
Dataset and Evaluation of Interest Point Detectors for Visual Tracking
Steffen Gauglitz Tobias Höllerer Matthew Turk

Department of Computer Science
University of California, Santa Barbara
{sgauglitz,holl,mturk}@cs.ucsb.edu

Technical Report 2010-06 ∗

ABSTRACT

In this report, we present an extensive dataset of 96 video streams
with ground truth. It includes various geometric changes, lighting
conditions, and levels of motion blur, and can be used as testbed
for a variety of algorithms in the context of visual tracking. We then
use this dataset for a detailed quantitative evaluation of popular
interest point detectors, which, in contrast to existing evaluations,
is geared towards visual tracking in all relevant factors of the eval-
uation design.

1 INTRODUCTION

Visual tracking is a core component for many applications includ-
ing visual odometry [6, 24], visual Simultaneous Localization and
Mapping (SLAM) [7] and augmented reality (AR) [12].

Although some visual odometry systems work with optical flow,
most tracking applications use feature-based visual tracking. In this
case, interest point detection and feature description are the first
steps of the system. Many algorithms have been proposed to tackle
these tasks, and existing visual tracking systems use different ap-
proaches.

Existing evaluations are geared towards object recognition and
image retrieval: they use low-noise, high-resolution, still images,
large databases to match features against, and/or potentially very
expensive algorithms; hence their results have limited validity for
visual tracking. In particular, we are not aware of any work that
compares the respective algorithms on video streams, which is the
setup of interest for visual tracking.

In contrast, our work evaluates existing interest point detectors
and with respect to their application in real-time visual tracking.
Our testbed consists of video streams with several thousand frames
total that exhibit different motion patterns; the algorithms are tested
for both consecutive frames of smooth motion and randomly shuf-
fled frames, revealing performance in the presence of translational
movement, in-plane and out-of-plane rotation, scale changes and
motion blur. We also evaluate the impact of individual algorithm
parameters. For this evaluation, a setup to semi-automatically ob-
tain stable ground truth for video streams is proposed and explained
in detail.

Outline

This report is structured as follows: Section 2 discusses literature
on datasets and existing detector evaluations. Section 3 reviews
each detector that is included in the evaluation. Section 4 details the
testbed and the setup for evaluation. Section 5 presents the obtained
results, and finally, Section 6 draws conclusions.

∗This report extends and superseeds our Technical Report 2009-08.

2 EXISTING DATASETS AND EVALUATIONS

2.1 Datasets
In many domains, certain datasets have successfully been estab-
lished as de-facto standards and used to compare and evaluate state-
of-the-art algorithms; for example, the Middlebury datasets for
multi-view reconstruction [28] and optical flow [3]. The testdata
of Mikolajczyk et al. [21] has been used for various comparisons of
local invariant detectors and descriptors. However, these sets con-
sists of only a few still, high-resolution images per sequence with
rather larger baseline distances, which limits their usefulness (and
the significance of obtained results) for visual tracking.

Zimmermann et al. [31] collected image sequences of three dif-
ferent objects with approximately 12,000 images and made them
available including ground truth. Lieberknecht et al. [15] presented
a dataset of 40 sequences featuring 8 different textures in 5 differ-
ent motion patterns with 1200 frames each. This dataset might be
the most similar to ours in terms of purpose and scope, but unfor-
tunately the ground truth is not made available. Moreover, their
motion patterns all combine several motions (much like our pattern
“unconstrained,” see Section 4.2) and are, effectively, rather similar
to each other. Hence, as with Zimmermann et al. [31]’s sequences,
they do not allow a detailed analysis for different geometric distor-
tions, lighting conditions or levels of motion blur.

2.2 Evaluations
Schmid et al. [27] compared interest point detectors on two still im-
ages under changes in rotation, viewpoint and illumination, as well
as with artificially added image noise. Mikolajczyk and Schmid
[19] and Mikolajczyk et al. [21] compared affine invariant detectors.
Moreels and Perona [23] explored the performance of combinations
of detectors and descriptors with a testbed of three-dimensional ob-
jects rather than flat pictures.

However, all comparisons mentioned above are geared towards
object recognition and image retrieval rather than tracking. This
becomes clear from the chosen testbeds, the performance measures
chosen to evaluate the algorithms, and the set of detectors and de-
scriptors that are tested. Execution time, a criterion crucial for de-
signing real-time systems, receives very little or no attention, and
reported execution times are in the order of seconds to several min-
utes, which is intractable for real-time tracking.

In contrast, the evaluation in this work aims at visual tracking
in all of the factors mentioned above. Most notably, the perfor-
mance measures are chosen with respect to the application of visual
tracking and the testbed, which will be detailed in the next section,
consists of video streams with several thousand frames affected by
noise and motion blur rather than a few high-resolution, low-noise
still images.

3 INTEREST POINT DETECTORS

Due to the high dimensionality of image data, tracking every single
pixel is computationally prohibitive and incorporates a lot of redun-

1

Gauglitz, Höllerer, Turk: Dataset and Evaluation of Interest Point Detectors for Visual Tracking. TR 2010-06

dancy, as pixels do not move independently of each other. Instead,
a sparse set of features is extracted from the image. Although work
has been done to detect and integrate other features (e.g., edges
[8, 13]), features that build upon or around single points are most
commonly used for tracking.

In the following, we will briefly review the detectors that are in-
cluded in the evaluation. In particular, we will explain the role of
each of the algorithms parame- ters, as their impact on the algo-
rithms performance is individually evaluated.

3.1 Harris Corner Detector
Based on Moravec’s corner detector [22], Harris and Stephens [10]
developed the following algorithm: Given an image I, the algorithm
first computes matrix M for every pixel (x,y):

M(x,y) = ∑
u,v

wu,v · [Ix(xr,yr)]2 ∑
u,v

wu,v · Ix(xr,yr)Iy(xr,yr)

∑
u,v

wu,v · Ix(xr,yr)Iy(xr,yr) ∑
u,v

wu,v · [Iy(xr,yr)]2

(1)

Ix and Iy denote the derivatives of image I, (xr,yr) := (x+u,y+v),
and w(u,v) is a window and weighting function. In the sim-
plest case, w(u,v) can be a binary rectangular filter. Harris
and Stephens [10] propose to use a Gaussian window w(u,v) =
exp
{
−(u2 + v2)/2σ2}.

Matrix M is called the second-order moment matrix [23] and
is an approximation to the auto-correlation function of image I (cf.
Appendix A of [27]). Depending on the eigenvalues λ1,λ2 of M, the
region can be classified as either flat (λ1 and λ2 small), edge region
(one small, one large eigenvalue) or corner region (both large). To
avoid the explicit computation of λ1,λ2, which is costly, Harris and
Stephens [10] propose the following corner score, which is derived
based on λ1,λ2, but can be expressed without them:

c(x,y) = λ1λ2− k · (λ1 +λ2)2

= det(M(x,y))− k · [trace(M(x,y))]2
(2)

The score c is large when both eigenvalues are large. The sec-
ond term suppresses candidate pixels with only one large eigen-
value, and the larger the factor k, the more pixels with two medium
eigenvalues are preferred over pixels with one small and one large
eigenvalue. Subsequently, 8-neighborhood non-maximum suppres-
sion is applied and all pixels with a response of less than a prede-
fined percentage θ of the maximum response encountered, c(x,y) <
θ ·maxx,y {c(x,y)}, are ignored.

3.2 Shi-Tomasi’s “Good Features To Track”
Based on a theoretical analysis of which features will be “good
to track,” Shi and Tomasi [29] derive an image motion model for
affine motion and pure translation, which they use for tracking and
monitoring the tracked features. For tracking, they suggest using
the translation model, where the matrix involved is equivalent to M
(Eq. (1)). With the same reasoning as above, the eigenvalues λ1,λ2
of M are computed and a candidate point is accepted if

c(x,y) = min(λ1,λ2) > λθ := θ ·maxx,y {c(x,y)} (3)

Compared to the Harris score (Eq. (2)) this requires an additional
square root operation per pixel.

3.3 Difference of Gaussians (DoG)
The approach of detecting local extrema of the image filtered with
differences of Gaussians (DoG) was introduced by Lowe [17, 18]
as part of SIFT.

To achieve invariance against changes in scale, the detector
builds a pyramid of images by convoluting the image I with dif-
ferences of Gaussians at different scales σ :

DoGk,σ (x,y) = G(x,y,kσ)−G(x,y,σ)

=
1

2π(kσ)2 exp
{
− x2 + y2

2(kσ)2

}
− 1

2πσ2 exp
{
−x2 + y2

2σ2

}
(4)

In practice, this is done by first convoluting with the Gaussian ker-
nels G(σ) and then computing differences of the resulting images:

D0 = I ∗DoGk,σ0 = I ∗G(kσ0) −I ∗G(σ0)
D1 = I ∗DoGk,kσ0 = I ∗G(k2σ0) −I ∗G(kσ0)

...

Lowe [18] shows that DoGσ is an approximation to the Lapla-
cian of Gaussians (σ∇)2G, which creates the ideal scale space [16].
As feature points, the algorithm selects local extrema, which are
found by comparing each sample to its eight neighbors in the cur-
rent image Dn and the 18 neighbors “above” (in Dn−1) and “below”
(in Dn+1). The feature point locations are then refined to subpixel
accuracy by fitting a parabola to the sample point and its immediate
neighbors [5]. Feature points with low contrast, i.e., |D(x̂)|< θcontr,
where x̂ = (x,y,σ)T is the refined extremum location, are rejected.
The ratio of the principal curvatures are estimated using the eigen-
value approach from Harris and Stephens [10] (cf. Section 3.1), and
feature points with an “edge response,” i.e., where the ratio of the
two principal curvatures is larger than a threshold θedge, are rejected
as well.

3.4 Fast Hessian
Bay et al. [4] developed Speeded Up Robust Features (SURF) based
on the observation that some approximations can drastically de-
crease the time of computation without sacrificing much accuracy,
if any. A key element to speed up computation is the usage of inte-
gral images as introduced by Viola and Jones [30] :

Iint(x,y) =
x

∑
i=0

y

∑
j=0

I(i, j) (5)

Once Iint is computed, filtering the image with a box filter takes,
at any given point, only four additions regardless of the size of the
filter.

SURF’s detector, named Fast Hessian [4], is based on the deter-
minant of the Hessian matrix, which at scale σ is defined as follows:

H(x,y,σ) =

[
∂ 2

∂x2 G(σ)∗ I(x,y) ∂

∂x
∂

∂y G(σ)∗ I(x,y)
∂

∂x
∂

∂y G(σ)∗ I(x,y) ∂ 2

∂y2 G(σ)∗ I(x,y)

]
(6)

As convolution with the Gaussian second order derivatives is very
costly especially for higher scales, Bay et al. approximate them by
filters that are composed of simple box filters and can therefore be
computed in constant time using the integral image. The computed
candidate score then is

c(x,y,σ) = Dxx(σ) ·Dyy(σ)− (0.9Dxy(σ))2

≈ det [H(x,y,σ)] (7)

where Dxx, Dxy and Dyy are the results of convoluting the image
with the filters depicted in Fig. 1, and the factor 0.9 helps ap-
proximate det [H(x,y,σ)] more closely. 3x3x3-neighborhood non-
maximum suppression and subpixel refinement are then applied as
for the DoG detector. Likewise, candidates with c below a certain
threshold are rejected. To speed up the computation, one may op-
tionally increase the sampling intervals, i.e., compute c only for
every nth pixel [4].

2

Gauglitz, Höllerer, Turk: Dataset and Evaluation of Interest Point Detectors for Visual Tracking. TR 2010-06

Figure 1: Filters composed of box filters as used by Fast Hessian
as approximations to second order derivatives of Gaussians. Left to
right: filters for obtaining Dxx, Dxy, Dyy. Weights of black and white
regions as denoted, grey regions have weight zero. Figure adapted
from Bay et al. [4].

Figure 2: Bresenham circle. The black point is the current candidate
point p, the 16 grey points are the discretized approximation of the
outlined circle around it. Figure adapted from Rosten and Drummond
[26].

3.5 Features from Accelerated Segment Test (FAST)
Rosten and Drummond [25, 26] developed a high-speed corner de-
tector which they coined FAST, for Features from Accelerated Seg-
ment Test. The algorithm operates on a discretized circle around
a candidate point p as shown in Fig. 2. p is classified as a corner
if there exists a contiguous arc of at least nine pixels that are all
brighter or all darker than p by a threshold t. The algorithm was
further accelerated by training a decision tree to test as few pixels
as possible for classifying a candidate pixel as corner or non-corner.
With this decision tree, only 2.26 pixels are tested for each candi-
date on average, whereas with the naı̈ve algorithm, 2.8 are tested
[26].

In contrast to all aforementioned detectors, detection with the
FAST algorithm does not inherently provide a measure of the
“strength” of a feature. In order to apply non-maximum suppres-
sion, the following score is computed for each candidate point:

c(p) = max

{
∑

q∈S+

|Iq− Ip|− t, ∑
q∈S−

|Iq− Ip|− t

}
(8)

where S+ is the subset of pixels on the circle that are brighter than
p (by t) and S− the subset of pixels that are darker than p (by t)
[26].

3.6 Center-Surround Extrema (CenSurE)
Like Lowe [18]’s DoGs, the filters designed by Agrawal et al. [1]
aim at approximating a Laplacian, though simplified further: In the
first step, the filter is reduced to a bi-level filter, i.e., with filter val-
ues -1 and 1. Approximating a Laplacian then yields a torus-shaped
filter kernel as depicted in Fig. 3 left. As this filter is computa-
tionally rather expensive, three approximations are proposed, each
getting less symmetric, but easier to compute (Fig. 3 right).

As mentioned above, box filters can be efficiently computed at
any scale using an integral image. For octagons and hexagons,
Agrawal et al. [1] propose the use of slanted integral images, where
the sum stored at each pixel (x,y) represents the sum of the trape-
zoidal area above (x,y). Octagons and hexagons can then be de-
composed in a few trapezoids and thus can also be efficiently com-
puted at any scale.

Figure 3: CenSurE’s Bi-Level Filters. The circle (left) is the ideal,
fully symmetric bi-level approximation of the Laplacian; from left to
right, the approximations are coarser (less symmetric), but easier to
compute: octagon, hexagon, box. Figure adapted from Agrawal et al.
[1].

3x3x3-neighborhood non-maximum and edge response suppres-
sion are applied in a similar fashion as in the DoG and Fast Hessian
detectors. Agrawal et al. [1] conclude that the octagon filter repre-
sents the best trade-off between stability and performance.

4 TESTBED DESIGN & EVALUATION SETUP

4.1 Establishing ground truth
To evaluate algorithms on images taken with a moving camera,
ground truth information is needed, specifying which point x j in
frame j corresponds to point xi in frame i. For general 3D scenes,
this is very difficult to obtain without a 3D model of the scene.
Therefore, most existing evaluations [20, 21, 26, 27, 31] use planar
or near-to-planar scenes, where xi and x j are related by a homogra-
phy Hi j(q) ∈ℜ3x3 [11, 27]:

x j = Hi j(q) · xi (9)

Here, xi/ j are in homogeneous coordinates: xi = (x,y,1)T . Solving
for Hi j may be done by projecting a known pattern onto a static
scene [27] or indicating reference points manually [26, 31].

One option to obtain a reference coordinate frame is using fidu-
cial markers [9]. However, they occlude a significant part of the
image, rendering it unavailable for the evaluation, require a min-
imum viewing angle for detection, and their detection uses algo-
rithms similar to the ones to be evaluated, which potentially biases
the result.

For this work, we fabricated a precisely milled acrylic glass
frame which holds the planar texture and four bright red balls
(15 mm diameter) as markers (chosen as markers as they look the
same from any direction), placed such that their center is in the
plane of the texture. The markers are 13x10.5" apart, situated out-
side of the area for the texture, which is 11x8.5" (standard letter
format). The area of the texture itself is 9.5x7", of which a margin
of 0.75" is subtracted to avoid border effects. This leaves an area of
8x5.5" to be detected/tracked by the algorithms under evaluation.

We then implemented the following semi-automatic algorithm to
detect and track markers and texture in the videos:

1. The position and size of the balls are manually indicated in
the first first frame of the sequence.

2. An adaptive color model in HSV color space is initialized,
which, applied to a new frame, produces a “probability map”
that a given pixel belongs to the colored ball (Fig. 4 middle).
The most probable positions of the balls are then identified
using template matching with distance constraints.

3. The color model is adapted to the appearance of the balls in
the new frame. For subsequent frames, a mixture model using
both the model from the first and the previous frame is used
to avoid long-term drift.

4. The position of each ball individually is refined using
“inverse-compositional” image alignment [2] with 3 degrees
of freedom (x, y, scale) between the current and the previous
frame, and the homography between the current image and a
canonical reference frame is computed (Fig. 4 right).

3

Gauglitz, Höllerer, Turk: Dataset and Evaluation of Interest Point Detectors for Visual Tracking. TR 2010-06

Figure 4: Adaptive color model: The image in the middle shows
the “probability map” that the adaptive color model generated for the
image on the left. The image is then warped into a canonical frame
in which the balls form a rectangle (right image).

Figure 5: Result of image alignment: Difference between current
frame and reference frame before (left) and after image alignment
(right). Images are shown inverted (i.e. white = image difference
0) and with increased contrast. The alignment was substantially im-
proved. The residuals are due to change in appearance (lighting
effects, motion blur), sensor noise and interpolation artifacts.

5. Finally, the homography is refined using image alignment be-
tween the reference frame and the current frame (Fig. 5).

This algorithm was embedded into an interactive tool allowing
the user to inspect the result and correct and re-start the algorithm
if needed.

Overall, this semi-automatic tracking system produced very sta-
ble warped video streams despite extreme viewing angles and mo-
tion blur with a manageable amount of manual labor. Examples of
its output are depicted in Fig. 6.

4.2 Dataset
The testbed consists of 96 video streams, showing six different pla-
nar textures in 16 different motion patterns each, all recorded with
a Unibrain Fire-i camera with a resolution of 640x480 pixels. The
textures are shown in Fig. 7, and the motion patterns are as follows:

• Unconstrained: free movement of a hand-held camera, un-
constrained except that the object of interest has to stay in
the field of view. The motion is mostly smooth, some parts
exhibit quick movements and motion blur. Fig. 8a shows a
reconstruction of one of the flight paths (6x 500 frames).

• Panning: located about 1m from the object of interest, the
camera slowly rotates perpendicular to its optical axis, effec-
tively causing the object to move from sideways with very
little distortion (6x 50 frames).

• Rotation: located about 1m from the object of interest, the
camera rotates around its optical axis from 0◦ to 90◦, resulting
in in-plane rotation of the object (6x 50 frames).

• Perspective distortion: starting roughly perpendicular above
the object, the camera goes down in an arc, resulting in per-
spective distortion (out-of-plane rotation) of the object, cf. the
flight path shown in Fig. 8b (6x 50 frames).

• Zoom: the camera moves perpendicularly away from the ob-
ject, from 60 cm to 130[±10] cm (6x 50 frames).

−20
0

20
80

60
40

20
0

−20

80

60

40

20

0

(a)
−20

0
20

60
40

20
0

−20

80

60

40

20

0

(b)

Figure 8: Flight paths of selected video streams, all axes in cen-
timeters. (a) unconstrained (with texture “building”), (b) perspective
distortion (with texture “bricks”).

• Motion blur: mounted to a pan-tilt unit to precisely control
its speed, the camera pans sideways with nine different speed
settings. The speeds are the 1- to 9-folds of 0.02778◦/s, or,
equivalently, 1- to 9-folds of about 5.1 pixels per frame (6x 9
sequences of length 13–89, varying length due to the varying
time it takes for the object to disappear).

• Static lighting: the camera is statically mounted on a tripod
and observes the scene under four different lighting condi-
tions. The transition from one condition to the next is not
included (6x 4x 20 frames).

• Dynamic lighting: the camera is statically mounted on a tri-
pod and observes the scene transitioning from bright lighting
to dark (a screen being moved in front of a soft lamp) and
back (6x 100 frames).

The motion patterns “panning” through “zoom” were conducted
with the camera mounted to an appropriately mechanically guided,
but manually operated contraption, hence they are not exactly the
same among the different textures and contain certain amounts of
motion blur and jitter. As these conditions are exactly the same for
all algorithms and we desire robustness against all kinds of motions,
this does not affect algorithm comparison. All videos are encoded
with the lossless HUFFYUV codec. In total, the dataset consists of
6889 frames.

The camera movement is reconstructed from the position of the
target texture for the purposes of illustration (Fig. 8) and binning
algorithm performance according to the relative change in camera
positions.

To evaluate algorithms, the sequences can be used in consecu-
tive order, simulating continuous tracking during smooth motion,
as well as in randomly (or otherwise) sampled order, thus evalu-
ating robustness against larger baseline distances. With respect to
tracking, this simulates tracking recovery after failure or re-visiting
a previously mapped scene.

4.3 Performance measures
The performance measures and characteristic values evaluated in
this work are execution time, repeatability and number of features
detected by a particular algorithm. Execution time is relevant as
visual tracking usually is performed as a real-time task. While au-
tonomous robots might be able to adapt their speed to ensure re-
liable tracking at lower frame rates [6], AR applications demand
frame rates of around 30 Hz [12, 14].

As motivated earlier, the criterion that is most relevant for visual
tracking as well as for other domains [4] is repeatability [27]:

repeatability =
|{(xa ∈ Si,xb ∈ S j) |‖Hi · xa−H j · xb‖< ε}|

|Si|
(10)

4

Gauglitz, Höllerer, Turk: Dataset and Evaluation of Interest Point Detectors for Visual Tracking. TR 2010-06

Figure 6: Top row: a few examples of the 6889 frames in the testbed; bottom row: the same frames, warped to the reference frame. These
examples illustrate the challenges that the dataset encompasses: scale changes (first two images), rotation, perspective distortion, motion blur
(here: fastest setting), lighting (here: darkest condition). The black-and-white pattern on the border was added to improve the image alignment
result (cf. Section 4.1), algorithms to be evaluated may use only the area inside.

Figure 7: Used textures. From left to right: “wood,” “bricks,” “build,” “paris,” “mission,” “sunset.”

where Si, S j are the sets of points detected in frames i and j, re-
spectively, and Hk is the homography between the kth frame and
the reference frame. Even with perfect ground truth, a re-detected
point will not be at exactly the same position as in the old frame:
This is most obvious in the case of detectors that do not work with
subpixel refinement, where the detected point has to “jump” to the
next pixel at some point when the object is moved (a more detailed
list of reasons may be found in [26]). For our evaluations, ε is set
to 2.

It should be noted that Schmid et al. [27] define the denominator
of Eq. (10) as min{|Si|, |S j|}. However, this leads to a seemingly
perfect repeatability of 1 if the detector returns, for example, 100
points in the first frame and only one point in the second frame, as
long as this single point is among the 100 detected earlier, which is
misleading. Our choice of denominator comes at the price of a non-
symmetric performance measure, but ensures that it reflects the way
that a tracking system operates: it tracks from one frame to the next,
hence a non-symmetric performance measure seems acceptable.

Unfortunately, the repeatability criterion is biased in favor of al-
gorithms that return many keypoints: as a trivial example, an algo-
rithm that simply “detects” every single pixel has a repeatability of
1. One possibility is to adjust the parameters for the comparison so
that different detectors return the same number of points (see, e.g.,
[4]), however, this assumes that all detectors work equally well for
any number of features, which is not the case as the results in this
work will show. Additionally, the number of features that a detector
returns might be an important factor in the decision of which detec-
tor to use in a specific application, so instead of trying to equalize
this value, we will report this number together with the repeatabil-
ity.

Moreover, the repeatability criterion as given in Eq. (10) obvi-
ously allows the |Si| to be arbitrarily small: A single, perfectly sta-
ble point will produce a repeatability of 1. However, if we want
to use the detector for a tracking system that estimates a pose with
d degrees of freedom, we need at least d/2 correctly re-detected
(and identified) points. In our setup, we require 4 points to cor-
rectly obtain the homography. Therefore, we amend Eq. (10) and
set the score to 0 if the number of re-detected points is smaller than

4. This is especially important during the first stage of our eval-
uations, in which we determine the parameter configuration to be
used (Section 5.1): The above correction ensures that maximizing
repeatability also maximizes the chance of tracking success.

4.4 Implementation
The software framework for this evaluation was implemented in
C++. partially using the OpenCV library1. For the evaluated detec-
tors, the implementations were used:

• Harris and Shi-Tomasi: Implementations of these algo-
rithms are provided with the OpenCV library. Additionally,
Edward Rosten made available his implementation of the Har-
ris detector, which was used in the comparison in [26]. The in-
terface of the implementation in OpenCV only allows binary
rectangular windows for w(u,v) (see Section 3.1), so the code
was modified to reveal hidden parameters. After this change,
both implementations were found to be equivalent (i.e. detect
the same points). For the comparison, OpenCV’s implemen-
tation was used, as it was slightly faster.

• DoG: The original DoG+SIFT implementation is only avail-
able as a binary executable2 which does not allow the flexibil-
ity needed for this evaluation. Instead, two publicly available
SIFT implementations were used, from Rob Hess3 and An-
drea Vedaldi4. Due to the very complex algorithm and sub-
tleties e.g. in the location refinement (cf. Section 3.3), the
implementations are not exactly equivalent. The comparison
shows results for Vedaldi’s implementation, which was found
to perform slightly faster and better.

• Fast Hessian: The original implementation of Bay et al. [4]
is available as compiled library5 and was used for this evalu-
ation.

1http://sourceforge.net/projects/opencvlibrary/
2http://www.cs.ubc.ca/∼lowe/keypoints/
3http://web.engr.oregonstate.edu/∼hess/
4http://vision.ucla.edu/∼vedaldi/code/siftpp/siftpp.html
5http://www.vision.ee.ethz.ch/∼surf/

5

http://sourceforge.net/projects/opencvlibrary/
http://www.cs.ubc.ca/~lowe/keypoints/
http://web.engr.oregonstate.edu/~hess/
http://vision.ucla.edu/~vedaldi/code/siftpp/siftpp.html
http://www.vision.ee.ethz.ch/~surf/

Gauglitz, Höllerer, Turk: Dataset and Evaluation of Interest Point Detectors for Visual Tracking. TR 2010-06

• FAST: The original implementation is available as source
code6.

• CenSurE: We use an implementation of WillowGarage,
which is “[...] based on CenSurE with some modifications
for increased speed and stability” 7.

For each of the algorithms, an interface was implemented that
was derived from a common virtual base class. Implementing these
interfaces required significant work in some cases, for example
to convert image formats, reveal hidden algorithm parameters and
re-parametrize implementations to make the parameters compara-
ble between implementations (for different implementations of the
same algorithm) or to the respective original paper. With these in-
terfaces, the algorithms can be used interchangeably without chang-
ing the code. Execution time is measured only for the core part of
the algorithms, that is, without the unifying interface needed for
the evaluation or any initialization or memory allocation steps that
could be moved to a pre-processing step.

Reported timings refer to an IBM Thinkpad T60 with a 1.83 GHz
Dual Core CPU (only one core used for the computations) running
Linux.

5 RESULTS

5.1 Algorithm parameters
First, a total of 25 parameters of the six detector algorithms were
evaluated in terms of their impact on the performance of the al-
gorithm, namely, execution time, number of detected features and
repeatability. We used the six “unconstrained” video streams, re-
peatability was evaluated for all consecutive frame pairs as well
as 6x 5000 randomly selected frame pairs (5000 per texture). For
each algorith, we set all parameters to their respective default val-
ues (as given by the original authors, if available), and then varied
one parameter at a time across a large range of values. We made
two exceptions from this rule: 1. for Harris and Shi-Tomasi, we
first evaluated (all combinations of) gradient kernel and w(u,x), and
then evaluated the remaining parameters using the chosen new val-
ues, 2. for Fast Hessian, we first evaluated the number of octaves
and the sampling step, and then evaluated the threshold for the new
values. The complete results are shown in Figs. 9–14, the parame-
ters that were evaluated are listed in Table 1 along with the chosen
final values.

5.2 Comparison
Fig. 15 presents the obtained detector comparison results, specifi-
cally, the repeatability under various conditions. For all plots, re-
peatability was measured for all consecutive frames and/or a set of
randomly chosen frames per texture. For the application of track-
ing, the former simulates continuous tracking, the latter tracking
failure of a few frames or re-visiting a previous mapped scene (loop
closure).

Fig. 15a shows the repeatability vs. the number of detected points
(in the textured region of interest) achieved by the detectors by vary-
ing the respective thresholds. For all following experiments, the
threshold was set to the value given in Table 1 (indicated by the
respective marker in Fig. 15a).

Fig. 15b explore the tradeoff repeatability vs. execution time,
both in the case of consecutive frames and random frame pairs. For
the latter, the repeatability of all detectors decreases significantly,
however, the performance of the “center-oriented” detectors, espe-
cially Fast Hessian, drops much farther. This result (averaged for
all frame pairs in Fig. 15b) is broken down by texture in Fig. 16, and
by the relative baseline distance in Fig. 15c. The trend can be ana-
lyzed further using the isolated motion patterns Fig. 15d–Fig. 15g:

6http://svr-www.eng.cam.ac.uk/∼er258/work/fast.html
7http://pr.willowgarage.com/wiki/Star Detector

Detector Parameter Value

Harris k 0.15
threshold θ 0.001
w(u,v) exp

{
−(u2 + v2)/2σ2}

σ 2
kernel size 2σ

gradient kernel Sobel

Shi-Tomasi threshold θ 0.022
w(u,v) exp

{
−(u2 + v2)/2σ2}

σ 1.5
kernel size 1.5σ

gradient kernel Sobel

DoG octaves 4
levels 3
σ0 1.6
θedge 10
θcontr 0.02

Fast Hessian octaves 4
threshold 4
sampling step n 1
initLobe 3

FAST threshold t 20

CenSurE scales 6
response threshold 6
line th. (binarized) 10
line th. (projected) 10

Table 1: Parameter values for the interest point detectors.

while perspective distortion is the biggest challenge for all detec-
tors, the corner detectors maintain higher repeatability. As perspec-
tive distortion occurs frequently in many camera paths, including
our pattern “unconstrained,” this result is important.

The difficulty of the corner detectors to cope with motion blur
Fig. 15h and the “wood” texture (Fig. 16) is apparent.

Fast Hessian performs best for small baseline distances for
almost every texture (Fig. 16), as well as for panning motion
(Fig. 15e) and motion blur (Fig. 15h).

For the different static lighting conditions, all detectors cope al-
most equally bad with the increased noise level (Fig. 15i). Fig. 15j
is the only figure that shows repeatability over time, namely, while
the lighting is changed (note that the output is smoothed with a me-
dian filter to make the figure legible). While all detectors show the
same behavior on average, detailed analysis of lighting changes for
each texture reveal differences. Interestingly, there are two textures
in which Fast Hessian outperforms all others, but two others where
it fails to find any features and is outperformed by all others.

6 CONCLUSIONS

We presented a comprehensive evaluation of six interest point de-
tectors with respect to their application in real-time visual tracking.
We used a testbed relevant to visual tracking, namely, video streams
affected by motion blur and noise, with several thou- sand frames
total, and explicitly evaluated a total of 25 algorithm parameters as
well as comparing the six detectors to each other.

We believe that the results of our parameter evaluation are im-
mensely helpful in “tuning” a particular algorithm for any partic-
ular application (note that the optimal parameters might be very
different from the parameters we chose for the comparison), but
also to gain insight into how the algorithms work. The comparison
provides quantitative support for the decision of which detector to
choose for designing new tracking applications.

6

http://svr-www.eng.cam.ac.uk/~er258/work/fast.html
http://pr.willowgarage.com/wiki/Star_Detector

Gauglitz, Höllerer, Turk: Dataset and Evaluation of Interest Point Detectors for Visual Tracking. TR 2010-06

0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

threshold

ti
m

e
 [
m

s
]

0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

60

70

80

threshold
#

 o
f

p
o

in
ts

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

threshold

re
p
e
a

ta
b
ili

ty

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

10

20

30

40

50

k

ti
m

e
 [

m
s
]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

5

10

15

20

25

30

35

40

k

#
 o

f
p
o
in

ts

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

k

re
p
e
a
ta

b
ili

ty

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

sigma

ti
m

e
 [

m
s
]

1 2 3 4 5 6 7
24

26

28

30

32

34

36

sigma

#
 o

f
p
o
in

ts

1 2 3 4 5 6 7

0.1

0.2

0.3

0.4

sigma

re
p
e
a
ta

b
ili

ty

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

sigmas

ti
m

e
 [
m

s
]

1 2 3 4 5 6 7
22

24

26

28

30

32

sigmas

#
 o

f
p
o
in

ts

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

sigmas

re
p
e
a
ta

b
ili

ty

Figure 9: Harris: Impact of varying algorithm parameters on execution time (left), number of detected points (middle) and repeatability (right). In
the right column, solid lines depict the repeatability of consecutive frames, whereas dashed lines depict the repeatability between random frame
pairs. Dots depict the repeatability irrespective of number of points, and squares depict the repeatability after the correction described in the last
paragraph of Section 4.3.

7

Gauglitz, Höllerer, Turk: Dataset and Evaluation of Interest Point Detectors for Visual Tracking. TR 2010-06

0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

60
ti
m

e
 [
m

s
]

threshold

0 0.02 0.04 0.06 0.08 0.1
0

50

100

150

200

250

300

threshold

#
 o

f
p
o

in
ts

0 0.02 0.04 0.06 0.08 0.1
0.1

0.2

0.3

0.4

0.5

threshold

re
p

e
a
ta

b
ili

ty

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

ti
m

e
 [

m
s
]

sigma

1 2 3 4 5 6 7
100

120

140

160

180

200

220

240

sigma

#
 o

f
p

o
in

ts

1 2 3 4 5 6 7
0.1

0.2

0.3

0.4

0.5

sigma

re
p
e

a
ta

b
ili

ty

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

ti
m

e
 [
m

s
]

sigmas

1 2 3 4 5 6 7
100

120

140

160

180

200

220

240

sigmas

#
 o

f
p
o
in

ts

1 2 3 4 5 6 7
0.2

0.3

0.4

0.5

sigmas

re
p
e
a
ta

b
ili

ty

Figure 10: Shi-Tomasi: Impact of varying algorithm parameters on execution time (left), number of detected points (middle) and repeatability
(right). Legend to right column see Fig. 9.

0 20 40 60 80 100 120
2

3

4

5

6

7

8

ti
m

e
 [
m

s
]

threshold

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

800

900

threshold

#
 o

f
p
o
in

ts

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

threshold

re
p
e
a
ta

b
ili

ty

Figure 11: FAST: Impact of varying the threshold on execution time (left), number of detected points (middle) and repeatability (right). Legend
to right column see Fig. 9.

8

Gauglitz, Höllerer, Turk: Dataset and Evaluation of Interest Point Detectors for Visual Tracking. TR 2010-06

1 2 3 4 5 6
0

20

40

60

80

100

120

140

ti
m

e
 [
m

s
]

octaves

1 2 3 4 5 6
36

38

40

42

44

46

48

50

octaves

#
 o

f
p
o

in
ts

1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

octaves

re
p

e
a
ta

b
ili

ty

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

levels per octave

ti
m

e
 [

m
s
]

1 2 3 4 5 6 7 8 9 10
20

30

40

50

60

70

80

90

100

110

levels

#
 o

f
p

o
in

ts

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

levels

re
p
e

a
ta

b
ili

ty

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

sigma0

ti
m

e
 [
m

s
]

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

sigma0

#
 o

f
p
o
in

ts

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

sigma0

re
p
e
a
ta

b
ili

ty

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

edge threshold

ti
m

e
 [

m
s
]

0 5 10 15 20 25 30 35 40 45 50
20

25

30

35

40

45

50

55

60

edge threshold

#
 o

f
p
o
in

ts

0 5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

edge threshold

re
p
e
a
ta

b
ili

ty

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

20

40

60

80

100

120

140

threshold

ti
m

e
 [
m

s
]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

10

20

30

40

50

60

70

80

90

threshold

#
 o

f
p
o
in

ts

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

re
p
e
a
ta

b
ili

ty

Figure 12: Difference-Of-Gaussians: Impact of varying algorithm parameters on execution time (left), number of detected points (middle) and
repeatability (right). Legend to right column see Fig. 9.

9

Gauglitz, Höllerer, Turk: Dataset and Evaluation of Interest Point Detectors for Visual Tracking. TR 2010-06

1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

octaves

ti
m

e
 [
m

s
]

1 2 3 4 5 6
38

40

42

44

46

48

50

52

54

#
 o

f
p
o

in
ts

octaves

1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

octaves

re
p
e
a

ta
b
ili

ty

1 2 3 4 5 6
0

50

100

150

sampling step

ti
m

e
 [

m
s
]

1 2 3 4 5 6
20

30

40

50

60

70

80

sampling step

#
 o

f
p
o
in

ts

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

sampling step

re
p
e
a
ta

b
ili

ty

1 2 3 4 5 6
0

10

20

30

40

50

60

ti
m

e
 [
m

s
]

initLobe

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

10

20

30

40

50

60

70

80

90

initLobe

#
 o

f
p
o
in

ts

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

initLobe

re
p
e
a
ta

b
ili

ty

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

ti
m

e
 [
m

s
]

threshold

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

threshold

#
 o

f
p
o
in

ts

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threshold

re
p
e
a
ta

b
ili

ty

Figure 13: Fast Hessian: Impact of varying algorithm parameters on execution time (left), number of detected points (middle) and repeatability
(right). Legend to right column see Fig. 9.

10

Gauglitz, Höllerer, Turk: Dataset and Evaluation of Interest Point Detectors for Visual Tracking. TR 2010-06

3 4 5 6 7 8 9 10
0

20

40

60

80

100

scales

ti
m

e
 [
m

s
]

3 4 5 6 7 8 9 10
5

10

15

20

25

30

35

scales

#
 o

f
p
o

in
ts

3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

scales

re
p
e
a

ta
b
ili

ty

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

response threshold

ti
m

e
 [

m
s
]

0 5 10 15 20 25 30 35 40 45
0

50

100

150

response threshold

#
 o

f
p
o
in

ts

0 5 10 15 20 25 30 35 40 45
0.1

0.2

0.3

0.4

0.5

0.6

response threshold

re
p
e
a
ta

b
ili

ty

6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

line threshold binarized

ti
m

e
 [
m

s
]

6 7 8 9 10 11 12 13 14 15 16
25

26

27

28

29

30

31

32

33

34

35

line threshold binarized

#
 o

f
p
o
in

ts

6 7 8 9 10 11 12 13 14 15 16
0.1

0.2

0.3

0.4

0.5

line threshold binarized

re
p
e
a
ta

b
ili

ty

6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

line threshold projected

ti
m

e
 [
m

s
]

6 7 8 9 10 11 12 13 14 15 16
20

22

24

26

28

30

32

34

36

line threshold projected

#
 o

f
p
o
in

ts

6 7 8 9 10 11 12 13 14 15 16
0.1

0.2

0.3

0.4

0.5

0.6

line threshold projected

re
p
e
a
ta

b
ili

ty

Figure 14: CenSurE: Impact of varying algorithm parameters on execution time (left), number of detected points (middle) and repeatability
(right). Legend to right column see Fig. 9.

11

Gauglitz, Höllerer, Turk: Dataset and Evaluation of Interest Point Detectors for Visual Tracking. TR 2010-06

0 25 50 75 100 125 150 175
0

0.1

0.2

0.3

0.4

0.5

0.6

of points

re
p

e
a
ta

b
ili

ty

(a) repeatability vs. number of points

1 10 100
0

.1

.2

.3

.4

.5

.6

time [ms]

(b) rep. vs. time

0 10 20 30 40 50
0

.1

.2

.3

.4

.5

.6

baseline distance [cm]

(c) rep. vs. baseline distance

Harris

Shi−Tom

DoG

FHess

FAST

CenSurE

2.01.411.00.712.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

scale change (log scale)

re
p
e
a
ta

b
ili

ty

(d) “zoom”

0 3 6 9 12 15 18
0

.1

.2

.3

.4

.5

.6

.7

.8

diff. in camera yaw [degrees]

(e) “panning”

0 10 20 30 40 50 60 70 80 90
0

.1

.2

.3

.4

.5

.6

.7

.8

camera rotation [degrees]

(f) “rotation”

0 10 20 30 40 50 60 70 80
0

.1

.2

.3

.4

.5

.6

.7

.8

rotation [degrees]

(g) “perspective distortion”

1 2 3 4 5 6 7 8 9
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

speed

re
p
e
a
ta

b
ili

ty

(h) “motion blur”

I II III IV
.1

.2

.3

.4

.5

.6

.7

.8

.9

light condition

re
p
e
a
ta

b
ili

ty

(i) “static lighting”

0 20 40 60 80 100
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

frame no.

re
p
e
a
ta

b
ili

ty
 (

m
e
d
ia

n
1
5
 f
ilt

e
re

d
)

(j) “dynamic lighting”

Figure 15: Repeatability of detectors under various conditions, all results averaged for all respective frame pairs and textures.

(a-c) on motion pattern “unconstrained,” (a) Rep. on consecutive frames vs. number of detected points (in the region of interest), varying
the respective threshold parameter. For comparison, the dashed gray line indicates the repeatability of randomly selected points, thus clearly
visualizing the criterion’s bias. (b) Rep. vs. execution time, for consecutive frames (above line) and 5000 pairs of randomly selected frames per
texture (below line). (c) Rep. on random frame pairs as a function of the baseline distance between the two frames. (d-g) Rep. as function of
geometric changes. For each figure, 5x 500 random frame pairs (500 per texture) of the specified motion pattern were evaluated and then binned
and averaged according to the relative change in the camera’s position between the two frames. (h) Rep. in the case of motion blur, both during
motion (solid lines) and compared to the first, still frame (dashed lines). For absolute values of the speeds 1-9 refer to Section 4.2. (i) Rep. for
different light conditions, both within one light condition (solid lines) and compared to the first condition (dashed lines). (j) Rep. for dynamic light
changes. Here, the repetability is shown over time (i.e. frames) and filtered with a median filter of length 15 to make the figure legible (note that
(j) is the only figure that shows repeatability for single frames).

12

Gauglitz, Höllerer, Turk: Dataset and Evaluation of Interest Point Detectors for Visual Tracking. TR 2010-06

building paris mission bricks sunset wood
0

.1

.2

.3

.4

.5

.6

.7

texture

re
p

e
a
ta

b
ili

ty

Figure 16: Repeatability on the different textures, motion pattern
“unconstrained.” Here, solid lines indicate performance for consecu-
tive frames, dashed lines indicate performance for randomly selected
pairs (5000 per texture). The bold gray lines indicate the average over
all detectors, further legend as in Fig. 15.

REFERENCES

[1] M. Agrawal, K. Konolige, and M. R. Blas. CenSurE: Center sur-
round extremas for realtime feature detection and matching. In D. A.
Forsyth, P. H. S. Torr, and A. Zisserman, editors, ECCV (4), vol. 5305
of Lecture Notes in Computer Science, pp. 102–115. 2008.

[2] S. Baker and I. Matthews. Equivalence and efficiency of image align-
ment algorithms. In Proc. 2001 IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR’01), vol. 1, pp. 1090 – 1097, December
2001.

[3] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and
R. Szeliski. A database and evaluation methodology for optical flow.
In ICCV, pp. 1–8. 2007.

[4] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust
features. In Proc. 9th European Conf. on Computer Vision (ECCV’06),
pp. 404–417, Graz, Austria, May 2006.

[5] M. Brown and D. Lowe. Invariant features from interest point groups.
In Proc. 2002 British Machine Vision Conf. (BMVC’02), 2002.

[6] Y. Cheng, M. W. Maimone, and L. Matthies. Visual odometry on the
mars exploration rovers - a tool to ensure accurate driving and science
imaging. IEEE Robotics & Automation Magazine, 13(2):54–62, 2006.

[7] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. MonoSLAM:
Real-time single camera SLAM. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 29(6):1052–1067, 2007.

[8] E. Eade and T. Drummond. Edge landmarks in monocular SLAM. In
Proc. 17th British Machine Vision Conf. (BMVC’06), vol. 1, pp. 7–16,
Edinburgh, September 2006.

[9] M. Fiala. ARTag, a fiducial marker system using digital techniques. In
Proc. 2005 IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR’05), vol. 2, pp. 590–596, Washington, DC, USA, 2005.

[10] C. Harris and M. Stephens. A combined corner and edge detector. In
Proc. 4th ALVEY Vision Conf., pp. 147–151, 1988.

[11] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, second edition, 2004.

[12] G. Klein and D. Murray. Parallel tracking and mapping for small AR
workspaces. In Proc. Sixth IEEE and ACM Intl. Symposium on Mixed
and Augmented Reality (ISMAR’07), Nara, Japan, November 2007.

[13] G. Klein and D. Murray. Improving the agility of keyframe-

based SLAM. In Proc. 10th European Conf. on Computer Vision
(ECCV’08), pp. 802–815, Marseille, October 2008.

[14] T. Lee and T. Höllerer. Hybrid feature tracking and user interaction
for markerless augmented reality. In Proc. 2008 IEEE Virtual Reality
Conf. (VR’08), pp. 145–152, March 2008.

[15] S. Lieberknecht, S. Benhimane, P. Meier, and N. Navab. A dataset
and evaluation methodology for template-based tracking algorithms.
In ISMAR, 2009.

[16] T. Lindeberg. Scale-space theory: A basic tool for analysing structures
at different scales. Journal of Applied Statistics, 21(2):224–270, 1994.
(Supplement on Advances in Applied Statistics: Statistics and Images:
2).

[17] D. G. Lowe. Object recognition from local scale-invariant features.
In Proc. 1999 IEEE Intl. Conf. on Computer Vision (ICCV’99), pp.
1150–1157, Corfu, 1999.

[18] D. G. Lowe. Distinctive image features from scale-invariant key-
points. Intl. Journal of Computer Vision, 60(2):91–110, November
2004.

[19] K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point
detectors. Intl. Journal of Computer Vision, 60(1):63–86, 2004.

[20] K. Mikolajczyk and C. Schmid. A performance evaluation of local de-
scriptors. IEEE Trans. on Pattern Analysis and Machine Intelligence,
27(10):1615–1630, Oct. 2005.

[21] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Schaffalitzky, T. Kadir, and L. van Gool. A comparison of affine
region detectors. Intl. Journal of Computer Vision, 65(7):43 – 72,
November 2005.

[22] H. Moravec. Obstacle avoidance and navigation in the real world by
a seeing robot rover. Technical Report CMU-RI-TR-80-03, Robotics
Institute, Carnegie Mellon University, September 1980.

[23] P. Moreels and P. Perona. Evaluation of features detectors and de-
scriptors based on 3D objects. Intl. Journal of Computer Vision, 73
(3):263–284, 2007.

[24] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry. Proc. 2004
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’04),
1:652–659, July 2004.

[25] E. Rosten and T. Drummond. Fusing points and lines for high perfor-
mance tracking. In Proc. 2005 IEEE Intl. Conf. on Computer Vision
(ICCV’05), vol. 2, pp. 1508–1511, October 2005.

[26] E. Rosten and T. Drummond. Machine learning for high-speed cor-
ner detection. In Proc. 2006 European Conf. on Computer Vision
(ECCV’06), vol. 1, pp. 430–443, May 2006.

[27] C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of interest point
detectors. Intl. Journal of Computer Vision, 37(2):151–172, 2000.

[28] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A
comparison and evaluation of multi-view stereo reconstruction algo-
rithms. Computer Vision and Pattern Recognition, IEEE Computer
Society Conference on, 1:519–528, 2006.

[29] J. Shi and C. Tomasi. Good features to track. In Proc. 1994 IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR’94), pp.
593–600, 1994.

[30] P. Viola and M. Jones. Rapid object detection using a boosted cascade
of simple features. In Proc. IEEE Conf. on Computer Vision and Pat-
tern Recognition (CVPR’01), vol. 1, p. 511, Los Alamitos, CA, USA,
2001.

[31] K. Zimmermann, J. Matas, and T. Svoboda. Tracking by an optimal
sequence of linear predictors. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31:677–692, 2008.

13

	Introduction
	Existing Datasets and Evaluations
	Datasets
	Evaluations

	Interest point detectors
	Harris Corner Detector
	Shi-Tomasi's ``Good Features To Track''
	Difference of Gaussians (DoG)
	Fast Hessian
	Features from Accelerated Segment Test (FAST)
	Center-Surround Extrema (CenSurE)

	Testbed Design & Evaluation Setup
	Establishing ground truth
	Dataset
	Performance measures
	Implementation

	Results
	Algorithm parameters
	Comparison

	Conclusions

