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ABSTRACT
We present GC-as-a-Service (GaS), a cross-runtime, cross-
language garbage collection (GC) library that can be used
to simplify the implementation of runtime systems, and that
exploits available multicore technologies. GaS decouples GC
from other runtime components and exposes a fine-grain
API for use by GC-cooperative runtimes of different pro-
gramming languages for heap memory management. GaS
provides concurrent, on-the-fly GC and avoids moving ob-
jects for use as a precise or conservative collector. We in-
tegrate GaS within production-quality runtime systems for
Python and Java. Our experimental evaluation shows that
using GaS as an alternative to tightly integrated GC intro-
duces modest overhead and that GaS reduces pause times
significantly for Python and Java programs.

1. INTRODUCTION
Managed Runtime Environments (MREs, Virtual Machines,
VMs) for high-level, object-oriented (OO) programming lan-
guages are increasingly complex, which makes them chal-
lenging to architect, extend, and understand. One of the
most complex components in MREs is automatic memory
management (garbage collection, GC). State-of-the-art GC
algorithms, i.e. parallel, concurrent, and on-the-fly GCs [33,
22], capable of taking advantage of multi-core processors, are
notoriously difficult to implement, especially in conjunction
with other MRE components (loaders, compilers, schedulers,
etc).

One way to address GC complexity is to decouple, mod-
ularize, and facilitate reuse of GC implementations [8, 7,
6, 5, 21]. In this paper, we investigate the design and im-
plementation of a portable GC library (which we call GC
as-a-service (GaS)). GaS represents a different point in the
GC design space because of its unique combination of goals:
(i) cross-MRE GC library for static/dynamic languages (ii)
modern GC (concurrent, on-the-fly) for cooperative MREs
(unlike Boehm GC [7]) (iii) GC-MRE decoupling (unlike
recent on-the-fly GCs [16, 17]) (iv) low-overhead interface
using C-based native API (unlike MMTk and GCTk [5, 6]).

We employ the GaS library within production-quality MREs
for Java (HotSpot Java Virtual Machine (JVM)) and Python
(cPython) and compare GaS GC against state-of-the-art
GCs. Our empirical evaluation includes concurrent, paral-
lel, tracing GCs as well as hybrid tracing/reference counting
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Figure 1: GaS architecture.

GCs. We discuss the trade-offs we make with the GaS de-
sign and their performance implications. We also investigate
the performance of other approaches that provide GC across
languages such as those that cross language boundaries and
that employ a single MRE for multiple languages.

2. GaS OVERVIEW
Figure 1 presents the high-level architecture of GaS. GaS
provides a shared C library that is accessible via the GaS in-
terface and that can be used by MREs for different languages
(e.g. Java, Python, Ruby) to integrate garbage collection
(GC) into the runtime. Each MRE dedicates some number
of threads to GaS GC (concurrent, on-the-fly GC) and maps
a virtual memory region which GaS manages. MREs also
have the option of allocating certain types of objects (e.g.
immortal objects or internal data structures) in their private
heaps and managing them independently of GaS.

We design GaS to support MREs for dynamic and static
languages which implement diverse memory management
strategies, including reference counting, tracing, object-moving,
and non-moving GCs. Our goal is to enable GC portability
at the library (i.e. binary) level (without recompiling the
library, or modifying the GC algorithm).

The rationale behind GaS is to enhance modularity and
separation of concerns in the design and implementation
of MREs and to enable building new MREs from reusable
components. GaS abstracts away the GC functionality, thus
enabling construction of an MRE with a modern GC subsys-
tem without expert knowledge about concurrent and on-the-
fly GCs. By treating GC as a component, GaS facilitates
research in other, non-GC, MRE subsystems. In addition,
GaS enables integration of a high-quality GC into MREs
that lack modern GCs, e.g. scripting language MREs that
employ stop-the-world, single-threaded collectors (reference
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Figure 2: GaS interface.

counting with cycle detection for Python and PHP, mark-
sweep for Ruby). In Section 6 we show that even highly-
optimized, sophisticated MREs, such as HotSpot JVM, can
benefit from GaS.

3. GaS DESIGN
GaS is a parallel (i.e. uses multiple GC threads), concurrent
(i.e. collects most objects without stopping the application
threads (mutators)), and on-the-fly (i.e. stops one thread
at a time) GC. The rationale behind this configuration is
that concurrent, on-the-fly GCs are difficult to implement,
thus it is practical to provide such GCs as a service/library.
In addition, many MREs are latency-sensitive, e.g. Ruby is
used for server-side scripting and its stop-the-world GC is a
limiting factor – concurrent GCs avoid stop-the-world collec-
tion which can introduce large pauses. Finally, as multi-core
processors become ubiquitous, concurrent GC is increasingly
suitable for fully utilizing and extracting high performance
from modern systems.

GaS does not move objects because some MREs (e.g. Python)
assume that object addresses remain constant and others
(e.g. Mono) require support for object pinning and conser-
vative root scan. GaS uses free-list allocation and thread-
local allocation buffers (TLABs) for fast, unsynchronized,
bump-pointer allocation in the common case. TLABs are
vital for supporting multi-threaded MREs.

The GaS GC algorithm is an adaptation of extant snapshot-
at-the-beginning (SATB) on-the-fly GC [16, 17, 14, 15]. Our
extensions decouple GC from the MRE and simplify the
MRE-GC interface on the MRE side. Existing on-the-fly
GCs rely on system-wide handshakes with mutator threads
and maintain per-thread buffers to implement write barri-
ers and to determine quickly if another marking iteration is
needed [16, 13]. GaS avoids such tight-coupling and moves
GC logic out of the MRE as much as possible.

3.1 GaS Interface
Figure 2 depicts how MREs interact and cooperate with
GaS. An MRE first initializes the GaS library by specifying
the number of GC threads, TLAB size, and GC threshold
(percentage heap usage that triggers a GC), and by pro-
viding a mapped virtual memory region for the GaS heap.
The GaS interface consists of operations performed by MRE
threads (allocation, write barrier, and root dump) and by
the GaS threads (finalization and object scan).
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Figure 3: Block format in the GaS heap.

An MRE requests TLABs from GaS and performs most al-
locations within a TLAB. To allocate large objects, an MRE
requests a TLAB of a specific size and then proceeds to intra-
TLAB allocation. The GaS protocol for allocation and write
barrier (described in detail in Section 3.2) is kept to a mini-
mum so that the compiler can inline this code at allocation
and reference store sites.

Before each GC, GaS requests a root dump. An MRE
responds to this request by identifying objects (for GaS
to mark) in the GaS heap that are reachable from thread
stacks, global memory areas, and/or non-GaS generations.
GaS invokes MRE-provided callbacks to scan objects for ref-
erences and to indicate that a particular object is about to
be reclaimed (to support finalization).

3.2 GaS Heap Layout
We divide the GaS heap into blocks. Each block starts with
a header, whose format is shown in Figure 3. The header size
is one machine word (we assume 64bit words) so that it can
be atomically loaded/stored. GaS supports fully-concurrent
unsynchronized sequential scans over heap blocks.

There are three block types: an object block, TLAB block,
and free block. The block header consists of 5 fields: block
length (4 bytes), block format (f, 1 byte), and three 1-byte
GC flags: recently-allocated (a), scanned (s), and pending
(p). We make each field at least 1-byte in size so that
we can use atomic read/write (most architectures support
single-byte atomic memory access but do not support bit-
wise atomic access).

Object blocks are followed by an MRE-specific object repre-
sentation, which is not interpreted by GaS. Thus, GaS adds
one word of space overhead per object. GC flags have mean-
ing only for object blocks. New objects have their recently-
allocated flag set. Whenever the GaS GC marks a live ob-
ject, it sets its scanned flag. Objects with their pending flag
set will be scanned by the collector.

We initialize each word in a TLAB block so that we can
treat it as the start of a new, shorter TLAB. For example if
the first TLAB word contains length = 8, then the second
TLAB word contains length = 7, etc. This approach enables
atomic allocation of objects in TLABs. To allocate an ob-
ject spanning 5 words, we simply store a new object header
(with length = 5) at the beginning of the TLAB. Such a
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store happens atomically and the remaining part of a TLAB
immediately has the right TLAB header (with the correct,
shorter length). Thus, an ongoing concurrent heap block
traversal cannot be confused by object allocation when we
transition from a TLAB block to an object block. In addi-
tion, object allocation amounts to a single word store which
the compiler inlines.

The length of object/TLAB blocks does not use the entire
machine word. However, the limit of 16GB per object is
typically sufficient in practice (e.g. in Java an object cannot
exceed 16GB). Free blocks can use larger length values by
storing their actual length in the overflow field (which has
machine-word width).

When a TLAB fills up, we retire it (we insert a dead object
into the remaining free space) and replace it with a new
TLAB. TLAB allocation, like all freelist operations, employs
synchronization. The freelist is a double-linked list of free
blocks.

GaS uses a conditional SATB [16, 17] write barrier, that it
executes before each store. The barrier first loads the pre-
vious pointer value (about to be overwritten by a store),
checks if it belongs to the GaS heap, and if so sets the pend-
ing flag on the corresponding object. For example, before a
store ∗p = v happens we execute:
if (is in gas heap(∗p)) set pending flag(∗p);
For efficient heap membership checks, the MRE should map
the GaS heap above or below all other object regions in an
MRE – in such a setting a single border comparison suffices.

3.3 GaS GC Algorithm
GaS GC comprises four concurrent phases: flag clearing,
root dump, object marking, and object sweeping. GC threads
use barrier synchronization to meet at subsequent GC phases.
GaS imposes no pauses if an MRE is capable of performing
a root dump without halting the mutator threads. A new
GC cycle starts once the heap usage crosses the specified
GC threshold.

We do not use a marking bitmap but instead mark object
headers (the scanned flag) directly. This enables us to avoid
atomic compare-and-swap (CAS) operations during marking
because one byte can be stored atomically. Since we do
not synchronize GC threads during marking, multiple GC
threads may end up scanning the same object – we find that
this happens rarely and we mitigate it via dynamic load
balancing among the GaS GC threads.

Flag Clearing. Flag clearing is a concurrent phase where
a single GC thread traverses over the heap blocks and clears
the GC flags. This step has a similar effect to activating
the snapshot mode in extant SATB GCs [16, 17]. However,
in GaS, the snapshot mode is active all the time, meaning
that all objects are allocated live (the recently-allocated flag
set) and mutators always use a SATB write barrier (setting
the pending flag for objects whose incoming pointers are
overwritten). This approach simplifies the MRE-GC proto-
col and decouples GC and an MRE (no handshakes, state-
dependent write barriers, etc., are required).

During flag clearing, GaS computes a balanced heap parti-
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Figure 4: Root updates and concurrent marking.

tioning used in the subsequent, parallel heap traversals. GaS
divides the heap into equal-size chunks at block boundaries.
In later traversals, each GC thread uses its own chunk only.

Root Dump. In the second GC phase, an MRE finds roots
into the GaS heap and reports them to GaS by setting the
pending flag for root objects. Depending on the MRE, root
dump may require scanning registers, thread stacks, and
global memory areas. An MRE may need to stop the muta-
tor threads to find roots. Since GaS is an on-the-fly GC, an
MRE is allowed to stop one thread at a time to avoid long
pauses. In Sections 3.4 and 3.5, we describe how root dump
can be done efficiently in MREs using tracing and reference
counting, respectively.

Marking. Object marking is parallel and concurrent. Due
to concurrent object mutations, GaS occasionally performs
several marking iterations before converging to a stable live
object graph. In each iteration, every GC thread scans its
own heap chunk for objects with the pending flag set. If
no such objects are found by the concurrent block traversal,
the marking phase is complete. Pending objects that GaS
finds are recursively (using depth-first search) scanned and
marked (by setting the scanned flag). Recursive marking
stops on already-scanned objects (potentially marked in pre-
vious marking iterations). GaS uses dynamic load balancing
during marking (randomized work stealing) for scalability.
GaS marks objects in-place (i.e. uses object headers) and,
unlike some SATB GCs, does not use per-mutator marking
buffers (to further decouple GC from the threading subsys-
tem).

During the 2nd and later marking iterations, recursive mark-
ing stops on already-marked objects and on recently-allocated
objects (the 1st iteration stops only on already-marked).
This guarantees GC termination. Assuming there is N ob-
jects in the heap when the GC cycle starts, and all new ob-
jects are flagged as recently-allocated, GC will finish after
N iterations at most. In practice 2 or 3 iterations suffice.

Figure 4 explains why this strategy is correct, i.e., it can-
not lead to leaving some live objects unmarked. Since we
stop the 2nd and later iterations of marking on recently-
allocated objects, we need to guarantee that it is impossi-
ble that a recently-allocated object has a pointer to a live
object that is otherwise unreachable and is not flagged as
pending. Note that this is possible during the first marking,
when we mark from roots. Consider an example in Figure 4.
Root r initially points to object O. Then, object N is allo-
cated, and a pointer in N is set to point to object O. Next,
root r is updated to point to N . Now we have a configu-
ration where O is reachable only through N . Note that N

is recently-allocated and still needs to be scanned. The rea-
son for this is that our snapshot write barrier (SATB WB)
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does not capture root pointer updates (only heap pointer
updates). However, the 2nd and later marking iterations ig-
nore roots and mark from pending objects only. Thus, the
newly-allocated objects do not have to be scanned once the
first marking iteration completes. Reconsider our example
in Figure 4 but assuming that r is not a root but a field in a
heap object. On r update, object O is flagged pending and
thus will be scanned by GC even if we do not scan N .

Sweeping. Sweeping is parallel and concurrent. Each GC
thread scans its heap chunk in an attempt to find a potentially-
free block (i.e. either a freelist block or a dead object). This
step is done without synchronization with mutators which
perform concurrent allocation and might use free blocks in
the meantime. Once a GC thread finds a potentially-free
block, it acquires the freelist lock and continues scanning as
long as it encounters reclaimable blocks (dead objects or free
blocks). If the GC thread finds a contiguous region of suffi-
cient length, it coalesces the region into a single free block
and adds it to the freelist. Immediately prior, the thread
invokes the finalizer on all dead objects. If a finalizer resur-
rects an object (the MRE finalize callback indicates this to
GaS), then the object will be finalized again once it becomes
unreachable next time. Finally, the GC thread releases the
freelist lock and looks for another potentially-free block in
its chunk.

3.4 GaS and Tracing GC
Incorporating GaS into tracing MREs is relatively straight-
forward because such MREs already implement support for
object scanning, root dump, and asynchronous finalization.
Generational MREs in addition support card tables/remembered
sets and write barriers.

In generational MREs, we extend the card table (or remem-
bered sets) so that it is possible to quickly find not only
inter-generational pointers but also pointers into the GaS
heap. A minor collection then suffices to implement the
root dump operation in GaS.

In non-generational MREs, we add a write barrier that cap-
tures pointers leading into the GaS heap as they are created.
For each reference store we check if the new pointer points
into the GaS heap and, if so, flag the object it points to
as pending. After the flag clearing phase, GaS concurrently
scans the memory regions in the MRE that might contain
GaS roots, and relies on the write barrier to deal with roots
that go by GaS unnoticed during the scan.

3.5 GaS and Reference Counting GC
Reference counting MREs associate a reference count with
each object and rely on two operations: incref (increment
the count) and decref (decrement the count) to detect and
reclaim dead objects. Such MREs cannot reclaim cycles
unless cycle detection is run periodically. Each reference
update in the heap or on the stack invokes decref for the
old reference value and incref for the new reference value.

To integrate GaS into a reference counting MRE, we make
the incref and decref operations conditional. For pointers
belonging to the GaS heap that point to an object in the
GaS heap, we do not use reference counts. In all other cases

incref and decref have their original semantics. In partic-
ular, outgoing and incoming pointers in the GaS heap are
subject to reference counting and so are pointers outside of
the GaS heap.

In this design, all objects in the GaS heap whose reference
count is non-zero are roots for GaS GC (because they are
pointed to from outside of the GaS heap). Thus, the root
dump operation amounts to a concurrent scan of the GaS
heap in search of objects with non-zero reference counts.
Note that no pauses are required for a root dump. To deal
with the race condition that might hide a root from GaS, we
introduce a write barrier in incref : if the reference count
goes from 0 to 1, we flag the object as pending. Thus, if a
root scan sees reference count of 0, which later becomes 1,
we do not miss a root.

The SATB write barrier piggybacks on decref and is only
needed in case the decrement is performed in the GaS heap.
In addition, we modify decref so that it does not call the
object finalizer if the reference count drops to 0 in the GaS
heap (GaS calls finalizers during sweeping).

3.6 GaS Extensions
Although GaS is a non-moving GC, we can extend it to per-
form (non-moving) generational collection. Instead of phys-
ical partitioning of the heap, we employ logical partitioning.
Each object has an age field, incremented during each GC
cycle until the object becomes old. Minor GCs mark only
young objects and stop on old objects. A write barrier iden-
tifies old objects that contain pointers to young objects.

To support conservative GCs, we extend GaS with an ob-
ject start array that enables GaS to quickly determine if a
given address is the start of an object. GaS does not need
to update pointers thus conservative roots do not pose a
problem. GaS computes the object start array during the
clearing phase and uses it during the root dump phase.

4. IMPLEMENTATION
We have implemented the GaS library in C and have inte-
grated it into the HotSpot JVM 1.6 and cPython 3.1. The
HotSpot JVM uses a generational heap layout while cPython
employs hybrid reference counting/cycle detection. Both
VMs use 2-word object headers. HotSpot employs safepoints
for root scan, which halt all mutators, and uses a three-level,
circular, unified object/class model.

Our implementation of the GaS GC assumes sequential con-
sistency, i.e. there is global order on writes and all threads
see the same order. We use memory fences after the root
dump phase to ensure store visibility. We use POSIX syn-
chronization primitives (barriers, mutexes, and condition
variables).

In HotSpot, we inline the GaS write barrier and object allo-
cation in the template interpreter and in the code generated
by the server (C2) compiler. We map the GaS heap at the
constant border above all other generations, which reduces
the membership checks to comparing a register with a con-
stant. We use minor GC (based on parallel copying in the
young generation) to find roots in thread stacks. For roots
in other generations, we perform concurrent generation scan
and introduce a write barrier to capture pointers into the
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GaS heap. We have found this approach to result in shorter
pause times than if we instead leverage card tables (we dis-
cuss these alternatives in Section 3.4). We use the GaS heap
for the young and old generation and leave the permanent
generation as part of the MRE-private heap.

In cPython, we extend C macros INCREF and DECREF to
implement conditional reference counting. We synchronize
the GC and the VM interpreter after root dump and before
marking by acquiring and immediately releasing the global
interpreter lock (to ensure all write barriers have finished
executing). cPython does not have safepoints and thus GaS
imposes no pauses. Note that regular cPython does impose
pauses for (1) cycle detection and (2) whenever freeing large
data structures after decref . The GaS heap is located at a
fixed precompiled address in the virtual memory. We imple-
ment GaS support in cPython for a single data structure:
the binary search tree, which is sufficient to evaluate GaS
using our benchmark described in detail in Section 6.

5. RELATED WORK
The work most related to GaS is the Boehm GC [8, 7].
Boehm GC is a widely-used GC library providing a conser-
vative collector for uncooperative runtimes (such as C and
C++). Boehm GC supports stop-the-world serial and par-
allel collection. In contrast, GaS focuses on concurrent, on-
the-fly GC for cooperative runtimes (precise roots, write bar-
riers, TLAB allocation etc.) Moreover, the GC interface in
Boehm GC essentially consists of two functions GC MALLOC
and GC REALLOC. GaS interface is more fine-grain to be
able to leverage runtime type-safe mechanisms for object
scanning, finalization, and root dump (GaS and the MRE
cooperate to a greater degree).

GC frameworks such as UMass GC Toolkit [21], GCTk [6],
and MMTk [5] are different from and complementary to
GaS. The UMass GC Toolkit (designed in the context of
persistent Smalltalk and Modula-3) focuses on generational
copying stop-the-world GC algorithms. GaS addresses con-
current, on-the-fly GC. GCTk, and MMTk are GC frame-
works written in Java, created in the context of the Jikes
RVM. Their goal is to support a number of different GCs to
enable their comparative evaluation and GC research.

GCTk/MMTk have been used for non-Java languages, al-
though such porting is not well-documented in the litera-
ture. For languages other than Java, however, these frame-
works require crossing the C-Java language boundary for
each GC operation (or translation/reimplementation of the
entire framework). Crossing the C-Java language bound-
ary incurs high overhead (in Section 6.4 we investigate the
overhead of such crossings) and is therefore impractical for
C-based runtimes (of which most MREs are).

GaS takes an alternative approach – the GC library and in-
terface are written in C and do not require execution of
an additional managed runtime (such as a JVM) to im-
plement and use GC. The MRE-GC interface in GaS also
differs from GCTk/MMTk in terms of granularity and en-
capsulation. By taking an MRE-neutral approach, GaS
can afford fine-grain MRE-GC library interaction. In con-
trast, GCTk/MMTk in non-Java-based MREs must either
use coarse-grain MRE-GC library interaction or break li-
brary encapsulation (because of the high cost of cross-language

calls). Since MRE-GC interaction in inherently fine-grain
(allocation/scanning/write barriers are frequent), to achieve
good performance, non-Java-based MREs must replicate the
GCTk/MMTk GC implementation in the MRE. GaS sup-
ports efficient direct fine-grain calls between GC and a MRE
while maintaining the library encapsulation.

GaS is also simpler and more lightweight than GCTk/MMTk
(where the approach is to support as many different GCs as
possible, including object-moving GCs). Unlike GCTk/MMTk,
GaS focuses on concurrent, on-the-fly GC and takes into ac-
count all restrictions placed on GC by different MREs (e.g.
non-moving GC in cPython). GaS uses a GC algorithm de-
signed specifically for a portable loosely-coupled GC library.
The approach in GCTk/MMTk is to design the interface so
that it supports diverse extant GCs.

Another way of reusing a GC implementation between two
MREs is to implement an MRE in a high-level language, e.g.
Jython, JRuby are Python/Ruby interpreters that run on
top of a JVM and use JVM GC. The two key issues with such
MRE layering is performance overhead (we investigate this
empirically in Section 6.5), and incomplete/incompatible stan-
dard libraries (due to the extensive engineering effort re-
quired to make layering work).

Another system, called CoLoRS [32], provides cross-language,
type-safe object sharing using POSIX shared memory for
MREs that execute on the same physical hardware at the
same time and interoperate. CoLoRS uses concurrent, on-
the-fly GC for the shared memory region that each MRE
maps into its address space. The CoLoRS GC however is
tightly integrated into its runtime, and defines a new object
and synchronization model for shared objects that it man-
ages. GaS adds per-object headers and relies on MRE-native
object model and synchronization.

VMKit [20] is a framework that eases the development of
high-level MREs and thus enables experimentation with new
languages and MREs and/or new language features. VMKit
consists of a low-level and a high-level layer. The low-
level layer provides threading support, GC-based memory
management, and a JIT compiler that translates language-
independent intermediate representation of programs. The
high-level layer defines such aspects as object model, type
system, call semantics, and method dispatch. VMKit glues
together LLVM for JIT support, MMTk for GC, and POSIX
thread library for multi-threading. VMKit translates MMTk
into the LLVM intermediate representation in its entirety.
VMKit performance, however, is orders of magnitude worse
than production systems. GaS is orthogonal to VMKit in
that GaS can be used as a GC component in the VMKit
framework. Note, however, that GaS can be integrated
not only with MRE frameworks, but also with general- and
special-purpose MREs for both dynamic and static languages.

XIR [28] is a compiler-MRE interface that separates the
compiler backend from an MRE. An XIR extension mech-
anism allows an MRE to express the machine-level imple-
mentation of object operations. The interface has a modest
impact on compilation time without reducing performance.
GaS is similar to XIR in its overall goal however GaS targets
GC and XIR targets JIT compilation.
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The idea of modularizing an MRE motivates the design and
implementation of LadyVM [19]. LadyVM links three third-
party software components: LLVM, Boehm GC, and GNU
Classpath, to implement a Java VM. Similarly to VMKit,
LadyVM can use GaS as a replacement for its GC compo-
nent to enable modern, high-quality, concurrent GC.

Compiler libraries like LLVM [23] and VPU [25] enable mod-
ular approach to integrating JITs into VMs. LLVM is a com-
piler infrastructure designed for compile-time, link-time, and
run-time optimization of programs written in arbitrary pro-
gramming languages. LLVM supports a language-independent
instruction set and type system. VPU is a high-level code
generation utility that performs most of the complex tasks
related to code generation, including register allocation, and
which produces good-quality C ABI-compliant native code.

JnJVM [27] is a modular JVM that supports dynamic ad-
dition or replacement of its own modules without service
interruption and state loss. JnJVM uses dynamic aspect
weaving techniques and component architecture. GaS could
potentially be used in JnJVM as a GC module.

The Common Language Infrastructure (CLI) [24] is an open
specification (ECMA335) that describes the executable code
format and runtime environment for multiple, static, high-
level languages to be used on different computer platforms.
All CLI-compatible languages compile to the Common In-
termediate Language (CIL), which abstracts away the plat-
form hardware. CLI is similar to GaS in that it provides GC
(among other services) for multiple languages but it differs
in that CLI uses monolithic architecture with built-in GC.
GaS provides GC in a form of a library and targets multi-
language support via the provision of a cross-MRE GC.

GNU Classpath [1] is a GNU project to create free core
class libraries for use with virtual machines and compilers
for Java. The Classpath library can be used with different
VMs – it has a similar goal to GaS but pertains to core
classes (not GC) and targets Java (not multiple MREs).

XMem [30], Singularity [18], MVM [11], and KaffeOS [3] pro-
vide isolation and sharing between MREs or tasks/processes
and implement a common memory management system across
them. GaS GC differs from GCs in these systems in that
it is modular, loosely-coupled, and portable across different
MREs and languages.

6. EXPERIMENTAL EVALUATION
Our primary goal with this evaluation is to show that a
cross-language, cross-runtime GC that is implemented as a
C library, offers competitive performance (in terms of ap-
plication execution time, GC pause times, and other GC
metrics) compared to tightly-integrated VM-specific collec-
tors in production-quality VMs. We find that GaS signifi-
cantly reduces pause times and introduces modest overhead
on overall execution time. In this section, we also investigate
the tradeoffs associated (i) with the way GC is integrated
into a runtime systems (built-in vs. a native/non-native li-
brary) and (ii) with different GC designs (generational vs.
non-generational, moving vs. non-moving, concurrent vs.
stop-the-world).

We first compare GaS to state-of-the-art GCs in the C-based

GC G1 CMS RC/CD GaS
concurrent yes yes yes
on-the-fly yes
parallel yes yes yes
moving yes yes
tracing yes yes yes yes

reference counting yes
generational yes yes yes

Table 1: High-level comparison of evaluated GCs.

runtimes for Python and Java. We use cPython (http://
docs.python.org/py3k/) and the HotSpot JVM (http://
openjdk.java.net). cPython implements a single-threaded
Reference Counting [10] with generational stop-the-world
Cycle Detection (RC/CD) [4]. The HotSpot JVM imple-
ments two concurrent, parallel, and generational GCs: Garbage-
First (G1) [13] and Concurrent Mark Sweep (CMS) [26].
Table 6 summarizes the main characteristics of these GCs
compared to GaS.

RC/CD divides the heap into three generations. Once the
number of objects with non-zero reference counts in the
youngest generation reaches a specific threshold, RC/CD
traces the object graph to find and free possible reference
cycles within this generation. Survivors are promoted to
the older generation. Generation i + 1 gets collected after
the specified number of collections of generation i. RC/CD
does not move objects and segregates object into genera-
tions logically (i.e. it maintains a list of objects in each
generation).

CMS [26] is a mostly-concurrent incremental GC based on
the mostly-parallel collection algorithm described by Boehm
et al [7]. HotSpot JVM implements CMS in the old gener-
ation and overloads generational write-barriers to identify
objects that are modified during concurrent marking (these
objects must be rescanned to ensure that the concurrent
marking phase marks all live objects). CMS imposes two
pauses per GC cycle: for initial marking and for remarking.
CMS does not move/compact objects except for promotion
to the old generation and copying within the young genera-
tion.

G1 [13] is a concurrent GC designed to meet a soft real-time
goal with high probability, while achieving high through-
put. G1 performs marking concurrently but halts mutators
during object evacuation. Marking identifies regions that
contain few live objects and that can be evacuated within a
given pause time limit (with high probability). Each region
has an associated remembered set, which indicates all loca-
tions that might contain pointers to (live) objects within the
region. At carefully scheduled points, G1 stops the mutator
threads and performs an evacuation pause. G1 is genera-
tional – regions holding current TLABs are treated as young
and always belong to the evacuation set. G1 opportunisti-
cally moves objects to gradually defragment the heap.

6.1 Methodology
For our experiments, we use a dedicated machine with a
quad-core Intel Xeon and 8GB main memory. Each core
is clocked at 2.66GHz and has 6MB cache. Our platform
runs 64-bit Ubuntu Linux 8.04 (Hardy) with the 2.6.24 SMP
kernel.
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We use HotSpot JVM from OpenJDK 6 build 19 (released
April 2010) compiled with GCC 4.2.4 in the 64-bit mode.
Our configuration employs the server (C2) compiler, biased
locking, and two concurrent GCs: G1 (garbage-first) and
CMS (concurrent mark-sweep) in a generational heap. In
case of CMS, the young generation uses a parallel copying
GC [2].

For the Java experiments, we employ the DaCapo’08 [12]
and SPECjbb’00 benchmarks. We use the default input for
DaCapo and 1 warehouse with 75s runs for SPECjbb. We
disable explicit GC invocation. For the Python experiments,
we use the open-source cPython 3.1.1 (released August 2009)
compiled with GCC 4.2.4 in the 64-bit mode. Our Python
benchmarks include PyBench (a collection of tests that pro-
vides a standardized way to measure the performance of
Python implementations), a set of Shootout cPython bench-
marks (http://shootout.alioth.debian.org/), and PyS-
tone (a standard synthetic Python benchmark). Since there
are no standard memory-intensive benchmarks for Python,
we implement our own GC benchmark, called BST, which
we model after SPECjbb. BST executes a number of itera-
tions against a balanced binary search tree. Each iteration
comprises 3 lookups, 1 insert, and 1 delete. This emulates
realistic workloads by simulating an in-memory database.

We investigate the sensitivity of GaS to different parame-
ter values across benchmarks. For the Java GCs, we vary
four GC parameters: TLAB size, young generation size,
number of GC threads, and GC-start threshold. We use
the recommended values of this parameters (as described in
the HotSpot documentation) for our detailed per-benchmark
evaluation. For the Python RC/CD GC we vary one param-
eter: the GC-start threshold which controls the frequency
of cycle detection in the young generation. RC/CD has no
other parameters that significantly affect GC.

We evaluate the Java and Python GCs using four main met-
rics: throughput (execution time), GC pause times (average
and maximum), minimum mutator utilization (MMU), and
minimum required heap size. We do so across a range of
heap sizes starting at the minimum heap size to at least its
double. Note that concurrent GC requires more heap space
than stop-the-world GC due to delayed garbage reclamation
and allocations happening during collection. In cPython
RC/CD, there is no reliable standard way of setting the heap
size, therefore we do not vary the heap size in this case. We
repeat each measurement a minimum of 5 times and report
standard deviation as appropriate (error bars in plots).

6.2 Java Benchmarks
Table 2 details per-benchmark, GC metrics for GaS, G1, and
CMS. These experiments use our baseline GC parameters.
The TLAB size is 4kB, we use 2 GC threads, the GC-start
threshold is 50% (i.e. collection starts once half of the heap
is filled), and the young generation size is fixed at 8MB (the
HotSpot documentation recommends the young generation
size to be set to 4MB times the number of GC threads).

We next evaluate the impact of each GC parameter on the
different GC metrics. When measuring pause times and exe-
cution time/throughput we use the minimum heap size that
each benchmark requires to run under GaS, G1, and CMS.

Pause Times and MMU. In Table 2 we report both aver-
age and maximum pauses (in milliseconds for GaS, and as
number of times decrease relative to G1 and CMS). Across
benchmarks, average pause times in GaS are shorter by 12x
compared to G1 and 6x compared to CMS. Maximum pause
times in GaS are shorter by 8x compared to G1 and by 7x
compared to CMS (across benchmarks).

Figure 5 shows the minimum mutator utilization (MMU)
plots for the benchmarks and GCs. MMU curves [9] lend
insight into the distribution of GC pauses across program
execution. Mutator utilization for a given time window w

is defined as the fraction of the window w during which the
mutator executes (as opposed to GC). Minimum mutator
utilization for time period p is the lowest mutator utilization
across all time windows of size p during program execution.
Thus, the x-intercept of a MMU curve is the maximum pause
time and the asymptotic y-value corresponds to application
throughput.

We do not include GC write barriers when computing MMU
– we only take GC pauses into account. GaS achieves better
utilization than G1 and CMS for all benchmarks.

Throughput. In the last three Columns in Table 2 we show
per-benchmark execution time/throughput for GaS and per-
centage overhead of GaS relative to G1 and CMS. Across the
DaCapo benchmarks GaS imposes 9.7% overhead compared
to G1 and 11.6% overhead compared to CMS. For JBB,
throughput reduction due to GaS is 5.7% relative to G1 and
6.3% relative to CMS. GaS overhead is mostly caused by GC
write barriers and is overestimated here because our imple-
mentation of the write barriers is not as optimized as it could
be.

Figure 6 shows per-benchmark execution time as a function
of heap size. Each plot starts at the minimum heap size.
CMS and G1 have similar performance for our benchmarks.
We do not observe significant execution time increase for
minimum heap sizes typical of stop-the-world GC. This is
because GCs run on separate cores and only slow the pro-
gram down for short pauses during which little processing
takes place.

Heap Size. In Columns 2–4 we report minimum required
heap size for each benchmark (for GaS in MB and for G1
and CMS as number of times decrease relative to GaS). GaS
requires larger minimum heap sizes than G1 (by 3x on aver-
age) and CMS (by 5x on average) because of three reasons.
First, G1 and CMS are generational and thus tolerate allo-
cation bursts better and place less pressure on the concur-
rent GC which executes for the old generation only. Second,
GaS does not move objects and thus suffers from fragmenta-
tion (CMS uses a copying GC in the young generation and
G1 performs opportunistic block-based compaction). Third,
GaS adds a per-object header word, which may matter in
benchmarks that allocate small objects. Each of these rea-
sons is a consequence of a primary GaS design goal to be
portable across runtimes and languages with different mem-
ory management subsystems.

Note that in case of concurrent GC, heap overprovisioning
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Bench- Minimum Heap Average Pause Maximum Pause Execution Time
mark GaS vs.G1 vs.CMS GaS vs.G1 vs.CMS GaS vs.G1 vs.CMS GaS vs.G1 vs.CMS

[MB] [x incr.] [x incr.] [ms] [x decr.] [x decr.] [ms] [x decr.] [x decr.] [s] [% incr.] [% incr.]
antlr 40 2.0 4.0 0.8 2.5 1.5 2.5 2.1 1.5 10.9 6.0 9.9
bloat 140 4.7 14.0 0.5 3.8 1.4 2.0 2.4 2.6 25.5 11.5 17.9
chart 100 1.0 3.3 0.3 12.0 6.2 2.0 4.8 3.0 25.7 8.9 9.2
eclipse 400 8.0 5.7 0.6 7.3 3.4 3.4 4.4 4.6 71.9 11.4 15.5
hsqldb 290 1.9 1.9 0.5 36.3 20.6 1.4 17.2 22.9 12.7 -1.6 -1.5
jython 80 4.0 2.7 0.8 2.3 0.8 3.9 1.2 1.5 29.9 4.8 7.8
luindex 120 2.4 12.0 0.3 7.5 3.7 1.5 4.2 3.1 25.6 4.8 4.4
pmd 250 3.6 4.2 0.3 27.2 15.0 1.2 31.9 18.2 20.3 12.1 16.7
xalan 80 1.3 0.4 0.8 4.7 4.2 4.1 1.8 2.8 23.6 29.0 24.6

average 167 3.2 5.4 0.5 11.5 6.3 2.4 7.8 6.7 27.3 9.7 11.6
Throughput

[kbops] [% decr.] [% decr.]
jbb 110 1.8 2.2 0.5 12.9 4.3 1.9 7.2 6.3 3.9 5.7 6.3

Table 2: Per-benchmark comparison of Java GCs: G1, CMS, and GaS. Columns 2–4 show the minimum
required heap size: for GaS in MB and number of times increase relative to G1 and CMS. In Columns 5–7
and 8–10 we report average and maximum pause times: for GaS in ms and number of times decrease relative
to G1 and CMS. The last three Columns show execution time in seconds (for the DaCapo benchmarks)
and throughput in kilo-operations per second (for JBB). We report percentage execution time increase and
throughput decrease relative to G1 and CMS.
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Figure 5: Minimum mutator utilization (MMU) for the DaCapo benchmarks and JBB. We compare GaS
with two HotSpot GCs: G1 and CMS. In all the plots, the x-axis (logarithmic scale) is a MMU window size
(in ms). The x-intercept is the maximum pause time.
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Figure 6: Execution time (for the DaCapo benchmarks) and throughput (for JBB’00) as a function of heap
size. We compare GaS with two HotSpot GCs: G1 and CMS. Each plot starts at the minimum heap size.

GC Baseline TLAB [kB] GC Threshold [%] GC Threads Young Gen. [MB]
Metric Parameters 1 16 20 80 1 3 2 32

Relative to HotSpot G1
Throughput [% decr.] 8.40 7.54 7.86 10.29 6.95 5.24 8.15 3.50 12.25
Avg. Pause [x decr.] 10.12 9.76 10.43 12.77 8.73 14.77 8.29 4.32 31.34
Max. Pause [x decr.] 8.26 7.58 8.34 7.58 9.33 10.76 7.85 5.25 20.89
Min. Heap [x incr.] 3.07 2.30 4.69 3.07 3.86 3.11 3.10 4.63 1.81

Relative to HotSpot CMS
Throughput [% decr.] 9.97 9.60 9.59 11.19 9.50 7.80 9.85 2.99 13.50
Avg. Pause [x decr.] 5.52 5.19 5.57 6.48 5.81 6.69 4.44 2.10 13.45
Max. Pause [x decr.] 7.67 6.50 6.94 6.53 8.29 8.59 8.05 3.80 21.68
Min. Heap [x incr.] 5.05 3.33 8.11 5.10 4.60 5.23 5.27 6.26 4.64

Table 3: Impact of the GC parameters on the GC metrics in Java. We report all metrics (throughput, avg.
and max. pauses, and min. heap) for G1 (first part, Rows 3–6) and CMS (second part, Rows 8–11) relative
to GaS. The second Column contains results for the baseline parameters: 4kB TLAB, 2 GC threads, 50%
GC-start threshold, and 8MB young generation. Each of the subsequent Columns shows the impact of one
GC parameter while the other 3 are kept at the baseline.
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GC GaS GC-Start Threshold [number of young unreclaimed objects]
Metric Baseline 70 700 7000

RC/CD Relative RC/CD Relative RC/CD Relative
Min. Heap [MB] 17 7 2.4 [x incr.] 10 1.7 [x incr.] 34 0.5 [x incr.]
Avg. Pause [ms] 0 0.2 – 0.8 – 5.4 –
Max. Pause [ms] 0 56.6 – 100.3 – 302.9 –

Time [ms/103iters] 39.3 38.0 3.6 [% incr.] 36.3 8.4 [% incr.] 35.3 11.4 [% incr.]

Table 4: GC metrics for GaS and Python RC/CD for different values of the young generation threshold in
RC/CD (70, 700, and 7000). We report minimum heap in MB, average and maximum pauses, and BST
throughput (time per 1000 iterations). Column 2 shows the results for GaS in its baseline configuration. The
following Columns compare GaS and RC/CD for different thresholds.

does not impact performance significantly (unlike in case of
stop-the-world GC [31, 29]). That is, across all the bench-
marks, giving G1 and CMS much more heap does not im-
prove their performance.

Sensitivity to GC Parameters. To evaluate the parameter
sensitivity of GaS, we vary the TLAB size between 1kB and
16kB, the young generation size between 2MB and 32MB,
the number of GC threads between 1 and 3 (note that we
have only 4 cores and we need to leave one core for the
actual program), and the GC-start threshold between 20%
and 80%. Our baseline values of GC parameters (reported
previously) are medians of these ranges.

In Table 3, we present how our GC metrics (throughput,
average and maximum pause times, and minimum heap)
depend on GC parameters. The Table consists of two parts.
The first part (Rows 3–6) reports the GC metrics for GaS
relative to G1 and the second part (Rows 8–11) relative to
CMS. We vary one GC parameter at a time and keep the
remaining 3 parameters at their baseline values. Column
2 corresponds to the baseline values of all 4 parameters.
Each of the following Columns (3–10) reports the impact
of one parameter: TLAB size, GC-start threshold, number
of GC threads, and young generation size. We report GC
metrics for two extreme values of each GC parameter. For
each benchmark we use the minimum heap size in which
all experiments for the benchmark run. We report average
results across benchmarks (DaCapo and JBB).

The young generation size has the greatest impact on all GC
metrics. For small sizes (2MB), GaS degrades throughput 3-
4% relative to G1 and CMS. For large sizes (32MB) through-
put degradation is 12-14%. GaS converges to G1/CMS per-
formance as G1/CMS approach non-generational GC.

G1/CMS pause times increase significantly for larger young
generation sizes (up to 22-31 times longer than for GaS).
For small sizes, G1/CMS pause times are 2-5 times worse
than for GaS. This is because G1 and CMS are genera-
tional hybrids of concurrent and stop-the-world GC and
trade throughput for pause times. Note that GaS does not
have this tradeoff. Finally, large young generation sizes in-
crease the minimum heap size in G1/CMS because during
minor GCs more objects get promoted and, as a result, there
is more pressure on the concurrent GC.

Dedicating fewer threads to GC in all collectors prolongs
pause times and decreases throughput. TLAB size impacts
only minimum heap size – large TLABs require that GaS

uses more heap than G1 and CMS. This is because allocation
rate is higher with large TLABs. GC-start threshold has
only a minor impact on the GC metrics.

6.3 Python Benchmarks
To evaluate cPython hybrid GC, our BST benchmark cre-
ates both cyclic (collected by tracing) and acyclic (collected
by reference counting) garbage. To create cycles we use self-
referencing objects. We investigate 3 configurations: all-
cyclic, all-acyclic, and 50% cyclic. Our main evaluation uses
the last one. We have evaluated the all-cyclic and all-acylic
configurations relative to the 50% cyclic one using our GC
metrics. We have found that the all-cyclic configuration
has shorter pauses (by 21-22%), larger minimum heap size
(by 15%), and 3% worse execution time. The all-acyclic
configuration has shorter pauses (by 49-56%), smaller min-
imum heap size (by 41%), and better execution time (by
5%). When RC/CD relies only on tracing, it imposes more
overhead, uses 2x more heap, and has up to 2x longer pauses
than when it uses only reference counting.

We allocate 15-level trees in BST. The live data set size does
not impact RC/CD in Python because the cost of tracing in
this GC depends mostly on the number of objects that are
reachable from potential cycles (it does not matter if they
are live or dead). The cost of tracing in GaS is proportional
to the size of live data.

In Table 4 we report the GC metrics for GaS and RC/CD.
Column 2 shows the results for GaS that correspond to
our baseline GC parameters (2 GC threads, 50% GC-start
threshold, and 4kB TLABs). We report the minimum heap
(we instrument cPython to measure it), pause times, and
execution time per BST iteration.

Columns 3–8 compare GaS with RC/CD for 3 different val-
ues of the main RC/CD parameter (the GC-start threshold).
For its default value (700) GaS requires 1.7x more heap and
has 8% lower throughput relative to RC/CD. However, GaS
imposes no pauses, while RC/CD does (up to 100ms, and
0.8ms on average).

Setting the GC-start threshold to 70 results in more fre-
quent GCs in RC/CD. This results in shorter pauses (0.2ms
on average and 57ms maximum), worse throughput (only
4% better than GaS), and lower minimum heap. Similar
space/time tradeoffs can be observed when the young gen-
eration threshold is 7000. Now CD GC is relatively rare but
each cycle is expensive. Pause times increase (5.4 ms on
average and 303ms maximum), throughput improves (11%
better than GaS), and the minimum heap increases (exceed-

10



 0.037
 0.0375
 0.038

 0.0385
 0.039

 0.0395
 0.04

 0.0405
 0.041

 15 20 25 30 35 40 45 50 55 60

T
im

e 
[m

s]
 p

er
 It

er
at

io
n

Heap Size [MB]

BST

GaS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10 100  10000

M
M

U

Window [ms]

BST

GaS
RC/CD

Figure 7: Results for Python and the BST bench-
mark. The left plot shows execution time per BST
iteration as a function of heap size for GaS (in
RC/CD heap size is not a GC parameter). The right
plot is MMU for GaS and RC/CD. Note that since
GaS does not impose pauses its MMU is at 1.0 across
the window sizes.

ing 2x GaS).

The left plot in Figure 7 shows how sensitive per-iteration
execution time in BST is on heap size in GaS. BST through-
put is 3% better for heap sizes that are 2 times the minimum.
Heap size is not a GC parameter for RC/CD.

The right plot in Figure 7 shows MMU for GaS and RC/CD.
Since GaS in cPython has no pauses, its MMU equals 1.0 for
all window sizes. In RC/CD, the maximum pause time is
100ms (we use the default 700 GC-start threshold). RC/CD
approaches GaS utilization for window sizes above 1 second.
The MMU plots do not take write barriers/conditional RC
into account (only pause times). In RC/CD we only measure
pause times caused by tracing. Reference counting imposes
negligible pauses in BST because whenever we delete nodes
we free one node at a time.

Table 5 shows execution time statistics for the Python bench-
marks. These benchmarks are not memory intensive and do
not exercise GaS GC like the BST benchmark does. On
average, the overhead of GaS extensions is 3%.

6.4 Overhead of Cross-Runtime Calls
We next investigate the performance overhead of other ways
of integrating a GC into an MRE. We first consider the
approach that implements the GC in Java (e.g. MMTk and
GCTk) that is then integrated into a C-based runtime. We
evaluate the cost of crossing the runtime boundaries. We
measure the overhead incurred by the up/down calls through
the Java Native Interface (JNI) – the mechanism through
which Java and C programs interact. We consider the key
GC operations: object allocation and object scan.

We implement object allocation as a Java method Object

allocate(int size) which takes object size as input and
returns the allocated object. We upcall this method from
C via JNI. Object scan is represented as a native method
int scan(Object o, Object[] b) whose arguments are a
reference to an object to scan and a reference to a buffer for
pointers found in the scanned object. The method returns
the number of references found. We downcall this native
method from Java using JNI. Since our goal is to measure
the JNI overhead, the allocate and scan methods do not
perform any processing: allocate returns NULL and scan

returns 4 pointers. We duplicate both methods in C and
call them directly from C (without gcc inlining) to compare

Benchmark Execution Time [s] % GaS Overhead

pybench 3.91 2.05
pystone 4.12 3.40

binary-trees 6.71 3.13
fannkuch 1.95 8.72

mandelbrot 15.48 2.13
meteor-contest 2.26 4.42

n-body 8.44 -0.59
spectral-norm 14.28 3.01

average 7.14 3.28

Table 5: Execution time overhead in GaS for stan-
dard Python benchmarks relative to RC/CD.

direct calls with JNI calls.

We run 10 experiments, each consisting of 106 calls. On av-
erage, when compared to direct (but not inlined) C calls, JNI
upcalls for allocate are 76x slower and downcalls for scan

are 5x slower. Downcalls are faster than upcalls because the
HotSpot JIT compiler optimizes native calls extensively. For
106 calls, upcalls for allocate introduce 225ms of overhead
and downcalls for scan incur 92ms of overhead.

The DaCapo benchmarks allocate between 2.4 and 161 mil-
lion objects (with the mean of 18 million) whereas the num-
ber of live objects during a GC cycle reaches between 2.8
thousand and 3.2 million (with the mean of 104 thousand).
Thus, the JNI overhead for allocation can range from 0.54s
to 36s of execution time. Similarly, the JNI overhead for
scanning (assuming 25 collections per program execution)
can range from 64ms to 7.4s of execution time.

Such overhead is likely unacceptable for C-based runtimes
which typically are tuned for high performance. MRE-neutral,
C-based GC library is both easier to integrate into such run-
times and offers significantly better performance.

6.5 Overhead of Runtime Layering
We next consider another alternative approach to using a
single GC for multiple programming languages: runtime
layering. In this study, we investigate the cost of using
a production-quality Java runtime to host a non-Java lan-
guage. In particular, we compare the performance of Python
benchmarks for Jython 2.5.1 (a Python runtime that exe-
cutes on top of a JVM – the HotSpot JVM in our case),
versus using cPython v2.6.

We omit the raw data due to space constraints, and sum-
marize our findings here. For pybench and pystone, Jython
is 2.5x and 1.74x slower than cPython. For the shootout
benchmarks (those which Jython supports without extensive
benchmark modifications) Jython is 2.97x (meteor-contest),
1.34x (spectral-norm), 2.24x (fannkuch), 1.72x (binary-trees),
and 2.22x (n-body) slower. On average, cPython is 2.1x
faster than Jython.

Re-using a Java runtime (and Java GC) to implement run-
times for other languages introduces significant overhead (in
addition to being complex and time-consuming from the en-
gineering standpoint). An alternative, simpler, and more
efficient approach to incorporating a modern GC and mem-
ory management subsystem into a new or extant C-based
runtime is to use a GC library like GaS.

11



6.6 Lines of Code
We next compare GaS, HotSpot G1/CMS, and Python RC/CD
using lines-of-code, to lend insight into the approximate im-
plementation effort required for each GC. The GaS library
is around 1100 lines of C/C++. The integration/glue code
in both Python and HotSpot is around 200 lines.

The implementation of G1 and CMS in HotSpot is around
30,000 and 22,000 lines of C/C++. RC/CD in cPython is
8,400 lines of C (note that reference counting code is scat-
tered across the whole runtime). This suggests that GaS GC
library is simpler to implement than G1, CMS, and RC/CD.
In addition, 200 lines of the GaS integration code is 2 orders
of magnitude fewer than that which is required to implement
a modern GC from scratch in an MRE.

6.7 Summary
We have compared GaS with two generational, concurrent
GCs for Java and a hybrid tracing/reference-counting GC
for Python. GaS significantly improves pause times and
MMU across all benchmarks and GCs. GaS requires larger
heap sizes and imposes modest execution time overhead be-
cause it is non-generational and non-moving (unlike G1 and
CMS) and concurrent (unlike RC/CD). GaS is non-moving
so that it is able to support runtimes (such as Python) that
make assumptions about object addresses.

We also investigate the performance sensitivity to different
GC parameters on the GC metrics. We find that GaS min-
imum heap sizes and throughput converge to G1/CMS and
RC/CD once the GC parameters mitigate the generational
advantage of these GCs. We measure the overheads asso-
ciated with other approaches to implementing a GC in an
MRE (via cross-language calls and via runtime layering) and
find that using a GC library in C-based runtimes is signifi-
cantly simpler and more efficient.

7. CONCLUSIONS
We contribute GaS, a lightweight, cross-MRE, cross-language
GC library that provides concurrent, on-the-fly, non-moving
GC. GaS can be integrated into MREs for static (e.g. Java)
and dynamic (e.g. Python) languages via a fine-grain, low-
overhead GC interface. GaS is a stand-alone C-based library
for GC-cooperative MREs. GaS GC adapts the SATB algo-
rithm for loose coupling between GC and an MRE. The GaS
library makes no assumptions about object model, thread-
ing, JIT, and memory management strategy (tracing, ref-
erence counting, generations, etc.) in an MRE. We imple-
ment GaS and integrate it within production-quality MREs
for Java and Python. Our experimental evaluation shows
that in comparison to built-in, tightly-coupled GCs, GaS
can improve pause times significantly and offers competi-
tive performance even when compared to generational GCs.
The GaS library reduces the development effort required for
implementing a state-of-the-art on-the-fly GC. The library
can be used as a modern GC component both in extant
MREs and when building new MREs for new or existing
languages.
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