Evaluation of four methods for real time panorama acquisition
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ABSTRACT

In this paper, we present an analysis of four orientation tracking
systems used for construction of environment maps. This paper
focuses on the methodology used to collect data for a detailed anal-
ysis of these tracking methods. This analysis consists of three parts.
Two methods of qualitative analysis are used, one based on the
panoramas generated by each system, and another based on an ex-
pert evaluation of a live demo. A ground truth evaluation of the
systems is also performed. Finally, we present an analysis of the
performance of these methods, and a comparison of the results of
each test.

1 INTRODUCTION

In this paper we present an analysis of the robustness of four exist-
ing orientation tracking systems. These methods are variations on
an existing orientation tracking system Envisor [2]. A detailed dis-
cussion of these methods can be found in Section 2. In order to ob-
tain an accurate understanding of the robustness of each system, we
performed a quantitative analysis, an analysis of the performance
output and a live evaluation. For the quantitative analysis, we col-
lected distance to a known ground truth over a large set of input
videos. However, ground truth error alone does not provide insight
into the perceived robustness of the system. We obtain this through
two qualitative analyses of the systems.

The first qualitative analysis was based on the final output of the
systems, in our case, a set of environment maps. The second qual-
itative analysis focused on the results of a live expert evaluation of
each system. While the analysis of the results allows for a larger
breadth with respect to samples, expert analysis provides confirma-
tion of the trends seen in the analysis of the results.

Robustness in general terms is the quality of being able to with-
stand stresses, pressures, or changes in procedure or circumstance.
A system is generally considered robust if it is able to cope well
with input variations with a minimal amount of damage, alteration,
or loss of functionality. Robustness of an algorithm in computer sci-
ence is described loosely as the ability for the algorithm to continue
to function despite abnormal input.

We define robustness for the purpose of computer vision tracking
as the ability to cope with input irregularities, such as fast motion,
sudden turns, blurred imagery, over or under exposed areas, as well
as other artifacts leading to the loss of tracking. Similarly to fuzz
testing, difficult input values need to be given to the tracking system
in order to form an evaluation of robustness. Ideally, the data should
contain a range of samples of varying difficulties for the situations
being evaluated, e.g., lighting changes, occlusions, fast movements,
etc.

2 RELATED WORK

Up to now, a wide variety of tracking systems using various kinds
of sensors have been investigated for augmented/mixed reality ap-
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plications. There has also been extensive evaluation of lower level
interest point detectors, feature descriptors [10] [9] [8] and camera
pose techniques. Our goal is complementary to and very different
from these evaluations as we focus on classifying performance on
a much higher level.

3 SYSTEMS EVALUATED

In this section we describe each of the methods we used for our
evaluation in greater detail.

3.1 Envisor: Online Environment Map Construction

DiVerdi et al. presented Envisor, a system for online construction of
environment maps in new locations [2] [3]. In order to construct an
environment map, they use a vision-based hybrid orientation track-
ing mechanism which provides relatively drift-free orientation reg-
istration. The tracking mechanism is composed of two phases, one
of which is frame-to-frame relative rotation tracking using Shi and
Tomasi’s feature detector [11] and a pyramidal version of Lucas and
Kanade’s optical flow algorithm [7]. The second phase is landmark-
based absolute orientation tracking which adds landmarks to the
frame to frame feature tracking system to combat drift during long
tracking runs. Using the orientation tracking techniques described
here, they construct an environment map of the surrounding scene
online and automatically. That is, the tracked video is projected into
a cubemap frame by frame. However, small gaps are likely to occur
unless the user is very careful about complete coverage. Thus, a
texture diffusion technique to blend surrounding pixels into those
gaps is applied, reducing their visual impact.

3.2 Envisor with Constant Recovery

The original version of Envisor is vulnerable to several factors, such
as varying lighting conditions, drastic speed changes, or insufficient
texture information on surrounding scenes. That is, there are many
cases where tracking is lost. Thus, we extend Envisor by present-
ing methodology for camera orientation relocalization, using vir-
tual keyframes for online environment map construction [6]. In-
stead of relying on real keyframes from incoming video, we enable
camera orientation relocalization by employing virtual keyframes
which are distributed strategically within an environment map. Af-
ter shading correction, we relocalize camera orientation in real-time
by comparing the current camera frame to virtual keyframes. While
expanding the captured environment map, we continue to simulta-
neously generate virtual keyframes within the completed portion of
the map as descriptors to estimate camera orientation. We imple-
ment our camera orientation relocalizer using a fragment shader for
real-time applications. With the help of the pose relocalization, we
can enable a user to generate an environment map independently
of the camera path the user chooses to trace over the environment.
That is, we can recover from tracking failures simply by returning
to a general area that was previously captured.

3.3 Envisor with Pre-Scanning

While the addition of tracking recovery is an improvement, the per-
formance of the live environment mapping process is still subject to
imperfections and robustness problems. In order to span the whole
bandwidth of robustness from medium-poor to excellent, we were
interested in adding a highly robust system to our set of methods.
We are aware of very recent efforts in the research community to



derive a new method for the panorama acquisition problem that are
far less computationally expensive and therefore faster and more re-
active than the systems used in this evaluation [12]. However, since
we cannot currently have access to the method, we decided to add
a third version of Envisor, creating higher robustness by use of ad-
ditional a-priori information. This version of Envisor is the same as
the Envisor with constant recovery except that we use pre-scanning
of the entire environment to generate virtual keyframes in advance.
This is akin to generating an a-priori model of the environment for
model-based tracking. One problem of Envisor with constant re-
covery is that if it cannot generate valid virtual keyframes, recovery
might not produce a good panorama image. Thus, for more stable
and accurate tracking, we generate virtual keyframes and the cor-
responding absolute orientations in advance, and make use of them
during the actual tracking procedure. This strategy is applied for
the creation of panoramas from sample input camera motions as
well as for the live expert evaluation. The system behaves exactly
like Envisor with constant recovery, only more robustly. In our ex-
periments, to generate accurate a-priori virtual keyframes and the
corresponding absolute orientations, we use a camera on a pan tilt
unit by moving it from -15° to 15° in pitch and from -180° to 180°
in yaw.

3.4 Envisor with Selective Recovery

While Envisor with constant recovery is intended to recover its
camera pose with virtual keyframes at every frame, this new vari-
ant, Envisor with selective recovery, attempts recovery only when
it detects that tracking is lost. In this variant, we also replaced
the SURF [1] feature descriptor for landmark features stored in the
sphere map with faster but less invariant image patches. Intuitively,
we expect this method to have slightly better performance than con-
stant recovery as it is a bit more economical with regard to comput-
ing resources.

4 DATA COLLECTION

In order to get a meaningful data set for our evaluation, we col-
lected head orientation information from 23 casual users over a set
of 9 tasks. Of the 9 tasks, 5 had consisted of largely varying du-
rations and amount of area covered. This reduced our pool to 92
usable sets. From these we randomly selected 45 sets for which
we would record ground truth information. The samples in our col-
lection of 45 were taken from users performing two distinct tasks.
The subjects were campus students with little to no experience with
AR. Each subject was given a small monetary compensation for
their participation. The participants were asked to perform their
tasks while wearing a hat with an attached orientation tracker (In-
terSense InertiaCube2 [5]). Between each run the tracker was cal-
ibrated in order to ensure that the motion data collected accurately
matched the view of the participant. This was done by having the
students boresight an object at a known height and distance from
their starting position.

For the first task, the participants were asked to look around them
for a full 60 seconds in order to observe as much as possible about
their surroundings. After this they were asked a question about
their surroundings as motivation for continued searching. This task
was repeated 3 times. They were informed that the questions asked
would not be related, in order to avoid, as much as possible, a ques-
tion changing the student’s focus. For example, our first question
was "How many trees are around you?” We made it clear that the
questions would not be similar to each other.

The second set of data was collected from a simple search task.
In this task the object the user was looking for was not present in the
scene. While some users became suspicious, many were not as the
previous search tasks had all contained the sought items. All of par-
ticipants continued to search their surroundings for a full minute, at
which time they were asked to stop. The data collected is therefore
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Figure 1: Users were asked to rank panoramas generated by each
of the four methods used, a) the interface they used b) users were
able to click on an item to compare it to a ground truth panorama.

representative of a casual user going about both observational and
search tasks.

5 [EVALUATION

In this section we discuss the details of each of the three evaluations
performed on the systems tested.

Tracking Error The ground truth values for each video were
obtained by mounting a camera on a PTU-D46 pan tilt unit [4] from
Directed Perceptions. The pan tilt unit has an upper speed limit
of 300° per second and a resolution of 0.0514°. We are therefore
able to not only replay head movement at matching positions but
also at the speeds recorded. This allows us to retain motion blur
and other real-life imaging artifacts. We are also able to replay
the same orientation information in multiple locations, providing
a sizable representative set of tracking environments. A measure
of absolute tracking error was then obtained by using each video as
input to the tracking systems and comparing the resulting positional
updates with the ground truth input to the PTU.

The only disadvantage of the PTU stems from some lag in the
number of quickly executed commands. Therefore there was a
small amount of filtering applied to the data from the users. Results
of such filtering are minimal, and were applied before the video
samples were captured by the PTU, and therefore do not affect the
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Figure 2: a) Yaw and pitch values for a single task represented in a
sphere map, with points ranging from red to blue with respect to time
along the path. b) the results of filtering on the path seen in a). ¢) an
overlay of the difference between the two plots with the filtered path
in red and the original in blue.

accuracy of the ground truth values obtained. A sample of the ap-
plied filtering can be seen in Figure 2.

Result Evaluation  For the analysis of the panoramas produced
by each method, we designed a simple ranking program, with the
user interface seen in Figure 1. For each data set, every expert was
shown the panoramas generated by every method simultaneously.
They then selected each panorama and rated them on a scale of 1
to 7. The assigned scores were then displayed on the left-hand side
of the associated panorama. To assist in ranking, users were able
to compare each panorama to a ground truth panorama as seen in
Figure 1(b).

We found that the evaluations were very consistent among users.
We then normalized the results of each users data by subtracting
each vote by the minimum vote for that user and dividing the dif-
ference by their overall range of votes. From this data we were then
able to determine an average ranking over all users, for each method
applied to each data set.

The average ratings of the users for each set of environment maps

was very consistent over each of the methods. Performing an analy-
sis of variance single factor test with the independent variable being
the method and the dependent variable being the ratings, resulted in
a residual of 1:1940 with F = 572 and p < 0.0001. The results
from a set of corresponding Tukey Post-hoc evaluations are shown
in Figure 3. The graph shows pairwise comparisons between the
scoring of each method with distance from the center line indicating
increased difference between the methods. Methods not interesect-
ing the vertical line are significantly different. Note that all methods
were significantly pairwise different with the exception of constant
recovery compared with selective recovery in the indoor case. This
is important as it implies users were able to differentiate methods
as more or less robust.
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Figure 3: Results of a Tukey multiple comparison of means given
an ANOVA comparison for a) indoor and b) outdoor showing that
the evaluations of the panoramas are statistically different for each
method with the exception of constant and selective recovery, which
fits with our expectations. (NR: original version of Envisor (No Recov-
ery), CR: Envisor with constant recovery, SR: Envisor with selective
recovery, CRS: Envisor with pre-scanning)

Live Evaluation For the live evaluation, we had 5 expert users
evaluate each system in a live demonstration. In order to ensure a
fair comparison, we had each user rank each method four times for



a total of 16 randomly ordered runs. The evaluators were asked to
rank each system from 1 to 7, and then we normalized and averaged
the results for this evaluation similar to the panorama evaluation
results.

Table 1: First row, relative distance to ground truth in degrees. Sec-
ond row, ratings assigned to the panorama output data (scale 1 poor
to 7 perfect). Third row, the robustness ratings from the live eval-
uation (scale 1 poor to 7 perfect). (NR: original version of Envisor
(No Recovery), CR: Envisor with constant recovery, SR: Envisor with
selective recovery, CRS: Envisor with pre-scanning)

NR CR SR CRS

Distance to ground truth (°) | 26.75 | 8.08 | 16.38 | 3.27
Panorama evaluation 2.03 3.12 3.54 5.41
Live evaluation 1.63 | 395 | 4.03 6.05

6 RESULTS

We present a comparison of each of the methods in Table 1. The
values of orientation error are measured in degrees while the values
for each of the evaluations are on a scale of one to seven with seven
being the best.

Clearly the original version of Envisor is the worst of the tested
methods, and Envisor with pre-scanning performs the best. How-
ever the selective and constant recovery methods are not so clearly
differentiated. From the qualitative evaluations alone, selective re-
covery is the better of the two methods, however this is not the case
based on the measure of absolute orienation error.

While the values of the results are not directly comparable due
to differences in units, the relative distances are useful. These dis-
tances are very similar for both of the evalution methods, with se-
lective and constant recovery being very closely related with respect
to the other two methods. The difference between the qualitative
and quantitative measurements implies that there is not a direct lin-
ear mapping between error and qualitative robustness. Therefore
determining one value from ther other requires a more complex

mapping.
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