
Generalizing PIR for Practical Private Retrieval of Public Data

Shiyuan Wang, Divyakant Agrawal, and Amr El Abbadi

Department of Computer Science, UC Santa Barbara
{sywang, agrawal, amr}@cs.ucsb.edu

Abstract. Private retrieval of public data is useful when a client wants to query a public data
service without revealing the specific query data to the server. Computational Private Informa-
tion Retrieval (cPIR) is able to achieve complete privacy for a client, but is deemed impractical
since it involves expensive computation on all the data on the server. Besides, it is inflexible if
the server wants to charge the client based on the service data that is exposed. k-Anonymity,
on the other hand, is flexible and cheap for anonymizing the querying process, but is vulnera-
ble to privacy and security threats. In this paper, we propose a practical and flexible approach
for the private retrieval of public data called Bounding-Box PIR (bbPIR). Using bbPIR, a client
specifies both privacy requirement and service charge budget. The server satisfies the client’s
requirements, and at the same time achieves overall good performance in terms of computation
and communication costs. bbPIR generalizes cPIR and k-Anonymity in that the bounding box
can include as much as all the data on the server or as little as just k data items. The effec-
tiveness of bbPIR compared to cPIR and k-Anonymity is verified using extensive experimental
evaluation.

1 Introduction

We consider a special query problem called private retrieval of public data, in which a client
retrieves data from a public server by providing its private data as the filtering condition,
while not revealing the exact values of the private data in the query. A typical example is
privacy-preserving location based services [17, 8], in which the private data is a single geo-
graphic location point, and the public data contains all possible points of interests within its
neighborhood. A more general and promising use is in personalized search and recommen-
dation services through big internet information service providers such as Google, Yahoo,
and Microsoft. Users need these public services in their daily lives, but they are concerned
that their personal information might be disclosed or compromised through analysis or in-
ferences, even by the server. For example, a researcher with a potentially new idea does not
want to reveal her idea to Google when she is searching for “prior art”.

Currently, query privacy is not properly provided by service providers, mainly because
there are no strong business incentives for the service providers to pay for the potentially
expensive costs brought by enhancing the client privacy. Therefore, we consider a service
model, in which the server can charge the client based on the size of the public data exposed
to the client as a result of the private retrieval. The size of the exposed data depends on the
private retrieval protocol for privacy purposes and is generally larger than the size of the
answer to the query.

To enable practical query privacy in the service model, we have the following desiderata
for a private retrieval solution:

1. Practical. The solution should try to minimize the communication overhead between a
client and the server and the computation overhead on the server and clients. Given that
queries may be issued from client devices with limited capabilities, the solution should
not impose sophisticated requirements on the client side.

2. Flexible privacy and reasonable charge. A client can specify the required degree of pri-
vacy and the desired charge limit. The server can charge the client per query according
to the private retrieval protocol which they agree on. The solution should make sure that
the server satisfies a client’s privacy specification and does not overcharge.

The two closest studies which could be adapted for developing a possible solution to
this problem are k-Anonymity [21] and Computational Private Information Retrieval (cPIR)
[18]. k-Anonymity has been applied in privacy-preserving location based services [17],
where the location point of a user is blurred into a cloaked region consisting of at least
k near by user points and the server returns the nearest points of interests to the cloaked
region. k serves as a configurable degree of privacy. Similarly in the more general setting of
private retrieval, the original private query is injected into some random data that is close to
the private data in the query, such that a private data item cannot be identified from at least
k data items. Then the server returns all the public data that matches the anonymized private
data, which is exposed to the client and thus chargeable. However, a potential security threat
with k-Anonymity is that both the client query and the server answer, although anonymized
for protecting the client’s privacy, are in plain texts that can be seen by a third party. The
privacy of k-Anonymity for numeric data has also been questioned in a number of proposals
[23, 13, 14] for potential proximity breach: The real private data and the blurred data could
be so close that the server can conclude with probability 1/k that the private data is in a
narrow range.

Computational Private Information Retrieval (cPIR) [11] retrieves a bit from a public bit
string on a server without revealing to the server the position of the desired bit under some
intractability assumption. To achieve the most balanced performance for both communi-
cation and computation costs, cPIR protocol requires the public data to be organized as a
matrix. It achieves computationally complete privacy by incurring expensive computations
over all public data on the server, and keeps the data communication secure by transmitting
random information hiding vectors. The exposed, chargeable data is only a column of the
public data matrix. However, because of its expensive computation costs on the server, even
the cPIR technique with the least expensive operation, modular multiplication [11], is criti-
cized as up to two orders of magnitude less efficient than simply transferring the entire data
from the server to the client [19].

To achieve the above mentioned desiderata and seek a trade-off between the cost of re-
trieval and the degree of privacy, we propose a generalized private retrieval approach called
Bounding-Box PIR (bbPIR) that unifies both k-Anonymity and cPIR. The public service
data is organized as a matrix as in cPIR. A client anonymizes her private query data in a
matrix called bounding box, whose range corresponds to a sub matrix of the public data
matrix. The size of the bounding box is decided by the client’s privacy requirement and de-
sired charge limit. The area of the bounding box determines the privacy that the client can
achieve, the larger the area, the higher the privacy obtained, but with higher computation
and communication cost, and vice versa.

Compared to k-Anonymity, bbPIR is secure in data communication between a client and
the server, because it transfers the information hidden in a bounding box instead of plain
text data. Moreover, bbPIR does not suffer from proximity breach as much as k-Anonymity,
because the bounding box not only includes item values that are close to the query item, but
also includes item values that are not close to the query item. Compared to cPIR, bbPIR is
more practical for lowering the computation costs. At one extreme, bbPIR degenerates into
k-Anonymity if the range of the bounding box is a single column on the public data matrix.
At the other extreme, bbPIR becomes cPIR if the range of the bounding box is the entire
matrix.

The rest of the paper is organized as follows. Section 2 reviews the related work. Section
3 briefly explains cPIR. Section 4 describes our data model. Section 5 presents the proposed
bbPIR approach. Section 6 experimentally evaluates bbPIR. Section 7 concludes the paper.

2 Related Work

Our work on private retrieval of public data is inspired by the research on Private Informa-
tion Retrieval, k-Anonymity and privacy-preserving query processing.

In general, Private Information Retrieval (PIR) models private retrieval of public data as
a theoretical problem as follows: Given a database which stores a binary string x = x1...xn

of length n, a client wants to retrieve xi privately such that the database does not learn i.
Chor et al. [6] first introduced the PIR problem and gave solutions on two and more database
servers. Since in practice a database server is often restricted to perform only polynomial-
time computations (e.g. as assumed in cryptographic applications [4]), Kushilevitz and Os-
trovsky proposed a single database, computational PIR solution [11], which we refer to
as cPIR in the paper. Follow-up single database computational PIR proposals improve the
communication overhead, as surveyed in [18], but they use even more expensive operations
than modular multiplications as pointed out by Sion and Carbunar [19], thus are not feasible
for practical applications. Williams and Sion [22] attempt to make cPIR practical by using
oblivious RAM. However, their approach is designed for the problem settings where client
data is outsourced to the server, thus is not applicable in our context.

k-Anonymity is a widely adopted privacy policy. It generalizes or suppresses the values
of data records such that each record is indistinguishable among at least k records with
close values in the released private data [21]. In some contexts, the basic principle of k-
Anonymity is not sufficient to protect data privacy, for example in a group of data with little
diversity or high similarity. Therefore, a number of proposals have proposed new privacy
principles to enhance the privacy of k-Anonymity [16, 15, 23, 13, 14]. However, they are
not easy to apply in private retrieval of public data applications. Besides, they share the
same security threat as k-Anonymity: all the data communication contents can be seen by
a third party. Finally, the potential charge due to the k extra revealed data items from the
server has never been quantified before. Our framework explicitly addresses this extra cost.

A related problem to private retrieval of public data is privacy-preserving query pro-
cessing. One of the most representative applications is privacy-preserving location based
service [17, 8], where our proposal of bbPIR can be applied as well. Privacy-preserving
query processing has also been studied in more general applications [7, 1, 2]. Nevertheless,

these works do not address the practical service model in this paper, where the server has
huge amounts of data of business value, and the client wants to retrieve a small part of these
data without revealing the query to the server.

3 Background on cPIR

cPIR is designed to retrieve the value of a single bit in a large matrix [11]. It relies on
the computational intractability of Quadratic Residuosity. Let N be a natural number, and
Z∗N = {x|1 ≤ x ≤ N, gcd(N, x) = 1}. x is a quadratic residue (QR) mod N if

∃ y ∈ Z∗N s.t. y2 = x mod N (1)

Otherwise, x is a quadratic nonresidue (QNR) mod N [9]. For example, given N = 17, 8
is QR because 52 = 8 mod 17, and 3 is QNR because y2 = 3 mod 17 has no solution. The
problem is considered computationally most difficult if N = p1 · p2, where p1 and p2 are
distinct large primes with equal number of bits, m/2. Let Z+1

N = {x ∈ Z∗N |(x
N) = 1}. The

Quadratic Residuosity Assumption (QRA) says that for x ∈ Z+1
N , without knowing p1 and

p2 in advance, the probability of distinguishing x between a QR and a QNR is negligible
for large enough number of bits, m [11].

Determining whether the number x is QR or QNR is much easier if p1 and p2 are known.
Based on Euler’s theorem [9], x is QR if and only if

x(p1−1)/2 mod p1 = 1 ∧ x(p2−1)/2 mod p2 = 1 (2)

and QNR otherwise.
Let n be the total number of public data items (bits in this case). The public data is

organized into an s× t binary matrix M (choose s = t = d√n e for balanced communication
costs between client and server). Let (e, g) be the two dimensional address of the bit entry
queried by the client (Please refer to Table 1 for a complete summary of the notations used
in this paper). The cPIR protocol is as follows:

1. Initially, the client sends to the server an m-bit number N which is the product of two
random m/2-bit primes p1 and p2.

2. To retrieve entry (e, g) in M , the client generates a vector of t m-bit random numbers
in Z+1

N , y = [y1, ..., yt], s.t. yg is a QNR and all other yi (i 6= g) are QR. It sends the
vector y to the server.

3. The server computes for each row i of M a modular product zi = Πt
j=1wi,j , where

wi,j = y2
j if Mi,j = 0, and wi,j = yj if Mi,j = 1.

4. The server sends to the client z1, ..., zs.
5. The client determines that Me,g = 0 if ze is QR, and Me,g = 1 if ze is QNR.

For example in Fig. 1, the client sends N = 7 × 5 = 35 to the server initially. When the
client wants to retrieve the bit at M2,3, she generates a vector y for the second row of the
matrix and sends it to the server, where y3 is a QNR 17, and y1 = 4, y2 = 16, y4 = 11
are QR for N = 35. Upon receiving y, the server computes for each row of the matrix
a modular product zi (27, 17, 33, 17), e.g. z2 = (42 × 16 × 17 × 112) mod 35 = 17.

Fig. 1. cPIR Example

Since z2 = 17 is a QNR, when the client receives the vector z from the server, she obtains
M2,3 = 1.

Note that the server can not figure out if a yi or zi is QR or QNR, because the server
does not know p1 and p2, but the client can. In step 5, the client is able to interpret Mi,g

(1 ≤ i ≤ s) by analyzing zi. By running one round of cPIR, all s bits in the column of the
requested bit entry are exposed to the client and become chargeable.

Table 1. Summary of Notations

Notation Description
k for k-Anonymity
n total number of public data items
m modulus bit size
p1, p2 m/2-bit primes
N = p1 · p2 modulus, product of 2 primes p1 and p2

s, t number of rows, columns in public data matrix
Ms×t public data matrix
(e, g) address of the client request entry on M

y client query vector of m-bit random numbers
z server reply vector of m-bit random numbers
b number of bits in each data item
ρ upper bound of privacy breach probability
µ upper bound of server charge
Pbrh privacy breach probability
Csrv server charge
Ccomm, Ccomp communication and server computation cost
r, c number of rows, columns in a query bounding box
w minimum number of keys in a bin of a histogram

4 Data Model

We generalize the standard cPIR model in several ways. We consider a (key, address, value)
data store, where each value is a b-bit data item. The public data of size n is organized in

an s × t matrix M (s = t = d√n e by default). Each public data item x has a numeric key
KA that determines the two dimensional address of x in M . x is only accessible through its
address. Given the public data sorted by KA in ascending order, they are put in M , colum-
nwise from the leftmost column to the rightmost column. Two query types are supported
for the retrieval of x: query by address and query by key. The latter is translated to query by
address in the retrieving process.

The client is free to specify the privacy requirement and the desired charge budget
(ρ, µ), where ρ is a privacy breach limit (the upper bound probability that a requested item
can be identified by the server), and µ is a server charge limit (the upper bound of the num-
ber of items that are exposed to the client for one requested item). For example, in the case
of k-Anonymity, ρ = 1/k, µ ≥ k. For a public data set of size n, the best achievable pri-
vacy (the minimum ρ) is 1/n. Similarly, the maximum charge that a client can incur is n
(µ ≤ n), when the entire data is communicated to the client.

Based on the desiderata in Section 1, we keep track of four important metrics: (1) Com-
munication Cost Ccomm, the cost of data communication between the client and the server
in terms of number of bits, including the client query and the server answer. (2) Compu-
tation Cost Ccomp, the computation cost of private retrieval on the server in terms of the
number of involved public data bits. The computation cost on the client is not considered
here, because it is generally much smaller than the computation cost on the server, as later
shown in our experiment results. (3) Privacy Breach Probability Pbrh, the probability that
the server can figure out a requested item, Pbrh ≤ ρ. (4) Server Charge Csrv, the number
of interpretable public data items retrieved from the server, Csrv ≤ µ. We refer to the first
two metrics as the performance metrics, and the last two metrics as the quality of service
metrics.

In the case of k-Anonymity, given that we transmit k bits for anonymizing one requested
bit, Ccomm = 2 · k (the client query and the server answer), Ccomp = k (server matching
k bits), Pbrh = 1/k and Csrv = k. k-Anonymity can satisfy any privacy requirement and
charge budget (ρ, µ) s.t. ρ ·µ ≥ 1. In the case of cPIR for retrieving one bit, the client query
(row vector y) and the server answer (column vector z) are both vectors of d√n e m-bit
numbers, and m-bit modular multiplication is applied on all the data in M . Therefore, all
the above metric values are fixed: Ccomm = m · (t + s) = 2 ·m · d√n e, Ccomp = m · n,
Pbrh = 1/(s · t) ≤ 1/n and Csrv = s = d√n e. As an example, the top left of Fig. 1 shows
the calculated Ccomm and Ccomp for private retrieval of one bit (e.g. M2,3) on a 4×4 matrix
with n = 16 bits. cPIR can satisfy any privacy requirement and charge budget (ρ, µ) s.t.
ρ ≥ 1/n, µ ≥ d√n e.

5 Bounding-Box PIR

From the above analysis on cPIR and k-Anonymity, we can see that they are not flexible
enough to satisfy any user desired quality of service, and they do not achieve overall good
performance on all the metrics. A new practical approach for private retrieval of public data
which achieves both user desired flexibility and overall good performance is thus needed. To
design such an approach, we need the security and privacy of cPIR, as well as the flexibility
and computation performance of k-Anonymity. On the other hand, we should reduce the

impractical costs of cPIR, and mitigate the security and proximity privacy threats of k-
Anonymity. So we propose the following private retrieval approach called Bounding-Box
PIR (bbPIR), which unifies and seeks a practical tradeoff between cPIR and k-Anonymity.

The basic idea of bbPIR is to use a bounding box BB (an r× c rectangle corresponding
to a sub-matrix of M) as an anonymized range around the address of item x requested by
the client, and then apply cPIR on the bounding box. bbPIR will find an appropriately sized
bounding box that satisfies the privacy request ρ, and achieves overall good performance
in terms of Communication and Computation Costs without exceeding the Server Charge
limit µ for each retrieved item.

Since bbPIR operates on an r × c sub-matrix of M instead of the entire matrix M as
in cPIR, its client query (row vector y) is a vector of c m-bit numbers, its server answer
(column vector z) is a vector of r m-bit numbers, and m-bit modular multiplication is
applied on all the data in the sub-matrix. Therefore, Ccomm(bbPIR) is related to m · c and
m · r. Ccomp(bbPIR) is proportional to the area of the bounding box m · r · c. Pbrh(bbPIR) is
equal to the ratio of one entry out of the bounding box 1/(r · c). Csrv(bbPIR) is the number
of rows in the sub-matrix r, because similar to cPIR, a client can interpret the data within
the same column.

We proceed from the problem of private retrieval of one bit to private retrieval of one
item. We start by only supporting query by address in Section 5.1 and Section 5.2, assuming
that the client knows the exact address of the entry on M to be retrieved. Then for practical
purposes, in Section 5.3 we relax this assumption and support query by key by using a public
data histogram published by the server. In the following, we focus on private retrieval of one
item, based on which more complex private queries can be supported.

5.1 Private Retrieval of One Bit

In private retrieval of one bit, M is a bit matrix, and we need an r × c bounding box
BB around the queried bit entry (e, g). The client query is a single row vector y, and
the server answer is a single column vector z. So the Communication Cost in this case is
Ccomm = m · (c + r). Since m-bit modular multiplication has to be applied to r · c bits in
BB, the Computation Cost in this case is Ccomp = m · r · c.

We have two constraints according to the client’s requirement (ρ, µ): Privacy Breach
Probability Pbrh ≤ ρ, and Server Charge Csrv = r ≤ µ. Choose BB to be the minimum
bounding box that is sufficient to satisfy the privacy breach limit ρ. It is easy to see that its
area |BB| = r · c = d1/ρe, so the minimum Computation Cost is Ccomp = m · r · c =
m · d1/ρe. Then the goal is to minimize the Communication Cost Ccomm = m · (c + r)
without exceeding the charge limit µ, which is equivalent to minimizing c+r. min (c+r) is
theoretically achieved when c = r. Given that r ·c = d1/ρe, r = c = d√r · c e = d

√
1/ρ e.

In our case because r ≤ µ must hold, min (c + r) depends on whether µ ≥ d
√

1/ρ e.
The protocol for private retrieval of one bit, which we call bbPIR-1bit, is described as

follows:

1. Initially, the client sends to the server the size of the bounding box BB with area d1/ρe.
The number of rows r and the number of columns s in the corresponding sub-matrix,
BB, are decided as follows:

If µ ≥ d
√

1/ρ e, set
r = c = d

√
1/ρ e (3)

Otherwise, set
r = min(µ, d1/ρe, s), c = min(d1/(ρ · r)e, t) (4)

2. To retrieve entry (e, g) in M , the client first places BB on M with the above defined
dimensions r, c, s.t. BB covers (e, g), and BB is within the address space of M .

3. Then, the client generates a vector of c m-bit random numbers in Z+1
N , y = [y1, ..., yc],

s.t. yg is QNR and all other yi (i 6= g) are QR. It sends the coordinates of BB and vector
y to the server.

4. The server computes for each row i of the sub-matrix BB a modular product zi =
Πc

j=1wi,j , where wi,j = y2
j if Mi,j = 0, and wi,j = yj if Mi,j = 1.

5. The server sends to the client z1, ..., zr.
6. The client determines that Me,g = 0 if ze is QR, and Me,g = 1 if ze is QNR.

Fig. 2. bbPIR Example: Private Retrieval of One Bit

Fig. 2 illustrates the same example query as in Fig. 1. Suppose the client specifies
ρ = 1/4, µ = 2, a 2×2 bounding box is sufficient. Note that the placement of the bounding
box BB has some flexibility. It does not need to be in the same position as in Fig. 2, as long
as it covers M2,3. Compared to Fig. 1, now the client only needs to generate a vector y of
size 2, and the server only needs to do computations on 2 rows with one modular multipli-
cation operation for each row. Because the sizes of vector y and vector z are reduced, the
communication cost is also reduced proportionally.

By determining the dimensions r, c of BB in step 1 of bbPIR-1bit, bbPIR is able to
satisfy any privacy requirement ρ ≥ 1/n and charge limit µ < s. This is much more
flexible than in the cases of k-Anonymity and cPIR. In step 2, we assume the client knows
the coordinates of the boundary points on M , so is able to make sure BB is within the
address space of M .

The comparisons of k-Anonymity, cPIR and bbPIR for private retrieval of one bit on the
four metrics that we defined in Section 4 are shown in Table 2. We omit the constant cost of
sending the size and coordinates of the bounding box in step 1 and step 2. Note that these

metric values, especially Ccomm and Ccomp are not exact, because different large constants
could be involved in different data operations. The effects of these constants are captured in
the experimental evaluation presented in Section 6.

Compared to k-Anonymity, bbPIR is able to achieve better privacy for the same charge
or a lower charge for the same privacy. Compared to cPIR, generally if ρ < 1/n, r · c < n,
c + r < 2 · d√n e, the communication cost, computation cost and charge of bbPIR are
all lower than those of cPIR. However, if we make the bounding box a single column, i.e.
r = k and c = 1, there is no point in using the m-bit random number to hide the column g,
and bbPIR degenerates into k-Anonymity. At the other extreme, if we set r = c = d√n e,
bbPIR degenerates into cPIR.

Table 2. Comparisons on Private Retrieval of One Bit

Method k-Anonymity cPIR bbPIR
Ccomm 2 · k 2 ·m · d√n e m · (c + r)

Ccomp k m · n m · r · c
Pbrh 1/k 1/n 1/(r · c)
Csrv k d√n e r

5.2 Private Retrieval of One Item

Private retrieval of one item is similar to private retrieval of one bit. The difference is that
the public data matrix M now is a binary matrix and the item in each entry has b bits. bbPIR
works in a similar way as cPIR in that it retrieves one bit at one time. In order to retrieve a b
bit item x, we can repeat bbPIR b times to get one bit at one time. However, the client query,
row vector y, can be reused b times on b bits of x. Only the server answer, column vector
z, needs to be re-calculated for each of the b bits. Therefore, the Communication Cost is
Ccomm = m · c + m · b · r. Similarly, m-bit modular multiplication will be applied on each
bit of the r · c items in BB, so the Computation Cost is Ccomp = m · b · r · c.

The two constraints from the client’s requirement are same: Privacy Breach Probability
Pbrh ≤ ρ, and Charge Csrv = r ≤ µ. Choose BB to be the minimum bounding box that
is sufficient to satisfy the privacy breach limit ρ. So its area |BB| = r · c = d1/ρe, and
the minimum Computation Cost is Ccomp = m · b · r · c = m · b · d1/ρe. Then the goal
is to minimize the Communication Cost Ccomm = m · c + m · b · r without exceeding the
charge limit µ, which is equivalent to minimizing c + b · r. min (c + b · r) is achieved when
c = b · r. Given that r · c = d1/ρe, r = d

√
1/(ρ · b) e, c = d

√
b/ρ e. In our case because

r ≤ µ must hold, min (c + b · r) depends on whether µ ≥ d
√

1/(ρ · b) e.
The protocol for private retrieval of one item, which we call bbPIR-1item, is described

as follows:

1. Initially, the client sends to the server an m-bit number N which is the product of two
random m/2-bit primes p1 and p2, and the size of the bounding box BB with area
d1/ρe. The number of rows and columns, r and s in the bounding box BB are decided

as follows:
If µ ≥ d

√
1/(ρ · b) e, set

r = d
√

1/(ρ · b) e, c = d
√

b/ρ e (5)

Otherwise, set
r = min(µ, d1/ρe, s), c = min(d1/(ρ · r)e, t) (6)

2. To retrieve entry (e, g) in M , the client first places BB on M with the above defined
dimensions r, c, s.t. BB covers (e, g), and BB is within the address space of M .

3. Then, the client generates a vector of c m-bit random numbers in Z+1
N , y = [y1, ..., yc],

s.t. yg is QNR and all other yi (i 6= g) are QR. It sends the coordinates of BB and vector
y to the server.

4. The server computes for each row i of the sub-matrix BB a modular product zi =
Πc

j=1wi,j , where wi,j = y2
j if Mi,j = 0, and wi,j = yj if Mi,j = 1.

5. The server sends to the client z1, ..., zr.
6. The client determines that Me,g = 0 if ze is QR, and Me,g = 1 if ze is QNR.
7. Repeat step 4-6 to obtain the remaining b− 1 bits of the requested item in (e, g).

The comparisons of k-Anonymity, cPIR and bbPIR for private retrieval of one item on
the performance and the quality of service metrics are shown in Table 3.

Table 3. Comparisons on Private Retrieval of One Item

Method k-Anonymity cPIR bbPIR
Ccomm 2 · b · k m · d√n e+ m · b · d√n e m · (c + b · r)
Ccomp b · k m · b · n m · b · r · c
Pbrh 1/k 1/n 1/(r · c)
Csrv k d√n e r

5.3 Practical Considerations

In the above formulation, we assume that the client knows the exact address of the requested
entry (e, g). However in practice, query by key is more common. In this case, the exact
knowledge of how the public data is organized on the server is not available to the client.
The client has to figure out the address of the requested item, (e, g), from the requested key.

In fact, the same problem also exists in cPIR. Unfortunately, it has largely been ignored
by the PIR community. One proposal enabling query by key, builds an index structure for
mapping a keyword to a physical address on the server [5]. Query privacy is achieved by
an oblivious walk on the index structure. This oblivious walk requires the client to run as
many as O(b·logn) rounds of PIR on the data bits dispersed in the matrix, and consequently
incurs much higher communication and computation costs.

Although extra communication and computation costs are not avoidable for translating
query keys to addresses, we would like an efficient and privacy-aware way of translation.
One simple solution could be relying on a trusted third party who has access to both private

and public data, such as a trusted anonymizer in privacy-preserving location based services
[17]. However, the client’s query is disclosed to the third party, and her privacy is subject to
the security of the third party. So we want to avoid such solution.

The basic idea of our solution is that we let the server publish a one-dimensional his-
togram, H , on the key field KA and the dimensions of the public data matrix M , s (number
of rows) and t (number of columns). The histogram is only published to authorized clients.
The publishing process, which occurs infrequently, could be encrypted for security. Then
when a client issues a query, she calculates an address range for the queried entry by search-
ing in which bin of H the key of the query data falls.

Assume a predefined threshold w, which is the minimum number of keys in each bin
of the histogram. Consecutive keys are allocated in a bin. To make the address translation
easier, we should match the bins with the partitioned address space of M . Right now we
require w ≤ s for simplicity.

Once the bins are matched in H onto M , H can be transformed into an bs/wc × t
matrix HM . An entry (e′, g′) on HM contains w keys if it corresponds to one of the first
bs/wc− 1 bins in column g′, or s−w ∗ (bs/wc− 1) keys if it corresponds to the last bin in
column g′. Thus, H can be built greedily by checking whether w ∗ (bs/wc − 1) keys have
been scanned in the current column on M . If it is true, assign the next s−w ∗ (bs/wc − 1)
keys to a new bin and proceed to a new column. Otherwise, assign the next w keys to a
new bin. For example, if we have 25 keys and a 5× 5 matrix M , for w = 2, we assign the
first two keys in one bin and the last three keys in another bin for each column from left
to right, so the resulting HM is a 2 × 5 matrix with 10 bins, as illustrated in Fig. 3. This
approach is similar to building an equi-depth histogram [10] (if s mod w = 0, H becomes
an equi-depth histogram).

Fig. 3. Example of Locating By Histogram

Knowing the organization of HM ,
the client is able to calculate the ad-
dress of the requested entry on HM ,
(e′, g′). The address range of the cor-
responding entries on M is [(e′ − 1) ·
w + 1, e′ ·w]× [g′, g′] for e′ < bs/wc,
or [(e′ − 1) · w + 1, s] × [g′, g′] for
e′ = bs/wc. One advantage of w ≤ s
is that we only need to run bbPIR once
to obtain all the entries in the address
range of the requested bin. As an ex-
ample of query by key through the his-
togram in Fig. 3, if a client requests the item with key 53, she first finds 53 is in the 5th
bin of H , corresponding to entry HM1,3 on HM . Then she runs bbPIR once to obtain the
entries in HM1,3, where she finds the answer M2,3.

Note that the number of rows in a bounding box, r, should be no less than w. bbPIR
in query by key can satisfy any privacy and charge specification (ρ, µ) s.t. ρ ≥ 1/n and
µ ≥ w.

6 Experimental Evaluation

Our experiments evaluate the performance and the quality of service of bbPIR against cPIR
and k-Anonymity for private retrieval queries. Maintaining the overall proximity philos-
ophy of privacy-preserving location based services [17], as well as the generalization ap-
proach of k-Anonymity based data publishing [20, 12], the k-Anonymity private retrieval
method is implemented by sending a consecutive range of data items that covers the original
private query item. This consecutive range has a concise and efficient representation, as it is
specified by the lower end of the range and k. The performance and quality of service met-
rics are defined in Section 4. The results in different aspects (including different public data
matrix shapes, different (ρ, µ) specifications, query by address and query by key) demon-
strate that bbPIR is practical for safeguarding the client’s query privacy while safeguarding
the server’s business revenue.

We implemented the three private retrieval methods in C++. For bbPIR, we use bbPIR-
1item protocol. We ran a majority of the experiments on an extended data set generated
from a real data set Adult [3] which is commonly used in the literature. The Adult database
has 32561 records with 15 attributes of categorical or numeric data types. We take the first 3
attributes and generate 106 records by randomly picking attribute values from the attributes
of the original 32561 records. Then the total number of data items, n, is 106, and the number
of bits for each data item, b, is 208. Only for the experiment on proximity privacy of numeric
data (Section 6.4), we use a synthetic data set with 106 numeric keys and values. All the
default values in the experiments are listed in Table 4. For each value or range of a tested
variant, we run 100 random queries and report the average metrics. The queries are query
by address by default. In Section 6.5 we specifically study query by key. The testbed is a
Linux server with Intel 2.40GHz CPU and 3GB memory, running Federal Core 8 OS.

Table 4. Default Values in Experiments

Variant Default Value
n 106

b 208
s, t, Csrv(cPIR) 103

k, Csrv(k-Anonymity) 103

Pbrh(cPIR) 10−6

ρ, Pbrh(bbPIR), Pbrh(k-Anonymity) 10−3

µ, Csrv(bbPIR) 50
m 1024

6.1 Effects of Square Matrix vs. Rectangular Matrix

In previous sections, we assume that the public data matrix M is square, s.t. s = t =
√

n. It
achieves the smallest communication cost min(m · (s + t)) = 2 ·m · √n for cPIR when
M is a bit matrix with b = 1. But when M is a binary data matrix with b > 1, s = t =

√
n

are not optimal values for minimizing the communication cost of cPIR min(m · (b · s+ t)).
The optimal values become

s = d
√

n/b e, t = d
√

b · n e (7)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

153612801024768512

C
lie

nt
 T

im
e

(s
)

Modulus Bit Size m

bbPIR-square
bbPIR-rect

cPIR-square
cPIR-rect

(a) Comparison of Client Time

 0.1

 1

 10

 100

 1000

 10000

153612801024768512

S
er

ve
r

T
im

e
(s

)

Modulus Bit Size m

bbPIR-square
bbPIR-rect

cPIR-square
cPIR-rect

(b) Comparison of Server Time

 10

 100

 1000

 10000

 100000

153612801024768512

D
at

a
C

om
m

un
ic

at
io

n
S

iz
e

(K
B

)

Modulus Bit Size m

bbPIR-square
bbPIR-rect

cPIR-square
cPIR-rect

(c) Comparison of Data Communi-
cation Size

Fig. 4. Effect of Data Matrix Shape, Vary Modulus Bit Size m, Fix ρ = 10−3, µ = 50

in which case M becomes a rectangular matrix with fewer rows and more columns.
To give cPIR that advantage and evaluate the effects of the data matrix shape on bbPIR,

we compare the performance of cPIR and bbPIR on square and rectangular matrices (de-
noted as cPIR-square, cPIR-rect, bbPIR-square and bbPIR-rect in Fig. 4) while fixing ρ =
10−3, µ = 50 and varying the modulus bit size m from 512 to 1536 according to [19]. Fig. 4
shows the comparison results of client computation time, server computation time and data
communication size. Privacy Breach Probabilities for cPIR and bbPIR in both matrix shapes
are fixed to the default values 10−6 and 10−3 respectively as listed in Table 4. Server Charge
for cPIR is equal to the number of rows in the matrix, s, which is 103 on square matrix and
70 on rectangular matrix. Server Charge for bbPIR is equal to the number of rows in the
bounding box, r, which is 3 on both square matrix and on rectangular matrix. We can see
from Fig. 4 that bbPIR is basicly not affected by the shape of the data matrix. cPIR takes the
advantage of the rectangular matrix to reduce data communication size. However, it pays
off by taking more time to generate the query vector y on the client side (see Fig. 4(a)).
However, client time is almost negligible when compared against server time. This is the
reason that we only count server time in the previous computation cost analysis.

Compared to cPIR, bbPIR achieves much better performance with a lower but accept-
able privacy level. Especially the server computation time of bbPIR drops down dramatically
and becomes promising for practical use (it is less than 1.15s in both matrix shapes).

6.2 Effects of Modulus Bit Size

After examining the effects of the data matrix shape on cPIR and bbPIR, we study the
effects of the modulus bit size m on the performances of bbPIR, cPIR and k-Anonymity.
From now on, we use a square matrix, because there is little difference between square
matrix and rectangular matrix for bbPIR.

Recall that a potential security threat with k-Anonymity is that the data communication
between the client and the server is in plain text and can be seen by a third party eavesdrop-
per. In k-Anonymity, the client query, in plain text, is an address range of the anonymized
entries, which is similar to the dimensions and coordinates of the bounding box on M in
the case of bbPIR. This does not give a third party any useful information if the third party
does not know M . But if the server answer is also in plain text, a third party will know

the exact result contents from the server to the client. To provide k-Anonymity the same
security level as bbPIR, we apply a popular public key encryption algorithm, RSA, on the
server answer of k-Anonymity.

We calculate the server computation and communication costs of the security enhanced
k-Anonymity, which we denote as k-Anonymity (RSA) and abbreviate as k-A (RSA) in
Fig. 5, by a theoretical analysis according to [4]. First, since RSA encryption and decryp-
tion is the dominant cost, we simplify the client computation as decryption of the server
answer, and simplify the server computation as encryption of its answer. Note that RSA
encryption and decryption are done by modular exponentiation functions Ciphertext =
Datapublic key(modN) and Data = Ciphertextprivate key(modN) respectively, where
public key·private key = O(N). A modular exponentiation can be transformed to a num-
ber of modular multiplications. To estimate RSA encryption and decryption time based on
bbPIR server computation (modular multiplication) time, we use the same m-bit modulus
N , and estimate both public key and private key as m/2-bit numbers for k-Anonymity
(RSA). We take the minimum number of modular multiplications required for a modular
exponentiation, m/2− 1, in the binary method [4]. Since bbPIR needs d1/ρe modular mul-
tiplications, we can calculate RSA encryption and decryption time as

Tserver(bbPIR)/(d1/ρe) · (m/2− 1) (8)

in which Tserver (bbPIR) is the server computation time in bbPIR. Second, the cipher text
size can be estimated as

|Ciphertext| = |Data|+ m− (Data mod m) (9)

so the data communication size of k-Anonymity (RSA) can be estimated as

Ccomm(k−Anonymity)/|Data| · |Ciphertext| (10)

in which the operator | | refers to the number of bits, and m is used as the block size of RSA.
We fix ρ = 10−3, µ = 50, and vary the modulus bit size m from 512 to 1536 ac-

cording to [19]. Fig. 5 illustrates that a larger key size increases the computation time for
cPIR, bbPIR and k-Anonymity (RSA), and the data communication size for cPIR and bbPIR.
k-Anonymity, without RSA encryption, is definitely not affected by key size, thus its per-
formance is clearly better than the other three methods at the loss of data communication
security. k-Anonymity (RSA), with RSA encryption on the server and decryption on the
client, takes more computation time on the client than bbPIR as seen in Fig. 5(a), and simi-
lar time on the server to bbPIR as seen in Fig. 5(b). Compared to the original k-Anonymity,
we can conclude that if security is needed, additional costs are not avoidable and should be
expected. But the cipher text in k-Anonymity (RSA) does not incur much additional data
communication costs, as seen in Fig. 5(c). In contrast, cPIR and bbPIR generate a large
random number for each bit, thus incur larger data communication costs. Note that the per-
formances of cPIR and bbPIR can be further improved using the optimization in [8] to avoid
redundant modular multiplications.

 0

 0.2

 0.4

 0.6

 0.8

 1

153612801024768512

C
lie

nt
 T

im
e

(s
)

Modulus Bit Size m

bbPIR
cPIR

k-Anonymity
k-A(RSA)

(a) Client Time

1000

10

0.1

0.001
153612801024768512

S
er

ve
r

T
im

e
(s

)

Modulus Bit Size m

bbPIR
cPIR

k-Anonymity
k-A(RSA)

(b) Server Time

 10

 100

 1000

 10000

 100000

153612801024768512

D
at

a
C

om
m

un
ic

at
io

n
S

iz
e

(K
B

)

Modulus Bit Size m

bbPIR
cPIR

k-Anonymity
k-A(RSA)

(c) Data Communication Size

Fig. 5. Comparison of bbPIR, cPIR, k-Anonymity and k-Anonymity(RSA), Vary Modulus Bit Size m, Fix
ρ = 10−3, µ = 50, k = 103

 0

 1

 2

 3

 4

[0.1, 1)[0.01, 0.1)[0.001, 0.01)[0.0001, 0.001)(0, 0.0001)

S
er

ve
r

T
im

e
(s

)

Privacy Breach Limit

bbPIR
k-Anonymity

k-A(RSA)

(a) Server Time

10000

1000

100

10

1

0.1
[0.1, 1)[0.01, 0.1)[0.001, 0.01)[0.0001, 0.001)(0, 0.0001)

D
at

a
C

om
m

un
ic

at
io

n
S

iz
e

(K
B

)

Privacy Breach Limit

bbPIR
k-Anonymity

k-A(RSA)

(b) Data Communication Size

100000

10000

1000

100

10

1
[0.1, 1)[0.01, 0.1)[0.001, 0.01)[0.0001, 0.001)(0, 0.0001)

A
vg

. S
er

ve
r

C
ha

rg
e

Privacy Breach Limit

bbPIR
k-Anonymity

k-A(RSA)

(c) Server Charge

Fig. 6. Comparison of bbPIR, k-Anonymity and k-Anonymity(RSA), Vary ρ (1/k), Fix µ = 50

6.3 Effects of Privacy and Charge Specification

In the following two experiments, we study the effects of privacy breach limit ρ (1/k in
k-Anonymity) and charge limit µ (k in k-Anonymity) on bbPIR and k-Anonymity. We fix
the modulus bit size m = 1024. We do not show the client computation time here, because
it is almost negligible compared to server computation time.

We first fix µ = 50, and vary ρ in 5 ranges, (0, 10−4), [10−4, 10−3), [10−3, 10−2),
[10−2, 10−1) and [10−1, 1). For each range, we mimic the requests from different clients by
randomly generating 100 values of ρ in the corresponding range, and running 100 queries.
We then take the average metric results. Fig. 6 demonstrates a general trend that a lower
privacy requirement (higher ρ values) reduces both computation and communication costs
for bbPIR and k-Anonymity. However, we can see in Fig. 6(a) that higher ρ values do
not reduce the server computation time of k-Anonymity (RSA), because the values of ρ
(corresponding to values of k = 1/ρ) do not impact the computational complexity of RSA
encryption. For the same privacy breach limit, k-Anonymity usually needs more server
charge than bbPIR as seen in Fig. 6(c), which is not appealing to most internet users even if
it takes less computation and communication cost. k-Anonymity (RSA) has the exact same
server charge as k-Anonymity, and almost does not incur additional communication cost, so
the two curves of k-Anonymity (RSA) and k-Anonymity overlap in Fig. 6(b) and Fig. 6(c).

We then fix ρ = 10−3, and vary µ in 5 ranges, (1, 5), [5, 10), [10, 50), [50, 100) and
[100, 200). Similarly to above, we generate 100 values of µ and run 100 queries in each
range. In contrast to the effects of ρ, larger values of µ do not result in better performance

 0

 0.2

 0.4

 0.6

 0.8

[100, 200)[50, 100)[10, 50)[5, 10)[1, 5)

S
er

ve
r

T
im

e
(s

)

Charge Limit

bbPIR
k-Anonymity

k-A(RSA)

(a) Server Time

200

20

2

0.2

0.02
[100, 200)[50, 100)[10, 50)[5, 10)[1, 5)

D
at

a
C

om
m

un
ic

at
io

n
S

iz
e

(K
B

)

Charge Limit

bbPIR
k-Anonymity

k-A(RSA)

(b) Data Communication Size

1.0

0.1

0.01

0.001

0.0001
[100, 200)[50, 100)[10, 50)[5, 10)[1, 5)

P
riv

ac
y

B
re

ac
h

P
ro

ba
bi

lit
y

Charge Limit

bbPIR
k-Anonymity

k-A(RSA)

(c) Privacy Breach Probability

Fig. 7. Comparison of bbPIR, k-Anonymity and k-Anonymity(RSA), Vary µ (k), Fix ρ = 10−3

as seen in Fig. 7. The performance of bbPIR is quite stable in Fig. 7(b) and Fig. 7(c), because
ρ is fixed, and according to formula 5 in Section 5.2, the bounding box is stable regardless of
different charges. For the same charge limit, we can see in Fig. 7(c) that both k-Anonymity
and k-Anonymity (RSA) cannot reach the same privacy as in bbPIR, and their real privacy
breach probabilities are always larger than 10−3. Similarly as the previous experiment on ρ,
k-Anonymity (RSA) achieves the same privacy as k-Anonymity, and almost does not incur
additional communication cost, so the two curves of k-Anonymity (RSA) and k-Anonymity
overlap in Fig. 7(b) and Fig. 7(c).

6.4 Proximity Privacy of Numeric Data

In this experiment, we specifically study the proximity privacy of bbPIR and k-Anonymity
on numeric data. As pointed out in [23, 13, 14], there should be enough difference between
the data items in an anonymized range (in a bounding box in the case of bbPIR) under a
privacy breach probability Pbrh, which we call neighborhood difference, otherwise it can
be concluded that the private data is within a very narrow range with probability Pbrh.

Instead of using the Adult data set which is non-numeric, we generate a synthetic data
set with 106 numeric data keys and values, both of which follow a Zipf distribution and are
in the range of [0.0, 1.0]. We measure the neighborhood difference as the absolute difference
between the maximum and minimum values in an anonymized range (or in a bounding box)
following [23]. We then fix µ = 50, and vary ρ from 10−4 to 10−1 (correspondingly set
k = 1/ρ and vary k from 104 to 10 in k-Anonymity). Since the bounding box used in
bbPIR contains both the data items whose values are close to each other in a column and the
data items whose values are far away in different columns of the matrix, the neighborhood
difference in bbPIR is almost more than 100 times of the difference in k-Anonymity for
ρ < 0.1 as seen in Fig. 8. The results suggest that k-Anonymity is vulnerable to proximity
inference attack on numeric data.

An alternative k-Anonymity implementation by sending k−1 dummy retrieval requests
is less likely to have the proximity privacy breach problem. However, it has two drawbacks
compared to the consecutive range k-Anonymity implementation. First, it incurs more com-
munication costs by sending the addresses of all k items in the case of query by address,
and sending multiple separated address ranges for the dummy requests in the case of query
by key. Second, it is not suitable for applications that do not want to lose all the proximity

1.0

0.1

0.01

0.0001

0.000001
0.10.010.0010.0001

N
ei

gh
bo

rh
oo

d
D

iff
er

en
ce

Privacy Breach Limit

bbPIR
k-Anonymity

Fig. 8. Comparison of bbPIR and k-Anonymity, Vary Privacy Breach Limit ρ, Fix µ = 50

information, e.g. in privacy-preserving location based services. In contrast, bbPIR does not
suffer from proximity privacy breach as much as as k-Anonymity without losing all the
proximity information.

6.5 Effects of Query by Key

Finally we study the costs of query by key compared to the costs of query by address in
bbPIR. As we discuss in Section 5.3, clients have to calculate an address range of the re-
quested data key internally, and then retrieve all the data items whose keys fall in that range.
Note that interpreting all these items could lead to additional costs on the client, so we need
to specifically study the client computation time, which was almost negligible before, but
can not be ignored here.

The size of the requested address range is determined by the granularity of the server
published histogram, the minimum number of keys in each bin, w. We vary w from 50 to
250, set µ = w (since µ ≥ w must hold) for query by key, fix µ = 50 for query by address,
and fix ρ = 10−3 for both query by key and query by address. We use the default Adult
data set as the public data and generate numeric keys for each record. The comparison
result of query by key and query by address, denoted as bbPIR-h and bbPIR respectively,
is shown in Fig. 9. It is interesting to note that the computation and communication costs
of query by key are not monotone functions of w, as we can see in Fig. 9. The reason is
the following. Since ρ is fixed, the area of the bounding box is fixed. As w increases, the
number of rows in the bounding box increases, and in contrast, the number of columns in
the bounding box decreases. Recall that client computation includes both one time query
vector generation and b times result interpretation. As w increases, the client has to pay
more charges for the private retrieval service, and consequently the client has to interpret
more result items. Since this interpretation is for each of b bits, the client time of bbPIR-
h increases first in Fig. 9(a). However, the client only needs to generate a smaller size
of query vector, and this advantage seems to counteract the larger amounts of work on
result interpretation for w > 150 in Fig. 9(a). Similarly in Fig. 9(b), the server time of
bbPIR is also affected by two contrary factors. With the increase of w, the server needs
to do less modular multiplications in one row, but has to compute on a larger number of
rows. To explain Fig. 9(c), the communication cost consists of one client query vector and
b server answer vectors, and a larger w leads to a smaller size of client query, but larger

 0

 0.2

 0.4

 0.6

 0.8

 1

25020015010050

C
lie

nt
 T

im
e

(s
)

Histogram Bin Size w

bbPIR-h
bbPIR

(a) Client Time

 0

 0.2

 0.4

 0.6

 0.8

 1

25020015010050

S
er

ve
r

T
im

e
(s

)

Histogram Bin Size w

bbPIR-h
bbPIR

(b) Server Time

 0

 100

 200

 300

 400

 500

 600

25020015010050

D
at

a
C

om
m

un
ic

at
io

n
S

iz
e

(K
B

)

Histogram Bin Size w

bbPIR-h
bbPIR

(c) Data Communication Size

Fig. 9. Comparison of query-by-key (bbPIR-h) and query-by-address (bbPIR), Vary Histogram Granularity w,
Fix ρ = 10−3

sizes of server answers. Server answers account for larger amounts of data communication
at first, but then the smaller size of client query counteracts them and brings down the data
communication for w > 150. However, consistently query by key increases the computation
and communication costs. These overheads are still reasonable, as query by key provides a
practical solution to the impractical assumption of cPIR, i.e., that the client knows a priori
the exact location of the requested data item.

7 Conclusion

Enabling practical private retrieval of public data is useful for privacy aware internet ser-
vices, but has not received much attention in the database community. Computational Pri-
vate Information Retrieval (cPIR) achieves complete privacy for a client, but is impractical
because of its expensive computations involving the entire public service data. On the other
hand, k-Anonymity based private retrieval approach achieves cheap computation and com-
munication, but is subject to the threats of proximity breach and insecure communication,
as well as inflexibility between privacy and charge constraints.

In designing a practical approach for private retrieval of public data on single server set-
tings, we follow the cPIR approach to achieve privacy and security, and adopt the principle
of flexible privacy from k-Anonymity. We call our proposed approach Bounding-Box PIR
(bbPIR). bbPIR generalizes cPIR by adjusting a bounding box which trades complete pri-
vacy for flexible partial privacy, but bounds computation and communication costs. Given
an internet business service model where clients can specify their privacy requirements and
service charge budgets (ρ, µ), bbPIR is able to achieve lower charge or higher privacy com-
pared to k-Anonymity. We also design a practical low cost solution for enabling the retrieval
by keys instead of retrieval by addresses of the matrix. The experimental results confirm the
efficiency and effectiveness of our proposals.

8 Acknowledgement

We would like to thank Gabriel Ghinita for providing us his basic PIR implementation on
location based service.

References

[1] R. Agrawal, A. V. Evfimievski, and R. Srikant. Information sharing across private databases. In SIGMOD
Conference, pages 86–97, 2003.

[2] N. Anciaux, M. Benzine, L. Bouganim, P. Pucheral, and D. Shasha. Ghostdb: querying visible and
hidden data without leaks. In SIGMOD Conference, pages 677–688, 2007.

[3] A. Asuncion and D. Newman. UCI machine learning repository.
http://www.ics.uci.edu/∼mlearn/MLRepository.html, 2007.

[4] Çetin Kaya Koç. High-speed RSA implementation. Technical Report TR 201, RSA Laboratories, 1994.
[5] B. Chor, N. Gilboa, and M. Naor. Private information retrieval by keywords. Technical Report TRCS

0917, Department of Computer Science, Technian, 1997.
[6] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval. J. ACM, 45(6):965–

981, 1998.
[7] C. Clifton, M. Kantarcioglu, A. Doan, G. Schadow, J. Vaidya, A. K. Elmagarmid, and D. Suciu. Privacy-

preserving data integration and sharing. In DMKD, pages 19–26, 2004.
[8] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan. Private queries in location based

services: anonymizers are not necessary. In SIGMOD Conference, pages 121–132, 2008.
[9] http://marauder.millersville.edu/∼bikenaga/numbertheory/numbertheorynotes.html. Number theory

notes.
[10] Y. Ioannidis. The history of histograms (abridged). In VLDB, pages 19–30, 2003.
[11] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database, computationally-private

information retrieval. In FOCS, pages 364–373, 1997.
[12] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: Efficient full-domain k-anonymity. In

SIGMOD Conference, pages 49–60, 2005.
[13] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Workload-aware anonymization. In KDD, pages 277–

286, 2006.
[14] J. Li, Y. Tao, and X. Xiao. Preservation of proximity privacy in publishing numerical sensitive data. In

SIGMOD Conference, pages 473–486, 2008.
[15] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity and l-diversity. In

ICDE, pages 106–115, 2007.
[16] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. l-diversity: Privacy beyond k-

anonymity. In ICDE, page 24, 2006.
[17] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new casper: A privacy-aware location-based database

server. In ICDE, pages 1499–1500, 2007.
[18] R. Ostrovsky and W. E. S. III. A survey of single-database private information retrieval: Techniques and

applications. In Public Key Cryptography, pages 393–411, 2007.
[19] R. Sion and B. Carbunar. On the computational practicality of private information retrieval. In Network

and Distributed System Security Symposium, 2007.
[20] L. Sweeney. Achieving k-anonymity privacy protection using generalization and suppression. Interna-

tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):571–588, 2002.
[21] L. Sweeney. k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzzi-

ness and Knowledge-Based Systems, 10(5):557–570, 2002.
[22] P. Williams and R. Sion. Usable private information retrieval. In Network and Distributed System

Security Symposium, 2008.
[23] Q. Zhang, N. Koudas, D. Srivastava, and T. Yu. Aggregate query answering on anonymized tables. In

ICDE, pages 116–125, 2007.

