
Understanding the Potential of Interpreter-based
Optimizations for Python

UCSB Technical Report #2010-14 August 11, 2010

Nagy Mostafa Chandra Krintz
Computer Science Department

University of California, Santa Barbara
{nagy,ckrintz}@cs.ucsb.edu

Calin Cascaval David Edelsohn Priya Nagpurkar Peng Wu
IBM T.J.Watson Research Center

Yorktown Heights, NY
{cascaval,edelsohn,pnagpurkar,pengwu}@us.ibm.com

ABSTRACT
The increasing popularity of scripting languages as general pur-
pose programming environments calls for more efficient execu-
tion. Most of these languages, such as Python, Ruby, PHP, and
JavaScript are interpreted. Interpretation is a natural implemen-
tation given the dynamic nature of these languages and interpreter
portability has facilitated wide-spread use. In this work, we analyze
the performance of CPython, a commonly used Python interpreter,
to identify major sources of overhead. Based on our findings, we
investigate the efficiency of a number of optimizations and explore
the design options and trade-offs involved.

Keywords
dynamic scripting language, performance profiling, language inter-
pretation

1. INTRODUCTION
Scripting languages such as Python, Ruby, PHP, and JavaScript

have experienced rapid uptake in the commercial sector for soft-
ware development and general widespread use in recent years. The
popularity of these languages stems from two factors: 1) rapid pro-
totyping through high level syntax, language flexibility and dy-
namism, and a large collection of frameworks and libraries, thus
enabling programmer productivity; and 2) cross-platform portabil-
ity – interpreters and runtime systems are available on a large num-
ber of systems. These features make it easy for non-experts and
experts alike to employ these languages quickly for a wide variety
of tasks and to deploy fairly complex applications on a variety of
platforms.

Many of these languages were originally designed for “script-
ing”, i.e., for writing short programs for text processing or as “glue
code” between (or embedded within) modules or components writ-
ten in other languages. Recently, they are increasingly employed
for more complex, general-purpose, and self-contained applica-
tions. For example, Python is used in Linux for software pack-
aging and distribution, for peer-to-peer sharing [3] and computer
aided design [8, 19], for cloud computing [10, 5] as well as compu-
tationally intensive tasks [24]. PHP and JavaScript are commonly

used for embedded server-side and client-side embedded scripting,
respectively; Google uses JavaScript for their desktop applications,
including GMail and Google Docs, while PHP is the most com-
monly used language for writing wiki software [30].

Development frameworks (e.g. Rails for Ruby and PHP
(TRAX), Django for Python, etc.), high level syntax, and language
dynamism (runtime resolution of variable types and extensive use
of runtime reflection) all play a key role in the use of dynamic lan-
guages for increasingly complex applications.

Although researchers and open source efforts continue to pur-
sue ways of dynamically compiling these programs [21, 22, 26,
29, 11, 9], the most popular versions of the distributed runtimes
for dynamic scripting languages employ interpreters for execution.
Interpretation plays a key role in the wide-spread use of these
languages – the ease of development facilitates rapid prototyping
and language evolution. Moreover, the runtime is architecture-
independent (e.g., written in C) and thus can be compiled to any
system without significant porting effort, as opposed to retreating a
compiler or JIT system. Even when compilation is an option, dy-
namic languages are challenging to compile because types are not
known statically, and must be inferred and speculatively translated.

Interpretation, however, is an inherently inefficient execution en-
gine. The interpreter must decode and dispatch each bytecode
(compact representation of source instructions). This incurs an
overhead not present in the execution of native (compiled) code. In
addition, interpretation of each bytecode is done independent of ev-
ery other, resulting in poor code quality compared to code produced
by even the simplest code generator. There has been significant
research to identify ways of optimizing the interpretation process
for non-scripting, statically typed, high-level languages (e.g. Java,
OCaML), while maintaining the portability of the runtime [23, 17,
7, 31]. Such approaches target the interpreter dispatch loop since
significant time is spent there for these languages.

Modern scripting languages however are very different from
OCaML and Java given their dynamic nature. In this paper, we
show that dispatch optimization provides only minimal benefits to
Python programs. We, hence, investigate the primary sources of
overhead and based on our findings, we identify and evaluate a set
of optimizations that target these sources of overhead in an attempt
to improve the performance of Python programs. Using caching of
attributes to avoid name lookup, elimination of loads/stores to/from
the operand stack, and inlining, we are able to extract performance
improvement of up to 28%.

2. BACKGROUND
Python is a general-purpose high-level object-oriented program-

ming language with dynamic typing. There are several implemen-

Benchmark Description
2to3 A Python 2 to Python 3 translator translating itself
django Django Python web framework building a 150x150-cell HTML table
html5lib Parse the HTML 5 specification using html5lib
pickle Use the pure-Python pickle module to pickle a variety of datasets
pybench Run the standard Python PyBench benchmark suite
richards The classic Richards benchmark
rietveld Macrobenchmark for Django using the Rietveld [20] code review app
spambayes Run a canned mailbox through a SpamBayes [25] ham/spam classifier
unpickle Uses the cPickle module to un-serialize a variety of datasets

Table 1: The Unladen-Swallow Benchmarks

tations of the Python language [13, 14, 27]. In this work, we focus
on the most widely used reference implementation: CPython [6].
The CPython is a simple implementation of the language written
in C that is portable and easy to understand and extend. CPython
employs switch-based interpretation and a combination of simple
reference counting and cycle-detecting garbage collection. It com-
piles Python source to high-level type-generic bytecodes that run
on a stack-based virtual machine. Being type-generic bytecodes,
they must defer associating abstract operations with specific im-
plementations until runtime. This is carried out via a sequence
of type-checks and indirect-branches which makes bytecode han-
dling slower than for statically-typed languages. CPython performs
name-based late binding on variables and methods (attributes). Ev-
ery Python object has a dictionary (a hash table), that maps at-
tributes names to values. When loading an attribute, a chain of hash
table lookups are performed on the receiver object and its type and
super-types. Not only attributes are stored in dictionaries, so are
global variables.

CPython also implements descriptors which are setter/getter ob-
jects that are used to associate an action with attribute access.
Among these actions is binding methods to objects dynamically at
runtime. When a method is loaded from an object dictionary, its de-
scriptor is found instead which, when invoked, created the method
object on-the-fly and binds it to the receiver.

3. METHODOLOGY
To understand the behavior of Python programs, their sources of

overhead and the impact of interpreter optimizations on CPython,
we evaluate the performance of benchmarks out of the Un-
laden Swallow project [28] which are listed and described in Ta-
ble 1. These benchmarks exercise common activities found in
Python programs including parsing and translation, (de-)serializing
datasets, and HTML manipulation. Also included in this list is
pybench, which implements a set of microbenchmarks that ex-
ercise low level Python activities including function calls, compar-
ison operators, looping constructs, string manipulation, basic arith-
metic, and others [18].

We modified the CPython-2.6 [6] source to collect a variety of
profiles and to experiment with different optimizations. We ran our
experiments on and Intel Core 2 64-bit machine clocked at 2.66
GHz with 2x32 KBytes of L1 instruction cache and 4 MBytes of
shared L2 cache. running Linux 2.6.24 patched with Perfmon [16],
the hardware performance monitoring interface for Linux.

4. PERFORMANCE ANALYSIS
Using this methodology, we first characterize the performance

of CPython. We start by investigating how Direct-Threaded Inter-
pretation (DTI), a traditional interpreter optimization to improve
bytecode dispatch time, impact Python/CPython performance. The
aim is to demonstrated that such optimization is less effective for a
dynamic language.

1

2

3

4

5

6

7

8

9

%

-1

0

1

2

3

4

5

6

7

8

9

%

Figure 1: Effect of Direct Threaded Interpretation on CPython

DTI is a technique that replaces the opcode of every bytecode
(upon first execution or ahead-of-time) with the address or label of
its handler [1]. This replacement increases the size of each instruc-
tion (and still requires replicated code for decoding at the end of
each handler) but reduces the overhead of indirect branches in two
ways. (1) For every indirect branch, the number of possible targets
decreases, which enhances target prediction. (2) Any biased rela-
tion between opcodes is exploited. Such optimization and others
reduce the overhead of conditional and indirect branches, which
are typically hard to predict and are thus costly on modern archi-
tectures, and proves efficient for statically-typed languages where
the dispatch process is the bottleneck [7, 2].

Figure 1 shows the effect of Direct-Threaded interpretation on
CPython performance. On average, there is a small speedup of
2.5%. For most benchmarks, speedup is around 2% and in one
case we actually get a slowdown. This results validates our claim
and shows that bytecode dispatching is not a bottleneck anymore
for interpreters with high-level of abstraction.

To understand, at a high level, where time is being spent in
Python programs, we classify the bytecodes into several classes
based on their actions. For each class, we measure the number
of bytecodes executed and the percentage of time spent there. The
classes we use are as follows:

Type Resolution and Field Access includes
LOAD/STORE_ATTR and LOAD/STORE_GLOBAL. When given
an attribute name and a receiver object, LOAD/STORE_ATTR
perform the necessary work to resolve the attribute name. This
operation is expensive and involves a number of indirections
and dictionary lookups, specially if the attribute lies up in the
inheritance chain.
LOAD/STORE_GLOBAL perform the same task for global vari-

ables. They look for the attribute name in the global dictio-
nary, if not found they look for it in the builtins dictionary.
Since at most two lookups are necessary, they are faster than
LOAD/STORE_ATTR. In the standard CPython implementation,
these lookups are performed every time one of these bytecodes are
executed.

Locals Loads/Stores are bytecodes that transfer values between
the locals/constants and the operand stack. There are three byte-
codes in this class. Namely, LOAD_FAST, STORE_FAST and
LOAD_CONST. These bytecodes are cheap, yet, as will be shown
later, they are encountered quite often during execution.

Method Call and Return includes bytecodes that perform
method calls and returns. The most common opcode in this class is
CALL_FUNCTION, which pops a function object and its arguments
from the operand stack and invokes it. This bytecode is used for
calling Python functions as well as C (built-in) functions depend-

10

20

30

40

50

60

70

80

90

100

%

0

10

20

30

40

50

60

70

80

90

100

2to3 django html5lib pickle pybench richards rietveld spambayes unpickle

OTHERS Builtin operators Control Flow

Stack Manipulation Generic Numeric CMP and JMP

Method Call and Return Locals Load/Store Type Resolution and Access

%

10

20

30

40

50

60

70

80

90

100

%

0

10

20

30

40

50

60

70

80

90

100

2to3 django html5lib pickle pybench richards rietveld spambayes unpickle

OTHERS Builtin operators Control Flow

Stack Manipulation Generic Numeric CMP and JMP

Method Call and Return Locals Load/Store Type Resolution and Access

%

(a) Counts (b) Cycles

Figure 2: Bytecode Histograms based on bytecode class.

ing on the function object it operates on. When calling a Python
function, setting up a method frame and copying arguments to it
is part of the overhead. Obviously, calling a C function is cheaper
than calling a Python one.

Compare and conditional jump includes COMPARE_OP and
opcodes with the prefix of JUMP_IF. These bytecodes produce or
consume generic boolean objects. These bytecodes are amenable
for type specialization and unboxing.

Generic Numeric includes generic bytecodes for Python nu-
meric and string objects, such as the ones with the prefix BINARY,
UNARY, or INPLACE. These bytecodes are expensive as they are
type-generic; thus involve type-checks and indirect-jumps. They
are also good candidates for optimizations such as type specializa-
tion and unboxing.

Stack Manipulation are bytecodes that manipulate the top ele-
ments on the operand stack. For example, DUP_TOP duplicates the
top element on the stack.

Control Flow includes bytecodes to manipulate loops such as
GET_ITER and FOR_ITER. These bytecodes are also good can-
didates for type specialization as loop iterators are typically range
of integers.

Built-in Operators includes bytecodes for built-in container
types such as list, map, and tuple, e.g., LIST_APPEND. These
bytecodes save the necessary calls to the runtime to achieve the
same functionality.

Others includes all others.
Figure 2 shows the count and time distribution for each class

of bytecodes, respectively. The percentages are from the total cy-
cles/counts for all bytecodes. We make the following observations
from the bytecode profile:

1. Type Resolution and Access consumes a significant fraction
of time. For most benchmarks, this classes of bytecodes takes more
than 20% of the time. In the CPython implementation, subsequent
executions of the same LOAD_ATTR, say in a loop, causes the type
resolution to be redone even in cases when invariance of the out-
come is guaranteed. CPython does no effort to optimize this save
for caching of bound methods by the type they are bounded to and
the method name. This cache, however, is referenced late in the
bytecode handler, making it inefficient.

2. The most frequently executed bytecodes are Locals
Loads/Stores. Although they are cheap operations, being executed
repeatedly results in considerable amount of time spent on moving
values from/to the operand stack.

3. Significant time spent in Method Call and Return. Note that
the bar for cycle distribution of this class in Figure 2.b includes
only the ‘overhead’ of calling a method. It does not include the

time spent in the target method, nor time for resolving the function
via its name. The disproportionately of the large distribution in
the ‘Cycles’ compared to its distribution in ’Counts’ in Figure 2
suggest high overhead in method call. Both of these results indicate
potential for optimizations that either eliminate or reduce method
call overheads, such as method inlining.

4. Type Resolution and Access, Locals Loads/Stores and
Method Call and Return account for more than 50% of the time.
Each of these classes of bytecodes consume a reasonable amount
of execution time, but when combined they dominate the execu-
tion frequency and time for all benchmarks. This behavior calls
for a simple optimization to target each type of the three bytecode
classes.

5. OPTIMIZATIONS
Our analysis of Python programs over CPython motivates us to

investigate the overheads caused by the three primary sources of
overhead: type resolution and access, local variable loads/stores
to/from the operand stack, and method call/return. Our goal is
to identify, design, and implement simple interpreter optimizations
that target each source in an effort to improve Python performance
and to better understand the challenges we face in doing so.

For type resolution and access, we propose a caching scheme to
reduce access time and to avoid dictionary lookups. For local vari-
able loads and stores, we investigate a mechanism that eliminates
loads and stores from the bytecode stream. For method call/return,
we investigate inlining opportunities. For each optimization, we
examine its usefulness and how well-suited it is for the overhead
it targets. Moreover, we examine the design parameters and trade-
offs using performance profiles.

5.1 Attributes Caching
Loading global variables and object attributes in Python is a

common, yet expensive, operation. One reason behind this is that,
due to the dynamic nature of the language, global variables and ob-
ject attributes are stored in hash tables (dictionaries) and are refer-
enced by their names. A single read can involve several dictionary
lookups. Another source of overhead is (indirect) function calls that
the runtime performs to handle a load. Two bytecodes are most fre-
quently used for globals and attributes loading: LOAD_GLOBAL
and LOAD_ATTR.
LOAD_GLOBAL, given a global variable name, resolves it as fol-

lows:

1. Look up variable name in the globals dictionary. If found,
return it; else

2. look up in the built-ins dictionary. If found, return it; else

3. raise exception.

LOAD_ATTR is given a receiver object and an attribute name.
The lookup process is fairly complex and proceeds in the following
order:

1. Look up the attribute name in the dictionaries of the method
resolution order (MRO) structure of the receiver object. If
the entry is found and is a data descriptor, invoke its getter to
read the attribute; else,

2. look up in the instance dictionary of the receiver object. If
found, return attribute; else,

3. if the entry found in the MRO is a non-data descriptor, invoke
its getter to read attribute; else,

4. return the entry found in the MRO as the attribute; else,

5. raise exception.

To avoid the above chain of lookups, we propose two caching
schemes, which we next overview.

5.1.1 LOAD_GLOBAL Cache
Design The operand of a LOAD_GLOBAL is the index of a

global variable name in the pool of names used by the code. On
code loading, we replace the operand of every LOAD_GLOBAL to
point to a structure that holds the original operand in addition to
a caching structure (Figure 3). Thus, each LOAD_GLOBAL has
its own single-entry cache. The cache holds the following values:
a pointer a dictionary (dictObject), a pointer to a dictionary entry
(dictEntry), a version number and an execution frequency counter.

Initially, each LOAD_GLOBAL is executed normally, following
the slow path, and the execution frequency counter is incremented.
Once a LOAD_GLOBAL gets hot (execution frequency goes above
a threshold, which we chose to be 100 based on performance tun-
ing), its cache is initialized. The cache holds a pointer to the dic-
tionary where the variable was found and another pointer to the
dictionary entry that holds it. Subsequent executions of a cached
LOAD_GLOBAL will use the dictionary entry pointer to fetch the
value directly. Since a pointer to the dictionary entry containing
the variable, and not the variable itself, is cached, we guarantee
that the value fetched is always correct.

Invalidation Although caching a dictionary entry pointer makes
the cache valid even if the global variable value has changed, there
are still reasons for which cache invalidation is needed:

1. Dictionary shape change: The shape of a dictionary
changes if an element is deleted or the hash table represent-
ing the dictionary is resized. Thus, the cached dictionary
entry pointer becomes invalid.

2. Shadowing: A variable name shadows another if it has the
same name as an existing variable in another dictionary, and
the two dictionaries are employed in the same lookup chain.
For example, if the dictionary entry of the variable "foo" is
already cached from the builtins dictionary, inserting a new
variable "foo" in the globals dictionary makes the cache in-
valid.

We detect these cases by attributing a version number to ev-
ery dictionary. Version numbers are incremented whenever a dic-
tionary shape changes. When caching a variable from a dictio-
nary, the version number is copied to the cache. If the cached

LG

Bytecode Stream arg

dictionary

entry

frequency

version
number

“foo”

Dictionary
Object

Dictionary Entries

“bar”
type value

LA arg

MCache

FCache

frequency
type dict offset entry offset

Figure 3: Cache layout for LOAD_GLOBAL and LOAD_ATTR

version number and the dictionary version number(fetched using
the cached dictionary pointer) do not match, a cache miss is de-
clared and we bail out to the slow execution path and update the
cache. Whenever a new variable is added to the globals dictionary
(STORE_GLOBAL), the version number of the built-ins dictionary
is incremented; thus, we conservatively invalidate all cached vari-
ables from the built-ins dictionary since there is a possibility they
have been shadowed by the new insertion. Although, seemingly
over-conservative, this simple solution is sufficient since adding
new variables happens mostly at the beginning of execution and
is quite rare afterwards.

5.1.2 LOAD_ATTR Cache
Every LOAD_ATTR has potentially two cache structures, one

for methods (MCache) and one for instance fields (FCache). Both
caches are referenced by the type of the receiver object. The allo-
cation of these caches, however, is deferred until it is known that
the LOAD_ATTR is amenable to caching. Every LOAD_ATTR can
be in any of the following five states. We express each using a
different, specialized opcode:

• LOAD_ATTR This is the initial state for all LOAD_ATTRs. In
this state, we check if the LOAD_ATTR is “cacheable” or not.
A cacheable LOAD_ATTR is a one that follows the normal
way of attribute access 1. If the LOAD_ATTR is cacheable, its
opcode is rewritten to be LOAD_ATTR_CACHEABLE, else
LOAD_ATTR_NORMAL.

• LOAD_ATTR_NORMAL A non-cached LOAD_ATTR follow-
ing the normal way of attribute access.

• LOAD_ATTR_CACHEABLE A cacheable LOAD_ATTR.
At this state, if the LOAD_ATTR is executed
more than two times, it is transformed into either
LOAD_ATTR_CACHED_M or LOAD_ATTR_CACHED_F
based on whether it loaded a method or an instance field.

LOAD_ATTR_CACHED_M A cached LOAD_ATTR that
loads a method from a Type object. Hence, loads from its
MCache.

LOAD_ATTR_CACHED_F A cached LOAD_ATTR that
loads an instance field. Hence, loads from its FCache.

1This is the case with tp_getattro field in a Type object points to Py-
Object_GenericGetAttr(). Using CPython C-API, users can define
their own functions to get attributes, in which case tp_getattro will
point to a user-defined function making LOAD_ATTR uncacheable.

We define an instance as any object that is not a Type object
(which cannot be instantiated). If an instance field is loaded, be
it a method or not, the FCache is used. Although, in theory, it is
possible for a LOAD_ATTR to mix loading of methods from Type
objects and fields from instance objects, in all the cases we have
studied, we have not encountered such a case.

When a cached LOAD_ATTR is executed, it reads the type of
the receiver object on the top of the operand stack. The type is
then used to reference either the MCache or the FCache. For the
MCache, the value of the method object, or rather the non-data
descriptor used to create it is cached 1. For the FCache, since we
are referencing instance fields, the offset of the field in the receiver
object (dictionary offset and entry offset) is cached. If the type
referenced is not found, we add a new cache entry and resize the
cache, if necessary. All caches start with a single entry, upon the
first resize, we make it five entries. For all future resizes, we double
the number of entries.

MCache Invalidation Since in the MCache, we cache the
method descriptor, not the dictionary entry containing it, dictio-
nary shape changes do not invalidate the cache. In fact, the cache
is always valid under the assumption that methods are not modi-
fied once created. This means that after the declarative steps where
Python classes are created and methods are attributed to them, no
meta-programming is done to manipulate those methods or to cre-
ate new ones dynamically. For all of the code we experimented
with, we did not face any cases where this assumption fails. For
code with heavy meta-programming activity, the MCache can be
simply turned off for correctness.

FCache Invalidation Caching of instance fields is based on the
assertion that objects of the same type will most likely have dictio-
naries of identical shape. As we demonstrate later, this assertion is
true. In such cases, for all objects of the same type, it is sufficient to
cache the offset of the instance field instead of having a cache entry
per object. It remains, however, to guarantee that the fetched field
is the correct one. We achieve this by comparing the LOAD_ATTR
operand with the key fetched from the dictionary. Since strings are
interned in CPython, this is a quick equality check of pointers.

5.1.3 Analysis
We carried out a set of experiments to understand the effective-

ness of the caching scheme. Figure 4 shows the ratio of dynamic
LOAD_ATTRs that cannot be cached. Most of the benchmarks have
a negligible percentage of executed non-cacheable LOAD_ATTRs
(below 5%). On average, only 0.7% of the LOAD_ATTRs are non-
cacheable. This result, although expected, shows the applicability
of the caching scheme on the majority of LOAD_ATTRs in the code.

For the LOAD_ATTR caching, we experimented with three pos-
sible varieties:

1. LA multi swap The cache is resizable, starting from a single
entry. The last referenced cache entry is swapped with the
top of the cache as a simple heuristic to exploit locality of
reference.

2. LA multi no swap Same as above, but without swapping.
We test this configuration because if the majority of the
caches are small then swapping might only incur overhead
without much benefit.

3. LA single Each cache has only a single entry which is over-
written on a cache miss.

1In CPython, the Type object dictionary contains a non-data de-
scriptor of the method, instead of the method object itself. Method
objects are allocated on the fly, when referenced, where they are
bound to their receiving objects.

10

15

20

25

30

%

0

5

10

15

20

25

30

2to3 django html5lib pickle pybench richards rietveld spambayes unpickle GEOMEAN

%

Figure 4: Percentage of non-cacheable LOAD_ATTRs

96

97

98

99

100

%

94

95

96

97

98

99

100

2to3 django html5lib pickle pybench richards rietveld spambayes unpickle

LA method cache LA instance cache LG cache

%

Figure 6: Cache hit rate for all three types of cache:
LOAD_ATTR method and instance field caches and
LOAD_GLOBAL cache

We test the above configurations with and without
LOAD_GLOBAL caching. Figure 5 reports on the speedup
achieved for all combinations. We can see that LOAD_GLOBAL
caching by itself is not sufficient to gain a reasonable speedup and
can even lead to a slowdown. Notice, however, that for nearly
all benchmarks, adding LOAD_GLOBAL caching to LOAD_ATTR
caching improves overall performance (up to 16%), despite that
in some cases this happens by mere constructive interference of
the two optimizations (pickle and spambayes). Overall, the best
configuration to use is LOAD_GLOBAL caching with multi-entry
LOAD_ATTR caching with swapping which achieves 8% speedup.

Figure 6 shows the hit ratio for all caches using the multi-entry
with no swapping configuration. The Figure shows a nearly perfect
cache performance. Most of the cache misses are actually due to a
cold cache. The instance field cache exhibits the highest miss rate.
This is the effect of few LOAD_ATTRs that operate on a variety of
objects having one common attribute.

It may appear at first that we achieve perfect caching due to the
unlimited resizing that we allow. This is not the case, however. Fig-
ure 7 presents a histogram of the caches sizes for the LOAD_ATTRs
caches. The vast majority of the caches have a single entry. This
is most interesting for instance field caches. The maximum cache
size reached is 80 entries; only two programs reach this maximum
size for multiple caches (5 caches for 2to3 and 18 for pybench).

Finally, we look at the impact on memory usage. Figure
8 shows the extra memory needed in KiloBytes for multi-entry
LOAD_ATTR cache and LOAD_GLOBAL cache. The memory in-
cludes all necessary data structures and cache entries used for main-
tain the cache. Most benchmarks consume less than 150KB of extra
memory. Naturally, the LOAD_ATTR cache consumes more mem-
ory due to the dynamic nature of the bytecode where more cache
entries are needed. The size of one LOAD_ATTR cache entry is 16

-5

0

5

10

15

20

%

-10

-5

0

5

10

15

20

2to3 django html5lib pickle pybench richards rietveld spambayes unpickle GEOMEAN

LG LA multi swap LA multi noswap LA single LG LA multi swap LG LA multi noswap LG LA single

%

Figure 5: Speedup of different combinations of caching

100

200

300

400

500

600

700

800

N
u

m
b

e
r

o
f

C
a

c
h

e
s

0

100

200

300

400

500

600

700

800

method

cache

instance

cache

method

cache

instance

cache

method

cache

instance

cache

method

cache

instance

cache

method

cache

instance

cache

method

cache

instance

cache

method

cache

instance

cache

method

cache

instance

cache

method

cache

instance

cache

2to3 django html5lib rietveld pickle pybench richards spambayes unpickle

1 5 10 20 40 80

N
u

m
b

e
r

o
f

C
a

c
h

e
s

Figure 7: A histogram of the LOAD_ATTR cache sizes. It shows the state of the cache sizes at program termination

byte, while for the LOAD_GLOBAL cache it is 28 bytes.
Notice that in Figure 7, 2to3 has a higher number of

LOAD_ATTR cache entries than rietveld, yet rietveld consumes
more memory. The reason is that some data structures are allo-
cated statically for some LOAD_ATTRs without necessarily allocat-
ing cache entries for them (e.g. if they are never executed). Hence,
the allocated structures add to the total memory size and not to the
total number of cache entries.

5.2 Load/Store Elimination
We next consider how to eliminate loads and stores – the byte-

code instructions that move values between local storage and
the operand stack. In this Section, we investigate a static byte-
code transformation technique that converts certain bytecodes from
stack-based to register-based versions. The latter access the locals
from the virtual local registers directly.

We perform the operation selectively on bytecodes for which
the transformation eliminates the need to copy values to/from the

stack. Figure 9 shows a simple example of the process. In
the given a basic block of bytecodes, three values are loaded
on the stack via a LOAD_GLOBAL, a LOAD_CONST and a
LOAD_FAST which are then consumed by STORE_SUBSCR.
By converting the STORE_SUBSCR to a register-based version
(R_STORE_SUBSCR), we can eliminate the LOAD_CONST and
the LOAD_FAST.

We copy the source local register address from the loads as ar-
guments to the new register-based bytecode which can now read its
operands directly from the locals, saving four memory references.
Notice, that it is not possible to eliminate the LOAD_GLOBAL
since it fetches its variable from a dictionary. In such cases,
we leave the LOAD_GLOBAL and place zero (underlined) in the
R_STORE_SUBSCR argument list. This indicates that the read
should be from the stack. R_STORE_SUBSCR thus operates by
reading its argument list left-to-right; for non-zero arguments, the
values are read from registers, else they are popped from the
operand stack.

50

100

150

200

250

300
K
B
y
te
s

0

50

100

150

200

250

300

2to3 django html5lib pickle pybench richards rietveld spambayes unpickle

LA Cache LG Cache

K
B
y
te
s

Figure 8: Amount of memory, in KiloBytes, needed for all
caches

LG LC LF

SS

LF

LA

Before
0: LOAD_GLOBAL 1

3: LOAD_CONST 1

6: LOAD_FAST 18

9: STORE_SUBSCR

10: LOAD_FAST 1

13: LOAD_ATTR 5

16: STORE_GLOBAL 1

After
0: LOAD_GLOBAL 1
3: R_STORE_SUBSCR 18, 1, 0
10: R_LOAD_ATTR 5, 1; 0
15: STORE_GLOBAL 1

SG

Data Flow Graph

Figure 9: Example of Load/Store elimination with the corre-
sponding Data FLow Graph

Similarly, in Figure 9, we transform LOAD_ATTR to employ
register-based local variable access. In this case, we eliminate
only LOAD_FAST. Since STORE_GLOBAL inserts a value into
a dictionary, the output from the LOAD_ATTR is pushed on the
stack. Notice that the only loads/stores eliminated are those that
operate on registers. Namely, LOAD_FAST , LOAD_CONST and
STORE_FAST, which we refer to, in this section, as loads/stores.

We employ a simple static analysis to perform this optimization
when we load the bytecode. In particular, we build a control flow
graph (CFG) from the bytecode stream and use abstract interpreta-
tion to build a data flow graph (DFG) for every basic block. Using
the DFG, we select which nodes to transform to register-based us-
ing four selection criteria:

• STRICT A DFG node is transformed to register-based
iff all of its immediate predecessors and successors are
loads/stores. This criterion maximizes the number of
loads/stores eliminated per transformation.

• INPUT A DFG node is transformed to register-based iff all
of its immediate predecessors are loads.

• MAJORITY A DFG node is transformed to register-based
iff the majority of its immediate predecessors and successors
are loads/stores.

• ANY A DFG node is transformed to register-based iff at
least one of its immediate predecessors and successors is a
load/store.

30

40

50

60

70

80

90

100

%

0

10

20

30

40

50

60

70

80

90

100

2to3 django html5lib pybench richards pickle unpickle spambayes GEOMEAN

STRICT INPUT MAJORITY ANY

%

Figure 10: Profile of the percentage of eliminated Loads/Stores
for all variations of the Elimination technique

There is a key trade-offs that we make with this optimization.
The stack-based version of a bytecode is more compact than the
register-based version. In the former, the operands are implicit and
are read from the operand stack, while in the latter, each operand’s
location must be explicitly included in the bytecode. Therefore, we
are trading off code size for the number of eliminated loads/stores.
We, thus, must transform only when this extra code size is amor-
tized by the elimination of loads/stores.

Each of the above criteria has it advantages and disadvantages
in that sense. Doing a STRICT transformation guarantees gain out
of every transformed bytecode, but, since the criteria is strict, few
bytecodes can be transformed. The INPUT criterion is more re-
laxed, it requires only the inputs to come from loads, it still trans-
forms when advantageous, yet, being more relaxed, it transforms
more bytecodes. MAJORITY is even less relaxed but still applies a
simple heuristic that ensures gain. ANY is the most relaxed of all,
eliminating the majority of loads/stores in the code while increas-
ing the code size significantly.

Another trade-off that this optimization makes, is the complexity
of the register-based bytecode handlers. If a register-based byte-
code can mix reading from register and from the stack, then checks
are needed in its handler to determine where to read from. For
STRICT and INPUT, register-based bytecodes always read from
registers, thus the handlers are simple. MAJORITY and ANY re-
quire checks.

5.2.1 Analysis
Figure 10 compares the dynamic count of eliminated loads/stores

for all four criteria. Rietveld is missing here as we were unable to
get it to run with this optimization (we will include it in the final
version should this paper be accepted). One can see that STRICT
performs poorly and eliminates, on average, less than 20% of the
loads/store executed. INPUT is much better with an average of
60%. The numbers go up for MAJORITY and ANY, which elim-
inate almost all loads/stores. Based on the trade-offs mentioned,
we adopt INPUT as our selection criteria. It eliminates more than
half of the loads and allows simple implementations of the register-
based bytecodes handlers.

The next question we investigate is how many register-based
bytecodes to support. Figure 11 addresses this question using a
cumulative function of the estimated speedup plotted against the
number of bytecodes supported. Based on our experience and our
evaluation data, we currently support the register-based version of
the 15 bytecodes listed in Table 2

4

6

8

10

12

14

16

18

20
sp

e
e

d
u

p
 (

%
)

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

2to3 django html5lib pybench richards pickle unpickle spambayes

sp
e

e
d

u
p

 (
%

)

Figure 11: A cumulative function of the speedup estimate plot-
ted agains the number of bytecodes transformed to Register-
based

LOAD_ATTR
COMPARE_OP
BINARY_SUBSCR
RETURN_VALUE
SLICE
BUILD_TUPLE
STORE_ATTR
YIELD_VALUE
STORE_FAST
BINARY_ADD
BINARY_SUBTRACT
STORE_SUBSCR
BUILD_SLICE
INPLACE_ADD
BINARY_MULTIPLY

Table 2: Bytecodes for which a register-based version is sup-
ported

To support simple register-based bytecode handlers, all locals
and constants must be referenced in a uniform manner. This is not
the case in CPython, as constants are stored in code objects while
locals are part of the virtual call-stack frames. To overcome this,
we maintain a copy of the constants of a code object in all call-stack
frames that correspond to it.

Figure 12 shows the overhead incurred by the static analysis on
the bytecode and the constants copying. We measure this by car-
rying out all the code transformations without actually using the
transformed code. On average, the overhead is less than 2% and
for 5 out of the 8 benchmarks shown have less than 1% overhead.

Finally, Figure 13 reports the efficiency of the optimization and
some hardware performance metrics. In terms of speedup, we
achieve 5% speedup on average and as much as 9%. There is a
consistent, and sometimes large, increase in L1 instruction cache
miss rate. This is due to the addition of new bytecode handlers in
the dispatch loop. Some increase is also seen in the L2 cache miss
rate, we attribute this to the code size increase as well as to the
data structures that we employ to implement the static optimiza-
tions. For all benchmarks, the amount of work (instruction count)
performed is reduced.

5.3 Inlining
The last optimization, that we investigate is inlining of method

calls. We measure the dynamism of method calls in Figure 14.
The Figure divides the calls made into C calls, which are calls to
CPython runtime, and into Python calls, which are calls to user-
level code. Each category is divided further into monomorphic and
polymorphic calls. Almost all of the C calls are monomorphic calls
and for some majority of benchmarks, there is no polymorphic C
calls made. This is a good indication that C calls are a potential
inlining target.

Other evidence is shown in Figure 15, which shows the per-

-3

-2

-1

0

2to3 django html5lib pickle pybench richards spambayes unpickle GEOMEAN

%

-6

-5

-4

-3

-2

-1

0

2to3 django html5lib pickle pybench richards spambayes unpickle GEOMEAN

%

Figure 12: Static analysis and constant copying overhead for
Load/Store elimination

5

25

45

65

85
321.27 201.21

%

-35

-15

5

25

45

65

85

2to3 django html5lib pickle pybench richards spambayes unpickle GEOMEAN

speedup L1 miss rate L2 miss rate instruction count

321.27 201.21

%

Figure 13: Speedup of Load/Store Elimination optimiziation.
The figure also shows effect on L1 ICache and L2 Cache as well
as the decrease in the instructions executed

centage of call-sites responsible for 90% of the calls made for C
and Python functions. The figure shows that the 90/10 rule holds
strongly for calls to C functions, where less than 10% of the C
functions call-sites are sources of 90% of the calls invoked. This
is not the case for Python functions. These results motivate us to
look more closely into the call targets of the most frequent C calls.
We find that isinstance() is a commonly used builtin function, espe-
cially for django. We tried a simple optimization where we employ
a special bytecode to implement this function – to simulate inlining
it into Python bytecode. Figure 16 shows the speedup. We at-
tempted to inline additional functions in this way, but adding more
opcode handlers degrades performance quickly.

Finally, in Figure 16, we report the speedup of all three optimiza-
tions in combination, using all cache configurations. We achieve a
maximum speedup of 28% and 15% on average. Multi-entry cache
with swapping remains the best performing caching configuration
for most cases. Multi-entry with no swapping and single-entry are
quite similar performance-wise.

6. RELATED WORK
In this section, we identify research contributions that charac-

terize interpreter performance and that propose techniques for its
improvement.

A work by Holkner et al. [12] aims to understand the extent
and scope of use of dynamic language features like runtime object-
and code modification. In particular, the authors examine whether

20

30

40

50

60

70

80

90

100

%

0

10

20

30

40

50

60

70

80

90

100

2to3 django html5lib pickle pybench richards rietveld spambayes unpickle

poly Python calls mono Python calls poly C calls mono C calls

%

Figure 14: A breakup of the method calls by their morphism
and type (builtin or Python)

30

40

50

60

70

80

90

100

%

0

10

20

30

40

50

60

70

80

90

100

2to3 django html5lib pickle pybench richards rietveld spambayes unpickle

C call-sites Python call-sites

%

Figure 15: Percentage of C and Python call-sites responsible
for 90% of the calls made

Python programs only rarely use dynamic features, and whether
this use of dynamic features is restricted to an initial startup phase
in the application. For the programs and the set of dynamic features
that they analyzed, the authors concluded that while programs do
make use of dynamic features over the entire execution, this use
is relatively higher during startup, thus lending themselves well to
runtime analyses and feedback-directed optimization.

Hidden Classes is a caching optimization used in Google V8
Javascript engine [29]. The idea is to have a table for objects with
the same layout mapping attribute names to their offset in the in-
stance object. This technique is well-suited for Javascript since it
is prototype-based and there is no notion of classes. In Python, that
is not the case and every object is an instance of some class. In our
results, we have shown that objects instantiated from the same class
show to great extent identical layouts. This was demonstrated with
the extremely low miss rate for the instance field cache in Section 5.
Additionally, we think that Hidden Classes are more suited for dy-
namic code generation than interpretation since the generated code
has the indices of the referenced Hidden Classes entries inlined
within. Adopting Hidden Classes in an interpreter would require
a cache, similar to the one we proposed, to cache the indices. This
double caching will unlikely yield additional performance gain.

Similarly, in unpublished work [15], Lua language implementers
employ caching within code generation. Code accessing hashes
with constant keys are specialized for that key/hash. This is simi-
lar to polymorphic inline caching [4] where the code generated is
specialized based on the outcome of method resolution.

7. CONCLUSIONS

2

4

6

8

10

%

-4

-2

0

2

4

6

8

10

%

Figure 16: Speedup with a special ISINSTANCE bytecode

5

10

15

20

25

30

35

%

0

5

10

15

20

25

30

35

2to3 django html5lib pickle pybench richards spambayes unpickle GEOMEAN

multi swap multi no swap single

%

Figure 17: Summary of speedup when all optimization are en-
abled

In this paper we evaluate the performance of the Python language
and CPython interpreter. We perform an analysis of the behavior
of this system for a representative set of programs. We find that
traditional interpreter optimizations for more static languages do
not improve Python performance significantly due to the dynamic
nature of the language and its bytecode design. We investigate the
primary forms of overhead in CPython and identify three simple
optimizations to target this overhead. We find that there are many
design trade-offs associated with optimizing Python in a portable
way (within the interpreter). However, some performance improve-
ment is possible – we show improvements of up to 28% and 15%on
average.

8. REFERENCES
[1] BELL, J. R. Threaded code. Communications of the ACM 16, 6 (1973),

370–372.
[2] BERNDL, M., VITALE, B., ZALESKI, M., AND BROWN, A. D. Context

threading: A flexible and efficient dispatch technique for virtual machine
interpreters. In Proceedings of the international symposium on Code generation
and optimization (CGO’05) (2005), IEEE Computer Society, pp. 15–26.

[3] BitTorrent. http://www.bittorrent.com/.
[4] CHAMBERS, C., UNGAR, D., AND LEE, E. An efficient implementation of

self a dynamically-typed object-oriented language based on prototypes. In
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) (1989), ACM, pp. 49–70.

[5] CHOHAN, N. J., BUNCH, C., PANG, S., KRINTZ, C., SOMAN, N. M. S.,
AND WOLSKI, R. AppScale design and implementation. Tech. Rep. 2009-02,
UCSB, Jan 2009.

[6] Cpython. http://www.python.org/.

[7] ERTL, M. A., AND GREGG, D. The structure and performance of Efficient
interpreters. The Journal of Instruction-Level Parallelism 5 (Nov. 2003).
http://www.jilp.org/vol5/.

[8] FreeCAD. http://sourceforge.net/apps/mediawiki/
free-cad/index.php?title=Main_Page.

[9] GAL, A., EICH, B., SHAVER, M., ANDERSON, D., MANDELIN, D.,
HAGHIGHAT, M. R., KAPLAN, B., HOARE, G., ZBARSKY, B., ORENDORFF,
J., RUDERMAN, J., SMITH, E. W., REITMAIER, R., BEBENITA, M., CHANG,
M., AND FRANZ, M. Trace-based just-in-time type specialization for dynamic
languages. In PLDI ’09: Proceedings of the 2009 ACM SIGPLAN conference
on Programming language design and implementation (New York, NY, USA,
2009), ACM, pp. 465–478.

[10] Google app engine. http://code.google.com/appengine/.
[11] HA, J., HAGHIGHAT, M. R., CONG, S., AND MCKINLEY, K. S. A concurrent

trace-based just-in-time compiler for single-threaded JavaScript. In Proceedings
of the Second Workshop on Parallel Execution of Sequential Programs on
Multi-core Architectures (Jun 2009).

[12] HOLKNER, A., AND HARLAND, J. Evaluating the dynamic behaviour of
python applications. In In Australasian Computer Science Conference.
(ACSC’09) (2009).

[13] Ironpython. http://ironpython.codeplex.com/.
[14] Jython. http://www.jython.org/.
[15] Lua Programming Language. http:

//lua-users.org/lists/lua-l/2009-11/msg00089.html.
[16] perfmon2: the hardware-based performance monitoring interface for linux.

http://perfmon2.sourceforge.net/.
[17] PIUMARTA, I., AND RICCARDI, F. Optimizing direct threaded code by

selective inlining. SIGPLAN Not. 33, 5 (1998), 291–300.
[18] Pybench — a python benchmark suite. http://svn.python.org/

projects/python/trunk/Tools/pybench/README.
[19] PythonCAD. http://sourceforge.net/projects/pythoncad/.
[20] rietveld, code review for subversion, hosted on google app engine.

http://code.google.com/p/rietveld.
[21] RIGO, A. Representation-based just-in-time specialization and the Psyco

prototype for Python. In ACM SIGPLAN 2004 Symposium on Partial
Evaluation and Program Manipulation - PEPM’04 (Aug 2004).

[22] RIGO, A., AND PEDRONI, S. PyPy’s approach to virtual machine construction.
In Proceedings of the Dynamic Languages Symposium (Oct 2006).

[23] ROMER, T. H., LEE, D., VOELKER, G. M., WOLMAN, A., WONG, W. A.,
LOUP BAER, J., BERSHAD, B. N., AND LEVY, H. M. The structure and
performance of interpreters. In In Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VII (1996), ACM Press,
pp. 150–159.

[24] Scientific python. http://wiki.python.org/moin/NumericAndScientific.
[25] Spambayes. http://spambayes.sourceforge.net.
[26] SquirrelFish Extreme JavaScript engine.

http://webkit.org/blog/189/announcing-squirrelfish/, 2008.
[27] Stackless python. http://www.stackless.com/.
[28] Unladen-swallow project. http:

//code.google.com/p/unladen-swallow/wiki/Benchmarks.
[29] Google V8 JavaScript engine. http://code.google.com/p/v8/.
[30] Wiki matrix – programming language comparison.

http://www.wikimatrix.org/statistic/Programming+Languages, Sept 2009.
[31] ZALESKI, M., STOODLEY, K., AND BROWN, A. D. Yeti: a gradually

extensible trace interpreter. In VEE ’07: Proceedings of the 3rd ACM/USENIX
international conference on Virtual execution environments (New York, NY,
USA, 2007), ACM Press, pp. 83–93.

