
UCSB Computer Science Technical Report 2010-04.

ElasTraS: An Elastic, Scalable, and Self Managing
Transactional Database for the Cloud

Sudipto Das Shashank Agarwal Divyakant Agrawal Amr El Abbadi
Department of Computer Science

University of California, Santa Barbara, CA, USA
{sudipto, shashank, agrawal, amr}@cs.ucsb.edu

ABSTRACT

Cloud computing has emerged as a pervasive platform for deploy-

ing scalable and highly available Internet applications. To facili-

tate the migration of data-driven applications to the cloud: elas-

ticity, scalability, fault-tolerance, and self-manageability (hence-

forth referred to as cloud features) are fundamental requirements

for database management systems (DBMS) driving such applica-

tions. Even though extremely successful in the traditional enter-

prise setting – the high cost of commercial relational database soft-

ware, and the lack of the desired cloud features in the open source

counterparts – relational databases (RDBMS) are not a competi-

tive choice for cloud-bound applications. As a result, Key-Value

stores have emerged as a preferred choice for scalable and fault-

tolerant data management, but lack the rich functionality, and trans-

actional guarantees of RDBMS. We present ElasTraS, an Elastic

TranSactional relational database, designed to scale out using a

cluster of commodity machines while being fault-tolerant and self

managing. ElasTraS is designed to support both classes of database

needs for the cloud: (i) large databases partitioned across a set of

nodes, and (ii) a large number of small and independent databases

common in multi-tenant databases. ElasTraS borrows from the

design philosophy of scalable Key-Value stores to minimize dis-

tributed synchronization and remove scalability bottlenecks, while

leveraging decades of research on transaction processing, concur-

rency control, and recovery to support rich functionality and trans-

actional guarantees. We present the design of ElasTraS, implemen-

tation details of our initial prototype system, and experimental re-

sults executing the TPC-C benchmark.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Concurrency, Trans-

action processing; H.3.4 [Information Storage and Retrieval]:

Systems and Software—Distributed systems

General Terms

Algorithms, Design, Performance.

Keywords

Cloud computing, Elastic Data Management, Transactions, ACID,

Scalability, Fault-tolerance.

1. INTRODUCTION
Cloud computing has emerged as a pervasive paradigm for host-

ing Internet scale applications in large computing infrastructures.

Major enabling features of the cloud include elasticity of resources,

pay per use, low time to market, and the perception of unlimited

resources and infinite scalability. As a result, there has been a

widespread migration of IT services from enterprise computing in-

frastructures (i.e., networked cluster of expensive servers) to cloud

infrastructures (i.e., large data-centers with hundreds of thousands

of commodity servers). Since one of the primary uses of the cloud

is for hosting a wide range of web applications, scalable data man-

agement systems that drive these applications are a crucial technol-

ogy component in the cloud. Relational databases (RDBMS)1 have

been extremely successful in the enterprise setting for more than

two decades, but data management in the cloud requires DBMS’s to

be elastic, scalable, fault-tolerant, self managing and self-recovering

– features which most RDBMS’s lack.2 Furthermore, the elasticity

and pay-per-use model of infrastructure in the cloud poses a new

challenge for a cloud DBMS which now has to also optimize its

cost of operation [25]. This facet is not important in an enterprise

setting where upfront investments are made on the infrastructure,

and the goal is to optimize performance for a given infrastructure.

System designers for the cloud therefore favor elastic Key-Value

stores [10–12, 15, 21]. Even though these systems have the desired

cloud features, they provide minimal consistency guarantees and

significantly reduced functionality – thereby placing unprecedented

burden on the application developers who often lack the expertise

to deal with such intricacies [20, 31]. Therefore a huge chasm ex-

ists in terms of data management functionality in the cloud: on one

hand are the RDBMSs which support rich functionality and guar-

antee transactional access to multiple tables but lack the cloud fea-

tures, while on the other hand are Key-Value stores which possess

the cloud features but provide minimal consistency guarantees and

single row based access functionality.

Even before the advent of cloud computing, Internet application

designers had articulated the need for scalable databases. Various

ad-hoc approaches have been used to scale databases in practice.

Popular approaches like Master-Slave configurations, replication,

or use of object caches (such as Memcached) work well for read-

intensive workloads, but are not suited for update-intensive work-

loads. Partitioning (or sharding) a database has been used as a

primary method for providing scalability of updates. Though ex-

tremely useful, large partitioned database installations are often

hard to manage, and partitioning supported by traditional RDBMS’s

is often fraught with various problems (refer to Section 3 for more

details). Furthermore, existing partitioning approaches primarily

address database scalability; the issues of elasticity, fault-tolerance,

load balancing, and the ability to automatically recover from fail-

ures remain largely unaddressed. A DBMS in the cloud should

1RDBMS refers to relational databases like MySQL etc., while DBMS
refers to the general class of data stores, including non-relational systems.
2Some commercial systems (like Oracle RAC and MS SQL Azure) support
some of these features, but no solution exists in the open source domain.

1

S. Das et al., ElasTraS: An Elastic, Scalable, and Self Managing Transactional Database for the Cloud

address all of these issues of elasticity, scalability, fault-tolerance,

and self-manageability, while providing transactional guarantees

which can be used to build useful applications.3

We propose ElasTraS, an Elastic TranSactional relational database

for the cloud which is scalable and elastic to adapt to varying loads,

while being fault-tolerant and self managing to eliminate the ad-

ministration overhead often attributed to a large RDBMS instal-

lation. ElasTraS has been designed to use the Infrastructure as a

Service (IaaS) abstraction of cloud services to provide data man-

agement functionality. ElasTraS can handle both types of databases

commonly found in the cloud: (i) large database instances whose

size ranges are in the order of tens of terabytes and are partitioned

across a cluster of nodes [4, 36]; and (ii) a large number of small

databases commonly observed in a multi-tenant DBMS where each

database is small and corresponds to independent clients, but thou-

sands of such databases are managed by the same system. Concep-

tually, ElasTraS operates at the granularity of partitions – for (i),

each large database instance consists of hundreds or thousands of

partitions, and for (ii), each partition is in itself a self-contained

database, and there are hundreds to thousands of such independent

single-partition databases. Database partitions in ElasTraS are the

granules for load-balancing, elasticity, fault-tolerance, and transac-

tional access. Scalability and high availability is achieved by lim-

iting update transactions to a single partition. For the multi-tenant

case, ElasTraS can provide full transactional RDBMS functional-

ity, while for large database instances, ElasTraS relies on schema

level partitioning of the database to support rich functionality even

though transactions are limited to single partitions. This approach

solves a majority of problems with current partitioning approaches

while leveraging partitioning to scale out on a cluster of commod-

ity servers. In [13], we presented a short preliminary overview of

ElasTraS, and in this paper, we present the rationale, detailed de-

sign, and implementation of the system. Kraska et al [25] proposed

a framework for “rationing” consistency for optimizing the opera-

tional cost. Our design rather maintains consistency as the constant

feature, and leverages from peaks and troughs in usage to deliver

elastic scaling to optimize cost and resource utilization.

ElasTraS is designed to support a relational data model and for-

eign key relationships amongst tables in a database. Given a set of

partitions of the same or different databases, ElasTraS can: (i) deal

with workload changes resulting in the growing and shrinking of

the cluster size, (ii) load balance the partitions, (iii) recover from

node failures, (iv) if configured for dynamic partitioning, then dy-

namically split hot or very big partitions, and merge consecutive

small partitions using a partitioning scheme specified in advance,

and (v) provide transactional access to the database partitions –

all without any human intervention; thereby considerably reduc-

ing the administrative overhead attributed to partitioned databases,

while scaling to large amounts of data and large numbers of con-

current transactions. Note that ElasTraS is not designed to break

the petabyte or exabyte barrier and scale to many thousands of

servers while providing transactional access – only a handful of

enterprises deal with such huge scale, and specialized solutions are

often needed to cater to their specific requirements. Rather, Elas-

TraS has been designed to scale to tens of terabytes of data, and a

few tens of commodity servers – a range that encompasses a ma-

jority of the applications projected to move to the cloud, but lack a

scalable transactional RDBMS that suits their requirements.

We present the design of ElasTraS, provide implementation de-

tails of a prototype system, and demonstrate the feasibility of the

design by experiments based on the standard TPC-C benchmark [34]

3Transactional refers to the ACID properties of database transactions [35].

workload in a cloud infrastructure. For large database instances, we

demonstrate how schema level partitioning can be used to design

practical applications while limiting transactional access to a single

partition. By executing all transactions in the TPC-C benchmark,

we demonstrate that the restriction of limiting transactions to a sin-

gle partition is not a substantial restriction, and practical database

applications can be built using the supported set of operations.

Contributions

• We identify and articulate the design principles which can

be used in designing scalable data management systems with

the cloud features while providing transactional guarantees.

• We propose the design of a system suitable for large sin-

gle tenant databases as well as multi-tenant databases with

a large number of small databases. For large single tenant

databases, we demonstrate how schema level partitioning can

be used to limit transactions to a single partition.

• We provide an implementation design of ElasTraS and use

the TPC-C benchmark [34] for performance evaluation in

Amazon’s cloud. An ElasTraS deployment on a 30 node

cluster with over 1 TB of data served thousands of concur-

rent clients while sustaining a throughput of more than 0.2

million transactions per minute.

2. DESIGN OF ELASTRAS
ElasTraS is designed to handle both large single-tenant databases,

as well as a large number of small databases for multiple tenants [36].

For a multi-tenant database, a tenant’s database is typically small

and fits into a single database partition, while in a large single-

tenant deployment, a database can span multiple partitions. Hence-

forth in this paper, the term partition either refers to a partition of

a database, or a database for a tenant that fits completely in a par-

tition. We now explain the design of ElasTraS assuming that a set

of partitions are provided. We remark that the design of ElasTraS

is not dependent on any partitioning scheme, and the partitioning

technique used is an implementation detail.

2.1 Desiderata for a Cloud bound DBMS
A DBMS deployed in the cloud warrants the following features:

SCALABILITY. The Cloud provides the illusion of infinite resources

which allows applications to easily scale out using the cloud.

Hence a DBMS deployed in the cloud should be able to scale

both with data as well as with the number of users.

ELASTICITY. The pay-per-use model of Cloud and the ability to

dynamically add and remove physical resources (storage and

computing) on-demand, lends elasticity to the cloud. Sys-

tems deployed in the cloud can therefore exploit this elastic-

ity to dynamically expand or shrink as per the observed load

characteristics. This elasticity allows considerable savings in

terms of resources and operational cost when compared to

an under-utilized static system that over-provisions for peak

load.

FAULT-TOLERANCE. As a result of the scale of the Cloud infras-

tructures, and the use of commodity components, failures in

the cloud are a norm rather than an exception. Hence, sys-

tems for the cloud should be designed to handle failures in

order to remain operational (perhaps at a reduced level) in

the presence of failures.

2

UCSB Computer Science Technical Report 2010-04.

TRANSACTIONAL ACCESS. RDBMS provide atomic, consistent,

and durable access to data at various granularities which al-

lows the developers to reason about the data and correctness

of the applications, which further results in simplification of

the design of the applications. Therefore, support for trans-

actions is a desired feature for a DBMS in the cloud.

The above features also enable monitoring the deployed systems

for workload imbalances and failures, and dynamically load bal-

ance heavily loaded servers or dynamically instantiate servers to

replace failed servers while minimizing the need for human inter-

vention.

2.2 Design Rationale
Our approach to infuse cloud features in an RDBMS is grounded

on the same principles that have resulted in virtually unlimited scal-

ability in Key-Value stores. Key-Value stores (e.g., [11,12,15]) treat

a single key (or row) as the fundamental unit of access granularity.

Databases, on the other hand, treat the entire database as a single

unit (from a user’s perspective) and rely on concurrency control

protocols to enable concurrent data accesses. Although applica-

tion developers can potentially access the entire database within a

single transaction, in practice this is rarely the case. Rather, most

data accesses are localized and access only a few related data items

potentially on multiple tables. Based on these observations, we

summarize the design rationales of ElasTraS which are similar to

Key-Value stores, specifically Bigtable [11]:

• Separate System and Application State We refer to the

meta information critical for the proper functioning of the

system as the system state, and the actual data stored in the

DBMS as the application state [1]. For instance, in a dy-

namically partitioned database, the mapping of partitions to

servers (i.e. catalog tables) is a part of the system state. The

system state is critical and needs stringent consistency guar-

antees, but is orders of magnitude smaller and less dynamic

than the application state. On the other hand, the application

state requires varying degrees of consistency and operational

flexibility, and hence can use different and potentially less

stringent protocols for guaranteeing these requirements. This

separation allows for the use of different classes of protocols

and techniques when dealing with the different components

of the system. Protocols with stringent consistency and dura-

bility guarantees (examples include use of Paxos [27]) ensure

safety of the system state without causing a scalability bot-

tleneck, while the application state is maintained using less

expensive protocols.

• Limited distributed synchronization is practical. Use of

light-weight coarse grained locking for loose coupling of the

nodes allows a light weight synchronization mechanism that

scales to a large number of nodes, while obviating expensive

distributed synchronization protocols. Our design uses timed

leases to ensure mutual exclusion for critical operations and

to deal with node failures.

• Limit interactions to a Single Node. Limiting operations

to a single node allows the system to horizontally partition

the load as well as data [1, 23]. In addition, the failure of a

component in the system does not affect the operation of the

remaining components, and allows for graceful degradation

of performance in the presence of failures while obviating

distributed synchronization for the application state. This is

achieved by limiting update transactions to access a single

database partition and hence a single node.

Figure 1: ElasTraS architecture overview.

• Partition a database at the schema level. Most RDBMS

applications have a database schema involving multiple ta-

bles, and transactions often access multiple tables for related

data tuples. Partitioning at the database schema level – unlike

table level partitioning as supported by most RDBMS– al-

lows related data fragments from multiple tables to be collo-

cated in a single database partition. This collocation ensures

support for a rich class of transactions while only accessing

a single partition.

• Decouple Ownership from Data Storage. Ownership refers

to the exclusive rights to access and modify data. Partitioning

ownership therefore effectively partitions the data, while de-

coupling the storage of data from ownership minimizes data

movement and allows a lightweight transfer of ownership

when moving partitions for fault-tolerance, load balancing,

and elasticity. This is achieved by storing data in a decou-

pled distributed storage, and partitioning ownership amongst

transaction managers.

2.3 Design and Architecture Overview
Figure 1 provides a high-level architectural overview of Elas-

TraS. At the bottom of the stack is the distributed storage, which

acts as a fault-tolerant durable storage and decouples storage of

data from the ownership. At the heart of the system are the Own-

ing Transaction Managers (OTM) which own one or more parti-

tions and provide transactional guarantees on them. The TM Mas-

ter of the system is responsible for monitoring the OTMs, recover-

ing from node failures, and performing load balancing and elastic

scaling. The Metadata Manager (MM) maintains the system state,

which comprises of a mapping of the database partitions to their

owners, and the leases. Leases granted by the MM to the TM mas-

ter as well as the OTMs ensure mutual exclusion in critical system

tasks, and provide low overhead distributed synchronization. At

the top of the stack is the ElasTraS client library which applica-

tions link to, and is designed to hide the complexity of locating

partitions in the presence of various system dynamics. We now

provide a conceptual description of the different components of the

system, and the guarantees provided by each component.

Distributed Fault-tolerant Storage (DFS): The Distributed Fault-

tolerant Storage (DFS) is a consistent, append-only, replicated stor-

age manager which can tolerate node failures (mostly single site

failures, and multiple site failures in certain cases) while ensuring

durability of writes. This abstraction of the storage layer provides

fault-tolerance while allowing quick recovery from OTM failures,

without the actual OTM node recovering. The storage layer takes

3

S. Das et al., ElasTraS: An Elastic, Scalable, and Self Managing Transactional Database for the Cloud

care of replication and fault-tolerance, while the OTMs ensure that

the same object or file is not being written to concurrently. We

assume that the storage layer provides consistency guarantees for

reads and writes. Since all the nodes in ElasTraS are located within

the same infrastructure and are connected by a low latency and high

throughput network, such an assumption is reasonable and is sup-

ported by present storage systems such as HDFS [22]. But such

guarantees come at the cost of expensive writes to the DFS, and

hence ElasTraS minimizes the number of DFS accesses.

Owning Transaction Managers (OTM): An OTM executes trans-

actions, guarantees ACID properties, and performs concurrency

control and recovery on partitions. Each OTM is granted exclusive

access rights to the disjoint partitions which it owns. An OTM is

assigned ownership of multiple database partitions, but treats each

partition independently – which and how many partitions an OTM

serves is determined by the TM master, and the design of an OTM

is not dependent on this decision. Each OTM serves about tens

to hundreds of partitions depending on the load on the system. It

relies on the metadata manager to ensure that it has exclusive ac-

cess to a partition. An OTM caches the contents of the partitions

it owns, thereby preventing expensive accesses to the DFS layer.

Exclusive ownership allows caching of updates and the content of

a partition at an OTM without any cross OTM synchronization, or

expensive cache coherence protocols, while being able to provide

strong transactional guarantees at a low cost. To deal with OTM

failures and guarantee durability in the presence of failures, the

transaction commit log of an OTM is stored in the DFS, and the

log entries are “forced” to the DFS on transaction commit.

Figure 1 also shows the components of an OTM: the transac-

tion manager executes the transactions on a partition, and the log

manager is responsible for guaranteeing the durability of commit-

ted transactions while efficiently managing expensive accesses to

the DFS. In addition, an OTM also houses a number of proxies for

communicating with other components in the system.

TM Master: The TM Master is responsible for monitoring and

managing the system and performing the necessary corrective ac-

tions for the proper functioning of the OTMs in the presence of

failures. The responsibilities of the TM master include: assigning

partitions to OTMs, partition reassignment for load balancing and

elasticity, and detecting and recovering from OTM failures. To en-

sure correctness of the operations and safety of the system, there is

only a single active TM master in an ElasTraS deployment, and the

MM ensures this. For fault-tolerance and to avoid a single point

of failure, there are multiple TM master processes executing on

different nodes at any instant of time– but only one of these pro-

cesses can perform the duties of the TM master, the rest are backup

processes waiting to take over in case the acting TM master fails.

The TM master periodically communicates with the OTMs and the

MM to determine the status of the OTMs, the state of the leases,

and the current assignment of the partitions, and makes partition

assignment decisions based on the load characteristics.

Metadata Manager (MM): The Metadata Manager stores the crit-

ical system state [1], viz., the mapping of partitions to OTMs, and

leasing information for the OTMs and the TM master to guarantee

exclusive access and to deal with failures and dynamics in the sys-

tem. The MM also maintains timed leases that are granted to the

OTMs and the TM master which have to be periodically renewed.

The MM guarantees that at any instant, a lease is owned by only a

single node. Since this information is critical to the correct func-

tioning of the system, to ensure fault-tolerance, the state machine of

the MM is replicated on multiple nodes in order to be able to toler-

ate node failures, and a protocol with stringent safety guarantees is

used to ensure consistent state replication (see Paxos and a variant

ZAB [27, 32]). This protocol ensures safety of data in the presence

of arbitrary failures and network partitions, while liveness is en-

sured if a majority of replicas can communicate. This design of the

MM is reminiscent of the design of Chubby [9] used in a number

of systems at Google [11]. Since the MM only stores the meta in-

formation which is extremely small, is not frequently updated, and

also does not reside in the data path, the MM is lightly loaded and

is not a scalability bottleneck. But the availability and liveness of

the MM is critical for the proper functioning of ElasTraS.

3. SCHEMA LEVEL PARTITIONING
In this section, we discuss the partitioning of a database to allow

ElasTraS to scale out when dealing with large database instances.

Recall that partitioning is needed only for large database instances,

and in the case of a multi-tenant database, each database instance

is small and fits into a single database partition. Partitioning is a

common technique used for scaling databases, particularly for scal-

ing updates, by distributing the partitions across a cluster of nodes,

and routing the writes to their respective partitions. But managing

large RDBMS installations with a large number of partitions poses

huge administrative overhead primarily due to the following rea-

sons: partitioning itself is a tedious task, where the database admin-

istrator has to decide on the number of partitions, bring the database

offline, partition the data on multiple nodes, and then bring it back

up online.4 Additionally, the partitioning and mapping of partitions

to nodes are often static, and when the load characteristics change

or nodes fail, the database needs re-partitioning or migration to a

new partitioned layout, resulting in administrative complexity and

downtime. Furthermore, partitioning is often not transparent to

the application, and applications often need modification whenever

data is (re)partitioned. Moreover, most database systems only sup-

port partitioning at a single table level and do not automatically

collocate partitions of two related tables for access locality. This

often results in expensive cross-partition operations, and the appli-

cation logic has to ensure the correctness of such cross-partition

operations since the DBMSs often do not support such operations.

Schema level partitioning allows designing practical and mean-

ingful applications while being able to restrict transactional access

to a single database partition. The rationale behind schema level

partitioning is that in a large number of database schemas and ap-

plications, transactions only access a small number of related rows

which can be potentially spread across a number of tables. This

access or schema pattern can be used to group together related data

into the same partition, while allowing unrelated data in different

partitions, and thus limiting accesses to a single database partition.

A canonical example is a “Tree schema” where one table in the

database acts as the root of the schema tree, and the primary key of

the root table appears as a foreign key in the rest of the tables. All

database accesses use the primary key of the root table, and hence,

the tables in the database can be partitioned using the primary key

of this root table. The TPC-C schema [34], which represents an

e-commerce application, provides an example. The TPC-C schema

comprises of nine tables in total, with the Warehouse table as the

root table, and all tables (except the Items table) have the w_id (the

primary key of the Warehouse table) as a foreign key, allowing the

database to be partitioned using w_id. The Telecom Application

Transaction Processing (TATP) benchmark 5 is another example of

a tree schema. We remark that the use of tree schema for partition-

ing in an implementation choice, and the design of ElasTraS is not

4See http://highscalability.com/unorthodox-approach-database-
design-coming-shard for a related discussion.
5http://tatpbenchmark.sourceforge.net/TATP_Description.pdf

4

http://tatpbenchmark.sourceforge.net/TATP_Description.pdf

UCSB Computer Science Technical Report 2010-04.

(a) TPC-C Schema. (b) Latent tree structure. (c) Partitioning leveraging tree structure.

Figure 2: Schema Level Partitioning of the Database using TPC-C schema as an example.

tied to it. Furthermore, ElasTraS can be configured for both static

as well as dynamic partitioning. Unlike the statically partitioned

configuration whether the partitions are statically determined, for a

dynamically partitioned configuration, ElasTraS is also responsible

to split a partition when it grows big, and merge partitions (if they

can be merged) when a partition has too little data.

We now provide an example where specific properties of a database

schema is used for schema level partitioning in the TPC-C schema.

Typically, many database schemas have a latent tree structure which

can be leveraged for effective partitioning, and are referred to as

“Tree schemas” [24]. For instance, consider the TPC-C schema [34]

illustrated in Figure 2(a). The Warehouse table, which also deter-

mines the size of the database, drives a foreign key relationship

(direct or indirect) with all other tables except the Item table. Ad-

ditionally, all tables except the Stock and Order-Line tables have

only a single foreign key relationship. Interestingly, the Item ta-

ble is a static table whose size does not change during the execu-

tion of the benchmark. If we only consider the growing tables,

and depict tables as vertices and the foreign key relationship as

directed edges between the vertices, the resulting graph is a tree

with Warehouse as the root (Figure 2(b)). We refer to the root ta-

ble as the Primary Partition Table, and other nodes of the tree

as the Secondary Partition Table. Based on this tree structure,

the database is partitioned as follows: the Primary Partition Table

is partitioned independent of the other tables using its primary key.

Since the primary table’s key is part of the keys of all the secondary

table, the Secondary Partition Tables are partitioned based on the

primary’s partition key. In the TPC-C schema, the w_id attribute is

the primary key of the Warehouse table and hence is used for par-

titioning the secondary tables. For example, if w_id 100 belongs

to partition P1, then all the rows of tables District and Stock

with foreign key w_id 100 must also be mapped to partition P1 to

ensure access locality. This same partitioning scheme is used to

partition the rest of secondary tables at all levels of the tree. This

partitioning scheme allows collocation of all related rows from dif-

ferent tables into a single partition, and thus minimizes the need for

cross-partition update transactions.

An important observation is that even though the Customer ta-

ble has District as its parent, it is the keys of the Primary Table

Warehouse that determines how the Customer table (and all other

tables in the tree) is split. As a result, even though the Order-Line

table has multiple parents, it still does not cause any complications

since both parents share the Warehouse table as their ancestors,

and one of the incoming edges to the Order-Line table can be

ignored (as shown in Figure 2(b) where the edge between Stock

and Order-Line is represented as a dashed line). Note that the

only exception is the Item table. Since the Item table is read-only,

and is primarily used as a lookup table, there is no need to split

it. Rather such static lookup tables are replicated on all the parti-

tions of the database. We refer to such read-only tables as Global

Tables. Since the global tables are primarily used as a read-only

lookup table, transactions need not validate the reads on global ta-

ble(s). Figure 2(c) provides an illustration of the proposed parti-

tioning scheme.

Note that since the contents of the global tables is the same for

all the partitions of the same database, and since an OTM can po-

tentially host multiple partitions of the same database, replicating

a global table at every partition is wasteful. In ElasTraS, global

tables are rather replicated at the level of OTMs (see Figure 2(c)),

i.e., an OTM hosting at least one partition of a database will host

only a single copy of the global table(s) in that database. An OTM

loads the global tables when it starts serving the first partition of a

database, and only serves global tables for databases for which the

OTM is serving at least one global table.

4. IMPLEMENTATION DETAILS
We now explain the details of the ElasTraS prototype. Note that

each OTM in ElasTraS is analogous to a single node relational

database. We implement our own custom TM due to the follow-

ing reasons: First, most open source database implementations are

not designed to operate using the append-only semantics supported

by the DFS. Since the DFS is a crucial part of the ElasTraS design

to ensure fault-tolerance, and most open-source DFS implementa-

tions support append only semantics, the TMs have to adhere to the

semantics of the DFS. Second, ElasTraS relies on schema level par-

titioning where a database partition consists of a number of related

tables, and must support the dynamic reassignment of partitions to

TMs. Most open source RDBMS support only partitioning at the

level of single tables, and do not provide off the shelf support for

dynamic partition assignment. Due to the similarity in the design

of ElasTraS with Bigtable [11], a lot of design and implementa-

tion choices are borrowed from the design of Bigtable and its open

source counterpart HBase [21].

4.1 DFS and Metadata Manager
Our implementation uses the Hadoop Distributed File System

(HDFS) [22] as the distributed fault-tolerant storage layer. HDFS

provides all the guarantees of a DFS outlined in the Section 2.3.6

HDFS differs from POSIX compliant replicated file systems, and

provides low cost block level replication. An HDFS deployment

cinsists of a number of DataNodes (DN) which store the data, and

6Earlier versions of HDFS had issues with durability for appends, but the
latest (unreleased) version 0.21.0 provides stable append functionality.

5

S. Das et al., ElasTraS: An Elastic, Scalable, and Self Managing Transactional Database for the Cloud

Figure 3: Structure of ElasTraS Catalog.

a write is acknowledged only when it has been replicated in mem-

ory at a configurable number of DNs. Since DFS writes are more

expensive compared to normal disk writes, ElasTraS has been de-

signed to optimize the number of writes to HDFS, and batch writes

whenever possible.

For the Metadata Manager, we use Zookeeper [37]. Zookeeper

uses a variant of the Paxos protocol [27], referred to as the Zookeeper

Atomic Broadcast (ZAB) [32], for guaranteeing strong consistency

amongst the replicas. Zookeeper exposes a file system interface

to the clients (referred to as znodes), where a zookeeper client is

atomically granted exclusive access to a znode for a certain period

of time. This primitive is used for implementing the timed leases

which are granted to the OTMs and the TM master. Zookeeper

clients have to periodically renew the lease on a znode, and fail-

ure to do so results in the lease becoming available, and can be

granted to another node requesting the lease. To reduce load on the

system and the overhead of polling a znode to become available,

Zookeeper allows registering watches, and the watchers are noti-

fied whenever there is a change in the status of a znode for which

it has registered a watch. Each OTM and the TM master acquires

exclusive write access to a znode corresponding to the server and

writes its IP address to the file of the znode. An OTM or the TM

master is operational only if it owns its znode. The IP addresses in

the znodes are then used by the OTMs to locate the TM master and

the TM master to know about the OTMs in the system. The OTMs

register a watch on the master’s znode, while the TM master regis-

ters watches for each OTM’s znode. This event driven mechanism

allows ElasTraS to scale to large numbers of OTMs.

4.2 Catalog
ElasTraS uses dynamic partition assignment for fault-tolerance,

load balancing, and elasticity. It thus maintains catalog informa-

tion for a mapping of the partitions to the OTMs which are serving

the partition. This information is critical for the health and proper

functioning of the system, and hence we categorize this information

as the system state [1] and is maintained in the metadata manager.

The actual implementation of the catalog tables is dependent on the

partitioning scheme used. In this section, we explain the detailed

implementation of the catalog table for the partitioning scheme for

“Tree schemas” described in Section 3.

Recall that when partitioning the tree schema, the primary key

of the primary partition table is used as the partition key. In our

current implementation, we range partition the keys of the primary

partition table, and assign different key ranges to different parti-

tions. To maintain the mapping of ranges, a three level hierarchy

structure similar to a B+ tree is used with some minor modifica-

tions (this structure is also very similar to that used in Bigtable for

tablet location [11]). Figure 3 provides an overview of the structure

of the ElasTraS catalog. Each node in the structure is a database

partition, the first two levels consist of partitions from special sys-

tem databases, while the third level consists of the partitions for the

databases which are stored in ElasTraS. The root of the structure

is a database referred to as ROOT, and the next level is a database

referred to as META. Each of these system level databases are com-

prised of only single tables. The ROOT is a special database which

always consists of a single partition, and stores the locations of the

META database partitions, while the META database partitions store

the locations of the user level database partitions. A partition in

ElasTraS is identified by the name of the database to which the par-

tition belongs, the start key of the partition, and a unique identifier

of a partition assigned to it at the time of its creation. The start key

of a partition corresponds to the start of the range of the primary

table’s key which belongs to the partition. These three attributes

together form the key for the ROOT and META database tables. Since

the ROOT is never split, the Catalog structure is always a three level

structure. Since the Catalog database partitions (i.e. the first two

levels of the structure) are equivalent to user level database par-

titions, they can be served by any live OTM in the system. The

metadata manager only maintains the address of the OTM which

is serving the ROOT, and this information is used by the ElasTraS

clients to determine the mapping of partitions to the OTMs.

4.3 Client Library
The ElasTraS client library provides a wrapper for the system,

and is designed to hide to complexity of looking up and opening

connections with the OTM that is serving the partition to which a

transaction request is issued, and also hides the dynamics of the

system due to nodes failing or partitions being moved for load bal-

ancing and elasticity. The application clients link to an ElasTraS

client library to submit the transactions, and the ElasTraS client is

responsible for looking up the catalog information and route the

request to the appropriate OTM, retry the requests in case of any

failure, and re-route the requests to the new OTM when a partition

moves as a result of a failed OTM or for load balancing. In a more

traditional web-services architecture, the client library is equivalent

to a proxy/load balancer, except that it is linked with the application

server and executes at the same node.

An ElasTraS client determines the location of the OTM serving

a specific partition by querying the catalog tables (Figure 3). When

a client makes the first connection to ElasTraS, it has to perform a

three level lookup: (i) a query to the MM to determine the location

of the ROOT, (ii) a query to the ROOT to determine the location of

the appropriate META for the partition to be accessed, and (iii) a

query to the META to determine the location of the OTM serving

the partition. This first lookup is expensive, but a client caches

this information for subsequent accesses to the same partition. The

catalog tables are accessed again only if there is a cache miss, or an

attempt to connect to a cached location fails. Performance is further

improved by pre-fetching rows of the catalog tables to reduce the

latency of subsequent lookups for different partitions.

4.4 Transaction Management
Concurrency Control: The OTMs are responsible for executing

transactions on the partitions. As noted earlier, an OTM resem-

bles a single node transactional RDBMS. Standard concurrency

control techniques [5, 17, 26] can therefore be used for transaction

management in an OTM. In our prototype, we chose to implement

Optimistic Concurrency Control (OCC) [26] which guarantees se-

6

UCSB Computer Science Technical Report 2010-04.

rializable execution of transactions. In OCC, transactions do not

obtain locks when reading or writing data, they rather rely on the

optimistic assumption that there are no conflicts with other concur-

rently executing transactions. Before a transaction commits, it thus

has to be validated to guarantee that the optimistic assumption was

indeed correct and the transaction did not conflict with any other

concurrent transaction. In case a conflict is detected, the transaction

is aborted and rolled back. If validation succeeds, the transaction

is committed and the updates of the transaction, which were kept

local to the transaction till this point, are made global and visible

to other transactions. We implemented parallel validation of trans-

actions which requires a very short critical section for validation,

and hence permits more concurrency. More details of OCC and

parallel validation can be found in [26]. Note that if transactions

do not require serializable isolation, then weaker forms of isolation

(for instance Snapshot Isolation [5]) can also be implemented in the

OTM to allow more concurrency.

Efficient Log Management: Logging is a critical aspect to guar-

antee durability of committed transactions in case of OTM failures.

Every update made by a transaction is appended to the write ahead

log (WAL). Before a transaction commits, the appends to the WAL

do not require any durability guarantees and hence can be buffered.

Once a transaction has successfully validated, and before it can

commit, a COMMIT record for this transaction is appended to the

log, and the log is forced to DFS to ensure durability of the trans-

action. To allow quick recovery from OTM failures, and recovery

of the state of a failed OTM, ElasTraS maintains the transactional

WAL in the DFS. Since the WAL is append-only, it adheres to the

requirements of the DFS. The following optimizations are made to

the log implementation to minimize expensive DFS accesses: (i)
no entry is made to mark the start of a transaction, (ii) a COMMIT en-

try is forced only for update transactions, (iii) no log entry is made

for an aborted transaction, the absence of a COMMIT record implies

an abort, (iv) group commits are implemented to batch forcing of

writes and to commit transactions as groups [35], and (v) to pre-

vent one log thread which is appending to the DFS from blocking

other appends, two log threads sharing a common log sequence

number (LSN) and writing to two separate files are used [11]. (i)
and (ii) ensures that there are no unnecessary log writes for read-

only transactions. Buffering and group commits allow the batching

of updates and are optimizations for improving throughput. To fur-

ther reduce the number of DFS accesses, a single WAL is shared by

all the partitions at an OTM. Each log entry therefore has a partition

identifier to allow the association of log entries to partitions during

recovery. Some DFS writes might observe stalls owing to various

intermittent error conditions, and (v) allows one thread to continue

processing the log requests, while another thread performs these

writes. These optimizations ensure that transaction performance

is not affected significantly even though the WAL is stored in the

DFS.

Buffer Management: Similar to a buffer pool in databases, an

OTM in ElasTraS maintains an in-memory image of the updates of

the most recent transactions, which are periodically flushed to the

DFS. This flush is equivalent to a checkpointing operation in an

RDBMS [35]. But buffer pool management in ElasTraS has one

marked difference compared to that in traditional databases. Ow-

ing to the append-only nature of the DFS, any database pages in the

DFS are immutable, and new updates are appended to new pages.

For this, we use a design similar to SSTables in Bigtable [11, 21]

which were designed to deal with append only file system seman-

tics, while allowing efficient reads. Furthermore, since updates to

the rows are not in place, reads must merge the contents of the

SSTables on disk to the main memory buffer of updates.

4.5 Storage and Buffer Management
Storage Layout. The append-only nature of the DFS does not al-

low ElasTraS to leverage from the page based model of storage

commonly used in RDBMS [35]. We therefore chose a format for

storing data which has been particularly designed for append-only

storage. This design is similar to the design of SSTables which

are used for storing data in Bigtable [11]. Unlike a database page

which is modified in-place, an SSTable is an immutable structure

where data is kept sorted by the keys of the tables, and supports

fast lookups and scans. The structure of an SSTable is very similar

to a row-oriented database page organization with one single dif-

ference: instead of rows stored in the database page, an SSTable is

a collection of blocks. Similar to database pages, an SSTable also

stores an index of blocks which is used to determine the locations of

blocks within an SSTable. More details of the SSTable layout and

implementation optimizations can be found in [11]. In Bigtable,

a row-key is an uninterpreted string of bytes, while in ElasTraS a

row’s primary key can itself have a structure and be comprised of

a number of attributes. To accommodate this added feature, only

the comparator of the row key needs modification so that it is cog-

nizant of the internal structure of the row-key and it does not view

the keys as an uninterpreted string of bytes.

Buffer Pool Management. The append-only nature also requires a

change in how the buffer pool is managed inside an OTM. It is com-

mon for a DBMS to cache the contents of database pages in a buffer

pool while the pages are accessed. ElasTraS also performs similar

caching of the contents of the SSTables. But since updates are not

allowed in place, contrary to that of pages in an RDBMS, a differ-

ence arises in how updates are handled. In ElasTraS, updates are

maintained as a separate main memory buffer which is periodically

flushed to the DFS as new SSTables. Flushing of the update buffers

to the DFS is performed asynchronously without blocking new up-

dates. Old log entries are also cleaned up as the write buffers are

flushed. The append-only semantics allows for more concurrency

for reads and writes, but also adds two new design challenges: (i)
updates to the rows in the database render old data obsolete, and

SSTables stored in the DFS are thus fragmented by the presence of

stale data, and (ii) in order to make reads see the latest updates,

the results of reads should be merged with the SSTable cache and

the new updates buffer. Addressing (i) is similar to garbage collec-

tion and is discussed in Section ??. We address (ii) in a manner

similar to [11] by merging the in-memory updates cache with the

SSTable cache, and since in both cases, data is kept sorted by keys,

the merge is efficient, and once merged, this merged result is incre-

mentally maintained. An LRU policy is used for the buffer pool,

and eviction of a buffered SSTable is done by removing it from the

buffer and does not result in any DFS writes.

Garbage Collection. Every time the write buffer is flushed to the

DFS, a new SSTable is created. Since read operations need to

merge the contents of the SSTables with that of the write buffer,

having too many SSTables will lead to high cost of reads. Further-

more, as noted earlier, since SSTables are immutable, this creates

holes as data is updated. To deal with these issues, SSTables are pe-

riodically defragmented, and small SSTables are merged into larger

SSTables (referred to as Compaction in [11]). Since a new SSTable

is created as a result of this garbage collection and merge phase,

reads can proceed while the merge is in progress, and are blocked

momentarily only when the new SSTable replaces the old ones.

4.6 Fault tolerance in ElasTraS
Overall system recovery. Every OTM periodically sends heartbeat

messages to the TM master to report its status, and the load on the

different partitions which this OTM is serving. The master uses this

7

S. Das et al., ElasTraS: An Elastic, Scalable, and Self Managing Transactional Database for the Cloud

information for load balancing and elasticity. Recall that the MM

maintains leases (or znodes) for all the OTMs and the TM master,

and the TM master registers watches on the znodes for the OTMs.

In case of a failure of an OTM, the TM master times out on the

heart beats from the OTM, and OTM’s lease with the MM also ex-

pires. The master then atomically deletes the znode corresponding

to the failed OTM. This deletion ensures that if the lease timeout

was the result of a network partition, the OTM will not be able to

serve the partitions once it re-establishes contact with the MM. An

OTM, on the other hand, will stop serving its share of partitions if it

looses the lease with the MM. This ensures safety of the system in

the presence of network partitions. Once the znode for a failed or

partitioned OTM is deleted, the master now has ownership of the

partitions owned by the failed OTM, and reassigns them to other

live OTMs. Once assigned access to a failed partition, an OTM

performs recovery on the partition, before the partition is brought

online. Note that the DFS allows recovery of the partitions and

obviates the need to wait for the failed OTM to come back online.

ElasTraS also tolerates failures of the TM master. Recall that

the TM master also has an associated znode, and the acting TM

master owns the lease for this znode, while the standby TM master

processes register watches on this znode. In case of a failure of

the acting master, its lease on the znode expires, and the standby

masters are notified of this change. The MM ensures that only one

of these processes is granted the lease. On successfully acquiring

the lease, the new master node writes its IP address to the master’s

znode, and becomes the new TM master for the system. The OTMs

also register watches on the master’s znode, and are notified of this

change in leadership. The OTMs read the address of the new master

and use it for sending future heartbeats. Note that a TM master fail

over does not affect client transactions in progress since the master

is not in the access path of the clients.

Recovery of an OTM. Write ahead logging and forcing of log en-

tries before transaction commit ensures durability and transaction

recoverability. On detecting a failed OTM, the TM master reassigns

the partitions owned by the failed OTM to other live OTMs, and the

new OTM performs recovery on the partition before the partition is

back online. In the present implementation, uncommitted data is

never pushed to the DFS, and hence, only REDO recovery [35] is

needed. The OTM reads through the WAL and recreates the buffer

pool to recover updates from all the committed transactions. Only

those transactions that have a COMMIT record in the WAL are con-

sidered committed. Once the REDO pass over the WAL is com-

plete, the contents of the buffer pool is flushed to the DFS, old

files are deleted, and the OTM starts serving the partition. Version

information in the SSTables is used to guarantee idempotence of

updates, and guarantees safety and correctness with repeated fail-

ures [35].

4.7 Elasticity and Load Balancing
Elasticity is one of the major goals of the design of ElasTraS

and not only allows the system to react to increases in load on the

system, but also to reduce the operating cost of the system dur-

ing usage troughs. The TM master is responsible for performing

elastic load balancing of the partitions across the system. Every

live OTM periodically sends heartbeats to the TM master which

includes information about the load on the OTM, i.e., the num-

ber of partitions, the number of requests per partition, and other

system usage parameters. The TM master aggregates this informa-

tion across the entire system over a period of time to infer the load

characteristics. In the present implementation, a threshold based

algorithm is used to make a decision of increasing (or decreasing)

the number of OTMs. If the system load is above a threshold, then

new OTM instances are added to the system. When a new OTM

starts, it obtains its lease and the address of the TM master from the

MM, and reports to the TM master. On receipt of the first report,

the TM master’s load balancing algorithm selects some partitions

from the list of online partitions, informs the corresponding OTMs

to stop serving the partitions. Once the OTMs stop serving the

partitions, the TM master assigns them to the new OTM(s). On

the other hand, if the TM master determines that the load on the

OTMs is less than the threshold, it consolidates the partitions to

decrease the number of OTMs. The TM master determines which

OTMs to terminate, and notifies the OTMs, which then close the

partitions and terminate themselves. Once the partitions are closed,

the TM master reassigns them to the set of live OTMs, which can

then start serving these partitions. Since this transfer of ownership

is coordinated by the TM master, it is fast, and involves flushing

the buffer pool and closing the partitions at the old OTM, reopen-

ing the partitions at the new OTM, and updating the catalog tables

at the MM to reflect this new assignment. No transfer of leases

or recovery of partitions is needed as in the case of OTM failures.

In the present implementation, the transactions in progress on the

partitions being transferred are aborted and have to be restarted at

the new OTM. The ElasTraS client library hides this complexity by

retrying these aborted transactions, and routing the transactions to

the new OTM. The application clients will notice an increase in the

latency of some transactions, but the latency smoothes out as the

system stabilizes. Since partition migration introduces additional

cost in terms of the lost work of aborted transactions and warming

up the cache at the newly assigned OTM, a high penalty is asso-

ciated with partition reassignment, and the load balancer decides

on adding (or removing) OTMs only if a change in load and usage

patterns is observed over a period of time. This prevents the master

from reacting immediately on short duration load spikes.

4.8 Parallel Analysis Queries
One of the design rationales of ElasTraS was to limit interactions

of update transactions to a single machine. This design allows the

system to scale out horizontally. We assume that nodes in Elas-

TraS are connected through a low latency and high throughput net-

work. In such a scenario, a distributed transaction involving mul-

tiple OTMs and using 2 Phase Commit (2PC) [19] style of atomic

commitment protocol might be realistic in terms of latency. But

we do not support it in the present implementation primarily due

to the following two reasons: (i) guaranteeing global serializabil-

ity would require a common 2PC coordinator which can become a

scalability bottleneck, and (ii) the blocking nature of 2PC on fail-

ure of the transaction coordinator can lead to performance degra-

dation and reducing the availability of the system until the state of

the master is recovered. We rather provide support for distributed

ad-hoc read-only queries which can be executed at the Read Com-

mitted isolation level [5]. This lower level of isolation obviates the

need for a 2PC type of protocol and global validation of the trans-

actions, and it also gels well with the update transactions validated

through OCC. When the client receives such a query, it dispatches

the query in parallel to all the partitions relevant to the query. The

partitions independently execute the queries, and the client merges

the results from all the OTMs before returning them to the client.

Since partitioning using the tree schema ensures that rows from all

tables with related keys are collocated in a partition, the most fre-

quent joins, where two tables are joined on the foreign keys, can be

computed local to a partition. Note that we do not support across

partition joins which includes joins on non-key attributes which are

extremely infrequent.

8

UCSB Computer Science Technical Report 2010-04.

Figure 4: Cluster setup for the experiments.

5. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the performance of

ElasTraS on a cluster of machines in the Amazon Web Services

Elastic Compute Cloud (EC2) infrastructure. We evaluate the per-

formance of ElasTraS using the TPC-C benchmark [34] which mod-

els the transactional workload of an online e-commerce store. We

evaluate scalability in terms of latency of individual transactions

and the transaction processing throughput of the entire system as

the number of concurrent client transactions, the size of the database,

as well as the number of OTMs increases. We also measure the

elasticity of the system with changes in the load characteristics and

its impact on the cost of operation. We evaluate ElasTraS for a

single large TPC-C database instance. Note that the implementa-

tion and operation of ElasTraS is not dependent on the single-tenant

or multi-tenant configuration; ElasTraS views both configurations

as a set of partitions and client transactions update only a single

partition. Therefore, a similar trend for the experimental results is

expected to follow for the multi-tenant configuration as well. In

the TPC-C benchmark, the Warehouse table is the scaling factor,

and its size determines the amount of data in the database as well

as the maximum possible number of clients. We configured Elas-

TraS with static partitioning with 10 warehouses per partition. The

number of warehouses is varied from 1000 to 3000 as we scale up

the number of OTMs from 10 to 30, and therefore, the number of

partitions also scale up from 100 to 300. Each warehouse has about

280 MB of data; therefore with 3000 warehouses, the ElasTraS de-

ployment manages about 850 GB of data (about 2.5TB data in DFS

with 3X replication).

5.1 Experimental Setup
The experiments were performed on a cluster of machines in

Amazon EC2. All machines in the cluster were “High CPU Ex-

tra Large Instances” (c1.xlarge) with 7 GB of memory, 20 EC2

Compute Units (8 virtual cores with 2.5 EC2 Compute Units each),

1690 GB of local instance storage, and a 64-bit platform. Figure 4

provides an illustration of the experimental cluster setup. ElasTraS

is implemented in Java and uses a number of open-source compo-

nents from the Hadoop project. We used HDFS version 0.21.0-

SNAPSHOT [22] (checked out from the 0.21 branch, which corre-

sponds to the next slated release version of HDFS with durabil-

ity guarantees on appends) as the distributed storage layer, and

Zookeeper version 3.2.2 [37] for distributed lease and metadata

management. Since the health of Zookeeper is critical for the proper

functioning of ElasTraS, an ensemble of servers is used for running

Zookeeper so that the Zookeeper state can be replicated on multi-

ple nodes. In an ensemble of (2n + 1) nodes, Zookeeper can tol-

erate up to n node failures. In our configuration, we used a 3 node

Zookeeper ensemble; we refer to these machines as the Master En-

semble. The nodes in the master ensemble also host the ElasTraS

Master(s), as well as the NameNode and Secondary Namenode of

HDFS. A separate ensemble of nodes, referred to as the Slave En-

semble, is used to host the slave processes of ElasTraS and HDFS:

namely the ElasTraS OTMs which serve the partitions, and the Data

Nodes of HDFS which store the filesystem data. The number of

nodes in the slave ensemble varied from 10 to 30 during various

stages of the the experiments. At the peak capacity, the ElasTraS

deployment has 30 OTMs, which amounts to about 210 GB of main

memory, about 48.5 TB of disk space, and 240 virtual CPU cores.

Together the Master and the Slave Ensembles constitute the data

management infrastructure. Application client processes were ex-

ecuted on different nodes, but under the same infrastructure. The

number of application client nodes used varied based on the load

being simulated and the size of the database.

The latency of a transaction is measured as the time taken from

submitting the transaction by the client to the time when the re-

sponse was received, averaged over all the transactions. Trans-

actions are executed as stored procedures, and the clients param-

eterize these transaction invocations. Throughput is measured as

the overall end-to-end throughput of the system for executing the

workload. We take an average of the total execution times of each

of the clients, and use this as the time taken to complete the work-

load. The total number of transactions completed by all the clients

and the total time taken to compute the workload together gives the

overall system throughput. For our measurement, we first load the

data into the system, perform an initial un-timed execution of the

workload to warm-up the OTMs, and then perform the final timed

run whose results are reported.

5.2 TPC-C Benchmark
In our experiments, we evaluated the performance of ElasTraS

by executing the TPC-C benchmark [34] workload representing a

standard OLTP workload. This workload is a mixture of read-only

and update intensive transactions that simulate the activities found

in complex OLTP application environments. The benchmark por-

trays a wholesale supplier with a number of sales districts and as-

sociated warehouses. There are nine tables in the TPC-C database

(refer to Figure 2(b) for a description of the tables, and to the spec-

ifications [34] for details and schema for the tables). The bench-

mark suite consists of five transactions representing various busi-

ness needs and workloads: (i) the NEWORDER transaction which

models the placing of a new order through a single database trans-

action and represents a mid-weight, read-write transaction; (ii)
the PAYMENT transaction which simulates the payment of an or-

der by a customer which also reflects on the district and ware-

house statistics, and represents a light-weight, read-write transac-

tion; (iii) the ORDERSTATUS transaction representing a customer

query for checking the status of the customer’s last order and rep-

resents a mid-weight read-only database transaction; (iv) the DE-

LIVERY transaction representing deferred batched processing of or-

ders for delivery and consists of one or more transactions; and (v)
the STOCKLEVEL database transaction which queries for the stock

level of some recently sold items and represents a heavy read-only

database transaction. A typical transaction mix consists of approx-

imately 45% NEWORDER transactions, 43% PAYMENT transac-

tions, and 4% each of the remaining three transaction types. All

aspects of the TPC-C specifications were implemented, except for

a few minor modifications. TPC-C requires that a very small frac-

tion of orders be placed at one warehouse, and fulfilled by another

warehouse. Since the database is partitioned by the warehouse id

(the attribute w_id which is the primary key for the Warehouse

9

S. Das et al., ElasTraS: An Elastic, Scalable, and Self Managing Transactional Database for the Cloud

table), implementation of this clause does not guarantee that up-

date transactions update only a single partition. In our implementa-

tion, all orders are processed by the same warehouse where it was

placed.

5.3 Scalability
In this experiment, we vary the number of OTMs in the cluster

from 10 to 30. As the number of OTMs is increased, the size of

the database is also increased proportionally. For a cluster with 10

OTMs, the database was populated with 1000 warehouses and the

number of clients was increased from 100 to 600 concurrent clients

in steps of 100, while for a cluster with 30 OTMs, the database

size was set to 3000 warehouses, and the number of concurrent

clients was varied from 300 to 1800 in steps of 300 (similarly scal-

ing rules used for intermediate steps of scaling). The goal of this

experiment was to verify the scalability of the system with increas-

ing load (client transactions), number of OTMs, and data sizes.

We report the latencies of the NEWORDER and PAYMENT trans-

actions which constitute about 90% of the workload in the TPC-

C transaction mix, and have stringent latency constraints. Trans-

action throughput is for the entire transaction mix, and includes

all the transactions. The throughput is expressed in transactions-

per-minute-C (tpmC) which is used as the performance metric for

the TPC-C benchmark [34]. We used two variants of transactional

workload: (i) the clients do not wait between submitting transac-

tion requests, and (ii) the clients wait for a configurable amount of

time (10–50ms) between two consecutive transactions. Variant (i)
is used for stress testing the system, while variant (ii) represents a

more realistic workload. For (ii), the reported latency and through-

put computation does not include the wait times. As per TPC-C

specifications for generating the workload, each client is associated

with a warehouse, and issues requests only for that warehouse.

Figure 5 plots the latency of individual transactions (NEWORDER

and PAYMENT) for different cluster sizes as the number of concur-

rent client transactions are increased. Along the x-axis we plot the

number of concurrent clients, and along the y-axis, we plot the la-

tency (in ms) for the transactions. The sub-figures correspond to the

different cluster sizes. Figure 6 plots the system throughput of the

transaction mix. Along the x-axis we plot the number of concur-

rent clients, and along the y-axis, we plot the transaction execution

throughput (in tmpC).

As is evident from Figure 5, the system scales almost linearly in

terms of transaction latencies as the cluster size and number of con-

current clients increase. For instance, the latencies of transactions

for a 10 node cluster serving 100 clients is almost similar to the la-

tency of the transactions with 200 clients on a 20 node cluster, and

300 clients on a 30 node cluster respectively. In terms of transac-

tion throughput, as the cluster size increases from 10 to 30 nodes,

the peak throughput is almost doubled. Furthermore, with an in-

crease in the number of concurrent clients, an almost linear trans-

action throughput is observed till the system is saturated, at which

point the throughput hits a plateau. Stressing the system beyond

this point gives diminishing returns and the clients observe a steep

increase in the transaction execution latency. In summary, these ex-

periments demonstrate the scalability of ElasTraS in serving thou-

sands of concurrent clients, and sustaining throughput of more than

0.2 million transactions per minute on a 30 node commodity cluster

executing software components (like HDFS and Zookeeper) which

are still at their infancy.

5.4 Elasticity and Cost of Operation
Figure 7 illustrates the effect of elastic load balancing as new

OTMs are added to (or removed from) the system. Along the x-

0 2000 4000 6000 8000

200

300

400

Tr
an

sa
ct

io
n

La
te

nc
y

(m
s)

Time in seconds

0 2000 4000 6000 8000
4

6

8

10

12

O
pe

ra
tin

g
C

os
t (

U
S

D
 p

er
 h

ou
r)

Operating Cost
Latency

Figure 7: Effect of elastic load balancing on transaction execu-

tion latency and the cost of operation.

axis, we plot the time progress in seconds, the primary y-axis (left)

plots the execution latency (in ms) of the NEWORDER transaction,

and the secondary y-axis (right) plots the operating cost of the sys-

tem (as per the cost of c1.xlarge EC2 instances). To reduce the

noise in the latency measurements, we plot the moving average of

latency averaged over a 10 second window. We keep the size of

the database a constant at 2000 warehouses, and gradually increase

the load on the system. At the start of the experiment, the cluster

has 10 OTMs. As the load on the system increases, five new OTMs

are added to the system (at around the 1300 sec mark). This causes

re-balancing of the partitions amongst the new OTMs which results

in a slight increase in transaction latencies during a period of flux

(due to partitions which are taken offline for moving, and resulting

in client timeouts and retries). Transaction latency stabilizes grad-

ually as partition re-assignments are completed. As the load on the

system decreases, OTMs are removed and partitions are consoli-

dated into lesser number of OTMs (at about the 3200 sec mark, 8

OTMs are removed, resulting in a cluster size of 7 OTMs). Again,

a period of flux is observed which gradually stabilizes. Since the

number of OTMs is reduced, the operating cost of the system also

reduces proportionately. This shows the benefits of an elastic sys-

tem in adapting to increased load by adding more OTMs, thus re-

ducing transaction latency, as well as reducing the operating cost

leveraging from troughs in utilization. In the present implementa-

tion, we borrow the partition migration technique from HBase, and

some instability in load balancing and migration resulted in a flux

window spanning up to 60-80 seconds. A prudent partition migra-

tion and load balancing technique will reduce the flux window and

the spike in latencies observed by the clients. We leave this for

future work.

6. RELATED WORK
Scalable and distributed data management has been the vision of

the database research community for more than three decades. As

a result, a plethora of systems and techniques for scalable data have

been documented in the literature. Owing to space limitation, we

limit our survey to systems which are very closely related to our de-

sign. This thrust towards scaling out to multiple nodes resulted in

two different types of systems: distributed database systems such as

R∗ [28] and SSD-1 [33], which were designed for update intensive

workloads; and parallel database systems such as Gamma [16] and

Grace [18], which allowed updates but were predominantly used

for analytical workloads. These systems were aimed at providing

the functionality of a centralized database server, while scaling out

to a number of nodes. Even though parallel database systems have

10

UCSB Computer Science Technical Report 2010-04.

100 200 300 400 500 600

50

100

150

200
T

ra
n
sa

ct
io

n
 L

a
te

n
cy

 (
m

s)

of Concurrent Clients

NewOrder (NO)
Payment (Pymt)
NO with Wait
Pymt with Wait

(a) 10 nodes, 1000 warehouses.

200 400 600 800 1000 1200
0

50

100

150

200

250

T
ra

n
sa

ct
io

n
 L

a
te

n
cy

 (
m

s)

of Concurrent Clients

NewOrder (NO)
Payment (Pymt)
NO with Wait
Pymt with Wait

(b) 20 nodes, 2000 warehouses.

500 1000 1500
0

50

100

150

200

250

300

T
ra

n
sa

ct
io

n
 L

a
te

n
cy

 (
m

s)

of Concurrent Clients

NewOrder (NO)
Payment (Pymt)
NO with Wait
Pymt with Wait

(c) 30 nodes, 3000 warehouses.

Figure 5: Latency of transactions for different cluster sizes and varying number of clients.

100 200 300 400 500 600
0.7

0.8

0.9

1

1.1

1.2

1.3x 10
5

T
h
ro

u
g
h
p
u
t
(t

p
m

C
)

of Concurrent Clients

Transactions w/o Wait
Transactions with Wait

(a) 10 nodes, 1000 warehouses.

200 400 600 800 1000 1200

1.2

1.4

1.6

1.8

x 10
5

T
h
ro

u
g
h
p
u
t
(t

p
m

C
)

of Concurrent Clients

Transactions w/o Wait
Transactions with Wait

(b) 20 nodes, 2000 warehouses.

500 1000 1500
1

1.2

1.4

1.6

1.8

2

2.2

2.4x 10
5

T
hr

ou
gh

pu
t (

tp
m

C
)

of Concurrent Clients

Transactions w/o Wait
Transactions with Wait

(c) 30 nodes, 3000 warehouses.

Figure 6: System throughput of transaction execution for different cluster sizes and varying number of clients.

been extremely successful, distributed databases have remained as

research prototypes primarily due to the overhead of distributed

transactions, and the fact that guaranteeing transactional proper-

ties in the presence of various kinds of failures limiting scalability

and availability of these systems. The database community there-

fore resorted to scaling up database servers rather than scaling out.

Changes in data access patterns resulting from a new generation

of web-applications and the impossibility of scaling while provid-

ing high consistency, availability, and tolerance to network parti-

tions [8] called for systems with high scalability and availability at

the expense of weaker consistency guarantees. The result was the

concept of Key-Value stores with accesses at the granularity of sin-

gle keys or rows to ensure high scalability, and availability [1, 23].

These principles form the foundation of a number of very large dis-

tributed data systems [10–12, 15, 21].

A number of systems have recently been proposed for scalable

data management in the cloud or similar cluster computing envi-

ronments. Brantner et al. [7] propose a design of a database which

utilizes a cloud based storage service like Amazon S3. Kraska

et al. [25] build on this design to evaluate the impact of the choice of

consistency of data when compared to the operational cost in terms

of money and performance, and propose a framework where con-

sistency guarantees can be specified on data rather than on trans-

actions. Lomet et al. [29, 30] propose a radically different ap-

proach towards scaling databases in the cloud by “unbundling” the

database into two components, the transaction component and the

data component. Bernstein [6] proposes a scalable transactional

system which relies on a flash based high performance distributed

log. Transactions optimistically and atomically append to the log,

and a replay of the transaction log on all transaction managers val-

idates transactions for conflicts, and subsequently aborts transac-

tions whose validation fails. Another interesting design was pro-

posed by Aguilera et al. [2] where a two phase commit protocol (an

optimization of the original 2PC protocol [19]) is used to support

a class of operations referred to as minitransactions which allows

limited but scalable distributed synchronization primitives such as

test-and-set. Das et al. [14] propose a mechanism for providing

transactional access over a dynamic group of keys using a Key-

Value store like Bigtable [11] as a substrate. Yang et al. [36] pro-

pose a novel design of a data management system for supporting

a large number of small applications in the context of various so-

cial networking sites which allow third party applications in their

sites. Armbrust et al. [3] propose a scale independent data stor-

age layer for social computing applications which is dynamically

scalable, supports declarative consistency, while providing a scale

aware query language. Another system H-Store [24], though not

directly designed for the cloud, provides an example of a system

where partitioning in a main memory database and replication of

partitions at a number of nodes has been used to scale to large

amounts of data in an enterprise cluster with huge memories and

fast network interconnects. In summary, a large number of systems

and designs have been proposed to address various issues of cloud

data management, but none of them propose a system which is elas-

tic, scalable, fault-tolerant, self-managing and provides transac-

tional access at larger granularities beyond a single row – and this

is the goal of the design of ElasTraS.

11

S. Das et al., ElasTraS: An Elastic, Scalable, and Self Managing Transactional Database for the Cloud

7. CONCLUSIONS AND FUTURE WORK
An elastic, scalable, fault-tolerant, self-managing, and transac-

tional DBMS is critical to ensure the effective migration of data

intensive applications to the cloud. We presented ElasTraS a trans-

actional DBMS that is designed to meet the requirements of a cloud

bound DBMS. The design of ElasTraS is inspired by the design

principles of scalable Key-Value stores [11], and leverages from the

decades of research in transaction management. We articulated the

design principles of ElasTraS and presented the design and imple-

mentation of a prototype. Our design is suitable for both classes

of DBMS applications in the cloud: large single-tenant database

instances, and a large number of small multi-tenant databases. We

further demonstrated how certain properties of the database schema

can be used for effectively partitioning large database instances

that allow update transactions to be restricted to a single partition,

while being able to build meaningful and practical applications. We

used the industry standard TPC-C benchmark to demonstrate this

schema level partitioning, and evaluated performance of the sys-

tem for the TPC-C workload. Our ElasTraS deployment on a 30

node cluster with over 1 TB of data served thousands of concur-

rent clients while sustaining a throughput of more than 0.2 million

transactions per minute. In the future, we would like to make vari-

ous extensions to the present design, the most notable ones include:

designing an effective partition migration scheme to minimize the

unavailability window of partitions during migration, and devising

generalized schema level partitioning techniques that will limit up-

date transactions to a single partition, while being able to cater to

more diverse set of applications. Furthermore, we would like to

investigate model based elasticity rather than rule based elasticity

currently being used.

Acknowledgements

The authors would like to thank Aaron Elmore and Nagender Bandi

for their insightful comments on the earlier versions of the paper

which has helped in improving this paper. This work is partially

supported by NSF Grants IIS-0744539 and IIS-0847925, and an

AWS in Education grant.

8. REFERENCES
[1] D. Agrawal, A. El Abbadi, S. Antony, and S. Das. Data

Management Challenges in Cloud Computing

Infrastructures. In DNIS, 2010.

[2] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and

C. Karamanolis. Sinfonia: a new paradigm for building

scalable distributed systems. In SOSP, pages 159–174, 2007.

[3] M. Armbrust, A. Fox, D. A. Patterson, N. Lanham,

B. Trushkowsky, J. Trutna, and H. Oh. SCADS: Scale

Independent Storage for Social Computing Applications. In

CIDR Perspectives, 2009.

[4] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger.

Multi-tenant databases for software as a service:

schema-mapping techniques. In SIGMOD, pages 1195–1206,

2008.

[5] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and

P. O’Neil. A critique of ANSI SQL isolation levels. In

SIGMOD, pages 1–10, 1995.

[6] P. Bernstein. Scaling Out without Partitioning. In HPTS,

2009.

[7] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and

T. Kraska. Building a database on S3. In SIGMOD, pages

251–264, 2008.

[8] E. A. Brewer. Towards robust distributed systems (Invited

Talk). In PODC, page 7, 2000.

[9] M. Burrows. The Chubby Lock Service for Loosely-Coupled

Distributed Systems. In OSDI, pages 335–350, 2006.

[10] Cassandra: A highly scalable, eventually consistent,

distributed, structured key-value store, 2009.

http://incubator.apache.org/cassandra/.

[11] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.

Gruber. Bigtable: A Distributed Storage System for

Structured Data. In OSDI, pages 205–218, 2006.

[12] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,

P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and

R. Yerneni. PNUTS: Yahoo!’s hosted data serving platform.

Proc. VLDB Endow., 1(2):1277–1288, 2008.

[13] S. Das, D. Agrawal, and A. El Abbadi. ElasTraS: An Elastic

Transactional Data Store in the Cloud. In USENIX HotCloud,

2009.

[14] S. Das, D. Agrawal, and A. El Abbadi. G-Store: A Scalable

Data Store for Transactional Multi key Access in the Cloud.

In ACM SOCC, 2010.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,

and W. Vogels. Dynamo: Amazon’s highly available

key-value store. In SOSP, pages 205–220, 2007.

[16] D. J. Dewitt et al. The Gamma Database Machine Project.

IEEE Trans. on Knowl. and Data Eng., 2(1):44–62, 1990.

[17] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The

notions of consistency and predicate locks in a database

system. Commun. ACM, 19(11):624–633, 1976.

[18] S. Fushimi, M. Kitsuregawa, and H. Tanaka. An Overview of

The System Software of A Parallel Relational Database

Machine GRACE. In VLDB, pages 209–219, 1986.

[19] J. Gray. Notes on data base operating systems. In Operating

Systems, An Advanced Course, pages 393–481, London, UK,

1978. Springer-Verlag.

[20] J. Hamilton. I love eventual consistency but...

http://perspectives.mvdirona.com/2010/02/24/

ILoveEventualConsistencyBut.aspx.

[21] HBase: Bigtable-like structured storage for Hadoop HDFS,

2009. http://hadoop.apache.org/hbase/.

[22] HDFS: A distributed file system that provides high

throughput access to application data, 2009.

http://hadoop.apache.org/hdfs/.

[23] P. Helland. Life beyond Distributed Transactions: An

Apostate’s Opinion. In CIDR, pages 132–141, 2007.

[24] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. B.

Zdonik, E. P. C. Jones, S. Madden, M. Stonebraker,

Y. Zhang, J. Hugg, and D. J. Abadi. H-store: a

high-performance, distributed main memory transaction

processing system. PVLDB, 1(2):1496–1499, 2008.

[25] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann.

Consistency Rationing in the Cloud: Pay only when it

matters. PVLDB, 2(1):253–264, 2009.

[26] H. T. Kung and J. T. Robinson. On optimistic methods for

concurrency control. ACM Trans. Database Syst.,

6(2):213–226, 1981.

[27] L. Lamport. The part-time parliament. ACM Trans. Comput.

Syst., 16(2):133–169, 1998.

[28] B. G. Lindsay, L. M. Haas, C. Mohan, P. F. Wilms, and R. A.

Yost. Computation and communication in R*: A distributed

12

http://incubator.apache.org/cassandra/
http://hadoop.apache.org/hbase/
http://hadoop.apache.org/hdfs/

UCSB Computer Science Technical Report 2010-04.

database manager. ACM Trans. Comput. Syst., 2(1):24–38,

1984.

[29] D. B. Lomet, A. Fekete, G. Weikum, and M. J. Zwilling.

Unbundling transaction services in the cloud. In CIDR

Perspectives, 2009.

[30] D. B. Lomet and M. F. Mokbel. Locking Key Ranges with

Unbundled Transaction Services. PVLDB, 2(1):265–276,

2009.

[31] D. Obasanjo. When databases lie: Consistency vs.

availability in distributed systems.

http://www.25hoursaday.com/weblog/2007/10/10/

WhenDatabasesLieConsistencyVsAvailability

InDistributedSystems.aspx, 2009.

[32] B. Reed and F. P. Junqueira. A simple totally ordered

broadcast protocol. In LADIS, pages 1–6, 2008.

[33] J. B. Rothnie Jr., P. A. Bernstein, S. Fox, N. Goodman,

M. Hammer, T. A. Landers, C. L. Reeve, D. W. Shipman, and

E. Wong. Introduction to a System for Distributed Databases

(SDD-1). ACM Trans. Database Syst., 5(1):1–17, 1980.

[34] The Transaction Processing Performance Council. TPC-C

benchmark (Version 5.10.1), 2009.

[35] G. Weikum and G. Vossen. Transactional information

systems: theory, algorithms, and the practice of concurrency

control and recovery. Morgan Kaufmann Publishers Inc.,

2001.

[36] F. Yang, J. Shanmugasundaram, and R. Yerneni. A scalable

data platform for a large number of small applications. In

CIDR, 2009.

[37] ZooKeeper: A high-performance coordination service for

distributed applications, 2009.

http://hadoop.apache.org/zookeeper/.

APPENDIX

A. CORRECTNESS GUARANTEES
In this section, we provide arguments for correctness of the indi-

vidual components of the system as well as the entire system. Our

implementation relies on two open source components (the meta-

data manager implemented using Apache Zookeeper [37], and the

DFS implemented using HDFS [22]), and the correctness of the

system is dependent on certain guarantees by these systems. We

first list these guarantees and then use them to reason about correct-

ness. ElasTraS is not designed to tolerate network partitions, but it

should guarantee data safety in the presence of a network partition.

We further assume that there is no malicious behavior. All com-

munication uses reliable communication protocols like TCP, and

hence there are no message related failures such as lost, duplicated,

or reordered messages. We refer to safety as the correctness of the

system, i.e., data is not lost, corrupted, or left inconsistent. Liveness

on the other hand is the ability to make progress.

A.1 Guarantees by the MM and DFS
The metadata manager (MM), implemented using Zookeeper [37],

has a replicated state to tolerate failures and increased availabil-

ity, and uses a variant of the Paxos protocol [27], referred to as

ZAB [32], which provides the following guarantees:

GUARANTEE 1. Replica Consistency. Replicas of the MM’s

state are strongly consistent.

GUARANTEE 2. Safety. The state of the MM is safe even in the

presence of arbitrary failures, including network partitions.

GUARANTEE 3. Liveness. The MM is live and can make progress

if a majority of replicas are non-faulty and can communicate.

GUARANTEE 4. Mutual exclusion. At any point of time, only

a single process can own a lease (or a znode in Zookeeper).

Guarantees 1, 2, and 3 are provided by Paxos [27] (and also

ZAB [32]). Guarantee 4 follows directly from the Paxos proto-

col [27]. At a very high level: if a lease (or znode) is available,

the request to acquire a lease results in a new Paxos propose phase

being instantiated by the present leader of the replicas, and the pro-

posal is accepted and the lease granted only when a majority of

replicas have acknowledged the proposal. This majority approval

of a proposal ensures that any other concurrent proposal for grant-

ing the same lease is rejected and thus only a unique process is

granted the lease. The TM master and OTMs can operate only

if they hold the corresponding lease, and the processes terminate

themselves if the lease could not be renewed and is lost.

The DFS layer must provide the following guarantee:

GUARANTEE 5. Durability of appends. For scenarios of sin-

gle site failure, appends to the DFS are never lost once a “flush”

or a “sync” has been acknowledged.

This is guaranteed by the DFS layer by acknowledging a flush

only after the appends have been replicated in memory to at least

two or more replicas.

A.2 Correctness of the Master

CLAIM 1. At any instant of time there is only a single acting

TM master in one ElasTraS installation.

Claim 1 follows directly from Guarantee 4 which ensures that

the ownership of the znode corresponding to the master is granted

to at most one process, which now acts as the TM master.

CLAIM 2. At any instant, at most one OTM has read/write ac-

cess to a database partition.

Only an acting TM master owning the master lease can perform

partition assignment. On startup, the TM master scans the catalog

for unassigned partitions and assigns them to the OTMs. The TM

master assigns a partition only once, and since there is only a single

TM master, a partition is assigned to only a single OTM during

normal operation. To re-assign partition for load balancing and

elasticity, the ownership of the partition is handed over from the

OTM to the TM master and finally to a new OTM. The failure of

the master during this transfer would at most render the partition

unassigned, and the new master will recover the state of the failed

master and complete this assignment. On the failure of an OTM,

the TM master performs reassignment if and only if it was able

to successfully delete the znode corresponding to the OTM. This

ensures that the old OTM can no longer serve any of the partitions

assigned to it. This again ensures that the newly assigned OTM is

the only OTM which owns those partitions.

A.3 Correctness of the OTM

CLAIM 3. Transactions on a single partition are guaranteed to

be atomic, consistent, durable, and serializable.

A transaction commit is acknowledged by an OTM only after

the log records for a transaction, including the COMMIT record, has

been forced to the DFS. Guarantee 5 ensures that the log entries

can be read even if the OTM fails after forcing the log records.

13

http://hadoop.apache.org/zookeeper/

S. Das et al., ElasTraS: An Elastic, Scalable, and Self Managing Transactional Database for the Cloud

This ensures that the transaction state is recoverable and guaran-

tees durability. On failure of an OTM, the REDO recovery oper-

ation on a partition from the commit log applies all updates of a

transaction whose COMMIT record is found in the commit log (i.e.

the transaction successfully committed) and discards all updates

of a transaction whose COMMIT record is missing (meaning either

the transaction aborted and was rolled back, or it did not commit

before the failure and hence is considered as aborted). This en-

sures atomicity of the transactions. Consistency and Serializability

is guaranteed by the concurrency control protocol [26].

A.4 Overall Correctness of the System

CLAIM 4. Safety. Data safety is guaranteed in the presence of

arbitrary failures, including network partitions.

Claim 4 follows from the requirement that an OTM or TM master

can operate only if they own the leases, and Claims 1 and 2.

CLAIM 5. Liveness. Liveness is guaranteed even in the pres-

ence of site failures, provided the metadata manager is alive and

not partitioned.

Liveness of the system is never threatened by the failure of an

OTM, the master recovers the state of the OTM. If the MM is alive

and is able to communicate with the rest of the nodes, then Elas-

TraS can also tolerate the failure of the TM master and operate un-

hindered without a functioning master unless an OTM fails. This

is because the TM master is not on the data path. This allows a

standby master to acquire the lease on the master’s znode and take

over as the new TM master, without interrupting any client transac-

tions in progress.

14

	Introduction
	Design of ElasTraS
	Desiderata for a Cloud bound DBMS
	Design Rationale
	Design and Architecture Overview

	Schema Level Partitioning
	Implementation Details
	DFS and Metadata Manager
	Catalog
	Client Library
	Transaction Management
	Storage and Buffer Management
	Fault tolerance in ElasTraS
	Elasticity and Load Balancing
	Parallel Analysis Queries

	Experimental Evaluation
	Experimental Setup
	TPC-C Benchmark
	Scalability
	Elasticity and Cost of Operation

	Related Work
	Conclusions and Future Work
	References
	Correctness Guarantees
	Guarantees by the MM and DFS
	Correctness of the Master
	Correctness of the OTM
	Overall Correctness of the System

