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Abstract

In this paper, we present a technique that connects web
applications to cloud-based distributed datastore tech-
nologies that implement the Google App Engine cloud
datastore API. We implement our approach as a Google
App Engine (GAE) application that we employ to expose
the GAE datastore API to developers – for use with any
language and framework. We evaluate this application
on both GAE and over AppScale, the open-source imple-
mentation of GAE that removes the programming and li-
brary restrictions of GAE and that enables GAE applica-
tions to execute on virtualized cluster resources, includ-
ing Eucalyptus and EC2, without modification. As part
of this work, we extend AppScale with simple caching
support to improve the performance of datastore access
and evaluate our technique with and without this support.
We also make use of this support within multiple pro-
totypes (e.g. Ruby/Rails, Python/Django) to show the
ease-of-use and applicability of our contribution to other
web development environments.

1 Introduction

Distributed key-value datastores have become popular in
recent years due to their simplicity, ability to scale within
web applications and services usage models, and their
ability to grow and shrink in response to demand. As
a result of their success in non-trivial and highly visible
cloud systems for web services, e.g. BigTable [4] within
Google, Dynamo [1] within Amazon, and Cassandra [3]
within Facebook, a wide variety of open-source varia-
tions of distributed key-value stores have emerged and
are gaining wide-spread use.

However, these datastores implement a wide variety
of features that make them difficult for prospective users
to compare. For example there are differences in query
languages, topology (master/slave vs peer-to-peer), con-
sistency policies, and end-user library interfaces. As a
result, we and others have investigated a single frame-

work with which such systems can be compared. The
two systems which enable this are YCSB [6] and the
AppScale platform [5, 2]. YCSB is the Yahoo! Cloud
Serving Benchmark. YCSB provides a new DB inter-
face and a synthetic workload executor for exercising the
DBs that the authors attach to the interface. The system
measures the response time of primitive operations in a
workload between a thread on one machine and the data-
store on another. The authors have support for four data-
stores (without replication): HBase, Cassandra, PNUTS
(Yahoo’s internal key-value store), and Sharded MySQL.

AppScale is an open-source implementation of the
Google App Engine (GAE) cloud platform. It employs
the GAE Datastore API as a unifying API through which
any datastore can be “plugged in”. Once a datastore im-
plementation is added to AppScale, it is deployed and
configured automatically (there are command-line pa-
rameter settings for replication factor, cloud size, etc.)
within the AppScale cloud deployment. Thus App-
Scale automates the configuration and deployment of
these complex distributed systems and facilitates differ-
ent databases to be compared. AppScale currently im-
plements this key-value API using HBase, Hypertable,
Cassandra, Voldemort, MongoDB, MemcacheDB, and
MySQL Cluster. The system however, unlike YCSB,
measures application end-to-end performance (the round
trip time from the user/browser to the web server to the
datastore, and back). Unfortunately, AppScale only sup-
ports applications written in the languages that GAE sup-
ports (currently Python and Java). YCSB does not sup-
port applications at all but instead spawns requests be-
tween the server and the datastore for the sole purpose of
measuring datastore response time and throughput.

In this work, we address the problem of how to easily
provide users of any programming language and frame-
work with a database-agnostic interface to key-value
datastores. To enable this, we (i) employ AppScale as a
cloud platform to configure and deploy the needed data-
store, and (ii) design and implement a GAE application
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that runs over AppScale, called Active Cloud DB (in the
spirit of Ruby’s ActiveRecord). Active Cloud DB is a
cloud software component that exposes an HTTP API
that is implemented via GAE datastore API.

As a result, Active Cloud DB provides application de-
velopers with automatic and straight-forward access to
the scalable datastore back-ends that AppScale imple-
ments and to GAE BigTable. Active Cloud DB is easy to
use and to integrate into language and framework front-
ends and also provides the functionality to move data
between distributed datastores without manual configu-
ration or deployment and without knowledge about the
datastore implementation.

We employ the API to implement support for
disparate web-based language frameworks, includ-
ing Ruby/Sinatra, Ruby/Rails, Python/Django, and
Python/Web.py. We evaluate the performance of the API
using Cassandra and MemcacheDB datastores to investi-
gate the performance differences of the primitive datas-
tore operations. Finally, we extend AppScale with a sim-
ple data caching scheme mechanism for Active Cloud
DB – that also can be used by any GAE application that
runs over AppScale, and evaluate its impact.

In the sections that follow, we overview AppScale, the
implementation and evaluation framework we use to in-
vestigate the performance of our approach. We then de-
scribe Active Cloud DB and the caching support with
which we extend AppScale. We then describe four proof
of concepts we have developed that make use of Active
Cloud DB, evaluate this web service, and conclude.

2 AppScale

AppScale is a robust, open source implementation of the
Google App Engine APIs that executes over private vir-
tualized cluster resources and cloud infrastructures in-
cluding AWS and Eucalyptus [8]. Users can execute their
existing App Engine applications over AppScale without
modification. [5] describes the design and implementa-
tion of AppScale. We summarize the key components of
AppScale that impact our description and implementa-
tion of Active Cloud DB.

AppScale is an extension of the non-scalable test-
ing/debugging front-end that Google makes available as
open-source, and to which Google refers as the Google
App Engine (GAE) software development kit. This ex-
tension is called the AppServer in AppScale. App-
Scale integrates open-source datastore/database systems
as well as new software components that faciliate config-
uration, one-button deployment, and distributed system
support for scalable, multi-application, multi-user cloud
operation.

The AppServer decouples the APIs from their non-
scalable SDK implementations and replaces them dis-

tributed and scalable versions – for either Python or Java.
That is, GAE applications can be written in either lan-
guage. AppScale implements front-ends for both lan-
guages in this way.

GAE applications write to a key-value datastore using
the following Google Datastore API:

• Put(k, v): Add keyk and valuev to table; creating
a table if needed

• Get(k): Return value associated with keyk

• Delete(k): Remove keyk and its value

• Query(q): Perform queryq using the Google query
language (GQL) on a single table, returning a list of
values

• Count(t): For a given query, returns the size of the
list of values returned

GAE applications employ this API to save/restore data
as part of the GAE application implementation. The
AppServer (and GAE SDK) encodes each request using
a Google Protocol Buffer [9]. Protocol Buffers facili-
tate fast encode/decode times and provide highly com-
pact encoding. As a result, they are much more effi-
cient for data serialization than other approaches. The
AppServer sends/receives Protocol Buffers to/from a
Protocol Buffer Server in AppScale over encrypted sock-
ets. All details about and use of Protocol Buffers and
the back-end datastore (in Google or in AppScale) is ab-
stracted away from GAE applications using this API.

The AppScale Protocol Buffer Server implements all
of the libraries necessary to interact with each of the
datastores that are plugged into AppScale. Since this
server interacts with all front-ends, it must be very fast
and scalable so as not to impact end-to-end application
performance. AppScale places a Protocol Buffer Server
on each node to which datastore reads and writes can
be sent (i.e. the datastore entry points) by applications.
For master-slave datastores, the server runs on the master
node. For peer-to-peer datastores, the server runs on all
nodes.

AppScale currently implements seven popular open-
source datastore/database technologies. They are Cas-
sandra, HBase, Hypertable, MemcacheDB, MongoDB,
Voldemort, and MySQL Cluster (with a key-value data
layout). Each of these technologies vary in their matu-
rity, eventual/strong consistency, performance, fault tol-
erance support, implementation and interface languages,
topologies, and data layout, among other characteristics.
[2] presents the details on each of these datastores.

Active Cloud DB and our caching support is datastore-
agnostic. These extensions thus work for all of the App-
Scale datastores (current and future) and for GAE ap-
plications deployed to Google’s resources. In our eval-
uation section, we choose two representative datastores
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(due to space constraints) to collect empirical results
for: Cassandra and MemcacheDB. We provide a brief
overview of each.

Cassandra. Developed and released as open source
by Facebook in 2008, Cassandra is a hybrid between
Google’s BigTable and Amazon’s Dynamo [3]. It incor-
porates the flexible column layout from the former and
the peer-to-peer node topology from the latter. Its peer-
to-peer layout allows the system to avoid having a single
point of failure as well as be resiliant to network parti-
tions. Furthmore, read and write requests can be sent
to any node in the system, allowing for greater through-
put. However, this also results in data being “eventually-
consistent.” Specifically, this means that a write to one
node will take some time to propagate throughout the
system and that application designers need to keep this
in mind. Cassandra exposes a Thrift API through which
applications can interact with in many popular program-
ming languages.

MemcacheDB. Developed and released as open
source by Steve Chu in 2007, memcachedb is a modi-
fication of the popular open source distributed caching
service memcached. Buildling upon the memcached
API, MemcacheDB adds replication and persistence us-
ing Berkeley DB [7] as a backing store. MemcacheDB
provides a key-value datastore with a master-slave node
layout. Reads can be directed to any node in the sys-
tem, while writes can only be directed to the master node.
This allows for strong data consistency but also multiple
points of access for read requests. As MemcacheDB is
a master-slave datastore, the master node in the system
is the single point of failure. MemcacheDB can use any
library available for memcached, allowing for native ac-
cess via many programming languages.

3 Active Cloud DB

We next present Active Cloud DB, a software service
that executes over AppScale to expose datastores to
cloud clients. Clients are web-based applications and
software implemented using language frameworks other
than Google App Engine. Active Cloud DB exports to
clients access to cloud-based distributed datastore tech-
nologies automatically and scalably.

Active Cloud DB is a software layer that we imple-
ment as a GAE application that executes over AppScale
(and thus Google App Engine). Its implementation re-
quires no modification to AppScale. To enable scal-
ability and low response times, we also extend App-
Scale with datastore caching support to improve the per-
formance of datastore access by applications. We first

overview Active Cloud DB and then describe the design
and implementation of our caching scheme.

3.1 Implementation

Our goal with Active Cloud DB is to remove the limita-
tion imposed by AppScale and Google App Engine that
requires that applications be written in Python or Java to
gain access to the functionality of the distributed datas-
tore back-ends that these cloud fabrics implement. This
is particularly important for Google App Engine, since
not only must applications be written in these languages
but they must employ the web frameworks specified by
Google using a restricted set of “whitelisted” libraries.
AppScale removes this constraint but currently still only
supports Python and Java GAE applications.

Active Cloud DB is a Google App Engine application
that runs over AppScale that exposes an HTTP API to
the underlying datastore. Internally, Active Cloud DB
allows for objects to be created with a given name (key)
and one string within (its value). This can be trivially
extended to allow for all data types, but we consider only
string-type keys and values here.

Active Cloud DB exposes three URL routes: aget
route, aput route, and adelete route, each of which
map to their corresponding primitive operations. Appli-
cations perform an HTTP POST request with the neces-
sary key or key/value pair via the AppServer. Requests
can also be or the AppLoadBalancer provided by App-
Scale, which dynamically maps requests to AppServers.

3.2 Integration

To communicate with Active Cloud DB, developers im-
plement the client side-interface. We have done this
for four popular web frameworks, Rails and Sinatra for
Ruby, and Django and web.py for Python. In Rails and
Django, we remove the built-in database abstractions and
in all add in a wrapper for communicating with Active
Cloud DB. It abstracts all remote communication logic
and error handling such that the application developer
need not be aware that the database is located remotely.
In all frameworks we use the default templating library
for creating the presentation layer of the applications.

The four prototype applications with which we make
use of Active Cloud DB implement a simple bookstore
application (inspired by the application given in [10]).
To access Active Cloud DB, the application makes HTTP
POST requests with the key and value to put, or the key
to get or delete. The bookstore application maintains a
special key containing a list of all the books in the data-
store, which is maintained whenever books are added or
removed. When a book is added, we change this spe-
cial key accordingly and then add an entry to the data-
store with the book’s name (the key) and a summary of
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the book’s contents for users to view (the value). When
users wish to view all books in the bookstore, we access
the special key to get a list of all the books, and for each
book (key), we return the corresponding book informa-
tion (its value).

3.3 Caching Support

To reduce latency and improve throughput to/from the
datastores in AppScale, we provide a transparent caching
layer for data. To enable this, we leverage the Google
Memcache API (similar to memcached). The API caches
web service data and provides a least-recently-used re-
placement policy.

To efficiently cache data, we combine two caching
strategies, write-through and generational. For basic op-
erations (get, put, delete) we employ a write-through
caching strategy. With this strategy all put operations
are written to the datastore as well as to the cache. In do-
ing so, subsequent requests will likely be served directly
from cache, avoiding any datastore interaction.

Efficiently caching query operations is more complex
than basic operations because query results can contain
multiple data items. Furthermore, when a particular data
item is updated one must expire all query results which
contain that item so that stale data is not returned. In
order to ensure this property we utilize agenerational
caching strategy. In essence, a generation value is main-
tained for the data. The generation value is included in
the cache key for all query operations. Hence, by chang-
ing the generation value all prior cached results are im-
plicitly expired as they will never be accessed again.

Specifically, the operations are:

• Get(k): Return value associated with keyk. If the
value was not in the cache, store it for future ac-
cesses.

• Put(k, v): Add keyk and valuev to table and the
cache. Increment the generation value.

• Delete(k): Remove keyk and its value from the ta-
ble and the cache. Increment the generation value.

• Query(q): Perform queryq using the Google Query
Language (GQL) on a single table, returning a list of
values. Store the result in the cache with the current
generation number for future queries.

• Count(t): Acquire the query data via the new query
technique, and return the size of the list of values
found.

4 Evaluation

We next employ Active Cloud DB over AppScale to eval-
uate the performance characteristics of the various sup-
ported datastores. We begin by describing our methodol-
ogy and the present our results.

4.1 Methodology

For our experiments, we measure the performance of the
primitive operations performed in bulk and as part of an
overall workload. In both scenarios, this is done over
two back-end AppScale datastores, Cassandra v0.5.0 and
Memcachedb v1.2.1-Beta. For the first set of experi-
ments, we fill a table in each database with 1000 items
and perform the get, put, query, and delete operations. To
provide a baseline measurement we also perform a no-op
operation which simply returns and performs no back-
end processing. We invoke each operation 1000 times
(100 times for query since it takes significantly longer
than the others). A query retrieves all 1000 items from
the datastore.

For each experiment, we access Active Cloud DB us-
ing a machine on the same network. Our measurements
are of round-trip time to/from the AppServer as well as
all database activity. For each experiment, there are nine
concurrent threads that each perform all of the opera-
tions and record the times for each. We consider multi-
ple static configurations of the AppScale cloud that con-
sists of 4, 8, 16, 32, 64, and 96 nodes. On each node,
AppScale runs a Database Slave/Peer, a Protocol Buffer
Server, and an AppServer. Each thread accesses a single
AppServer, so nine are in use in our setting. For each
configuration, there is also a head node that implements
the AppController and the Database Master if there is
one (otherwise it is a Database Peer).

The second set of experiments test the performance of
the primitive operations of the system when performed as
part of an overall workload. Here, the number of nodes
is constrained to 16 nodes (due to space limitations) and
10000 random operations are performed with a 50/30/20
get/put/query ratio. Once an operation is selected, nine
concurrent threads perform the operation and access their
corresponding AppServers.

4.2 Results

We first present results for web application response time
between Active Cloud DB and the datastores. Response
time includes the round-trip time between Active Cloud
DB and datastore including the processing overhead of
the Protocol Buffer Server.

Figure 1 displays results for the get, put, and delete
operations. The left graph shows the performance of the
get operation. The additional entry points for Cassan-
dra allows it to process reads faster than MemcacheDB.
Varying the number of nodes in the system does not have
a significant impact on the performance of the get op-
eration. With caching, there is an improvement in per-
formance for both Cassandra and MemcacheDB. This is
because write-through caching leads to cache hits for all
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Figure 1: Average round-trip time for get (left), put (middle), and delete (right) operations under a load of 9 concurrent
threads for a range of different AppScale cloud sizes (node count).

Figure 2: Average time for query operation for different
node configurations and 9 concurrent threads. The leg-
end is the same as that in Figure 1.

but the first event and cache access is significantly faster
than datastore access.

The middle graph shows the performance of the put
operation. As was the case in [2], the increased number
of entry points for Cassandra allow it to process writes
faster than MemcacheDB. Like in the case of the get op-
eration, we see that the performance does not drastically
change in either direction for either database with respect
to the number of nodes in the system. We see the same
trends occurring for the same datastores when caching is
employed, and about the same performance for a datas-
tore regardless of whether the cache is employed or not.
This shows that the overhead of performing caching is
negligible with respect to the overall time of the oper-
ation. The right graph shows the performance of the
delete operation. Deletes perform similarly to puts for
both datastores as well as with and without caching.

Figure 2 shows the performance of the query opera-
tion. This operation is to be the slowest in the system
since it operates on an entire table and returns all the keys
instead of operating on a single key. For our experiments

a query operation returns all 1000 items in the datastore,
and we see that having more entry points negatively im-
pacts the datastore’s ability to return all the items for a
given table. This impact is consistent across the various
node deployments, with Cassandra consistently perform-
ing worse than MemcacheDB.

Employing the caching scheme negates this difference
since all reads (except for the first) access the cache in-
stead of the datastore. This yields results and conclu-
sions very similar to that for the get operation, but with a
degraded performance due to the fact that our caching
scheme must marshal and un-marshal the data when
caching it. Therefore, un-marshalling all 1000 items in
the datastore constitutes the difference between these op-
erations. Similarly to the get operation, this speedup only
applies without writes: a single write causes performance
to degrade for the next read.

We next consider a second workload. Figure 3
shows the performance of the system under a 50/30/20
get/put/query workload across 16 nodes. All operations
perform faster than in the previous experiments, as this
workload is performed on an initially empty database.
However, the same trends from before are preserved in
this workload analysis. Get operations are still faster for
Cassandra than MemcacheDB, but now both are signifi-
cantly slower than their cached equivalents. This is likely
due to the substantially smaller amount of data in mem-
cached, allowing for much faster read access. As was
the case in the previous experiments, write performance
is roughly the same whether or not caching is employed.
Finally, query performance is substantially better than in
the previous experiments. This is to be expected since
the database has substantially less information in it than
in the previous experiments. Caching the data has less
of an impact here since the non-cached versions perform
much better than in the previous experiments.
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Figure 3: Average round-trip time for get (left), put (middle), and query (right) operations under a load of 9 concurrent
threads for a 50/30/20 get/put/query workload, run over 16 nodes.

Table 1: Average Active Cloud DB time for each oper-
ation using Google App Engine (node count unknown)
and AppScale (16 nodes).

Google AppScale AppScale
App Engine 16 node 16 node

Medium Cassandra MemcacheDB
Load Cache Cache

put 0.28 0.19 0.40
get 0.24 0.14 0.14

delete 0.28 0.18 0.14
query 2.62 0.26 0.26
no-op 0.18 0.14 0.14

Finally, we experiment with executing Active Cloud
DB on Google resources. Table 1 shows the average re-
sponse time using a load of three threads as opposed to
nine for our original first workload (in-order, repeated
operation execution). Google continuously killed our 9-
thread even though we were within our quota. We also
summarize the AppScale results (the same as from the
previous graphs using the 16-node configuration). For
this data, we include the no-op data which we did not
present in graph form. Note that for Google experiments,
we have no control over the number of nodes we have
been allocated for our application.

5 Conclusion

We present Active Cloud DB, an application-level inter-
face service to the Google App Engine (GAE) cloud. Ac-
tive Cloud DB is a GAE application that executes over
GAE or over its open-source counterpart, AppScale. It
exposes the Google datastore API via HTTP to other
languages and frameworks. We evaluate its use within
Google and AppScale and present a number of proof of
concept applications that make use of the interface to ac-
cess a wide range of diverse key-value stores easily and
automatically. We also extend AppScale with simple
caching support to significantly improve query perfor-
mance for Active Cloud DB and other GAE applications
that execute using an AppScale cloud. The proof of con-

cept applications, AppScale, and Active Cloud DB, can
all be found athttp://appscale.cs.ucsb.edu.
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