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Abstract
Modern embedded systems (i.e. highly resource-constrained,
microcontroller-based devices) are increasingly available at
very low cost and consist of a variety of hardware compo-
nents. As a result, these systems have become increasingly
ubiquitous and are emerging as an important computing plat-
form. Advances in support for easy program development
across heterogeneous devices, by a broad developer base
(with a range of expertise and backgrounds) for such de-
vices is vital, but unfortunately has not kept pace. Currently,
only very skilled developers are able to develop even sim-
ple applications or extant software development frameworks
only support a small set of similar devices or a particular
application domain.

Toward this end, we present a new programming lan-
guage, called Em, for the development of highly resource-
constrained device applications. Em is an extension to the
C language that integrates high-level language and software
engineering features that include modularity, encapsulation
and data hiding, interface separation from implementation,
inheritance, support for key design patterns, and reduced
syntax verbosity, among others. Em facilitates code reuse,
portability across platforms and device components, inter-
changeability (substitutability) while still achieving the foot-
print and code efficiency of C. Em also integrates novel fea-
tures such as unifying the configuration (build time execu-
tion) and target (run time execution) code development. We
demonstrate the efficacy of Em using multiple embedded
systems building blocks and applications.

1. Introduction
Currently, there is a proliferation of microcontroller-based,
resource-constrained, digital devices in the market place.
98% of processors produced globally are embedded [4] –
55% of which are 8-bit, microcontrollers with as little as
1KB of RAM and 16KB of program memory. These devices
are programmable and offer a wide variety of sophisticated

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $10.00

components including accelerometers, gyroscopes, atmo-
spheric sensors, wireless radios, and tiny displays – at very
low cost (e.g. see Sparkfun[25], Jameco[13], Adafruit[1]).

These devices are ideal platforms for applications in dig-
ital media [5], human interactivity [24], consumer electron-
ics [30], home automation, health and environmental mon-
itoring [9], sensing, control/response systems, etc., andof-
fer compact and esthetically pleasing form-factors, off the
shelf and at very low cost. As a result, these systems are in-
creasingly ubiquitous and there is a significant and growing
demand for applications for these devices as well as support
for tools that aid development of such applications by a wide
range of users (designers, artists, hobbyists, students, engi-
neers, etc.).

Unfortunately, development of microcontroller applica-
tions is difficult for novice and expert alike. There is a vast
diversity of devices from a variety of manufacturers and of-
ten, device families from the same manufacturer can differ in
architecture, internal memory maps, and operation of their
integrated peripherals. Code for one device typically can-
not execute on another, and manufacturer-specific develop-
ment environments make it challenging to write code that is
reusable, and functional across platforms. Moreover, appli-
cations for these devices typically must be integrated with
systems code as opposed to separated via a well-defined in-
terface to an operating system, as in more resource-rich sys-
tems. To complicate the matter further, the dominant lan-
guage for writing microcontroller applications is C.

The low-level nature of C and its compiler maturity and
availability enables code to be generated that has a very
small footprint and that can operate within severe resource
constraints. However, interest in learning and using C is
dwindling because it provides little abstraction and many
fewer tools to aid the pedagogical and development process
compared to more modern, high-level languages. For exam-
ple, the C preprocessor and build tools such as Make, and
vendor-specific environments (e.g. non-portable libraries,
tool-chains) constitute the state of the art for embedded sys-
tems application development.



The goal of our work is to design and implement a new
language that addresses these issues to lower the barrier to
entry on development of highly resource-constrained, micro-
controller applications. To enable this, we extend C with a
small amount of new syntax that implements successful fea-
tures from modern software engineering and object-oriented
computing for more resource-rich systems and languages.
We employ C as the base language since it is familiar to
many and so that we may exploit mature and highly opti-
mizing (and freely available) compilers.

Our language, calledEm, employs a modularity-focused
constitution and integrates techniques for abstraction, reuse
(by a single developer as well as a distributed developer
community), portability, and interchangeability. However,
we do so in a way that still facilitates efficient code gen-
eration, application-system integration, and operation under
severe resource constraints. In addition, key to Em’s novelty
and efficiency is its integration of compile-time configura-
tion within the application program. We have used Em to de-
velop a number of applications for a wide range of devices
and device components, from Atmel’s AVR and Texas In-
strument’s MSP430, to NXP’s LPC ARM series and Lumi-
naryMicro’s line of ARM Cortex-M3 devices. We evaluate
Em using embedded systems building blocks and find that,
despite the higher-level of abstraction that Em provides, the
compilation system is able to generate very efficient code.
We also employ Em for more sophisticated applications and
discuss how Em enables reuse, portability, and interchange-
ability for these systems.

In summary, with this paper, we contribute

• a new programming language called Em that brings suc-
cessful language and software engineering techniques
to the familiarity of C for the development of highly
resource-constrained microcontroller-based applications,

• language and translation (enforcement) support for mod-
ularity, encapsulation, data hiding, and code reuse using
techniques from modern high-level object-oriented lan-
guages including C++ and Java,

• a reduction in the verbosity of the C language (similar to
that done in modern scripting languages such as Python
and Javascript),

• support for separation of concerns in code and code reuse
via interfaces, independent implementation, proxies for
substitution, opaque types, interface inheritance, and au-
tomatic source generation (called templates),

• a demonstration of code reuse, portability, interchange-
ability, and integration of legacy source by Em appli-
cations for sophisticated embedded systems components
(device drivers, TCP/IP stack),

• an evaluation of the footprint of Em applications and a
comparison to related systems.

In the sections that follow, we describe Em and provide
examples of its key features. Em is currently in use for an in-
troduction to embedded systems programming class for un-
dergraduates (with a range of programming skills) in com-
puter science at a university (details omitted for anonymity
reasons).

2. The Em Language
Em is a high-level programming language for writing em-
bedded systems software. It embodies concepts from other
high-level languages that enable straightforward reusability
of code, interchangeability of software components to cope
with change and variation, and development of code that
is usable across microcontroller devices, i.e. portability. In
particular, we have designed Em with the notion that modu-
larity, or the separation of concerns in code, should be pre-
served at all cost in order to enable an ecosystem of software
components to exist that are developed independently by
people all around the world and can be easily shared through
the Internet.

While Em provides high-level programming features it
does not add significant runtime overhead. Em code is trans-
lated to standard ANSI C and the Em translator enforces the
semantics of the language. The translation process results
in C code that can be compiled by any standards-compliant
C compiler. Since C is currently the dominant language of
embedded systems development [4], most microcontroller
manufacturers support an optimizing C compiler for their
devices. Furthermore, most C compilers, if fed an entire
application in a single source file, can perform whole pro-
gram analysis and aggressively optimize the code by inlining
functions, folding away constants etc. The resulting binaries,
therefore, can be more optimized than handwritten C code
compiled piecewise and linked together. Em takes full takes
advantage of modern C compiler technology to achieve its
efficiency of generated code.

Since software written in Em must be built for, fit into,
and run efficiently on a wide range of highly resource con-
strained hardware, the ability to configure, or tune, software
components at build time, given knowledge of other compo-
nents present in the application and the hardware it will run
on is essential. To this end, unlike any other language in this
domain, we holistically integrate into the Em language, the
application build process. Code residing in an Em file can
be target code, which provides runtime functionality on the
device itself, or it can be configuration code which executes
on the build host and serves to configure the module at build
time for a particular hardware/software configuration. This
enables modules to adapt themselves to a given configura-
tion and potentially off-load tasks that would normally take
place at runtime on the target, onto the build host that has
significantly more resources.

In addition, our Em design employs a usage model that
is similar to some degree to scripting languages such as



Javascript, Python and Ruby and also to object-oriented lan-
guages such as Java, C++ and others. As per the former, Em
encourages development of code that largely depends on ex-
isting functional content to realize its task. As per the latter,
Em provides rich abstractions that are suitable for complex
architectural patterns.

To implement Em, we extend the C language with ap-
proximately 30 key words and new syntax patterns. Our Em
grammar specified using Antlr [19] is available online at(url
omitted for anonymity purposes); we omit it here for brevity.

In the subsections that follow, we describe each of the key
features of Em and provide examples. Across all examples,
we employ most of the new syntax that we extend the C
language with to specify Em. That is, Em adds very little
to C to enable the benefits we are after (modularity, reuse,
and portability with highly compact code generation). The
key features that Em implements are modules, interfaces
and proxies, composites, templates, and a restricted form of
inheritance. We detail these features and discuss the build
and translation process.

2.1 Modules

The fundamental unit of code in Em is the module. Figure 1
shows an example of an Em module. Em modules encapsu-
late the functions and data they define and implement. We
refer to such functions and data as the module’sfeatures.

All features are declared (given names/types) within the
module (public specification) orprivate (private specifi-
cation) blocks. We differentiate such blocks syntactically to
make data hiding explicit and clear. Modules can access the
public features of other modules. We refer to modules that
do so asclients of the module they access. Modules in Em
are singletons and are not instantiated. Em has no notion of
global functions or data, obviating external data dependen-
cies. Names in a module cannot be reused and all names
available to other modules are accessed via their fully quali-
fied (module and feature) name (e.g. BasicListManager.List
used in module EventDispatcher is a data type defined in the
public specification of the module BasicListManager).

Function declarations take the formfunction fnName

([paramType]∗) : returnType, where fnName is the
function name,[paramType]∗ are 0 or more parameter data
types separated by commas, andreturnType is the data
type of the return value. All functions must be declared and
all declarations must be in specification blocks.

Function definitions follow the specification blocks in
a module. Function definitions take the formdef fnName

([paramName]∗) {...}. We employ a sparse syntax ap-
proach of modern scripting languages for Em, to reduce sig-
nificantly the amount of typing required (and thus potential
for errors). For example, semicolon is not needed to end a
line or declaration; types are omitted in definitions. The no-
tion here is that a growing number of programmers are at-
tracted to and familiar with scripting languages that reduce
verbosity of code by relaxing syntactic notations often re-

package em.bios

module EventDispatcher {

    proxy GlobalIntr implements GlobalInterruptsI      

    type EventHandler: Void( e: Void* )

    type Event: opaque {

        function init( handler: EventHandler ): Void

        host function initOnHost( handler: EventHandler ): Void                

        function post(): Void

        function postFromInterrupt(): Void        

    }

        

    function start() : Void

}

private  {

    def opaque Event {

        elem: BasicListManager.Element

        handler: EventHandler

    }

    

    var eventList: BasicListManager.List

    

    function dispatch(): Void

}

Figure 1. An Em module with public and private specifica-
tion.

def dispatch() {

    while (eventList.hasElements() != 0) {

        var event : Event& = null

        event = eventList.getElement()              

        GlobalIntr.enable()

        event.handler(event)

    }   

}

Figure 2. Dispatch function from the EventDispatcher
module.

quired by other languages. Em seeks to appeal to such pro-
grammers in its style of programming.

Module data is represented by variables with primitive
and composite data types. Module variables must be de-
clared within the public/private specification blocks. The
only other types of variables are local variables within func-
tions. Em has all data types present in C, although we re-
quire that the widths of primitive types be specified explic-
itly where they can vary. Integers, for example, are specified
with their width and sign, such as Int8 or UInt8; Int does not
exist. All data types are known and all storage is allocated
statically. Type coercion is possible in Em but must be spec-
ified explicitly. Since subtle runtime memory errors can be
introduced by coercion [6] Em forbids implicit type coercion
by design.

Variables are declared using the keywordvar followed
by the variable name, a colon, its data type, and optionally
an equal sign and value (initialization). Em supportsrefer-
ence semantics of C++ using the & operator (following the
type name, e.g.var event : Event&) for primitive and
composite data types. Em references can be assigned a null
value at declaration and may be reassigned after declara-



tion unlike C++ references. Reference types provide devel-
opers with an option of a safer alternative to pointers. Pointer
types are allowed and have the same semantics as in C and
C++. Complex functionality can be achieved without point-
ers given the parameter passing semantics of Em and refer-
ences. Advanced functionality requiring pointers and pointer
manipulation is still available if necessary.

Em uses the keywordtype to rename a type, e.g.typedef
in C. Em also use this keyword to introduce a new composite
data type not present in C, called anopaque type. An opaque
type is similar to a struct in C but contains function as well
as data declarations. The data within an opaque type can
only be accessed and operated on via these functions. The
function definitions are located with the module functions.

The EventDispatcher module in Figure 1 is an asyn-
chronous function dispatching scheduler. It declares an
opaque type namedEvent and lists the functions the module
contains. The data associated with the Event type is defined
in the private section of the module and reflects the private
nature of the opaque type representation and may consist of
primitive, or composite data types (including another opaque
type). The module defining the opaque type may also ac-
cess the representation. Figure 2 shows the definition of the
dispatch() function in this module. This function accesses
the handler property of theEvent opaque type (which is
employed as a reference type).

Figure 3 shows another module, BlinkP, which is a simple
application to blink an Led and makes use of the EventDis-
patcher module and its publicly defined Event type. BlinkP
is only able to interact withEvent data using the functions
declared in the opaque type forEvent.

2.1.1 Module Configuration

The transformation of one or more Em modules into a bi-
nary image takes place on a resource-rich host such as a per-
sonal computer. We refer to this process as build time. Dur-
ing build time, every module that is part of an application is
capable of being configured for that application’s needs, for
a microcontroller target, and a specific hardware configura-
tion. The Em language has two mechanisms for modules to
configure themselves and other modules during build time:
configuration parameters and host functions.

A configuration (config) parameter is a variable that is
fully mutable at build time and results in a static constant
when the process completes. We refer to the data and func-
tions that are manipulated on the target device as target data
and target functions, respectively. Figure 3 shows the config
parameterrate of module BlinkP which sets the blink rate
of an LED. Configuration parameters that appear in a mod-
ule’s public specification can be inspected and modified by
other modules at build time enabling modules to reflect, act
on, and respond to a particular application’s configuration.

In Figure 3, therate of BlinkP can be inspected and
modified by other modules at build time before becoming a
static constant in the resulting binary. Such constants aretyp-

from em.bios import EventDispatcher

from BoardC import Led

from BoardC import TimerMilli0

module BlinkP {

    config rate: UInt16

}

private {

    var blinkEvent: EventDispatcher.Event

    

    function blink( event: EventDispatcher.Event ): Void    

}

def em$configure() {

    rate = 500         # 500ms blink by default

}

def em$construct() {

    blinkEvent.initOnHost(blink)

}

def em$run() {

    TimerMilli0.start(rate, true, blinkEvent)

    EventDispatcher.start()

}

def blink( event ) {

    Led.toggle()

}

Figure 3. Using EventDispatcher to Blink an LED

ically placed in a microcontrollers read-only memory to save
scarce RAM. Configuration parameters that are never refer-
enced by target functions have no representation in the tar-
get binary. Developers can identify such variables explicitly
using the keywordhost. This makes the variable available
at build time only and the Em translator will issue an error
during translation if the variable is referenced from within a
target function.

The host keyword also applies to functions. Host func-
tions implement code that executes on the host during the
build process. For example, a module that implements a
band-pass filter can expose configuration parameters for
clients to describe characteristics of the filter, e.g. its pass-
band and its order. The module can then use a host function
to access a filter design package on the build-host to com-
pute the filter’s coefficients, to have them ultimately become
static constants on the target microcontroller. In our current
implementation host functions are translated to Javascript
and interpreted using Rhino [20]. Host functions can access
the full power of Javascript and, since the interpreter is Java
aware, any Java functionality to provide a wide-range of
build time services including computations that cannot be
performed on the target microprocessor due to resource con-
straints or missing functionality, e.g. arbitrary computations,
data acquisition over a network, tests or target simulation,
profiling, etc.

Host functions can access public members of any module
as well as the private specification of their defining module.
Since both the host and target code are implemented in Em,
it unifies the syntax and combines the development and con-



figuration. That is, developers need not learn multiple lan-
guages (e.g. as for C/Make, Java/ant, RTSC/XDC, and oth-
ers) for their target and configuration operations. Moreover,
developers can now be creative in deciding what build time
operations to include.initOnHostof the opaque type Event
from our first example module (Figure 1) is an example of a
host function.

Finally, every module in Em must reside within a pack-
age (e.g. namespace). TheEventDispatcher module for
example, resides within theem.bios package. Modules can
bring another module into their namespace using theimport

statement. Modules within the same package can simply im-
port the module by name. Modules that reside in different
packages must qualify the module’s package by using the
from clause as seen at the top of Figure 3.

2.1.2 Module Intrinsics

Em modules each have a set of intrinsic functions which
serve as entry-points for developers into a module’s life-
cycle both at build time and at run time. Functionality imple-
mented in these intrinsics is commonly found in applications
though where it resides and how it is integrated in an appli-
cation’s structure differs. Having these entry points defined
and knowledge of their invocation at specific points of build
and run time makes understanding application functionality
more direct.

The intrinsic functions relevant at build time are im-
plicitly host functions and includeem$configure, em$-
construct, and em$generateCode. em$configure and
em$construct are used to initialize the state of a mod-
ule’s public and private features respectively. For exam-
ple, proxies - Em’s mechanism for decoupling a module’s
interface from implementation (more on proxies below) -
that are public, are often bound to concrete implementa-
tions in em$configure. The em$construct function is
used to initialize a module’s private state, that is, to con-
struct the module itself. Figure 3 shows the BlinkP mod-
ule’s em$configure andem$construct functions which
we use to initialize the module’s public and private state
respectively.

em$generateCode is an intrinsic that can be used to in-
ject code into a module’s C representation during translation
from Em into C. A simple use ofem$generateCode is to
include a C header file by injecting a#include directive
into a module’s C source. We provide an example of this in
a subsequent subsection once we define a few other features
of Em.

The intrinsic functions associated with a module’s run
time life-cycle areem$reset,em$run,em$shutdown,em$-
startup, em$startupDone, em$fail andem$halt. Each
of these functions can be defined in any module, how-
ever, except forem$startup, only the first definition of
each intrinsic encountered during translation is used. Upon
powering up the microcontroller, the first function called,
if it exists is em$reset, followed by all occurrences of

interface InterruptSourceI {

    type Handler: Void()

    host function setHandlerOnHost( h: Handler ): Void

    function enable(): Void

    function disable(): Void   

    function clear(): Void

    function isEnabled(): Bool

}

Figure 4. An interrupt source interface.

module Led { 

    function on(): Void

    function off(): Void

    function toggle(): Void

    proxy Pin implements GpioI

}

private {

    config activeLow: Bool

}

...

def on() { 

    if (activeLow) {

        Pin.clear()

    } else { 

   Pin.set()

    }

}

Figure 5. Part of an LED module using a proxy.

em$startup, proceeded byem$startupDone and finally
em$run which is Em’s equivalent of main() in C. Since the
majority of embedded systems are intended to operate indef-
initely, the remaining functions,em$shutdown, em$fail
and em$halt can be used to gracefully enter fail states
should they be encountered at run time.

2.2 Interfaces & Proxies

To support software variability and change, Em provides in-
terfaces and proxies, which together, decouple a module’s
interface from its implementation. An Em interface, depicted
in Figure 4, contains a collection of functions and type dec-
larations that are to be implemented by a module. The notion
is that interfaces only specify features that are incomplete. A
module that implements a particular interface, in turn, must
provide the complete implementation for all of the functions
and opaque types declared in the interface they implement.
Interfaces in Em resemble and function much like interfaces
in Java.

Em introduces a language construct, based on a common
software design pattern, known as a proxy [8]. Proxies add a
level of indirection between clients of a module’s functional-
ity and the supplier of that functionality. In conjunction with
interfaces, proxies provide a notion akin to a static form of
polymorphism. Specifically, modules in Em declare proxies



package board.arduino

from em.mcu.atmega168 import GlobalInterrupts

from em.mcu.atmega168 import Mcu

from em.mcu.atmega168 import TimerMilli8BitT0 as TimerMilli0

from em.mcu.atmega168 import Uart

from em.mcu.atmega168 import PD0 as D0

from em.mcu.atmega168 import PD1 as D1

...

from em.mcu.atmega168 import PB5 as D13

from em.parts import LedT {activeLow: false} as Led

composite BoardC { 

    export GlobalInterrupts

    export Led

    export TimerMilli0

    export Uart

    ...

    export D0

    export D1

}

def em$preconfigure() { 

    seal Led.Pin as D13

    Mcu.mcuFrequency = 16000000

}

def em$configure() { 

    Uart.baudRate = 9600

}

...

Figure 6. A composite representing a board configuration.

which are specified to implement an interface. The proxy can
then be used throughout the implementation of the module
with the guarantee that some module, whose implementation
is unbeknownst to its client, will provide the functionality.

Before a module that declares proxies can be utilized,
its proxies must be bound to modules that implement the
same interface as the proxy. The binding of proxies occurs
automatically at build time. Figure 5 shows an Led module
that makes use of a general purpose I/O pin (GPIO) proxy
(calledPin) for its implementation.

The combination of interfaces and proxies in Em en-
able modules to be written to a particular interface with-
out knowledge of the implementation of that interface. Many
implementations of an interface may therefore exist and are
interchangeable which is analogous to the way classes that
implement a particular interface in Java can be substituted
anywhere an object of the interface’s type appears. There is
no notion of dynamic dispatch of functions in Em to reduce
complexity of the runtime and overhead due to function dis-
patch.

2.3 Composites

A composite in Em is a special module that is used to config-
ure proxies and configuration parameters of other modules.
Composites are special in that they contain no target code,
i.e. they are host-only modules. Figure 6 shows a composite
representing part of a device’s hardware configuration.

Composites function and are usable like other modules,
namely, they have a specification and an implementation and
can be used by other modules to access the modules exported
in their public specification.

In Figure 3, BlinkP imports the Led and TimerMilli0
modules from BoardC of Figure 6. The composite’s pub-
lic specification exposes modules, potentially under aliased
names. The composite’s implementation provides configura-
tions in the form of proxy bindings and settings for config-
uration parameters. Code within a composite does not make
its way on to the target device - it is used only at build time
to configure modules.

Composites can also be used to achieve application porta-
bility. Using the capability to export modules under aliased
names, an application can be written such that all references
to hardware features come from a top-level composite under
application-specific names.

For example the BlinkP application in Figure 3 imports
an LED and millisecond timer from the BoardC compos-
ite shown in Figure 6. BlinkP’s functionality is now depen-
dent only on the modules named Led and TimerMilli0. For
BlinkP to be ported to different hardware only a new com-
posite must be created that exports a millisecond timer and
LED under the same names BlinkP expects. Applications of
all complexities can follow this pattern to decouple their de-
pendencies on low-level hardware specific implementations
and achieve portability.

2.3.1 Composite Intrinsics

Composites have two intrinsic functions defined in which
most of its configurations take place:em$configure and
em$preconfigure. em$configure is where mutable con-
figurations are made. That is, other modules may, at some
point in the build process, change the configurations that take
place here.

em$preconfigure is where immutable configurations
occur. Since the BoardC composite in Figure 6 reflects some
hard-wired aspects of an application’s hardware, such as its
oscillator’s frequency and a GPIO pin connected to an Led,
these aspects are configured such that no other module may
change them. Our translation system ensures that no other
module changes immutable configurations of any composite.

2.4 Templates

A second special module is the template. Templates are
used at configuration time to generate other Em modules
automatically. Templates also, if required, can generate C
code. Template modules, like composites, only exist at build
time and execute on the build host (all template functions are
host functions). We refer to the generation of a module from
a template as instantiation of a template. Figure 7 shows an
Em template.

A template intrinsic,em$generateUnit, is defined and
is invoked at build time for each template instantiation that is
encountered. Figure 6 shows an instantiation of an Led mod-



template GpioT {

    config port: String

    config pin: UInt8

}

def em$generateUnit() {

    var MASK: UInt16 = (1 << GpioT.pin)

    |-> package `GpioT.em$packageName`

    |-> from em.hal import GpioI

    |-> module `GpioT.em$unitName` implements GpioI { }

    |-> def em$generateCode( prefix ) {

    |->     |-> #include <msp430x22x4.h>

    |-> }

    |-> def clear() { 

    |->     ^`GpioT.port`OUT &= ~`MASK`

    |-> }

    |-> def set() {

    |->     ^`GpioT.port`OUT |= `MASK`;

    |-> }

    ... 

}

Figure 7. A template to generate GPIO modules.

ule via the LedT template. Within theem$generateUnit in-
trinsic the|-> symbol denotes text that will be generated by
the template and, within that line, text within backticks en-
ables access to data and functions of the template module it-
self. Any logic and computation can be interwoven between
lines of generated text to control how the resulting module
is generated.

Our goal with templates is to avoid copying and pasting
across modules. That is, templates are used to generate mod-
ules that have similar functionality with minor variations–
to reduce the potential of bug propagation from copy-paste
activities. The public specification of a template specifiespa-
rameters that are necessary for its instantiation. A private
specification can exist to define host configuration param-
eters and functions the template may need to carry out its
operation.

As an example, the operation of a general purpose IO pin
is identical for all pins although each pin has a distinct bitin
a specific register it must operate on. In Figure 7, we define
a template for the GPIO module. The module’s public spec-
ification shows that the module requires a port name and pin
number as input. A GPIO module is instantiated from within
a composite or a module by importing the template, specify-
ing its parameters, and naming the resulting module. Specif-
ically, the statementimport GpioT {port: "P1", pin:

0} as P1 0 will create a GPIO module with the name P10.

2.4.1 Template Intrinsics

In addition to the intrinsic functionem$generateUnit,
templates have two often used intrinsics,em$packageName

and em$unitName. Since every module resides within a
package the value ofem$packageName is always defined

interface GpioI {

    function clear(): Void

    function get(): Bool

    function set(): Void

    function makeInput(): Void

    function makeOutput(): Void

    ... 

}

Figure 8. Part of an interface for an I/O pin.

to be the name of the package the template is instanti-
ated in. For the Led module instantiated from template
LedT in Figure 6,em$packageName will have a value of
board.arduino. The value ofem$unitName is always de-
fined to be the name given to the module at instantiation and
is Led for Figure 6.

2.5 Inheritance

Inheritance, a common language feature of higher-level,
object-oriented languages, is available to a limited degree
in Em. In particular, interface and composite inheritance is
supported while implementation inheritance is not. In addi-
tion, we support only single inheritance in these cases.

We achieve interface inheritance by extending an existing
interface and declaring its defined functions as shown in
Figure 9. All functions and type declarations are inherited
by the extending interface. Composite inheritance enables
an existing composite to be extended by another with the
extending composite inheriting the public interface, thatis
the set of exports, of the extended composite.

We disallow implementation inheritance in Em since it
can lead to situations where changes in an inherited class,
either syntactic and semantic, break an inheriting class. This
is the well known problem of the fragile base class [18, 27].
Such issues can lead to a breach in modularity, which with
Em, we attempt to maintain strictly.

The major benefits of implementation inheritance, how-
ever, can be achieved in Em through a simple pattern of for-
warding. For example, suppose a module M implements the
GpioI interface illustrated in Figure 8 and another module
N implements the EdgeDetectGpioI interface which extends
the interface of GpioI in Figure 9. To avoid re-implementing
the functionality of M within N, module N defines each func-
tion of the GpioI interface and then in each defined function
forwards the call to the implementation in N, as shown in
Figure 10. If the GpioI functions of module N must behave
differently from the existing functionality defined in M, it
can take its necessary actions before and after the calls to
module M.

Equivalent to implementation inheritance, if functions de-
fined in M are modified, then N will utilize these modifi-
cations without requiring any change. Unlike implementa-
tion inheritance however, M’s internal representation maybe
modified without consequence to N. With the aid of an inte-
grated development environment such as Eclipse, it is trivial



interface GpioEdgeDetectI extends GpioI {

    function clearDetect(): Void

    function disableDetect(): Void   

    function enableDetect(): Void

    function setDetectFallingEdge(): Void

    function setDetectRisingEdge(): Void

    ...

}

Figure 9. An interface that extends GpioI

from em.hal import GpioEdgeDetectI

from em.mcu.atmega168 import PD0 as M

module N implements GpioEdgeDetectI {

...

}

def clear() { M.clear() }

def get() { return M.get() }

def set() { M.set() }

...

Figure 10. Example of implementation inheritance by for-
warding.

to automate the definition of functions that forward calls to
save the programmer from typing them.

2.6 Interaction with C from Em

The Em language has several mechanisms with which Em
code can interact with existing C code. There are two com-
mon reasons for such interaction. The first is to incorporate
legacy source (e.g. as an initial step to get something running
before refactoring it using Em). The second is to access the
C code that is generated during module translation directly.

The ˆ operator placed in front of an identifier, or an ex-
pression bounded by ˆˆ instructs the Em translator to bypass
parsing of the identifier or expression and pass it, unchecked,
through to the generated C code. Referencing symbolic
names of memory-mapped registers, calling functions de-
fined in existing C code, and inserting inline assembly, for
example, can be handled using these mechanisms. Figure 11
shows part of a UART module that references both symbolic
register names and calls functions defined in an existing C
library. These mechanism in Em make it possible to inte-
grate existing C code into Em modules in a straightforward
manner.

2.7 From Module to Binary Image

Em applications are ultimately translated to a single C file
that is compiled into binary images for their intended mi-
crocontroller targets. In this section, we describe the process
of transformation of an Em program from a single source
module into a binary image and constitutes what we refer to
as build time. Figure 12 depicts the high-level flow of build
time artifacts, starting with the module ModP.em source file
and ending with the ModP-prog.out binary image.

module Uart0 implements UartI {

}

def em$generateCode(prefix) {

    |-> #include <driverlib/uart.h>

    ...

}

def put( data ) {

    ^UARTCharPut(^UART0_BASE, data)    

}

def get() {

    return ^UARTCharGet(^UART0_BASE)

}

...

Figure 11. Part of a UART module interacting with C iden-
tifiers.

translation

configuration

compilation

ModP.em

ModP.js

ModP.h

ModP.c

ModP-prog.js

ModP-prog.c

Figure 12. Build flow of the Em translator

Each Em source file (a module, interface, composite,
or template) represents an independent unit of translation.
From Figure 12, starting at the top-level unit, ModP.em, the
translator recursively processes an N-element hierarchy of
translation units that ModP directly or indirectly imports.
Cycles may not occur in the hierarchy and if one is encoun-
tered the translator issues an error and stops.

The translation of ModP yields a top-to-bottom par-
tial ordering of dependent units. The translation of mod-
ules produces three corresponding output files that are con-
sumed in subsequent phases of the build-process. These are
(i) ModP.h, which contains the public and private feature
declarations of ModP translated into a C header file; (ii)
ModP.c, which contains function definitions within ModP
translated into equivalent C code, and (iii) ModP.js, which
is a Javascript implementation of ModP that implements the
host configuration functionality. All template instantiations
encountered in modules trigger the generation of Em mod-
ules which are then recursively translated into C header, C
implementation, and Javascript implementation files.

Following translation, the configuration phase of an Em
program begins. All generated Javascript files are amalga-
mated and interpreted by a Javascript interpreter. This pro-
cess makes three top-to-bottom passes over the N-element
hierarchy and executes module intrinsic host functions along
with any other host function referenced from those func-
tions. The choice of Javascript in the Em translator imple-



mentation was arbitrary and other languages could have been
used as the underlying configuration language.

Each pass invokes a different set of intrinsic functions,
for example, on the first pass, theem$preconfigure func-
tion within composites is called to bind proxy variables to
delegate modules. As a consequence of the first pass of con-
figuration, the original N-element hierarchy becomes pruned
to an M-element subset which comprises only those modules
that are actually used within the program.

The second pass calls each participating module’sem$-

configure function. This function configures all public as-
pects of each module (e.g. public configuration parameters).

The final configuration pass calls module’sem$construct

functions. These functions use the public features of other
modules, all of which have already been configured, to ini-
tialize the private aspects of the modules (e.g. private con-
figuration parameters). Moreover, the ability to inspect other
module’s public configuration parameters enables a form
of introspection, or reflection, into the state of the applica-
tion being built, providing opportunity for modules to adapt
given the particular hardware/software configuration. The
result of configuration is a single .c file that is compiled by a
target specific compiler, aggressively optimized, and linked
into a binary executable for the target system.

3. Demonstrations of the Use and Efficacy of
Em

In this section, we investigate and demonstrate using real
and sophisticated programs written in Em, how well the lan-
guage features we have chosen facilitate reuse and portabil-
ity, integration of legacy code, refactoring, and efficientuse
of device resources. To enable this, we implement and con-
sider applications for a low-power wireless sensor node, a
Luminary Micro ARM Cortex-M3 system, andµIP, a popu-
lar TCP/IP stack for resource constrained microcontrollers.
We also consider a number of different embedded systems
building blocks to evaluate memory footprint relative to re-
lated systems.

3.1 Reuse & Portability

We first investigate the reuse and portability of code that
Em enables using an implementation of a radio transceiver
module. For this experiment, we use a development board
[12], representative of low-power wireless sensor network
nodes, with a low-power microcontroller and the popular
ChipCon CC2500 2.4GHz radio transceiver [11].

Since the radio transceiver is used in many hardware de-
vices and interfaced to microcontrollers from different ven-
dors, the goal of this experiment is to create a reusable,
portable driver for the transceiver that can be easily adapted,
without modification to the driver, to different board config-
urations as well as different application configurations.

The CC2500 radio transceiver interfaces to a microcon-
troller via the serial peripheral interface (SPI) port and two

import CC2500Registers as Registers

import CC2500Context as Context

import ICC2500Configuration

 

module CC2500 {

    proxy BusyWait implements BusyWaitI

    proxy GDO0 implements GpioEdgeDetectI

    proxy GDO2 implements GpioEdgeDetectI    

    proxy Spi implements SpiI    

    proxy GlobalInterrupts implements GlobalInterruptsI

    proxy Configuration implements CC2500ConfigurationI

    ...

    host function setAddressOnHost( a: UInt8 ): Void

    function setAddress( a: UInt8 ): Void

    function reset(): Void

    function setReceiveMode(): Void

    function setTransmitMode(): Void

    ...

}

def em$construct() {

    Configuration.setContextValuesOnHost()

    ...

}   

Figure 13. Portion of CC2500 radio module.

general purpose I/O lines. The microcontroller configures
and interacts with the device via its SPI port. Multiple SPI
ports could be resident on a microcontroller and many pins
can interface with the I/O lines of the transceiver. Therefore,
for the transceiver driver to adapt to different hardware con-
figurations, we must decouple its use from its implementa-
tion of low-level hardware interface.

To achieve this decoupling in Em, we create two inter-
faces, SpiI and GpioI. Within each, we define the essential
functionality of each peripheral, informed by [28]. Imple-
mentations for controlling each peripheral are written forthe
development board’s microcontroller, a Texas Instruments
MSP430.

Figure 13 shows an excerpt of the public specification
of the CC2500 driver module. Defined at the top, is a col-
lection of proxies the driver depends on, including SPI port
and Gpio proxies which implement their corresponding in-
terfaces. Clients of a proxy, in this example, the radio driver,
can be sure that at some point before an application is built,
a module providing an implementation for the proxy’s in-
terface will exist and be bound. Therefore, the radio driver
can be implemented without knowledge of microcontroller-
specific details. Furthermore, Em makes it possible to bind
different SPI ports and Gpio pins according to different
physical configurations of the hardware.

Figure 14 shows the BoardC composite representing the
development board’s physical hardware configuration. The
radio’s SPI proxy is bound to the microcontroller’s SPI0 port
and the radio’s GDO0 and GDO2 I/O lines are bound to pins
EdgeDetectP26 and P27, respectively. The proxies that de-
fine the radio driver’s hardware interface to the microcon-
troller are now configured. Should a different piece of hard-
ware using the CC2500 radio be physically wired differently,



import GlobalInterrupts

import Mcu

import SpiUCB0

...

import EdgeDetectP2_6

import EdgeDetectP2_7

...

from em.parts import LedT {activeLow: false} as RedLed

from em.parts.CC2500 import CC2500 as Radio

composite BoardC { 

    ...

    export Radio

    export RedLed

    export SpiUCB0

    ...

}

def em$preconfigure() { 

    seal Radio.GDO0 as EdgeDetectP2_6

    seal Radio.GDO2 as EdgeDetectP2_7 

    seal Radio.GlobalInterrupts as GlobalInterrupts        

    seal Radio.Spi as SpiUCB0    

    seal RedLed.Pin as P1_0

}

Figure 14. BoardC composite for wireless device

interface CC2500ConfigurationI  {

    host function setContextValuesOnHost(): Void

}

module CC2500Context {

    

    config addressSize: UInt8      

    config radioAddress: UInt8[]

    config broadcastAddress: UInt8[]

    

    config logicalChannels: UInt8[]

    config numLogicalChannels: UInt8

    config powerLevels: UInt8[]

    config numPowerLevels: UInt8

    ...

}

Figure 15. Module and interface used for radio configura-
tion.

only the driver’s proxy bindings must change and the driver
itself need not be modified.

With time and use on different hardware the driver will
become stable and trustworthy for use on differing platforms
in variable configurations. Hardware vendors, engineers, and
others can develop such code and make it available for others
to use thereby obviating the need for clients of this code to
understand the low-level details of the radio. They simply
can use the radio within their applications.

Such applications configure the radio according to their
needs. Node address, power levels, communication frequen-
cies and other critical settings can vary. To support this vari-
ability without requiring modification to the driver itself, we
provide an interface to it called CC2500ConfigurationI. The
interface defines one host function: setContextValuesOn-
Host. The module CC2500Context comprises the driver’s
configuration options.

from em.parts.CC2500 import CC2500Context as Context

module TSenseCC2500Config implements CC2500ConfigurationI {

}

def setContextValuesH() {

    Context.addressSize = 1

    Context.radioAddress = [0xaa]

    Context.broadcastAddress = [0xff]

    Context.powerLevels = [0x46, 0x97, 0xfe] 

    Context.numPowerLevels = 3

    

    Context.logicalChannels = [0x03, 103, 202, 212]

    Context.numLogicalChannels = 4    

    ...

}

Figure 16. Application-specific radio configuration.

Figure 15 depicts the interface and module. The CC2500
module contains a proxy, shown in Figure 13, that im-
plements the CC2500ConfigurationI interface and in its
em$construct intrinsic, uses the proxy to call setCon-
textValuesOnHost. This function sets all of the application-
specific configuration values as shown in Figure 16.

Each instance of an application can now create a module
that implements the CC2500ConfigurationI’s interface. Such
a module implements the interface to set the application-
specific configuration as shown in Figure 16. This module
can then be bound to the driver’s proxy. During its runtime
initialization, the CC2500 driver reads and sets configura-
tion values from the CC2500Context module. The module
structure above now allows individual applications to define
settings as necessary without modification to the driver.

In C, the common way to support both variability in hard-
ware and application configurations is through C-preprocessor
macros,#definedirectives, and code wrapped in#ifdef/-
#endifblocks. Em significantly improves readability (amount
algorithmic code can be viewed per screen of text), main-
tainability (ability to understand and correctly extend code),
and code stability (localized change) over this alternative by
avoiding all use of these mechanisms. The more variation
that exists, the more macros and directives one encounters
upon reading the code. Understanding what code is ulti-
mately compiled in to a binary and where to make modifica-
tions demands close inspection of the code. Modification of
these directives, often defined in drivers themselves, changes
the overall modification date of the driver effecting code sta-
bility in the face of inevitable variation. The CC2500 driver
developed in Em has been created in a reusable and portable
fashion allowing individual applications to define configura-
tions settings without requiring modification of the original
driver source.

3.2 Reuse of an existing C library

We next investigate how to use Em to reuse legacy C source
code within microcontroller applications. For this demon-
strations, we employ the popular Luminary Micro library



template StellarisWareT { }

def em$generateUnit() {

 

        |-> package `StellarisWareT.em$packageName`

        |->

        |-> module `StellarisWareT.em$unitName` { }

        |-> 

        |-> def em$generateCode( prefix ) {

        |->     |-> #include <driverlib/`em$unitName`.c>

        |-> }

}

Figure 17. Template for modules wrapping library func-
tionality.

import StellarisWareT {} as Cpu

import StellarisWareT {} as Interrupt

import StellarisWareT {} as Sysctl

import StellarisWareT {} as Gpio

import StellarisWareT {} as Timer

...

composite StellarisWareC {

    

    export Cpu

    export Interrupt

    export Sysctl

    export Gpio

    export Timer

    ...

}

Figure 18. Composite to instantiate modules from template.

of drivers. This software package includes the driver code
for all peripherals integrated into their ARM Cortex-M3 de-
vices [16]. The library is written in C and is available as a
collection of source files from Luminary Micro. With Em,
we can reuse the entire driver library without modification
within applications using Luminary Micro’s devices.

In the library, each peripheral’s functionality is defined in
a source file named for the peripheral. For example, the file
Timer.c contains the peripheral driver for timers. In Em, we
create a template to instantiate modules that each incorpo-
rates a peripheral’s C source. Figure 17 shows the template.
Upon instantiation of a module from the template, clients of
the module can access any C symbol - functions, data types,
register definitions.

We also create a composite to instantiate modules from
the template and to export the modules under descriptive
names. Figure 18 shows part of the composite and its ex-
ports for modules that represent peripheral drivers from the
library.

To enable applications to be written independent of hard-
ware peripheral implementations, we write a collection of
interfaces that includes GpioI, UartI, TimerMilliI and others.
We create modules that implement these interfaces, each of
which imports from the composite the particular peripheral
module that it requires. Figure 19 shows a millisecond timer
module,TimerMilli32BitTimer0. This module imports
from StellarisWareC, the modulesSysctl andTimer. Any

from em.hal import TimerMilliI

from StellarisWareC import Timer

from StellarisWareC import Sysctl

module TimerMilli32BitTimer0 implements TimerMilliI {}

...

def start() { 

    ^TimerDisable(^TIMER0_BASE, ^TIMER_A)

    ^TimerLoadSet(^TIMER0_BASE, ^TIMER_A, cyclesPerMs)

    ^TimerIntEnable(^TIMER0_BASE, ^TIMER_TIMA_TIMEOUT) 

    ^TimerEnable(^TIMER0_BASE, ^TIMER_A)

    running = true

}

...

Figure 19. Millisecond timer using driver library functions.

symbol defined in the source files of these two peripherals
is accessible from withinTimerMilli32BitTimer0. The
start function of TimerMilli32BitTimer0 calls func-
tions and references symbols defined in Timer.c.

This process enables any part of the Luminary Micro
driver source library to be reused without modification. The
Em translation integrates automatically only the source used
by the application. The code becomes part of the resulting
C file generated by the Em translator and as such, under-
goes whole program analysis for aggressive optimization
and tight coupling of application and library code. Finally,
if source files for a legacy library are not available (i.e., they
are only available as header and object files), we can incor-
porate them into an Em application by having the template
import the libraries header files and linking the application
against the library during build-time.

3.3 Improvement upon an existing C library

We next demonstrate how Em can be used to refactor ex-
isting code to avoid redundancy and to separate concerns.
For this investigation, we employµIP [7], a popular TCP/IP
stack for resource constrained microcontrollers.

For most microcontrollers, RAM is the most scarce re-
source,µIP has been designed to utilize a single statically al-
located packet buffer for both incoming and outgoing pack-
ets. Other microcontrollers may have sufficient RAM to sup-
port a separate buffering policy, which may lead to more
efficient networking. For such devices, the authors ofµIP,
also provide lwIP (light-weight IP) which provides separate
buffer support of incoming and outgoing packets.

With Em, we have been able to provide a single imple-
mentation of this TCP/IP stack, the buffer implementation
for which can be configured by the application. Given that
much of the code in the two original implementations was
duplicated (except for the buffer implmentation), an extensi-
ble Em implementation has the potential for reducing lines
of codes, programmer errors (that are potentially propagated
by the copy), and code stability (the base implementation



interface BufferManagerI {

    type Buffer: opaque {

        function getBuffer(): UInt8*

        function getSize(): UInt16

        host function initH( size: UInt16 ): Void        

    }

    function freeBuffer(): Void

    function getEmptyBuffer(): Buffer*

    function hasEmptyBuffer(): Bool

    host function setMaxBufferSizeH( size: UInt16 ): Void

}

Figure 20. A packet buffer manager interface.

import BufferManagerI

import BufferManagerProviderI

module BufferManager implements BufferManagerI {

    proxy Provider implements BufferManagerProviderI

}

private {

    def type Buffer: struct {

        size: UInt16

        buffer: UInt8[]

    }    

}

...

def freeBuffer() {

    Provider.freeBuffer()

}

def getEmptyBuffer() {

    return Provider.getEmptyBuffer()

}

Figure 21. A packet buffer manager interface.

can remain unchanged while new buffer implementations
and management algorithms can be implemented and eval-
uated. At the same time, since the Em build process only
integrates the code that the application uses, an Em imple-
mentation uses no more code than the original.

Figure 20 shows the packet buffer manager interface
that defines a packet buffer data type and the functions to
be implemented by buffer managers. To enable the net-
work stack implementation to use one buffer manager mod-
ule with a consistent buffer type definition, we create the
module in Figure 21. TheBufferManager implements
the definition of the buffer type and uses a proxy that
implements theBufferManagerProviderI interface. All
BufferManager functions then call the proxy’s functions
of the same name.BufferManagerProviderI in Figure 22
extendsBufferManagerIand currently only serves to qual-
ify the implementing modules as providers.

Implementations ofBufferManagerProviderIare now
responsible for defining the actual policy for buffer manage-
ment. Many implementations can exist. One, for example,
with a single statically allocated buffer, or another with mul-
tiple buffers. Binding of an implementation to theProvider

import BufferManagerI

interface BufferManagerProviderI extends BufferManagerI {

}

Figure 22. A buffer manager provider interface.

proxy ofBufferManager identifies the implementation that
is to be used. This process requires no modification to the
network stack itself. Applications, based on their hardware
resources, can easily modify buffer policies to their require-
ments. In conjunction with host functions and the ability
to introspect on module’s configuration parameters at build
time, the stack could even be written such that it automat-
ically selects the ideal buffer configuration given specified
availability of resources.

3.4 Empirical Measurements

In this section, we investigate the efficiency of the code
generated from Em applications. The key metric for our
device domain is memory footprint: code and data size, as
many of our devices have only a few kilobytes of memory
within which all application and system code must run.

We first evaluate the memory footprint for four build-
ing block components typically implemented within a wide
range of embedded systems applications. The programs we
consider are Null, Blink, Sense, and SenseMod. The Null or
empty application demonstrates the bare minimum program
and reflects the lowest overhead of each system. Blink tog-
gles an LED periodically using an deferred function invoca-
tion dispatcher and hardware interrupts to dispatch a single
event whose handler accesses the hardware synchronously.

Sense reads a sensor value from an analog to digital (A/D)
converter asynchronously and displays three bits of the value
read on digital I/O lines. This application uses multiple inter-
rupt sources, exercises asynchronous interaction with hard-
ware and manages multiple events. SenseMod reads an A/D
value asynchronously and uses the value to modulate the
blinking rate of an LED. This application uses multiple inter-
rupt sources and manages multiple concurrent events from
asynchronous processes that interact with hardware.

We compare Em code to that produced by NesC/TinyOS
and Arduino systems. These toolchains are those that are
the most similar to Em (NesC/TinyOS) or which target the
same application domain and users (Arduino). We compare
and contrast these systems with Em in Section 4. We have
implemented each of our building block applications using
each of these three systems (NesC/TinyOS, Arduino, and
Em).

For the Em runtime, we implement a simple event han-
dler and scheduler using Em itself (that we reuse for each
application). We made our best effort to implement the same
semantics of these components as those that are released as
part of the NesC/TinyOS system. We distribute this asyn-
chronous event-handling code and our building block appli-
cations as part of the Em development environment.



Program (Bold) Program Data

Null Memory (bytes) Memory (bytes) Files LOC

NesC/TinyOS 616 4 2 8

Arduino 436 9 1 2

Em 346 4 1 4

Blink

NesC/TinyOS 1898 33 2 17

Arduino 1026 13 1 10

Em 754 23 1 14

Sense

NesC/TinyOS 2850 47 2 34

Arduino 936 21 1 23

Em 1082 35 1 34

SenseMod

NesC/TinyOS 3128 56 3 37

Arduino 1020 14 1 19

Em 1572 44 1 28

Figure 23. Resource usage for embedded systems building
blocks.

Arduino does not provide runtime support for concur-
rency. We thus, implemented the sample applications in Ar-
duino using only the functionality the platform provides its
users [3] so that the program semantics are as similar as pos-
sible. We use strictly sequential, synchronous, code for these
applications. While the implementations behave similarlyto
the Em and TinyOS applications, they are not equivalent. We
include them only as a reference. Without support for event
handling and scheduling, users must write/rewrite their own
versions which leads to significant redundancy and a lack of
reusability.

We evaluate each application by building it for the equiv-
alent Atmel AVR5 family of processors, specifically the
ATmega128 and ATmega168 processors, using the gcc v4
toolchain and inspecting the resulting binaries using the
standard binutils package. We report memory footprint (pro-
gram and data), the number of source files required for de-
velopment, and the number of lines of code in the source
files. We present our results in Figure 23.

The results show that implementations in Em consume
44% - 62% less program memory than those of the other
systems. Em offers the same or less (30%) data memory con-
sumption as TinyOS for equivalent functionality. The sav-
ings in program and data memory is in part due to the use
of build-time computations to determine configuration pa-
rameters that are used at runtime. The build-time calcula-
tion of these values is key because it saves program memory,
data memory, and runtime resources as instructions for the
computation need not be generated or executed on the de-
vice. Moreover, the resulting values are stored as constants in
program memory instead of data memory and employed for
constant-propagation by the compiler. The savings in mem-
ory enables more complex functionality to fit into the lim-
ited resources of the microcontroller. For applications with
equivalent functionality, the savings in data memory can pro-

vide power savings over other systems since RAM usage is
typically a primary consumer of overall system power.

We also include file count and lines of code as part of this
table for each of the applications. TinyOS programs require
at least two source files since modules have a strictly local
namespace and modules that provide functionality cannot
be used without being configured, or wired, to at least the
main application configuration (located in a separate file).In
the Em applications, since modules are directly used from
within other modules, only a single source file is necessary.
In all applications evaluated, the Em versions used equal
or fewer lines of code to express the same functionality
as TinyOS. Arduino has fewer lines of code and smaller
footprint in some cases because it does not provide event
handling support.

We next present various metrics (footprint and in some
cases cycles executed) for the various applications and test
cases that we distribute with the Em development environ-
ment.

• Temperature Sensing Application. This application is
written for the Texas Instruments ez430-RF2500 de-
velopment board. The board contains an MSP430 low-
power microcontroller and the ChipCon CC2500 low
power 2.4GHz radio transceiver. Theend point appli-
cation reads the microcontroller’s temperature from an
internal thermometer and sends it to theaccess point.
The access point listens to its radio for incoming data
and when data arrives, the access point communicates
the value to a host computer to which it is connected via
USB. The host prints the value to its screen.

Temperature Sense Endpoint Application:
Program Size: 2565 bytes
Data + BSS: 150

Temperature Access Point Application:
Program Size: 2547 bytes
Data + BSS: 160

• Network Stack Application. This application is theµIP
TCP/IP stack to which we refer in our demonstration
of code reuse above. We implement this application for
the Luminary Micro LM3S6965-EK evaluation board
that has an ARM Cortex-M3 based LM3S6965 micro-
controller with integrated ethernet MAC. These results
employ IP/ICMP protocols only and implement the the
buffer manager with a single statically allocated buffer.

Basic (IP/ICMP) Network Stack with BufferManager
Program Size: 8828 bytes
Data + BSS: 1436

Our test suite consists of a number of different applica-
tions that we have developed to test and evaluate the func-
tionality of the Em implementation for different platforms.
We present data for three different microcontrollers each
running three different test applications. The devices arean



8-bit AVR ATMega168 device with 1KB of RAM and 16KB
of flash, a 16-bit MSP430 with 1K of RAM and 16KB of
Flash, and a 32-bit ARM Cortex-M3 LM3S811 with 8K of
RAM and 32K of Flash.

Our benchmarks are BenchmarkP, LatencyP, and TimerP.
BenchmarkP counts the CPU cycles to execute three empty
for-loops 1, 10, 100, 1000 iterations. LatencyP measures
the CPU cycles to get from an interrupt service routine to
the event handler of an event that was posted through the
EventDispatcher. The last program tests the functionalityof
a virtual timer module that can have N different instances
(virtual timers) for one hardware timer.

Table 1 shows the results. Overall, Em is able to generate
compact code and data sizes for each of the devices we
investigate.

In summary, we find that Em provides developers with
many of the programming advantages facilitated by lan-
guages for more resource-rich systems (C++, Python, Ruby).
It does so by incorporating into C, a subset of features from
these languages (modularity, composition, inheretance, sep-
aration of concerns, separation of interface from implemen-
tations, support for popular design patterns, and others) and
combining them with novel support for automatic source
generation (legacy and generic), opaque types, and a uni-
fied configuration / target development language system. To-
gether, these features enable reuse and portability of code
that can be shared and extended by distributed developers
for a wide range of devices and components. At the same
time, Em does so in a way that enables the resulting appli-
cations to operate under the severe resource constraints of
modern microcontroller-based systems.

4. Related Work
Em is the first language to integrate modern object-oriented
and high-level language techniques into C to facilitate devel-
opment of reusable, portable, and interchangeable code that
executes on a wide range of severely resource-constrained
microcontroller-based devices. The languages and systems
related to this include RTSC/XDC [21], NesC [10], Ar-
duino [2]/Wiring [32], and other environments for higher-
level languages. Code generation for embedded devices ex-
ists in some tools [33] and embedded systems projects have
been realized with these systems [14, 31], however they are
targeted for use by researchers and highly specialized ex-
perts with embedded systems engineering experience.

The RTSC/XDC toolset provides component-oriented
microcontroller programming facilities. This toolset how-
ever targets devices with significantly more resources than
are available in our domain. Moreover, the toolset requires
the use of three different programming languages to develop
a single application; an interface specification language for
describing component interfaces (xdcspec [23]), a configu-
ration language for configuring components (xdcscript [22],
and target language for device code (C).

BenchmarkP
MSP430 (cycles) 8 72 702 7002
Program Size (bytes) 1046
Data+BSS Size (bytes) 34

ATR ATmega168 (cycles) 4 40 1001 11001
Program Size (bytes) 1616
Data+BSS Size (bytes) 70

LM3S811 (cycles) 10 21 611 6012
Program Size (bytes) 3356
Data+BSS Size (bytes) 520

LatencyP
MSP430 (cycles) 104
Program Size (bytes) 1615
Data+BSS Size (bytes) 99

ATR ATmega168 (cycles) 132
Program Size (bytes) 1646
Data+BSS Size (bytes) 64

LM3S811 (cycles) 79
Program Size (bytes) 3220
Data+BSS Size (bytes) 545

TimerP
MSP430
Program Size (bytes) 1783
Data+BSS Size (bytes) 67

ATR ATmega168
Program Size (bytes) 2112
Data+BSS Size (bytes) 84

LM3S811
Program Size (bytes) 3552
Data+BSS Size (bytes) 588

Table 1. Benchmark performance results for three develop-
ment boards containing different microcontrollers (MSP430,
AVR ATmega168, and LM3S811). The data is for three of
the Em test programs. BenchmarkP shows cycle times for 1,
10, 100, and 1000 iterations of a for loop as the first entry
for each device. LatencyP shows the number of cycles be-
tween an interrupt service routine and an event handler as the
first entry. The other entries for each device show program
footprint: number of bytes for the program and data/BSS,
respectively.



NesC is a programming language for wireless sensor
networks that extends the C language. NesC was designed
to embody the structuring concepts and execution model
of TinyOS [28]. TinyOS is an event-driven operating sys-
tem designed for sensor network nodes that have very lim-
ited resources. There are many similarities between NesC
and Em that include the module-oriented approach, separa-
tion of implementation and interface, and event-oriented and
highly resource-constrained target devices. We could have
used NesC as a basis for Em. We investigated doing so and
found that NesC’s requirements of creating configurations
to wire together modules to be very complex and verbose.
Many NesC/TinyOS developers (including ourselves) find
the NesC/TinyOS wiring, fine-grained interfaces, and the
split-phase model non-intuitive and very challenging to learn
even for those with experience and expertise with the target
devices and the C language. We thus started from scratch to
reduce the verbosity required by Em and to introduce a small
number of new keywords to the language in an effort to re-
duce complexity of both the translator, scheduling system,
and application development.

Other differences between Em and NesC/TinyOS is that
Em modules and composites are available for a much
more diverse set of devices, Em is not domain specific
(NesC/TinyOS are only used for wireless sensor network
devices even though it has been available since early 2000),
existing C source code can be integrated easily into Em ap-
plications, and Em unifies configuration and target code de-
velopment using a single language (no complex Make files
are employed by the build process or require modification
by developers). In addition, since the event model for Em is
implemented in Em, any model can be developed and inte-
grated into an application. NesC/TinyOS specify a particular
asynchronous event model that is very difficult to change as
the design of the language and OS assume that the model
is in use. We show in our experimental evaluation that even
though Em provides these additional high-level features to
developers, the system is able to generate code that is similar
(or smaller) in footprint to NesC/TinyOS code.

Other related work has been to extend higher level lan-
guages with constructs that better enable modularity, com-
ponentization, or support for construction of embedded sys-
tems applications. For example, Jiazzi [17] adds explicit lan-
guage constructs to Java for organization of code in terms
of reusable software components. The authors identify key
properties that are required by component systems to work
with OO languages for large-scale modular construction of
programs. Concepts of components and reusability from this
past work are applicable to our work, however, this work
does not target severely resource-constrained devices.

ExoVM [29] is a Java virtual machine and language de-
sign that together target embedded systems development.
ExoVM provides analysis for computing reachable code
and data in Java applications. Subramonian et. al discuss

dynamic and static configuration mechanisms in compo-
nent middleware for distributed real-time and embedded
systems [26]. Both of these works provide insight into opti-
mization techniques applicable to the build process in Em.
However, they target more resource-rich environments than
our domain of resource-constrained embedded systems.

Higher level programming environments such as Lab-
View [15] provide a component-oriented usage model. Un-
fortunately, the use of resource-constrained devices is via
a tethered, remote-control method of operation where the
main application code executes on resource rich hosts as op-
posed to on the microcontroller.

Wiring and Arduino evolved out of a need to enable a
specific, non-technical, user community to develop applica-
tions on highly resource constrained microcontrollers based
on the Arduino device. Wiring and Arduino lower the bar-
rier to entry to a wide audience of developers, however, lack
a structured modular programming model to enable reuse
and a runtime system to support concurrency in applications.
The base Arduino API hides the low-level details of inter-
acting with microcontroller registers to enable the function-
ality. Other features of the Arduino’s microcontroller such
as interfacing to the full set of interrupt sources, accessing
peripheral state registers and configuring specific detailsof
peripherals are not available. While Arduino’s API does not
abstract away its hardware, it does provide a simpler method
of interacting with the Arduino hardware. Beyond this API,
the Arduino community has code supporting different de-
vice hardware such as LCD displays, sensors, and wireless
radios. This code, however is reused through a copy-paste-
modify approach that is complex and highly error prone.
Only advanced users with knowledge of low-level hardware
details and sophisticated programming skills manage to take
full advantage of what already exists.

5. Conclusions
We present Em, a high-level, modularity-focused, program-
ming language for development of the next-generation of
embedded systems applications for microcontroller-based
devices. Em is an extension to the C language that incor-
porates features from popular high-level languages for more
resource-rich environments (C++, Python, Javascript) and
successful techniques from modern software engineering.
In particular, in Em everything is a module with no cross-
module data dependencies, the syntax reduces verbosity, Em
enforces support for data hiding, encapsulation within types
(via the opaque type) and modules, and Em enables reuse
through template (automatic module generation from extant
code) and interface inheritance. In addition, Em also unifies
the programming of configuration (executed on the host at
build time) and target (executed on the device at run time)
tasks.

The Em translator implements checks to enforce these
concepts and to identify errors during the build process. It



then converts Em to C, integrates extant C code if any, and
employs modern available C compilation for aggressive op-
timization and efficient code generation. We demonstrate the
efficacy of Em for code reuse and portability, for integration
of existing source and library code into Em applications, and
for code stability through the separation of concerns, using
sophisticated applications (device drivers, TCP/IP stack).
We show that Em, despite its integration of the high-level
programming features is able to generate code that has very
small footprint and that operates on a wide variety of differ-
ent highly resource constrained microcontroller-based sys-
tems.
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