusion-resistance, become computationally
prohibitive, or can only address very limited types of collusion.
In this paper, we present DC2, a systematic auction design that
can effectively discourage collusion and achieve spatial reuse,
even when multiple collusion groups are present. DC2 achieves
this using a novel 3-stage “Divide, Conquer, and Combine”
procedure that integrates an efficient spectrum allocation al-
gorithm with a powerful collusion-resistant mechanism design.
More importantly, DC2 can configure the level of collusion-
resistance and maximize auction revenue for any given level.
Auctioneers can now configure auctions based on their own
preferences and deployment environments. We analytically prove
DC2’s collusion-resistance and its revenue bound, and perform
extensive network simulations to verify DC2’s effectiveness. We
show that it is particularly effective against small-size collusion,
the most commonly observed in practical auctions.

I. INTRODUCTION

In the last few years we have witnessed the flourish of
“small” wireless networks. Individual corporate, campuses and
communities are deploying a variety of small to medium-
size wireless networks in their local neighborhoods. Most of
these networks exploit unlicensed bands to achieve market
availability and rapid growth. Now they are suffering excessive
interference and poor performance due to aggressive deploy-
ment and unprotected spectrum usage.

As small networks continue to grow, a pressing problem
is how to provide them with proper spectrum usage. Dynamic
spectrum auction [1]–[5] offers an attractive solution. It allows
many small players to bid for spectrum by the amount they
actually need, and exploits time and spatial reuse to im-
prove allocation efficiency. In practice, commercial spectrum
trading/auction systems have already started to serve small
network providers in the states such as South Carolina [6].

As many small networks seek to obtain spectrum via
auctions, collusion becomes a serious threat to auction revenue
and efficiency [7]–[9]. Extensive measurements [10], [11] have
shown that in many past auctions including the FCC spectrum
auctions, a small fraction (<5%) of bidders have strategically
formed one or multiple collusion groups and rig their bids
to manipulate auction results, causing lower prices and unfair
resource distribution. Because collusion is legally banned in

Fig. 1. A large-scale dynamic spectrum auction that contains multiple
small-size collusion groups (2–3 players). Because the auction is sealed-bid,
bidders have no knowledge of others’ bids and behaviors unless they collude.
Being rational, one colluding group will only cheat if this improves the total
members’ utilities.

commercial auctions, existing collusion groups were tacit and
small in size (Figure 1), thus easier to form and hard (and
expensive) to detect in large-scale auctions. Similar trends
were observed in other practical deployments including P2P
systems where each collusion group contains 2–4 players [12].
In this paper, we show that in spectrum auctions, small-size
collusion is even more effective than that in conventional
auctions, because colluding bidders can exploit the bidder
interference constraints to rig their bids. These observations
pose an important need for spectrum auctions to resist bidder
collusion, particularly small-size collusion.

While prior works have proposed solutions to tackle collu-
sion in auctions, we show that, when applied to spectrum auc-
tions, they either cause severe interference or lose collusion-
resistance [13]. This is because conventional designs [14], [15]
do not consider any reuse and assume bidders have a homoge-
neous relationship: either all conflict with each other, or do not
conflict at all. In spectrum auctions, the relationship becomes
heterogeneous due to the bidder interference constraints and
the need for spatial reuse [5]. These solutions either lead to
heavy interference, or lose collusion-resistance. On the other
hand, recent work on spectrum auctions focuses on suppress-
ing some forms of collusion [16], but can be attacked easily
by other simple forms. More importantly, this solution requires
an exponential-complexity algorithm to ensure its resistance,
thus cannot operate in large-scale dynamic spectrum auctions.

In this paper, we propose DC2, a new collusion-resistant
and computationally-efficient spectrum auction. Using a ran-
domization technique, DC2 resists collusion by diminishing
the gain of any colluding group unless it becomes large (and
hence hard to form and easy to be detected). Such diminishing
returns leave bidders little or no incentive to collude. Mean-
while, DC2 enables spatial reuse to improve auction revenue
and efficiency. DC2’s novel contribution is to let the auctioneer
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secretely perform a 3-stage “Divide, Conquer, and Combine”
procedure after receiving bids. By judiciously designing its
procedure, DC2 successfully integrates an efficient spectrum
allocation algorithm (in “Divide”) with a novel economic
mechanism (in “Conquer”), enabling spatial reuse and effec-
tively controlling collusion.

DC2 achieves the following key advantages:

• To our best knowledge, DC2 is the first solution to
tackle bidder collusion in large-scale spectrum auctions.
It operates in real-time with polynomial complexity, and
enables spatial reuse to better distribute the spectrum.

• DC2 implements a soft and customizable collusion-
resistance, referred to as the (t, p)-truthfulness. It ensures
that with a probability of p or higher, no colluding group
of size t or less can gain any benefit even if multiple
colluding groups are present.

• A key component of DC2 is to configure the auction
to maximize its revenue while guaranteeing the required
resistance. In particular, we prove that DC2’s revenue is
within a factor of cmaxαl

tCP from the optimum defined
by the underlying spectrum allocation. The revenue scales
gracefully with the resistance level (t, p), and remains
significantly higher than that of the prior solution.

• In designing DC2, we identify a fundamental tradeoff be-
tween collusion-resistance and auction revenue. To resist
collusion, an auction must process bids “with caution.”
In cases where no bidders cheat, this leads to some
loss in the revenue compared to the designs without
collusion-resistance. By adjusting (t, p), DC2 can flexibly
customize the auction based on the auctioneer’s resistance
preference and the amount of the revenue she is willing
to sacrifice for such robustness.

• DC2 takes as input any reusability-driven spectrum allo-
cation algorithm, thus applies to both graph and physical
interference models.

After analytically proving DC2’s collusion-resistance and
revenue bound, we also perform network simulations to ver-
ify DC2’s performance and its dependency on the spectrum
allocation algorithm. Our results lead to several key findings:

• DC2 outperforms existing collusion-resistant solution by
up to 50% in average revenue when resisting small-size
collusion in a large-scale network.

• DC2 is the most effective against small-size collusion,
incurring little cost in revenue. In our experiments, DC2
resist any collusion group no larger than t=2, 4, 8 with
p = 0.8 by sacrificing only 5%, 14%, 21% revenue
compared to the design without collusion-resistance [5].
This applies even when multiple collusion groups exist
as long as each group has t bidders or less.

• DC2 can use any allocation algorithm to form sub-
markets, but favors the partitions producing large sub-
markets. Existing spectrum allocation algorithms perform
similarly in DC2 because they generate similar-sized large
independent-sets and differ only in small or medium-

Fig. 2. A collusion example in VERITAS [5] using a section of a large
network (represented by the conflict graph [21]). (Left) With no collusion, B
and D are winners and the auction revenue is 99× 2 = 198. (Right) When
A and C collude, A and C are the winners, reducing the revenue to 100.

sized sets. Finding the optimal spectrum allocation al-
gorithm in DC2 is an interesting open research.

II. COLLUSION IN SPECTRUM AUCTIONS

Consider the following dynamic spectrum auction proposed
in [5]. An auctioneer runs an auction periodically. Each time
it auctions off K channels to some n(n >> 1) bidders
who submit bids privately. Each bidder requests one channel
and treats the K channels homogeneously. Each bidder holds
a valuation of the channels from either economic model-
ing [17], [18] or network survey. After receiving bids, the
auctioneer determines winners and their spectrum usage based
on the (complex) interference constraints among the bidders.
An important requirement is to enable spatial reuse where
non-conflicting bidders can reuse the same channel. Such
requirement makes dynamic spectrum auctions fundamentally
different from conventional auctions, and imposes significant
design challenges. Additional descriptions on dynamic spec-
trum auctions can be found in [5].

Collusion occurs in an auction when groups of bidders
coordinate their bids to game the system, gaining unfair
advantages and harming others. Multiple collusion groups
might appear in a single auction, but each collusion group is
rational [14]. With no knowledge on other bidders’ bids and
behaviors (because the auctions are sealed-bid), a collusion
group will only rig their bids if this can improve the group
utility. The group utility refers to the sum of each member’s
utility, which is defined as its valuation minus its price paid for
being a winner, otherwise 0. This notion is stronger than the
group strategyproofness [19], [20] which assumes the profit
cannot be transferred within one collusion group.

Small-Size Collusion is the Bottleneck. There have been
several measurement studies and empirical analysis on collu-
sion in past auctions, including spectrum auctions. One key
observation is that individual collusion groups are small but
cause significant damages. For example, an empirical analysis
on four largest FCC spectrum auctions suggests that only a
small fraction (1–2%) of bidders have colluded [10]. In the
well-known PCS spectrum auction [11], the total number of
colluders is no more than 6 out of 153 bidders, yet they
won more than 40% of the spectrum auctioned and paid
significantly less. Finally, such observation also applies to
other non-auction systems. In a commercially deployed P2P
system with 160,000+ participants, the dominant collusion
groups were very small (2–4 players per group), but highly
effective [12].
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Another key observation made by our own analysis is
that small-size collusion is even more effective in dynamic
spectrum auctions. The heterogeneous interference constraints
open up new vulnerabilities to collusion, particularly because
varying one bidder’s bid can create “chain effects” and affect
auction results at many other bidders. Consider an example
in Figure 2 that uses the truthful auction design from [5],
represented by the bidder conflict graph [21]. Assume bidders
compete for one channel, K = 1. When everyone bids
truthfully, B and D are winners, each pays C’s bid (99), and
the revenue is 99×2 = 198. If C colludes with A and bids 101,
then C and A become winners, paying 100 and 0 respectively.
Now A has a payoff of 5 and can compensate C’s overbidding
via side payment of 2. They gain an unfair advantage and cut
the auction revenue to nearly half (from 198 to 100).

This above collusion is effective because of the hetero-
geneous interference constraints: A can win with low price
because its colluder C blocks its competing peer B. In this
way, colluding bidders can utilize this spatial reuse property
to manipulate auction outcomes, although individually they
cannot (since the auction is truthful [5]).

III. WHY EXISTING SOLUTIONS FAIL?

After identifying the characteristics of collusion in spec-
trum auctions, we now examine existing solutions that tackle
collusion and their effectiveness in spectrum auctions. We
categorize them by the types of collusion they address.

A. Solutions That Tackle Some Forms of Collusion

A recent work [16] resists two specific forms of collusion
in spectrum auctions. The authors first convert the problem
to finding the maximal weighted independent set (MWIS) in
the conflict graph weighted by the bids, and then apply the
Nash bargaining solution [22] to determine prices. Relying
on an exponential complexity algorithm, this solution is only
applicable in auctions with a small number of bidders.

In addition, this solution only addresses two specific types
of collusion (loser collusion and winner sublease). We show
that it is highly vulnerable to a simple winner-loser collusion.
Consider an example in Figure 3 where A–C are a segment
of a large bidder network, and K = 1. When everyone bids
truthfully, A and C are winners, paying 100 in total(1.5 and
98.5 respectively). C’s payoff is 0.5. Now if C colludes with
B and lowers its bid to let B win, B only pays 2.1. So B can
split any amount ≥ 0.5 from its surplus to attract C to join.
Yet the auction revenue reduces drastically from 100 to 2.1.

The above example demonstrates the complex behavior of
collusion. Under the complex interference constraints, it is
unrealistic to predict all collusion behaviors. Therefore, it is
desirable to design solutions that can address any form of
collusion in large-scale auction systems.

B. Solutions That Tackle All Forms of Collusion

It has been proven that completely eliminating the impact
of all-size collusion is extremely hard, and the only solution
is a trivial “posted price” mechanism [14]. The auctioneer sets

Fig. 3. A collusion example in an existing solution [16]. (Left) Without
collusion, A and C are winners and the auction revenue is 100. (Right) B
and C collude, making B the winner and reducing the auction revenue to
2.1. B pays C on the side, giving C a higher payoff.

a clearing price independent of the bids and those bidding no
less than the clearing price are auction winners. This solution,
however, leads to unbounded loss in auction revenue.

Others [14], [15] consider the notion of soft collusion-
resistance. They propose to set the price such that when a
subset of t bidders collude, the auction outcome is unlikely
to change [14], or gives colluders limited gain [15]. Existing
solutions in this category, however, were developed for con-
ventional auctions without considering any reusability. They
assume that bidders either all conflict with each other [15],
or do not conflict at all [14]. When applied to spectrum auc-
tions, they either suffer severe interference or lose collusion-
resistance. For example, one simple extension is to first find
a feasible price region that leads to interference-free spectrum
allocation [3], then apply the algorithms in [14], [15] to set
a uniform price. This extension, however, is not collusion-
resistant since bidders can rig the bids to control the feasible
price region and hence the auction outcome. In addition, with
spatial reuse, uniform pricing suffers significant loss in auction
revenue as shown in [3].

In summary, existing solutions on collusion-resistant spec-
trum auctions either cannot address all forms of collusion,
require exponential complexity, or must give up spatial reuse
completely for collusion-resistance. Thus, there is no practical
solution for spectrum auctions that can resist any type of,
especially small-size collusion when a large number of bidders
are present. This motivates us to identify new auction designs.

IV. DC2: DIVIDE, CONQUER, AND COMBINE

We introduce DC2, a new auction design that resists any
form of collusion while enabling spatial reuse. DC2 applies
the concept of soft collusion-resistance [14]– diminishing the
gain of any collusion group by making the auction outcomes
“insensitive” to bid changes of the group.

Putting it more formally, consider n bidders among which π
is one of the colluding groups and has t bidders. In π’s view, if
B is the bids of all n bidders when π does not cheat and B′ is
the bids when π cheats, then B and B′ differ by no more than
t bids. Being rational, π will have little incentive to cheat if
with a probability of p or higher, the auction procedure fDC2

returns the same auction price and result Γ over B and B′:

fDC2(B) = fDC2(B′) = Γ. (1)

Thus to resist all forms of collusion groups each of size t
or less, an auction design needs to ensure that with a high
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probability, any two sets of bids B and B′ which differ in no
more than t bids will lead to the same auction result [14],
[23]. The corresponding soft collusion-resistance is defined as
the (t, p)-truthfulness [14], [23]:

Definition 1: An auction achieves the (t, p)-truthfulness if
with a probability of no less than p, no collusion group of
size t or less can improve its group utility by rigging the bids.
Note that (t = 1, p = 1) refers to the truthfulness achieved
by [5], and (t ≥ 2, p = 1) maps to the hard collusion-
resistance only achievable using the posted price [14]. Thus,
DC2 focuses on (t ≥ 2, p < 1).

While prior works have enforced soft collusion-resistance
in conventional auctions, we have shown that they fail when
applied to spectrum auctions with spatial reuse [13]. DC2

overcome this challenge using the concept of “Divide and
Conquer,” integrating a spectrum allocation with a collusion-
resistant design. In DC2 the auctioneer secretely performs the
following steps after collecting bids:
• “Divide” – The auctioneer applies a spectrum allocation

algorithm to divide the bidders independent of their bids
into several non-overlapping sub-markets such that in
each sub-market no bidders interfere with each other.

• “Conquer” – In each sub-market, the auctioneer applies
a classical collusion-resistant mechanism to identify po-
tential winners, and treats them together as a super bidder
representing the current sub-market.

• “Combine” – Given the available channels, the auction-
eer selects winning sub-markets, in which the potential
winners become final winners. This stage is essential to
enforce spectrum reuse and maintain collusion-resistance.

The key challenge facing DC2 is to design the integration judi-
ciously to ensure collusion-resistance, because now colluders
can manipulate their bids to affect not only the auction result
in each sub-market, but also the sub-markets they are assigned
to. In the following we discuss the detailed DC2 design.

A. Divide: Forming Sub-markets

DC2 first divides bidders independent of their bids into sev-
eral non-overlapping sub-markets based on their interference
conditions. Bidders in each sub-market do not conflict with
each other and can reuse the same channel. This is done by
using any spectrum allocation algorithm to virtually assign
one channel per bidder without limiting the number of chan-
nels used. The channel allocation must be bid-independent,
otherwise bidders can rig bids to affect the set of sub-
markets formed. Assume V virtual channels are used to satisfy
every bidder. Then those allocated with the same channel are
grouped into one sub-market, hence forming V sub-markets:
Φ1, ..., Φm, ..., ΦV . Table 1 summarizes the procedure.

Note that DC2 can accommodate various interference mod-
els since it can use any spectrum allocation algorithms such
as [4], [24], [25] to assign one virtual channel per bidder.

B. Conquer: Virtual Clearing

Now each sub-market is free of interference constraints,
DC2 diminishes the impact of a colluding group by applying a

Table 1. Forming Sub-Markets in DC2

STEP 1 Apply a spectrum allocation algorithm to assign each bidder
with one virtual channel, independent of the bids.

STEP 2 Group bidders with the same channel into a sub-market Φm.
STEP 3 Return sub-markets: Φ1, ..., Φm, ..., ΦV .

virtual clearing process in each sub-market. The methodology
in this stage is to virtually run an auction in each sub-market to
determine its winners and prices, and then represent each sub-
market by a super bidder who will compete in the “combine”
stage. In addition to making each virtual auction collusion-
resistant, DC2 judiciously designs the bid for each super
bidder to ensure that it is insensitive to changes of collusive
bids. After a proper integration in the “combine” stage, this
translates into the collusion-resistance in the entire auction.

With bidders in each sub-market free of interference con-
straint, enforcing collusion-resistance in each sub-market is
much simpler. Well-developed solutions already exist. In this
paper, we use the t-Truthful with Probability (tCP) solution
in [14]. We will explain tCP in detail in Section V. By applying
tCP in Φm, DC2 sets a virtual price Γm which is insensitive to
collusive bids, and marks N(Γm) potential winners as those
bidding no less than Γm. Treating Φm as a super-bidder, DC2

computes an estimated revenue R̂(Γm) as its bid:

R̂(Γm) = Γm × gc(N(Γm)), (2)

where gc(·) is a random rounding function that makes R̂(Γm)
insensitive to N(Γm) which could be affected by collusive
bids. This procedure is the key to ensure collusion-resistance
of the integration. Table 2 summarizes the actions in this stage.

Table 2. Virtual Clearing in Sub-Market Φm

STEP 4 1) Apply tCP in Φm to set the virtual price Γm;
2) Compute an estimated revenue R̂(Γm).

STEP 5 1) Identify the potential winners WΦm as those with bids
no less than Γm;
2) Represent WΦm as a super bidder with bid R̂(Γm).

STEP 6 Return R̂(Γm), WΦm , and Γm.

C. Combine: Final Clearing

In this stage, the auctioneer selects the final winners by
examining the V super bidders. Given K available channels
for auction, the auctioneer will choose min(K, V ) super
bidders (sub-markets) with the highest bids as winners and
assign one channel per winning sub-market. Each potential
winner in each winning sub-market becomes the final auction
winner, and is charged by the virtual price in its sub-market
determined in the “conquer” stage. In this way, winners in the
same sub-market are charged equally, but those from different
winning sub-markets could be charged differently. Note that
we cannot recycle the losers of one winning sub-market to
another, because it breaks the requirement of bid-independent
sub-market formation that is essential to ensure collusion-
resistance. We summarize the actions in Table 3.

DC2 Optimization. A key component of DC2 is to configure
its auction procedure to maximize the auction revenue while
guaranteeing the required level of collusion-resistance defined
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Table 3. Final Clearing in DC2

STEP 7 Choose min(K, V ) highest super bidders (sub-markets) as
winners; assign one channel to each.

STEP 8 In each winning sub-market Φm, its virtual winners WΦm

are real winners; each gets a channel and is charged by Γm.

by the (t, p)-truthfulness. In the following two sections, we
first analytically prove DC2’s collusion-resistance, and then
describe DC2’s detailed configuration to maximize auction
revenue for a given (t, p). We also explore their dependency
on the configuration of sub-markets.

V. DC2’S COLLUSION RESISTANCE ANALYSIS

This section analyzes DC2’s collusion-resistance, and its
dependency on sub-market sizes. As discussed in Section IV,
we measure the level of collusion-resistance by the (t, p)-
truthfulness. Our main result is:

Theorem 1: DC2 achieves the (t, p)-truthfulness with p =
1 + logcmin

(1 − λt/(lmin − t)) where lmin is the number of
winners of the smallest sub-market that uses tCP for virtual
clearing, cmin and λ are auction parameters (defined in
Section V-B). When t/lmin << 1, we have p = 1−O(t/lmin).

DC2 achieves this resistance by integrating a reusability-
driven spectrum allocation algorithm with a collusion-resistant
tCP mechanism. While tCP only applies to auctions with a
single sub-market, DC2 judiciously configures the auction to
achieve collusion-resistance in the presence of multiple sub-
markets. Next we first provide some background on tCP, and
then present the proof of Theorem 1.

A. Preliminary

As background, we briefly describe tCP and show that for
each sub-market it achieves the (t, p)-truthfulness. Consider
an auction that contains just one sub-market Φm with a bid
set Bm where bidders do not conflict with each other. The
auctioneer performs the following procedure to choose a price
Γm and sets the bidders who bid no less than Γm as winners:
• Choose a parameter α > 1;
• Define G = {αi|i ∈ Z} as the set of candidate prices;
• For each price candidate αi ∈ G, let N(αi) be the

number of bids no less than αi in Bm;
• Use a consensus estimation function gc(·) parameterized

by c to randomly round N(αi); gc(·) ensures that ∀x > 0
and ∀y ∈ [x − t, x + t], with probability (1 − logc

x+t
x−t ),

gc(y) only depends on x and t, but not y [26];
• Compute Γm = arg maxαi∈G αi · gc(N(αi)).

The random rounding gc(·) makes price selection insensitive
to bid changes, ensuring that with high probability, Γm will
not be affected by no more than t bids. As proved in [14],
tCP achieves the collusion-resistance of the (t, p)-truthfulness,
where p is lower bounded as Lemma 1.

Lemma 1: A tCP auction with parameters (c, α) is (t, p)-
truthful with p = 1 + logc(1− λt

l−t ), where λ = 2cα
α−1 , and l is

the number of winners when there is no collusion.
This bound indicates that tCP favors cases with large number
of winners l >> t. In these cases, we have p = 1−O(t/l).

B. Proof of Theorem 1

We consider the scenario where the auction contains mul-
tiple sub-markets, since Lemma 1 directly applies when there
is a single sub-market.

Proof: In “Divide,” bidders cannot rig bids to change
the sub-market formation because the allocation is bid-
independent. This ensures the first level of collusion-
resistance.

Next in “Conquer”, assume there are V sub-markets where
each Φm uses tCP with (cm, αm) for virtual clearing and
has lm winners (m = 1, ..., V ). Let cmin = min{c1, ..., cV },
cmax = max{c1, ..., cV }, αmin = min{α1, ..., αV }, and
lmin = min{l1, ..., lV }. Consider any collusion group of size
≤ t. Let tm be the number of its members assigned to sub-
market Φm,

∑V
m=1 tm ≤ t. We introduce the notion of t-

truthful: an auction is t-truthful if it can diminish the gain of
all forms of collusion groups of size t or less. Thus an (t, p)-
truthful auction means that it is t-truthful with a probability of
p or higher. Let PrtT

m be the probability that Φm is tm-truthful.
From Lemma 1 and let λm = 2cmαm

αm−1 , we have:

PrtT
m ≥ 1 + logcm

(1− λmtm
lm − tm

), (3)

P̃ r
tT

m = 1− PrtT
m ≤ − logcm

(1− λm
tm

lm − tm
). (4)

By DC2’s “Combine”, if each sub-market Φm is tm-truthful,
the overall auction is t-truthful because collusive bids cannot
affect any Φm’s bid R̂(Γm) and thus DC2’s auction result. Let
PrtT be the probability that DC2 is t−truthful, we have

PrtT ≥
V∏

m=1

PrtT
m =

V∏
m=1

(1− P̃ r
tT

m ) ≥ 1−
V∑

m=1

P̃ r
tT

m

(from (4)) ≥ 1 +
V∑

m=1

logcm
(1− λm

tm
lm − tm

). (5)

Since logcm
(1 − λm

tm

lm−tm
) < 0, its value decreases as cm

decreases. We have:

PrtT ≥ 1 +
V∑

m=1

logcmin(1− λm
tm

lm − tm
)

= 1 + logcmin(
V∏

m=1

(1− λm
tm

lm − tm
))

≥ 1 + logcmin(1−
V∑

m=1

λm
tm

lm − tm
). (6)

Let λ = 2cmaxαmin

αmin−1 . By the definitions of cmax and αmin,
we have λm = 2cmαm

αm−1 ≤ λ. Using the property of function
log(1− x y

z−y ), we reduce (6) into

PrtT ≥ 1 + logcmin(1− λ

∑V
m=1 tm

lmin − t
)

≥ 1 + logcmin(1− λ
t

lmin − t
). (7)
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By Definition 1, we see that the auction is (t, p)-truthful with
p = 1 + logcmin(1 − λt/(lmin − t)). When t/lmin is very
small, this bound is approximately p = 1− O(t/lmin).

C. Impact of Sub-Market Configuration

From Theorem 1 we see that lmin is critical to DC2’s
collusion-resistance. Given (t, p), we derive the minimum
lmin required to perform tCP on all the sub-markets. Since
λ = 2cmaxαmin

αmin−1 , by Theorem 1 we can derive

αmin =
(1− (cmin)p−1)(lmin − t)

(1− (cmin)p−1)(lmin − t)− 2cmaxt
. (8)

Running tCP requires αmin > 1 (required by the consensus
estimation function [26]), which translates into

lmin >
2cmaxt

1− (cmin)p−1
+ t , ltCP . (9)

In other words, tCP is applicable to all the sub-markets only
when there are enough winners in each, which also means that
all the sub-markets need to be large enough. This condition
ltCP elevates as t, p increase.

The sub-market configuration, on the other hand, depends
on the bidder interference constraints and the spectrum al-
location algorithm. In many cases, there will be some small
sub-markets that do not satisfy the ltcp condition. In this case,
DC2 applies tCP to only large enough sub-markets, and the
posted price to others. Because the posted price mechanism
achieves hard collusion-resistance, DC2’s collusion-resistance
(t, p) only depends on the sub-markets that run tCP.

From Theorem 1 we also see that the choice of lmin

and the set of sub-markets performing tCP will affect the
configuration of λ, cmin and thus p. As we will show next, the
auction revenue also depends on these parameters. Therefore,
an important challenge in DC2 is to configure the auction
carefully to achieve a given (t, p)-truthfulness and at the same
time maximize the auction revenue.

VI. (t, p)-BASED REVENUE MAXIMIZATION

In this section, we discuss how to configure DC2 to
maximize the auction revenue while achieving a given (t, p)
requirement. After forming a set of sub-markets via a spec-
trum allocation algorithm, DC2 needs to determine the set
of sub-markets that will run tCP as virtual clearing, and
their configurations cm, αm. Note that to ensure collusion-
resistance, the sub-market formation and configuration must be
independent of the bids. Overall, our proposed configuration
has the following analytical guarantee on revenue:

Theorem 2: While satisfying the (t, p)-truthfulness, DC2

with V sub-markets running tCP achieves an auction revenue
no less than ROPT /(cmaxαl

tCP ), where ROPT is the sum of
the optimal revenue obtained by treating each of the V sub-
markets separately, and cmax, αl

tCP (defined by (12), (13)) are
auction parameters required to achieve the (t, p)-truthfulness.

In this following, we first explain the factors that affect
DC2’s revenue, the challenges and our solutions. We then
prove Theorem 2 and examine DC2’s overall complexity.

A. Factors that Affect the Revenue

We show that the auction revenue depends on two factors,
from which we can derive the relationship among lmin, cmax,
αl

tCP for a given (t, p).

(1) Each sub-market’s virtual clearing mechanism. Each
sub-market would prefer tCP over posted-price as its virtual
clearing mechanism. This is because in the context of a single
sub-market, tCP with (cm, αm) can guarantee that the revenue
is within a distance of cmαm from the optimal [26], while
posted-price provides no guarantee. However, as shown in
Section V-C, only large sub-markets can use tCP in order to
satisfy the (t, p) requirement. The larger the t and p, the fewer
number of sub-markets can run tCP, and the less the revenue.

(2) The choice of (cm, αm) in a sub-market that runs
tCP. Ideally, cm and αm should be set as small as possible
to maximize the revenue produced from tCP. If they are set
improperly, the expected revenue could be lower than that of
running the posted price. In particular, as we will show in
Section VI-C, αm must be small enough so that the average
revenue of tCP is higher than that of posted-price. So when
considering revenue, a sub-market Φm runs tCP if,

αm ≤ αu
tCP . (10)

On the other hand, cm and αm must be large enough to achieve
the required collusion-resistance. From [26], we have

cm = argmaxx[(
lm − t

lm + t
− 1

x
)/ ln(x)], (11)

cmax = max
m,lm≥lmin

cm, cmin = min
m,lm≥lmin

cm. (12)

From (8) in Section V-C, we have

αm ≥ αmin =
(1− (cmin)p−1)(lmin − t)

(1− (cmin)p−1)(lmin − t)− 2cmaxt

, αl
tCP . (13)

B. Challenges in Configuring Revenue-Maximizing DC2

The above analysis shows that having multiple sub-markets
brings significant challenges in DC2. First, the configuration
parameters are inter-dependent. From the above, a sub-market
Φm should run tCP if

lm ≥ lmin ≥ ltCP ,

αl
tCP ≤ αm ≤ αu

tCP .

We can set αm = αl
tCP to maximize auction revenue. The

choice of ltCP and αl
tCP , however, depends on which and

how many sub-markets choose to run tCP, i.e. lmin. Such
inter-dependency creates a dilemma in choosing each sub-
market’s virtual clearing mechanism. Intuitively, the system
should let as many sub-markets run tCP as possible. But as
more smaller sub-markets start to use tCP, αl

tCP increases
and so does each sub-market’s αm = αl

tCP . Higher αm

maps to more degradation in each sub-market’s revenue and
thus the overall revenue. Therefore, we need a mechanism to
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judiciously choose the virtual clearing mechanism for each
sub-market, which we will describe in SectionVI-C.

Second, such inter-dependency also creates a dilemma in
forming sub-markets. Creating balanced sub-market partition
will allow more sub-markets to apply tCP but each sub-market
has a larger αm and hence less revenue. On the other hand,
imbalanced partition could prevent some small sub-markets
from applying tCP and also lead to revenue loss. By examining
several allocation algorithms, we will study the impact of sub-
market formation in Section VII-C.

C. Revenue-Maximizing DC2

We now describe the revenue-maximizing DC2design, for a
given (t, p) and a set of sub-markets formed in the “Divide”
stage. From the above descriptions, we see that the configura-
tion reduces to judiciously setting parameters (ltCP , αl

tCP ),
such that only sub-markets with ≥ ltCP winners will run
tCP with operating parameter αl

tCP and others run posted
price. DC2 chooses the best configuration that achieves (t, p)-
truthfulness and maximizes the revenue.

To maintain collusion-resistance, sub-market configuration
must be independent of the bids. Thus when evaluating each
candidate configuration, the system cannot use the actual
bids to compute the auction revenue. Instead, DC2 uses a
statistical method to estimate the revenue assuming the bids
follow a predefined random distribution. For example, with
no knowledge on the actual bid distribution, DC2 can use
the uniform distribution. In this case, we can derive the
expected revenue of a sub-market with x bidders when it runs
tCP (EtCP

α (x) = α−1(1 − α−1)x) and when it runs posted
price (EP (x) = x/6). We also show that αu

tCP = (3 +
√

3).
We list the detailed derivations in Appendix and the overall
procedure for setting (ltCP , αl

tCP ) in Algorithm 1.
It should be noted that in its basic form, DC2 does not

require any knowledge on the bid distribution. When such in-
formation is available, DC2 can use this knowledge to improve
the revenue estimation. In Section VII, we will evaluate the
performance of DC2 under different bid distributions.

Complexity Analysis. DC2’s complexity comes from the
3-stage procedure described in Section IV, and the above
configuration Algorithm 1. Consider n bidders that form V
sub-markets and bid for K channels, and assume V ≥ K.
In the main procedure, the complexity of Divide depends on
the spectrum allocation algorithm; the complexity of Conquer
is from rounding the bids hence is linear to the number of
bids O(n); and the Combine stage takes O(V log(V )) time
to sort super bidders. In the configuration algorithm, it takes
O(V log(V )) to sort sub-markets’ sizes, and O(V ) to find the
statistically optimal parameter configuration. Clearly V ≤ n,
hence the overall complexity of DC2 is O(n log(n)), plus the
complexity of the spectrum allocation algorithm.

D. Analysis of Revenue Bound

We now present the proof of Theorem 2.
Proof: Let c1, ..., cV be the auction parameter for each

sub-market defined in (11). We can then compute cmin, cmax

Algorithm 1 DC2-Configuration(t, p, N, Y )
Y = min(V, K) given V sub-markets and K channels;
N : N1 ≥ N2... ≥ NY , Y largest sub-markets each with Ni(i ≤ Y ) bidders.
1: for m = 1 to Y do
2: lmin ← lm = dNm

2
e

3: cmax ← cm by (11)
4: cmin ← c1
5: if no enough estimated winners by (9) then
6: E(m) =

∑Y
i=1 EP (Ni)

7: cm = 0
8: else
9: a(m) ← αmin by (13)

10: if αmin ≥ αu
tCP then

11: E(m) =
∑Y

i=1 EP (Ni)
12: cm = 0
13: else
14: E(m) =

∑m
i=1 EtCP

αmin (Ni) +
∑Y

i=m+1 EP (Ni)
15: end if
16: end if
17: end for
18: m∗ =argmaxmE(m)
19: if cm∗ > 0 then
20: Return (ltCP , αl

tCP ) = (lm∗ , a(m∗))
21: else
22: Return (0, 0)
23: end if

and αl
tCP based on (t, p). In each sub-market Φm, let Rm

denote the revenue achieved by DC2, and ROPT
m be the

optimal revenue that can be achieved by a single-price auction.
Since αm = αl

tCP (Section VI-B), by tCP’s property [14], we
have for each m ≤ V ,

Rm ≥ ROPT
m /(cmαl

tCP ) ≥ ROPT
m /(cmaxαl

tCP ).

The overall DC2’s revenue R is

R =
V∑

m=1

Rm ≥
V∑

m=1

ROPT
m /(cmaxαl

tCP ) = ROPT /cmaxαl
tCP ,

where ROPT =
∑V

m=1 ROPT
m is the sum of the optimal

revenue that can be achieved by applying a single price
mechanism in each sub-market.

VII. EVALUATION

In this section, we perform network simulations to evaluate
DC2. We identify the tradeoff between collusion-resistance
and auction revenue by comparing DC2 to existing solutions.
We then evaluate DC2 under inaccurate estimation of bid
distribution. Finally, we examine the impact of sub-market
partition using various spectrum allocation algorithms.

Using large-scale auction systems, we compare the follow-
ing three solutions with different levels of collusion-resistance:
• Posted Price [14]: the only solution achieving hard

resilience to collusion (t = n, p = 1). It picks a price
randomly independent of bids;

• DC2: our proposed solution, providing a soft (t, p)
collusion-resistance, where t is the maximal per-group
size of all collusion groups;

• VERITAS [5]: a truthful spectrum auction design that
cannot address collusion.
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Fig. 4. Tradeoff between resilience and revenue.
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Fig. 5. Evaluating DC2 under various bid distri-
butions by comparing to posted price when each
collusion group ≤ 2, 4, 8, p = 0.8.
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Fig. 6. The performance of DC2 when apply-
ing four different spectrum allocation algorithms.
(t, p) = (4, 0.8), where t is the maximal size of
one collusion group.

Focusing on large-scale auctions, we did not examine [16] be-
cause it only applies to small networks and resists some special
forms of collusion. We did not compare soft collusion-resistant
solutions in [14], [15] since their allocations are not conflict-
free and simple extensions lose collusion-resistance [13].

We simulate a large auction system and deploy 4000 bidders
randomly in a 1 × 1 area. We model the bidder conflict
constraints using a distance-based criterion (two bidders within
a distance of 0.02 conflict with each other). By default, the
bids are randomly distributed in (0, 1], the average conflict
degree is roughly 5. We apply a well-known greedy allocation
algorithm [24] to form sub-markets. For example, in one
topology we obtain 9 sub-markets of sizes 1308, 1025, 737,
479, 277, 114, 40, 15, and 5.

Performance metrics. Both posted price and DC2 are ran-
domized solutions while VERITAS is a deterministic solution.
We compare them in terms of the average revenue (over 5000
bid generations) and the revenue’s cumulative distribution
function. Moreover, we compare these solutions assuming that
everyone bids truthfully and thus the bids are the same for
these solutions. In terms of revenue, this is the worst case for
DC2. The difference between DC2 and VERITAS represents
the maximum cost in revenue required to achieve collusion-
resistance, while the difference between DC2 and posted price
represents the cost saving by using soft collusion-resistance
and focusing on small-size colluding groups.

A. Tradeoff between Robustness and Revenue

Figure 4(a) compares the three solutions in terms of the
average revenue, where the revenue of DC2 depends on the
required (t, p). Compared to VERITAS, DC2 sacrifices 5%,
14% and 21% revenue to achieve collusion-resistance with

t ≤ 2, 4, 8, and p = 0.8. This demonstrates DC2’s effec-
tiveness in resisting small-size collusion groups. Compared
to posted price, DC2 improves the revenue by as much as
50% even with p = 0.8. As the required collusion-resistance
(t, p) gets stronger, the number of sub-markets running tCP
reduces and the revenue decreases. Eventually, DC2 falls back
to posted price. Overall, DC2 introduces collusion-resistance
to spectrum auctions at very little overhead, and offers an
important flexibility of configuring the auction to exploit the
tradeoff between revenue and collusion-resistance.

To further examine the tradeoff, we show in Figure 4(b) the
normalized revenue of DC2 over VERITAS for various (t, p).
As expected, DC2’s revenue decreases as (t, p) increases. We
see that for t ≤ 5, the revenue degradation is significantly
lower. This again verifies that DC2 is effective over small-size
collusion group, the dominant type in practical auctions.

B. Robustness to Inaccurate Estimation of Bid Distribution

DC2 runs without requiring accurate information on bid
distribution. To examine this robustness, we use a uniform
bid distribution function in DC2’s configuration, and generate
actual bids by uniform and other non-uniform distributions.
Figure 5(a)-(b) compare DC2(at different(t, p)) to posted price
under the same set of bids following the same uniform bid
distribution and a Beta distribution (α = 5, β = 5) as an
example. In both cases, we see that DC2 maintains a much
lower variance in its auction revenue. This is because without
considering bids, posted price is more likely to use a price
either too high or too low, making the revenue oscillate. In
contrast, DC2 assigns a higher probability to the prices close
to the optimal, achieving more stable and higher revenue. This
holds even for non-uniform bid distribution. Because as more
bids become similar, the estimated revenue of each candidate
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price in tCP differs more. Thus the optimal price is chosen
with a higher probability. This demonstrates DC2’s robustness
and applicability in practice.

C. Impact of Sub-Market Formation

To understand how the sizes of sub-markets impact the
auction revenue and collusion-resistance, we examine four
representative spectrum allocation algorithms in DC2:
• Max-IS [25] which assigns channels by finding the

maximal independent set of the conflict graph;
• Greedy-Min [24] which sequentially assigns channel to

the user with the minimal degree in the remaining updated
conflict graph. [5] applies it for spectrum allocation;

• Greedy-Max which is similar to Greedy-Min except each
time choosing the user with the maximal degree in the
remaining updated conflict graph;

• RAND which picks a user randomly to allocate a channel.
Note that these spectrum allocation algorithms are not de-
signed to optimize DC2. In principle we have Greedy-MAX
< RAND < Greedy-Min ≤ Max-IS in terms of spectrum
efficiency. Figure 6(a)-(b) compare these solutions in DC2

by their spectrum utilizations and revenues as the functions
of the number of channels. We see that they achieve similar
performance. This is because they produce similar-sized large
sub-markets, and differ mostly in the forms of small, medium-
sized sub-markets. Because DC2’s revenue depends heavily
on the sizes of large sub-markets that run tCP, the difference
among these algorithms is somewhat diminished.

To further understand the impact of sub-market formation,
we now assume that bidders can be partitioned arbitrarily. Fig-
ure 7 compares three randomly generated partitions that limit
the largest sub-market size to 3500, 2000, 1500 respectively,
to the ideal case where all 4000 bidders are in one sub-market.
Aside from the ideal case, we see that DC2 favors the most
imbalanced partition (3500 bidders in the largest sub-market),
particularly when the number of channels is small. This is
because the imbalanced partition leads to larger sub-markets
with revenue closer to the optimal one, which compensates
having more small sub-markets that run posted price and have
no guaranteed revenue. Note that the conventional spectrum
allocation algorithms are designed in this manner.

VIII. RELATED WORK

Collusion-resistant design has been widely studied in con-
ventional auctions as well as spectrum auctions. As we have
discussed in Section II, [14], [15] have proposed solutions for

conventional auctions where bidders conflict with everyone
else or do not conflict at all. DC2 applies the tCP solution [14],
but focuses on designing a collusion-resistant solution for dy-
namic spectrum auctions with general interference constraints.
DC2 also extends tCP to consider combining posted-price
and further improve auction revenue. The work in [27] also
proposes a pricing game assuming everyone conflicts with
each other and hence no spectrum reuse.

Collusion-resistance has been examined in spectrum auc-
tions with spectrum reuse by assuming the specific collusion
behaviors [16]. However, in practice the colluding behaviors
are highly complex and hard to predict, thus our goal is to
provide a general solution that can address any type of collu-
sion. Also, while [16] requires solving NP-hard optimization
problems, DC2 can work with any spectrum allocation solution
including polynomial-time ones [4], [24], [25].

IX. CONCLUSION AND FUTURE WORK

We propose DC2, a new spectrum auction design to combat
collusion. Using the concept of “Divide and Conquer,” DC2

decouples the problem of spectrum allocation from that of
economic mechanism design, achieving spectrum reuse while
maintaining collusion-resistance. DC2 implements a soft form
of collusion-resistance, enabling the auctioneer to flexibly
configure its resilience level and achieve a much better tradeoff
between the resilience and the cost in auction revenue.

To our best knowledge, DC2 is the first to address any form
of collusion in spectrum auctions and enable spatial reuse.
DC2 can be extended in several directions. (1) We can consider
a different form of soft collusion-resistance by bounding the
average collusion gain, which requires a mechanism design
different from tCP. (2) Collusion will have more profound
impact if bidders can request multiple channels. Addressing
collusion in this context requires a stronger rule. (3) DC2 can
use any spectrum allocation algorithm. While the most well-
known algorithms perform similarly, it is desirable to find the
best allocation algorithm in DC2 that maximizes the revenue.

APPENDIX: DERIVING EP (·), EtCP
α (·), AND αu

tCP

Assume there are n bidders in the sub-market. Let F (x) be
the cumulative distribution of bids in (0, 1]. In tCP, because
the expectation of gc(n) is (n/

√
c) [26], the expectation of

the estimated revenue R̂(αi) at price αi is:

E(R̂(αi)) = αi(1− F (αi))
n√
c

(14)

We estimate the final price Γ∗(α) as the one maximizing
E(R̂(αi)), so the expectation of the actual revenue of tCP
is

EtCP
α (n) = Γ∗(α)(1− F (Γ∗(α)))n (15)

The expected revenue of posted-price EP is:

EP (n) = n ·
∫ 1

0

γ(1− F (γ))dγ. (16)

Thus we can estimate αu
tCP by setting EP (n) ≥ EtCP

α (n).
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In the case of uniform bid distribution, F (x) = x. So for
α > 2, Γ∗(α) = α−1. Then EtCP

α (n) = α−1(1 − α−1)n,
EP (n) = n · ∫ 1

0
γ(1 − γ)dγ = n/6. By solving EP (n) ≥

EtCP
α (n):

n

6
≥ α−1(1− α−1)n (17)

we have α ≥ (3 +
√

3), αu
tCP = (3 +

√
3) ≈ 5.
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