
Scalable Nearest Neighbors with Guarantees in
Large and Composite Networks

Technical Report, September 2010

Petko Bogdanov, Ambuj K. Singh

Deptartment of Computer Science, UC Santa Barbara
Santa Barbara, CA 93106-5110

petko@cs.ucsb.edu
ambuj@cs.ucsb.edu

Abstract— We address the problem of k Nearest Neighbor
(kNN) search in networks, according to a random walk proximity
measure calledEffective Importance. Our approach retrieves the
exact top neighbors at query time without relying on off-line
indexing or summaries of the entire network. This makes it
suitable for very large dynamic networks, as well as for composite
network overlays mixed at query time. We provide scalability
and flexibility without compromising the quality of results due
to theoretical bound guarantees that we develop and incorporate
in our search procedure. We incrementally construct a subgraph
of the underlying network, sufficient to obtain the exact top k

neighbors. We guide the construction of the relevant subgraph in
order to achieve fast refinement of the lower and upper proximity
bounds, which in turn enables effective pruning of infeasible
candidates.

We apply our kNN search algorithm on social, information
and biological networks and demonstrate the effectivenessand
scalability of our approach. For networks in the order of a million
nodes, our method retrieves the exact top20 using less than0.2%
of the network edges in a fraction of a second on a conventional
desktop machine without prior indexing. When employed for
nearest neighbors search in composite network overlays, itscales
linearly with the number of networks mixed in the overlay.

I. I NTRODUCTION

The recent growth of online social and information networks
gave rise to the emerging field ofNetwork Science[5].
It aims at studying and modeling the behavior of agents,
interacting within communication, socio-cognitive and infor-
mation networks treated as a single composite ecosystem of
inter-dependent layers. The individual network layers within
this system are typically large-scale and dynamic. Pairwise
relations among entities and agents in networks arise from
different sources and can be based on multiple features.
For example, people may have accounts in several online
social networks, targeted towards different interaction types. A
single individual can be a user ofFacebookto keep up with
her friends,LinkedIn to organize and maintain her business
contacts, andLast.fm to discuss musical trends with fellow
listeners. This diverse social ambiance is complemented byan
information layer in the form of email communication, gen-
eration and discussion of blog entries or shared photographs.
Supporting exploratory and analysis tasks in such composite
systems has to be flexible and scalable in order to reflect

frequent network changes and user-centric prioritizationof the
different components.

Networks have also become popular in Bioinformatics for
modeling interactions of genes within the cell that perform
high level cellular processes. Edges in such networks represent
interactions between genes. Evidence for interactions among
the same set of genes in a genome are often available from
multiple data sources and detected by a variety of methods.
Gene interaction networks are leveraged forin silico drug
design [11], functional inference [7] and phenotype predic-
tion [24]. The drug design process, for example, involves
studying the effect of regulating a single or a set of genes on
the cellular apparatus. An essential computational challenge in
drug design is the ability to identify the set of highly impacted
genes as a result of inhibiting a target gene of interest. The
affected genes map to the closest interaction partners of the
target in the network. For a specific drug design task, some
interaction data sources may be more relevant than others, and
hence the need to find the closest network neighbors according
to a query-driven weighting of network layers in the composite
environment.

The common ground for networks of different genres and
from diverse domains is the need for flexible and scalable
analysis methods. We propose a scalable approach fork
Nearest Neighbor (kNN) search in networks. Given a query
node in a network, the problem is to identify itsk closest
nodes. We generalizekNN to multiple networks over the same
set of nodes, called network overlays.

A scalable kNN search provides an important tool for
exploration and analysis of the abundance of networked data. It
allows for characterization of the neighborhood of a node and
enables diverse applications, such as community identification,
anomaly node detection, classification, link prediction and
collaborative filtering. For example, in the case of community
identification, one is interested in the underlying network
clusters, formed due to network connections. One can ap-
proach this problem by first obtaining the nearest neighborsof
nodes in the network and then merging nodes of significantly
overlapping neighbor sets. Such application scenarios demand
a scalable and flexiblekNN search solution suitable for large
and dynamic networks.

Existing work on proximity in networks adopts either in-
dexing of the network to facilitate online queries [18], [14],
or proximity approximations that work well in practice but
lack theoretical accuracy guarantees [33], [6]. Time-expensive
indexing approaches are not feasible when the underlying
network changes or when search is performed in a composite
network, constructed according to query-specific prioritization.
Approximations may be undesirable when accuracy is a pri-
ority. In addition, previous approaches are not flexible enough
to handle prioritization of layers at query time in composite
networks. We propose a scalable solution for nearest neighbor
search that explores a small subnetwork around the query
node, sufficient to retrieve the exactk nearest neighbors.

Instead of relying on off-line indexing, we adopt online
pruning of infeasible candidate neighbors based on determin-
istic bounds on their proximity to the query, computedon
the fly at search time. The unique advantage of our online
pruning, enabled by local bounds computed from scratch,
lies in its direct applicability to nearest neighbors search
in composite, query-centric mixtures of networks and large
dynamic networks undergoing frequent updates. For both of
these applications, the answer to the question“Who are the top
neighbors of a given node?”should reflect a user prioritization
of the network layers, and should be provided based on local
computation that does not involve the whole network. In line
with the above goals, our design of akNN search method
revolves around two key points –flexibility in query expression
andscalability.

Flexibility in layer prioritization is essential, since giving
more weight to some tiers in a composite network, as opposed
to others, may result in qualitatively different query answers.
For example, the closest neighbors of a person for the pur-
pose of music recommendation are different than her closest
neighbors in terms of research collaboration opportunities.
Our second key goal of scalability ofkNN search with the
size of the network is dictated by the tremendous rates at
which contemporary networks grow. Services like Facebook
and Twitter enjoy multi-million user base, generating large
amounts of information content. A practical neighbor search
method for such scales and rates of changes should obtain the
k Nearest Neighbors of a node locally, without computation
involving the whole network.

The network proximity measure is the key ingredient for ro-
bust nearest neighbors search. The real value of networked data
lies in captured transitive connectivity information, encoded in
the network structure. A good proximity measure should incor-
porate a network’s structure, beyond the immediate neighbor
connections. Network nodes, in the same network community
that are connected by multiple good paths are intuitively closer
than weakly connected nodes that do not cluster together.
Consider, for example, a network of two clusters that are
connected by a single link. Although the nodes, adjacent to this
link are direct neighbors, they belong to different communities
and are expected to be less similar than direct neighbors within
the community.

A robust proximity measure employed for social, informa-

tion and biological networks should also incorporate weights
on the edges as opposed to binary links. This is essential
for kNN search in networks, as relations have inherently
different strengths that affect how close a given neighbor is
to the query. For example, interactions in gene networks have
levels of certainty and magnitude captured by their method of
detection. Similarly, co-authorship links in a scientific paper
collaboration network are “stronger” for collaborators with
multiple joint manuscripts or when they have collaborated on
a manuscript of high impact. A proximity measure and search
method should not be agnostic to this quantitative nature of
the links in networks.

We define a network proximity measure, calledEffective
Importance (EI). EI captures community structure in an online
fashion and at the same time exhibits advantageous theoret-
ical properties that allow its efficient bounding. In addition,
our measure and pruning criteria are specifically tailored to
weighted links, which allow us to model strength of connec-
tions and determine the top closest neighbors according to it.

Our contributions in this paper are as follows:

1) We introduce theEffective Importance (EI)as a prob-
abilistic proximity measure in networks; this measure
captures community structure and can be computed
efficiently with theoretical guarantees.

2) We propose a scalable algorithm forkNN search in
networks that does not rely on off-line indexing.

3) We develop effective pruning criteria, based on locality
properties of our proximity measure.

4) We propose the problem of nearest neighbors search in
a query-specific composition of networks and design a
scalable solution for it.

5) Our experimental evaluation demonstrates the scalability
of our approach. It is capable of retrieving the top
neighbors100 times faster than an exhaustive technique
while using less than0.2% of all network edges.

II. RELATED WORK

The problem of nearest neighbors search in networks has
been previously addressed in the context of different network
types and in terms of different proximity measures. The
shortest path measure has been proposed forkNN search on
road networks [16], [26]. Although appropriate for navigation,
it disregards the multiplicity of sub-optimal paths as wellas
the degrees of connecting neighbors along the shortest path.
Conversely, processes in information, social and biological
networks may take place along multiple sometimes suboptimal
paths. Another proximity measure that captures the effect of
multiple paths is the maximum flow between two nodes [10].
However, it does not penalize longer paths and can be sensitive
to small perturbations, since it depends on the capacity of the
bottle-neck between the source and destination.

Network proximity has also been modeled byeffective
conductance (EC)in an electrical circuit corresponding to the
network graph [13], [20], [29]. As Faloutsos and colleagues
point out in [13],EC does not account for large degree nodes,
connected to multiple small degree nodes. Drawbacks of EC,

are addressed by either introducing a universal sink [13], [29]
or by considering a cycle-free version of the effective conduc-
tance [20]. Different from such topology augmentations, we
propose a measure that handles large degree nodes without the
need of additional parameters.

The stationary probability ofrandom walks with restarts
(RWR)has also been used as a proximity measure [31], [32].
Tong et al. [31] proposed a RWR-motivated approach that can
capture both negative and positive personalization drifts. In a
follow-up approach [32], the authors improve the running time
of the method for bipartite graphs. Both algorithms are based
on the pre-computation of a low-rank approximation of the ad-
jacency matrix (or Laplacian) of the graph, originally proposed
in [30]. These methods are not applicable to dynamic graphs
as the low-rank approximation procedure is too expensive to
perform online. In addition, the RWR stationary probability
is not well-suited for a proximity measure due to its bias
towards high degree nodes. Our measure Effective Importance
is related to the RWR probability, but addresses the problem
of high degree neighbors and captures community structure.

The use of random walk average commute time as proximity
measure was proposed by Sarkar et al. [27], [28].GRanch[27]
adopts a truncated version of the commute time, in which
walks are restricted to a threshold length, and discovers closest
neighbors according to this measure. In a later work, the
authors propose a better running time algorithm for truncated
commute time, based on sampling [28]. The latter method
introduces probabilistic guarantees for the sampling approx-
imation and demonstrates a significant speed-up suitable for
online search of the top neighbors. OurkNN algorithm based
on Effective Importance shares this query-time local compu-
tation property, but it does not involve dynamic programming,
and the top-k guarantees we provide are deterministic as
opposed to probabilistic. Moreover, our method examines a
query node’s locality adaptively based on decreasing proximity
as opposed to defining a fixed hop-based truncation of the
random walks adopted byGRanch.

The problem of scalableRWRcomputation has been ad-
dressed in the World Wide Web and data mining communi-
ties [6], [9], [12], [14], [15], [18], [33]. Haveliwala et al[15]
showed that biasing the random walks to a set of restart nodes
is equivalent to a linear combination of the proximity to each
of the targets. There are three major optimization directions for
RWR from a single target: off-line index construction that fa-
cilitates on-line proximity queries [18], inexact evaluation [6],
[9], [12] or a combination of the two [14].

Indexing approaches are not suitable for composite net-
works, in which every distinct type of edges is weighted
according to a user query, since the index, would need to be
precomputed for every mixture of data sources. Although the
methods presented in [6], [9], [12] produce experimentally
very accurate RWR probability approximation, no theoretical
guarantees are provided. A recent method [33] provides an
aggregate bound on theL1 error of the approximated station-
ary distribution, but no node-wise guarantees. In addition, the
above methods are tailored towards approximating the actual

shape of the stationary distribution of RWR, while we aim at
computing the top neighbors with guarantees.

Our proximity measure is related to a recent graph parti-
tioning method proposed by Andersen et al [3]. The method
approximates a random walk with restarts and performs
a sweep on thedegree-normalizedRWR vector to obtain
a small-conductance cut. The degree-normalized stationary
probabilities were originally used by Lovasz et al to prove
a mixing rate result for Markov Chains [22]. This normalized
stationary probability renders nodes from the same network
cluster closer than nodes from different clusters. We call this
quantityEffective Importance (EI)and adopt it as a proximity
measure. We establish new theoretical properties of EI that
enable our fast online and index-freekNN search algorithm.

III. E FFECTIVE IMPORTANCE ANDkNN SEARCH

In this section we define and evaluate our proximity measure
and establish its theoretical properties. We leverage these
properties to construct efficient locally-computed boundsto the
proximity of candidate neighbors to a query node. The bounds
are then employed in the design of a scalable onlinekNN
algorithm for large dynamic networks and network overlays.

We represent a network as a weighted undirected graph
G(V,E,W), whereV is the set of nodes,E is the set of
edges, andW is a mapping of the edges to real weights
W : (i, j) → wij , i, j ∈ V, (i, j) ∈ E. The volume of a node,
denotedwi is the sum of the weights of its adjacent edges
wi =

∑

(i,j)∈E wij . The transition probability of a random
walk from nodei to nodej is defined aswij

wi
. If the Markov

chain corresponding to the graph random walk is ergodic then
its stationary behavior is governed by a unique distribution
of state visit probabilities, calledstationary distribution. The
stationary probability for RWR of nodej, if restarting to
noder with probability α, is denoted asπα

r (j). This can be
expressed according to the balance condition as:

πr(i) =

{

(1− α)
∑

(i,j)∈N (wji/wj)πr(j) if i 6= r

α+ (1− α)
∑

(i,j)∈E(wji/wj)πr(j) if i = r
(1)

We will omit theα superscript when the context allows it.

A. Effective importance (EI): a measure to capture community
structure

This subsection introduces and evaluates the quality of our
proposed proximity measure—Effective importance (EI). We
discuss (i) previous theoretical results that guarantee EI’s
quality and (ii) empirical evaluation on four networks of
different genres.

Definition 1: The Effective Importance (EI)of a network
node is its volume-normalized RWR stationary probability,
defined as:

qαr (i) =
πα
r (i)

wi

(2)

For zero restart probability(α = 0) on undirected graphs,
EI is a constant 1∑

j∈V wj
for all nodes [21]. For increasing

α, EI is higher for the restart node’s neighbors that keep the

walker in the restart node’s proximity. Such close neighbors
receivemore visits per adjacent edgethan nodes further away
or nodes that let the walker “escape” to other parts of the
network.

We propose the use ofEI as a proximity measure of
the restart node to all other nodes. Compared to the RWR
probability which has also been used as a proximity measure
([31], [32]), EI assigns high proximity to nodes that connect
to the restart node and its neighbors, as opposed to nodes of
sheer high degree. It captures the effect of network clusters,
rendering nodes within the same cluster closer than nodes in
different clusters.

(a) Network example

2 4 6 8 10 12 14 16 18 20 22 24
0

0.02

0.04

0.06

0.08

0.1

0.12

Node Id

P
ro

xi
m

ity
 to

 N
od

e
1

Random Walks With Restarts
Effective Importance

(b) Comparison of the proximity to node1
based on EI and RWR

Fig. 1. A network example (a) and the proximity to node1 measured by
RWR and Effective Importance (b).

We illustrate the effect of using EI as a proximity measure
in a small example graph and further quantify this effect in
real-world networks. Figure 1(a) shows a small network for
which we compare the proximity of all nodes to node1 based
on RWR and EI (Figure 1(b)). Edges between nodes designate
similarity and for the sake of clarity they are unweighted inthis
example. RWR ranks nodes5 and6 as the nearest neighbors
of 1, due to their high degree compared to the other neighbors
of 1. Intuitively, node6 should not be among the closest and
hence most similar nodes to1 as it is part of a different cluster,
connecting to multiple non-neighbors of1. In other words,6 is
similar to a number of nodes, which are neither similar to node
1, nor to1’s neighborhood. Conversely, EI renders nodes3, 2
and4 closer to1 as they connect and are similar exclusively
to 1 and among themselves. EI measures the number of visits
per adjacent edge and thus ranks high nodes that connect well
with the query and contains the random walk in its vicinity.

The ability of EI to rank well-clustered neighbors around a
query node has been exploited by a family of recent local
partitioning methods [4], [3], [2]. All above methods seek
to obtain a good-quality local cut around a target node by
performing a sweep based on EI. All nodes are ordered by
their decreasing EI from the target and a cut at every position
is evaluated and the minimum of all such retained. Particularly
Andersen and colleagues [3] show that for any set of nodes
C of conductanceγ, they can produce a cut of conductance
O(

√

γ log
∑

i∈C wi) using the EI proximity vector from a
node in C. While the above methods use EI as a ranking
function, their goal is local partitioning. In this work, we

0 10 20 30 40

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

K

C
on

du
ct

an
ce

Effective Importance
Random Walks with Restart
Shortest Path

(a) Flickr Friends

0 10 20 30 40
0.4

0.5

0.6

0.7

0.8

0.9

1

K

C
on

du
ct

an
ce

Effective Importance
Random Walks with Restart
Shortest Path

(b) DBLP

0 10 20 30 40
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K

C
on

du
ct

an
ce

Effective Importance
Random Walks with Restart
Shortest Path

(c) YeastNet

0 10 20 30 40

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

K

C
on

du
ct

an
ce

Effective Importance
Random Walks with Restart
Shortest Path

(d) BioGRID

Fig. 2. Conductance of cuts based on Effective Importance, Random walks
with restarts and Shortest paths. Closest EI neighbors formbetter clusters
around the query as compared to the closest RWR or SP neighbors for
Flickr[25] (a), DBLP co-authors(b), YeastNet[24](c) andBioGRID[1] (d).
Lower cut corresponds to better separation of the topk neighbors from the
rest of the network.

prove useful local properties of EI that enable its efficient
computation and its applicability forkNN proximity search
in large dynamic graphs.

Next, we evaluate the utility of using EI as a proximity
measure in real world biological and collaboration networks.
To quantify the difference of proximity rankings, we evaluate
the tightness of the clusters induced by the subgraph contain-
ing the closest neighbors. We consider the topk EI, RWR
and shortest path neighbors of randomly chosen nodes and
measure their separation from the rest of the network in terms
of cut conductance [8]. The conductance of a cut is defined
as:

Φq(Q) =

∑

i∈Q,j∈V \Q wij

min(
∑

i∈Q wi ,
∑

j∈V \Q wj)
, (3)

where Q is the set of top neighbors of a query nodeq.
The conductance measures the fraction of cut edges to all
edges on the smaller size of the cut in terms of volume. It
is a well-established measure of the optimality of a two-way
clustering [8], [19], [3]. The smaller the conductance the better
the separation of the nodes on both sides of the cut.

Figure 2 presents a comparative analysis of employing EI,
RWR and Shortest paths (SP) as proximity measures in social,
co-authorship and gene interaction networks [25], [1], [24] (for
details on the datasets refer to the experimental Section IV-
A). We measure the conductance around a random target
node for setsQ comprised of the closestk neighbors. We
report the average conductance for50 randomly chosen target
nodes in each of the networks. EI achieves consistently better
conductance than RWR and SP for increasing position of the
cut k. RWR’s worse performance can be explained by its
preference for high degree nodes. The good performance of SP
on DBLP (2(b)) is due to the natural clusters corresponding to

academic labs with high degree among the lab members and
not many connections to other labs. The SP measure suffers
from instability due to multiple tied nodes in unweighted
networks (we order such nodes arbitrarily) and its inability
to account for multiplicity of paths.

EI can also be interpreted as the odds ratio of the visit
probability of a random walkwith restartsversus a random
walk without restarts.

qαr (i) = πα
r (i)/wi ∝ (πα

r (i)/wi)/
∑

j∈V

wj = πα
r (i)/π

0
r (i)

(4)
Odds of visit for nodes closer to the restart node are higher
than nodes far from it. Note that the normalization factor of
the total network volume in (4) is common for all nodes, so
comparing nodes by EI is equivalent to comparing them by
restart/no-restartodds ratio.

Evidence for the advantages of using EI as proximity
measure are both based on theoretical analysis [3] and our
empirical evaluation in Fig. 2. The ability of EI to rank
high well-clustered neighbors of the query coupled with the
theoretical properties we derive in the following sectionsmake
it a useful graph measure for large dynamic networks and
network overlays.

B. Bounds on the Effective Importance

Performing RWR withα > 0 creates a bias in the Effective
Importance, causing neighbors of the restart node to receive
more visits per adjacent edge. As a result, every node in the
network, excluding the restart noder, has at least one neighbor
of higher EI.

Lemma 1: (Unbalanced EI) Consider a random walk with
restartα > 0 to noder in a weighted graph. Then,

∀i 6= r, ∃j{(j, i) ∈ E, qr(i) ≤ (1 − α)qr(j)}. (5)
Proof: Available in the appendix.

Lemma 1 is central to deriving a bound to all nodes in the
network based on a subgraph around the query as outlined in
the following Theorem 1.

For the rest of our results, we assume a partitioning of the
nodes in the graph in three sets: (i) a set of known (active)
nodesK; (ii) a set of fringe nodesF , directly connected to
nodes inK; and (iii) the set of all other nodesU . The restart
noder is a member ofK and there is no direct edge between
K andU . OurkNN algorithm will operate on the setK, using
lower and upper bounds to all network nodes, also computed
within K. The smaller the active setK, the lower the online
search running time.

If the EI values of nodes inF are available, we can
established an upper bound on the EI of all nodes inU .

Theorem 1:(Bound on EI in U)

qr(u) ≤ (1 − α)max
f∈F

qr(f), ∀u ∈ U. (6)

Proof: Available in the appendix.
Note that according to Theorem 1, there are no restrictions

on how the setK
⋃

F is chosen as long as it contains the
restart node. This theorem provides a powerful mechanism for

pruning irrelevant candidates residing inU without the need
of considering them as part of the active graph used at query
time. If we find a way of obtaining the largest actual EI within
the fringe setF , we can use(1−α)-fraction of it as an upper
bound to all unobserved nodes inU . Obtaining the actual EI
in F , however, requires computing the stationary distribution
of the whole graph. Instead, we will apply this theorem using
an upper bound to the EI inF derived based on analyzing the
subgraph induced byK

⋃

F .
Now we are ready to introduce our lower and upper bound

constructions for the values of EI within the active setK.
Theorem 2:(Lower bound) For a modified network

graphGlb in which every outgoing edge(f, x) ∈ E, f ∈ F
is replaced with a self-edge(f, f), such that wff =
∑

(f,x)∈E wf,x = wf ,

πα
lb(i) ≤ πα(i), ∀i ∈ K (7)

Proof: Available in the appendix.
The above lower bound construction transforms all fringe

nodes into sinks, as their incoming edges are kept but their
outgoing edges are redirected to themselves. The random
walker in this augmented network cannot progress to the nodes
in U and henceπU

lb = 0. As a result, we can compute the
values ofπK

lb in the sub-graph containing only nodes inK
⋃

F
by solving for the stationary distribution of this smaller graph.
The lower bound valuesπK

lb approach the actual valuesπK

as |K| approaches|V |. Refining the lower bound estimates is
possible at the price of solving for the stationary distribution
of larger sub-networks. This “pay-as-you-go” property of the
construction allows for flexibility in defining the setK. In our
experiments, the lower bound is very tight with respect to the
actual value for small sizes ofK. The bound for EI is obtained
from the stationary distribution bound as follows:

qlb(i) =
πlb(i)

wi

, ∀i ∈ K (8)

In order to provide guarantees for the topk neighbors of a
given node, we also need to bound each node’s EI from above.
Our upper bound construction is inspired by a push-based
algorithm that was originally proposed to obtain an approxi-
mation of the RWR importance [6], [18] and later modified for
performing efficient local graph partitioning [3]. We transform
the approximation algorithm into a upper-bounding procedure.
The method in [3] computes anǫ-approximation of the RWR
distribution.

Definition 2: An ǫ-approximate RWR stationary distribu-
tion for πα

~r is another distributionπα
~r−~s, computed by restart-

ing according to the restart vector~r−~s, where0 ≤ ~s(i) ≤ ǫwi.
Note that here we overload the adopted notation for restart-

ing to a single node by changing it to a vector specifying
multiple restart nodes. In the notation above,~r is a vector
containing 1 in the position of the restart noder and 0
elsewhere and~s is a vector containing small non-negative
values. The original approach [3] fixes the desired value of
ǫ and computes the approximation in a size-unconstrained
subgraph of the original graph. We turn the problem around

for our upper bound construction by evaluating the accuracy
of the approximation for a fixed subgraph. We answer the
question:“If the approximate vector is computed in a fixed
subgraph, what is the maximal node-wise deviationǫ?” .

Our upper bound is computed by transferring mass of
decaying magnitude along the edges in our active set of nodes
K of the network until the mass left to transfer from every
node becomes negligibly small. In this process we maintain
two vectors: the approximation vector~p and the push vector
~s, both of length|K|. We construct an upper bound on the
RWR distribution vector based on the vectors~p and~s.

Algorithm 1 Upper Bound

1: Input: r, α, K
⋃

F
2: Output:πα

ub

3: αlazy = α
2−α

4: Initialize ~p(i) = 0, ∀i ∈ K
⋃

F ,

5: Initialize ~s(i) =

{

1 if i = r
0 if i ∈ K

⋃

F/{r}
6: while ~p and~s have not convergeddo
7: Choose anyi ∈ K
8: ~p(i) + = αlazys(i)
9: for ∀j, (i, j) ∈ E do

10: ~s(j) + =
(1−αlazy)

2 ~s(i)
wij

wi

11: end for
12: ~s(i) =

(1−αlazy)
2 ~s(i)

13: end while
14: ǫ = maxi∈K

⋃
F (

~s(i)
wi

)
15: πα

ub(i) = ~p(i) + ǫwi, ∀i ∈ K
⋃

F
16: return πα

ub

We first present our upper bound procedure in Algorithm1
and later provide justification for its correctness. The input
to the algorithm includes the restart noder, the explored
subnetworkK

⋃

F , and the restart probabilityα. The push
algorithm is performed on a “lazy” version of the adjacency
matrix, in which every node has a self edge of weight equal to
the volume of the node. As a result, at every node a random
walker may (i) move to the restart node with probabilityα,
(ii) stay in the same node with probability(1 − α)/2 or (iii)
follow a random outgoing edge with probability(1 − α)/2.
Andersen et al. [3] show that performing a“lazy” RWR with
restart probabilityαlazy is equivalent to computing anon-lazy
random walk with restart probability2αlazy/(1 + αlazy). As
our goal is to bound the distribution for a given input restart
probability, we first determine the corresponding “lazy” restart
probability (line 3). Next, the approximation~p and push~r
vectors are initialized(lines 4,5). Push steps are performed
until ~p and~r converge.

Every push operation increases the approximation value of
the current node(line 8), increases the push values of all
neighbors(lines 9-11)and finally decreases the push value
of the current node(line 12). We estimate the deviation of
the approximation vector from the actual stationary distribu-
tion, based on the maximal ratio of remaining push value
per unit mass(line 14). An upper bound to the stationary

probabilities is obtained by adding the approximation value
and the maximal deviation(line 15). Similar to the lower
bound, the upper bound to the EI is obtained by normalizing
the importance upper bound computed with the push algorithm
by every node’s volume:

qub(i) =
πub(i)

wi

, ∀i ∈ K
⋃

F. (9)

Lemma 2:Let ~p(∗) and~s(∗) be the resulting vectors after
applying a single push operation from Algorithm 1 on the
previous~p and~s. Then

~p = πα
~s−~r =⇒ ~p(∗) = πα

~s−~r(∗)
(10)

Proof: The push operation we perform is the same as
in [3]. The only difference is that we work with generally
weighted graphs, however the same proof applies here as well.

Notice that after performing a push operation on all nodes in
K, the correspondingǫ decreases. Formally, the initial pair~p =
~0 is a valid trivial approximation of the stationary distribution,
however its corresponding approximation deviation is

ǫ = max
i∈K

⋃
F

~s(i)

wi

=
1

wi

, (11)

which is too loose to be practically used for bounding the EI.
During the push operation, mass is moved from the push vector
and added to the approximation vector. As a result, the norm
of ~p increases monotonically while the one of~s decreases
monotonically by the same amount. When this transfer of mass
becomes close to zero, we terminate the push operations.

Theorem 3:(Upper bound) The vectorπα
ub(i), computed

by Algorithm 1 provides a node-wise upper bound toπα(i).
Proof: Available in the appendix.

We present our upper and lower bound constructions for
the case of single restart node, for the purpose of simplicity
of presentation. Due to the linear combination property of
stationary distributions of RWR showed by Haveliwala et
al [15], all results carry over to restarting to multiple nodes
with different restart probabilities.

The computational complexity for the evaluation of both
our bounds isO(c|E|K), where|E|K is the number of edges
adjacent to nodes inK. Thec term depends on the mixing rate
of the Markov Chain, corresponding to the adjacency matrix
of the nodes inK. In our experimentsc is typically a constant
in the order of100. The size and density of the active graph
induced onK is the dominant component of the complexity.
Therefore, being able to determine the top neighbors using
a small active subgraph is crucial for the small online query
time.

In this section, we derived upper and lower bounds to the
effective importance of nodes within a predefined subnetwork
that contains the query node. In addition, in Theorem 1,
we showed that if the EI is available for nodes in a fixed
subnetwork, we can bound (from above) the EI of all nodes in
the rest of the network. We combine these results for pruning
infeasible neighbor candidates.

C. Bound-Driven Candidate Pruning

We employ our lower and upper bound constructions for
pruning nodes that are not among thek nearest neighbors.
We can also use the same node-wise bounds to determine the
exact ranking among the topk neighbors if the application
demands this.

0 2 4 6 8 10 12 14 16 18 20

E
ffe

ct
iv

e
Im

po
rt

an
ce

K

F

U
q

U

Fig. 3. Pruning of infeasible candidates.

Figure 3 shows a running example of our pruning criterion,
for effective top-k searching. The example assumes that the
active setK is available. Lower and upper bounds to the EI
in K are computed and feasibility intervals are formed for
each node. These intervals are shown using vertical error bars
in Figure 3 and nodes are sorted by decreasing lower bound.
The first 8 nodes comprise the known part of the network
K, nodes9-16 comprise the fringe setF and nodes17 and
on belong to the unknown part of the network. Since the
nodes inU are unknown, together with the edges among
them, we can only bound them from above according to
Theorem 1. Note that in order to apply Theorem 1 we need
the actual maximum EI in the fringe setF . Since obtaining
the actual values requires computing the exact RWR stationary
distribution on the whole graph, we can use their upper bounds
instead, obtained according to Equation (9):

(1− α)max
f∈F

qub(f) ≥ (1− α)max
f∈F

q(f) ≥ qu, ∀u ∈ U. (12)

If the query for this example is4-NN, we can guarantee
that the first4 nodes are the actual top-4 neighbors as all of
their lower bounds dominate the upper bounds of the rest of
the nodes inK

⋃

F and also dominate the upper bounds of
nodes inU . Note that we can give this guarantee, regardless
of how many nodes compriseU and without exploring more
nodes than the ones inK

⋃

F . The actual ordering of the top
4, is not certain in this case as some of their feasibility intervals
overlap and their actual order may possibly be different than
the one shown.

In the same running example, however, we cannot provide
guarantees for the exact8 nearest neighbors since the feasi-
bility interval of the eight top candidate inK overlaps with
those of nodes inF andU . In this case we can expandK
by including more nodes with full information about their
neighbors. Subsequent expansions ofK would refine the
bounds estimation and shrink the feasibility intervals making
guarantees possible for the nearest neighbors set.

Algorithm 2 Online kNN Search
1: Input: r, α, k andG
2: Output: Ordered set of top-k nodes
3: Initialize K = {r}

⋃

{j, (i, j) ∈ E}
4: Computeqαlb andqαub
5: Computeqαub(u), u ∈ U
6: while Top k cannot be guaranteeddo
7: ExtendK with the nodes highestqαlb
8: Refineqαub, q

α
ub andqαub(u), u ∈ U

9: end while
10: return Top-k nodes

D. OnlinekNN Search

The refinement of the feasibility intervals, discussed in the
previous section, comes at the cost of re-computing the lower
and upper bounds for a larger instantiation ofK. We would
like to obtain the minimal setK that allows us to answer a
specific query. An exhaustive search procedure for an optimal
K would have to evaluate all subsets of connected nodes that
contain the query. For our applications on large and composite
networks, any attempt to find an optimal subgraph would add
an impractical overhead. We define a greedy procedure that
uses the previous bound estimates to direct expansion. We
add a fixed number of nodes from the currentF to K that
have the highest lower bound estimates.

Our online kNN search is outlined in Algorithm 2. The
input consists of the query noder, the restart probability, the
number of top neighborsk and the network. The setK is
initialized with the query node and its immediate neighbors
(line 3). Next, we compute the lower and upper bounds(line
4) of the EI of nodes in the subgraphGK

⋃
F , according to

the constructions and algorithm in Section III-B. The upper
bound for all unexplored nodes (part ofU) is computed based
on Theorem 1(line 5). A series of expansion and refinement
steps is performed until the top-k list can be guaranteed using
the feasibility intervals of candidate nodes(lines 6-9).

The size of the setK, sufficient for determining the exact
kNN, depends on the network structure around the query.
Particularly, structures that result in close EI values of the
k-th and (k + 1)-th neighbors, demand a large number of
expansions due to persistent overlap between their feasibility
intervals. Our algorithm can be easily relaxed to overcome
such situations when very fast response is demanded and a
small uncertainty of the top-k set is tolerable. In order to adapt
our algorithm tom-tolerantkNN search, we terminate atline
6 when less thanm candidates are left to prune. The result
set contains at mostk +m nodes including the actual top-k
neighbors. Evaluation of the computational savings from such
a relaxation in our experimental section shows that significant
online time is spent in pruning the last few candidates.

E. kNN in Composite Networks

Composite network overlays model the connections of a
node in multiple networks in which it participates. We consider

Fig. 4. Naive active set compared to an optimal composition-aware
counterpart.

kNN search according to user prioritization of the networks
in the overlay. We define the compositekNN query as the
triple < r, k, ~β >, wherer andk are the query node and
the number of desired NN and~β is a vector that specifies the
user-defined weight of each layer. We assume there exists a
one-to-one mapping between nodes that represent the same
entity in different layers.

One naive approach to performing compositekNN search
is to (i) apply the onlinekNN procedure (Algorithm2) to
each layer separately, (ii) discover the corresponding relevant
subnetworksKn in each network layerGn and then (iii)
compose a network, induced by{

⋃

n Kn} with links, weighted
according to the mixture vector~β. This approach is pictorially
presented in Figure 4 for two-network overlay. Although it
would scale much better than performing a mix of the whole
networks in each layer, it could lead to inefficient selection
of the relevant subnetwork in the overlay. We refer to this
approach asNaive.

The overlap of relevant nodes in each layer may be small
for uncorrelated layers. For example, friends might not always
have the same taste in music. Moreover, the expansion in each
layer should be driven according to its weight in~β. High-
priority layers should be expanded more aggressively than low-
priority ones.

In order to select a small relevant subnetwork in the overlay,
we push the mixture vector~β into the expansion step of
our kNN search (step 7 of Algorithm 2). We expand with
priority-aware best expansion candidates, taking into account
feasibility intervals computed according to all layers at the
previous expansion iteration. As a result, we use a smaller
active setK∗ (in Figure 4) as opposed to a union of separate
layer active sets produced byNaive.

IV. EXPERIMENTAL EVALUATION

This section is dedicated to evaluating the scalability and
performance of ourkNN search algorithm based on Effective
Importance. We describe the datasets that we use for experi-
mentation and next we measure the savings due to our bound-
based pruning.

A. Data

We experiment with four real world datasets: two from the
social information networks domain and two from Biology.

The DBLP co-author network consists of collaboration
links between scientific authors based on joint papers (|V | ≈
700k, |E| ≈ 4.5m). This network is created from the public
DBLP1 dataset by adding a link between two authors if they
have joint publications. Link weights are based on the count
of joint papers for the adjacent authors.

Another large scale network we evaluate contains athree-
million-usersample of the Flickr social graph. We also infer a
second Flickr network layer based on common photo favorite
bookmarks of users. We use data provided by the authors
of [25]. The dataset contains a list of24, 885, 921 friendship
links connecting14, 648, 975 anonymized users. We work
with the largest connected component of3 million users and
14, 648, 975 connections termedFRIENDSin the experiments.

The Flickr dataset also contains information about
11, 267, 320 photos and favorite bookmarked photos by users.
Using this data we construct a second network based on shared
bookmarks by users. To score the similarity of user tastes we
use theDice set similarity coefficient.

s(u1, u2) =
2|Bu1 ∩Bu2 |

|Bu1 |+ |Bu2 |
, (13)

whereu1 and u2 are two users andBu1 and Bu2 are their
corresponding sets of bookmarked photos. We further thresh-
old the similarities, keeping only values greater than0.01.
For overlay experiments on Flickr we sample overlapping
users that are both in the largest connected component in the
friendship network and in the similarity network termedFAV
in the experiments.

Other experimental networks we use for evaluation come
from genomic research. We experiment with a functional yeast
interaction network BioGRID2. Nodes represent gene products
and links represent interaction between them weighted by the
interaction strength. The network contains35, 630 edges and
4913 genes.

Another biological network isYeastNet, a functional gene
network overlay of10 data sources available due to McGary et
al. [24]. Each layer corresponds to interactions detected using
a different experimental methodology. The overlay contains
5400 genes and more than250, 000 interactions in all10
layers.

All synthetic networks are constructed according to
Barabasi’s preferential attachment generative model [5].

B. Scalability

We study the performance of ourkNN in terms of running
time and pruning power. All experiments are performed on a
single machine with2GB of main memory and3GHz dual-
core processor. Our proposed algorithms are implemented in
C++.

Our natural control comparison when reporting query time
is the evaluation of kNN on the full networks (traces marked

1http://dblp.uni-trier.de/xml/dblp.xml
2www.biogrid.com

10
3

10
4

10
5

10
610

−4

10
−3

10
−2

10
−1

10
0

Number of Nodes

F
ra

ct
io

n
of

 E
xp

lo
re

d
E

dg
es

k = 5

k = 10

k = 20

k = 30

(a) Pruning

10
3

10
4

10
5

10
610

−2

10
0

10
2

10
4

Number of Nodes

T
im

e(
s)

k = 5

k = 10

k = 20

k = 30

Full

(b) Running time

20k 80k 200k
0

0.2

0.4

0.6

0.8

Number of Edges

F
ra

ct
io

n
of

 E
xp

lo
re

d
E

dg
es

k = 5
k = 10
k = 20
k = 30

(c) Pruning

20k 80k 200k
10

−2

10
−1

10
0

10
1

10
2

Number of Edges

T
im

e(
s)

k = 5

k = 10

k = 20

k = 30

Full

(d) Running time

Fig. 5. Average performance for increasing number of nodes and fixed
average degree of6 (a), (b); and for increasing number of edges and fixed
number of10k nodes (c), (d)(α = 0.3).

Full in the figures). Another machine-independent perfor-
mance metric is the fraction of edgeskNN explores to evaluate
a query, i.e. the pruning power of our lower and upper bounds.

a) Synthetic networks:We use controlled synthetic net-
works to evaluate the scalability with nodes and edge density.
Figures 5(a) and 5(b) present the scalability ofkNN for in-
creasing number of nodes, while keeping the average degree in
a synthetic network fixed to6. The expected growth behavior
of scale-free graphs is in line with this experiment, since such
graphs are typically characterized by a large number of small-
degree nodes and a small number of high-degree ones. The
size of the active subnetworkK, sufficient to answer the
kNN query, remains constant for increasing network sizes.
We observe this both in the pruning traces 5(a) that decrease
linearly on alog-log scale and from the running time which
remains constant 5(b). In comparison, the exact stationary
distribution (denoted Full 5(b)) for a100 thousand nodes
network takes close to9 minutes to compute. Our algorithm
answerskNN queries in less than a second fork up to 30,
which makes it ideal for online analysis.

Next, we evaluate the scalability of our approach for a single
synthetic network as it becomes denser (Fig. 5(c), 5(d)). We
fix the number of nodes to10k and increase the total number
of edges. The average size of the active edge setK is 6% for
80k edges, but increases to more than half of all edges when
the average degree reaches20. Note that10k nodes and200k
edges corresponds to a dense scenario in which computing the
exact EI in the whole network takes50s (traceFull in 5(d)).

b) kNN search in real-world networks:Our performance
evaluation on single-layer real-world networks is presented in
Fig. 6. We achieve sub-second search time in DBLP for values
of k up to30, while using less than0.2% of the network edges.
The actual EI in the whole network takes more than150s to
compute. The top neighbor search for the Flickr friendship

5 10 15 20 25 30
0.5

1

1.5

2

2.5

3

3.5x 10
−3

k

F
ra

ct
io

n
of

 E
xp

lo
re

d
E

dg
es

α = 0.2
α = 0.3
α = 0.4
α = 0.5
α = 0.6

(a) DBLP pruning

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

k

T
im

e(
s)

α = 0.2
α = 0.3
α = 0.4
α = 0.5
α = 0.6

(b) DBLP time (Full:150s)

5 10 15 20 25 30
5

5.5

6

6.5

7x 10
−3

k

F
ra

ct
io

n
of

 E
xp

lo
re

d
E

dg
es

α = 0.2
α = 0.3
α = 0.4
α = 0.5
α = 0.6

(c) Flickr pruning

5 10 15 20 25 30
6

8

10

12

14

16

18

k

T
im

e(
s)

α = 0.2
α = 0.3
α = 0.4
α = 0.5
α = 0.6

(d) Flickr time (Full:> 1000s)

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k

F
ra

ct
io

n
of

 E
xp

lo
re

d
E

dg
es

α = 0.2
α = 0.3
α = 0.4
α = 0.5
α = 0.6

(e) BioGRID pruning

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

k

T
im

e(
s)

α = 0.2
α = 0.3
α = 0.4
α = 0.5
α = 0.6

(f) BioGRID time (Full:10.2s)

Fig. 6. Average pruning power (a), (c), (e) and online running time (b), (d), (f)
for DBLP, Flickr and BioGRID. Running time for computing themeasure on
the whole network for Flickr is projected based on DBLP size due to the
inability to fit the whole network in the main memory (2GB).

graph takes7 seconds on average, while pruning more than
99.4% of the network edges forα ≥ 0.3. The increased
complexity, compared to the DBLP graph is due to the higher
density and the bigger size of Flickr. ThekNN search expands
the known graph to40% and higher in the BioGRID network
due to its smaller size. The actual number of used edges is
about10k, allowing for sub-second evaluation. For all three
networks we tolerate at most3 additional candidate nodes that
are not pruned (m = 3), which eliminates corner cases of very
closek-th and(k + 1)-th neighbors.

Restart valuesα ≥ 0.3 in Fig. 6 allow for practical (close
to 1s) search performance. Ifα is too low, the random walker
explores almost the whole network. Ifα is too high (exceeding
0.6), the walker is restrained to the immediate neighbors of the
query and does not capture the deeper community structure.
A value of α should reflect the balance between these two
extremes.

c) Composite networks:Next, we measure the perfor-
mance ofkNN in composite networks. Fig. 7(a) shows a
comparison of the pruning power of aNaive composition
search (tracekNN-Naive) and our tier-optimizedkNN for
overlay of two synthetic networks (|V | = 10k, |E| = 80k, k =
20). We choose a mixture vector~β of norm1 and increase the

0 0.1 0.2 0.3 0.4 0.5
0.05

0.1

0.15

0.2

0.25

β

F
ra

ct
io

n
of

 E
xp

lo
re

d
E

dg
es

kNN
kNN−Naive

(a) Pruning

0 0.1 0.2 0.3 0.4 0.5
10

−1

10
0

10
1

10
2

β

T
im

e(
s)

kNN kNN−Naive Full

(b) Running time

Fig. 7. Average performance under different mixing conditions of a two-
network overlay (α = 0.3).

0 2 4 6 8 10
0

2

4

6

8

10x 10
5

Number of Networks

E
xp

lo
re

d
E

dg
es

kNN−80k
kNN−200k

(a) Number of edges

1 4 7 10
10

−2

10
0

10
2

10
4

Number of Networks

T
im

e(
s)

kNN−80k
kNN−200k
Full−80k

(b) Running time

Fig. 8. Performance for increasing number of overlaid networks (α = 0.3).

weight of one of the networks from0 to 0.5 while decreasing
the weight of the other correspondingly. ThekNN algorithm
explores two times fewer edges than itsNaivecounterpart and
is twice as fast. For the same overlay, computing the exact EI
(Full in 7(b)) is 100 times slower.

We also measure the performance for increasing number of
equally-weighted networks in an overlay (Fig. 8(a) and 8(b)).
We generate the networks by computing random permutation
of the nodes in single power-law network and reconnect the
permuted nodes using the original edges. In this respect, the
presented results are pessimistic, as the separate networks
have unrelated (orthogonal) edge sets. The number of nodes
is fixed to 10k and edges of each separate overlay network
are 80k (trace kNN-80k) and 200k (trace kNN-200k). For
80k edge overlays, our onlinekNN completes in a second,
while the respective full computation (trace Full-80k) is 1000
times slower on average. When mixing denser networks (200k
edges in10k node networks), the search time increases to ten
seconds for7-network overlay. Even when adding10 dense
networks in an overlay, thus forcing the resulting network to
have2 million edges (20% ofall possibleedges), thekNN
search takes on average less than100 seconds.

Search time for real-world composite networks is reported
for Flickr (Fig. 9(a)) and YeastNet (Fig. 9(b)). The Flickr
composite search time (traceFAV+FRIEND) is similar to that
of theFRIEND layer on its own, fork up to20, while further
neighbors become harder to compute. The similar bookmarks
(traceFAV) layer is sparser (similarity is thresholded to1%,
details in Appendix) and hence the lower running time. For
the gene overlay YeastNet 9(b), we iteratively add layers
and compute neighbors fork up to 40. Regardless of the
relatively small number of nodes (5k), the density of the

5 10 15 20 25 30
0

5

10

15

20

25

30

35

k

T
im

e(
s)

FAV
FRIEND
FAV+FRIEND

(a) Flickr (Full(1 layer):> 1000s)

0 2 4 6 8 10
0

1

2

3

4

5

6

Number of Networks

T
im

e(
s)

k=10
k=20
k=30
k=40

(b) YeastNet (Full(10 layers):82s)

Fig. 9. Search time for (a) Flickr friends and favorite photos(α = 0.4, m =
5) and (b) YeastNet (α = 0.3, m = 0).

5 10 15 20 25 30
4

4.2

4.4

4.6

4.8

5

5.2x 10
4

k

N
um

be
r

of
 E

dg
es

m=0
m=5
m=10
m=15

(a) Number of edges

5 10 15 20 25 30
2

2.5

3

3.5

4

4.5

k

T
im

e(
s)

m=0
m=5
m=10
m=15

(b) Running time

Fig. 10. Performance for increasing tolerancem (α = 0.2).

composite network results in search times up to5 seconds,
while computing the actual EI for the whole network takes
more than80 seconds.

d) RelaxedkNN: We study the effect of relaxing the
kNN search tom-tolerantkNN search for values ofm up to
15 (Fig. 10(a) and 10(b)). Significant savings both in running
time and pruning are observed for smallm = 5 as compared
to exact evaluation. This is due to typically few nodes of very
similar EI situated around thek-th position. On average,30%
more online time is required to separate the feasibility intervals
of these few nodes, via15% increased expansion of edges. For
large networks and overlays, this small tolerance can enable
an order of magnitude performance improvement.

V. CONCLUSION

We address the growing need for online, index-free search
algorithms tailored to dynamic and multi-tier networks across
multiple genres. We propose a novel and intuitive proximity
measure called Effective Importance that captures the com-
munity structure around a query node. Our proposed solution
for the pivotal problem ofkNN search is scalable and pre-
serves result quality without using precomputed indices. Our
experiments on real world and synthetic networks reveal up to
100 times running time improvement of ourkNN, compared
to exact computation of the proximity measure. Our method
provides a practical on-the-fly search solution for real world
dynamic networks with accuracy guarantees.

VI. A CKNOWLEDGEMENTS

Research was sponsored by the Army Research Laboratory
and was accomplished under Cooperative Agreement Number
W911NF-09-2-0053. The views and conclusions contained

in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

REFERENCES

[1] Biogrid: General repository for interaction datasets.
http://www.thebiogrid.org/, 2006.

[2] R. Andersen and F. Chung. Detecting Sharp Drops in PageRank and
a Simplified Local Partitioning Algorithm.Theory and Applications of
Models of Computation, 4484/2007:1–12, 2007.

[3] R. Andersen, F. Chung, and K. Lang. Local Graph Partitioning using
PageRank Vectors.FOCS, pages 475–486, 2006.

[4] R. Andersen, S. Diego, L. Jolla, F. Chung, K. Lang, and S. Clara. Using
PageRank to Locally Partition a Graph.FOCS, pages 1–23, 2006.

[5] A.-L. Barabasi.Linked: the new science of networks. Perseus Publishing,
2002.

[6] P. Berkhin. Bookmark-coloring algorithm for personalized pagerank
computing. Internet Math, 3:2006.

[7] P. Bogdanov and A. K. Singh. Molecular Function Prediction Using
Neighborhood Features.TCBB, 7(December):1–11, 2010.

[8] B. Bollobas. Modern Graph Theory. Springer, July 1998.
[9] Y.-Y. Chen, Q. Gan, and T. Suel. Local methods for estimating pagerank

values. InCIKM, pages 381–389. ACM, 2004.
[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to

Algorithms. MIT Press, 1990.
[11] P. Csermely, V. Agoston, and S. Pongor. The efficiency ofmulti-target

drugs: the network approach might help drug design.Trends Pharmacol.
Sci., 26:178–182, Apr 2005.

[12] J. V. Davis and I. S. Dhillon. Estimating the global pagerank of web
communities. InSIGKDD, pages 116–125. ACM, 2006.

[13] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discovery of
connection subgraphs.KDD, 2004.

[14] D. Fogaras and B. Racz. Towards scaling fully personalized pagerank.
In WAW, pages 105–117, 2004.

[15] T. H. Haveliwala. Topic-sensitive pagerank: A context-sensitive ranking
algorithm for web search.TKDE, 15:2003, 2003.

[16] H. Hu, D. L. Lee, and J. Xu. Fast Nearest Neighbor Search on Road
Networks. InEDBT, pages 186–203, 2006.

[17] G. Jeh and J. Widom. Simrank: a measure of structural-context
similarity. In SIGKDD, pages 538–543. ACM, 2002.

[18] G. Jeh and J. Widom. Scaling personalized web search.WWW, 2003.
[19] R. Kannan, S. Vempala, and a. Veta. On clusterings-good, bad and

spectral. Proceedings 41st Annual Symposium on Foundations of
Computer Science, 51(3):367–377, 2004.

[20] Y. Koren, S. C. North, and C. Volinsky. Measuring and extracting
proximity in networks.KDD, 06, 2006.

[21] L. Lovász. Random Walks on Graphs: A Survey.Combinatorics, Paul
Erdos is Eighty, 2:1–46, 1993.

[22] L. Lovasz and M. Simonovits. The mixing rate of markov chains, an
isoperimetric inequality, and computing the volume. InSFCS, 1990.

[23] A. Lubiwt. Some NP-complete Problems Similar To Graph Isomor-
phism. SIAM Journal of Computing, 10(1):11–21, 1981.

[24] K. L. McGary, I. Lee, and E. M. Marcotte. Broad network-based
predictability of Saccharomyces cerevisiae gene loss-of-function phe-
notypes.Genome biology, 8(12):R258, 2007.

[25] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and B. Bhat-
tacharjee. Growth of the flickr social network. InWOSN, 2008.

[26] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network
distance browsing in spatial databases. InSIGMOD, 2008.

[27] P. Sarkar and A. W. Moore. A tractable approach to findingclosest
truncated-commute-time neighbors in large graphs. InUAI, 2007.

[28] P. Sarkar, A. W. Moore, and A. Prakash. Fast incrementalproximity
search in large graphs. InICML, New York, New York, USA, 2008.

[29] H. Tong, C. Faloutsos, and Y. Koren. Fast direction-aware proximity for
graph mining.SIGKDD, 2007.

[30] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast Random Walk with Restart
and Its Applications.ICDM, 2006.

[31] H. Tong, H. Qu, and H. Jamjoom. Measuring Proximity on Graphs with
Side Information.ICDM, 2008.

[32] H. Tong, H. Qu, H. Jamjoom, and C. Faloutsos. iPoG: Fast Interactive
Proximity Querying on Graphs.CIKM, pages 1673–1676, 2009.

[33] Y. Wu and L. Raschid. Approxrank: Estimating rank for a subgraph.
ICDE, pages 54–65, 2009.

APPENDIX

A. Proofs and Additional Results

Proof of Lemma 1
Proof:

qr(i) =
πr(i)

wi

=
1

wi

(1− α)
∑

j∈N(i)

(wji/wj)πr(j)

=
1

wi

(1− α)
∑

j∈N(i)

wjiqr(j)

≤
1

wi

(1− α)max
j

qr(j)
∑

j∈N(i)

wji

=
1

wi

(1− α)wi max
j

qr(j)

= (1− α)max
j

qr(j)

The first three equations follow from the definition of EI, and
the balance equation. The inequality follows from the algebraic
inequalityab+ cd ≤ max(b, d)(a + c), a, b, c, d ≥ 0. Finally,
we use the definition of the volume of a node.

Proof of Theorem 1.
Proof: Choosêu to be the node inU with largestqr(û).

Then from Lemma 1 and using the fact thatu ∈ U → u 6= r it
follows that∃f̂{(f̂ , û) ∈ E, (1− α)qr(f̂) >= qr(û)}. Due to
the choice of̂u as the node of maximum EI inU , it follows that
f̂ /∈ U . The nodef̂ is also not inK since there are no edges
betweenU andK. The only possibility is that̂f ∈ F as the
three sets are mutually exclusive. Then we get the following
chain of inequalities:
qr(u) ≤ qr(û) ≤ (1 − α)qr(f̂) ≤ (1 − α)maxf∈F qr(f), for
everyu ∈ U .

Lower and Upper Bound Proofs
Before we prove our lower bound correctness, we will

introduce additional notation.
The stationary probability of RWR can be also expressed as

an infinite sum of tour probabilities. A tourt in the network is
a sequence of traversed nodest : v1 → v2 → · · · vn, denoted
also ast : v1 → vn. Each tour is associated with a length
l(t) = n− 1 and probability of traversal

P (t) =

n−1
∏

i=1

wvivi+1

wvi

. (14)

Jeh et al. [17], [18] introduce theinverse p-distanceand show
that it is equivalent to the stationary probability of a RWR.

Theorem 4:(Equivalence of inverse p-distance andπ)

dr(j) =
∑

t:r→j

P (t)α(1 − α)l(t) = πr(j), (15)

wheredr(j) is the inverse-p distance, r andj are nodes inV ,
t is a tour starting from noder and ending at nodej allowing
cycles; and the sum is over all possible distinct tourst.

Proof: Available in Jeh et al. [18] for unweighted graphs.
The proof trivially extends to weighted graphs.

Proof of Theorem 2
Proof: Consider a nodek ∈ K. Let us denote the total

probability of all paths inG from r to k that stay inK and do
not include a node inF

⋃

U asTK =
∑

tK :r→k P (tK)α(1−

α)l(tK). Similarly let us denote the total probability of paths
from r to k that include at least one node inF

⋃

U asTFU .
As the above two sets of paths are mutually exclusive and
span the whole space of paths fromr to k we have:

TK + TFU =
∑

t:r→k

P (t)α(1 − α)l(t) (16)

Let us denote the total probability of paths fromr to k in
the perturbed networkGlb asTK

lb . Note, that the superscript
K is added just to clarify the fact that all possible paths in
the perturbed network do not include a vertex outside ofK,
due to the nature of the modification. There a is one-to-one
correspondence from all paths contributing toTK in G to all
paths inGlb that contribute toTK

lb . The latter is true as we
have not removed any edges withinK, so every path within
K in G exists and has the same probability inGlb. We obtain
the following equality:

TK = TK
lb . (17)

Using the introduced notation, (16) and (17), we have:

π(k) =
∑

t:r→k

P (t)α(1 − α)l(t)

= TK + TFU , due to (16)

≥ TK

= TK
lb , due to (17)

= πlb(k).

Proof of Theorem 3
Proof: From Lemma 2 and the fact that the initial

assignment of~p is a (1
wr

)-approximation ofπα
~r it follows that

after all iterations of push operations (Step 4) in Algorithm 1
the obtained~p = πα

~r−~s is also anǫ-approximation of the
πα
~r . According to Definition 2 the correspondingǫ should

dominate all ~s(i)
wi

, i ∈ K
⋃

F , hence (Step 5) computes the
correspondingǫ.

The authors of [3] show that ifπα
~r−~s is anǫ-approximation

of πα, then
∑

i∈S

πα
~r−~s(i) ≥

∑

i∈S

πα
~r (i)− ǫ

∑

i∈S

wi, (18)

whereS is any subset of nodes in the network. If we chose
the setS as a singleton node inK

⋃

F and by subtracting
ǫ
∑

i∈S wi on both sides, we get:

πα
~r−~s(i) + ǫwi ≥ πα

~r (i), ∀i ∈ K
⋃

F. (19)

Since after all push operations~p(i) = πα
~r−~s(i) then the vector

~p(i) + ǫwi provides a node-wise upper bound to the elements
in πα.

Expressing the RWR probability as an infinite sum of path
probabilities allows us to establish another desirable property
of EI as a proximity measure.

Lemma 3: (Symmetric EI)The effective importance is sym-
metric qi(j) = qj(i).
Proof of Lemma 3. Proof:

qi(j) =
πi(j)

wj

=
di(j)

wj

=
1

wj

∑

t:i→j

P (t)α(1 − α)l(t)

=
1

wj

wj

wi

∑

trev :j→i

P (trev)α(1 − α)l(trev)

=
rj(i)

wi

=
πj(i)

wi

= qj(i).

The first and last three equalities follow from the introduced
definitions and Theorem 4. The fourth equality follows from
the existence of one-to-one correspondence between paths of
the form t : i → j and their reverse pathstrev : j → i
traversing the same edges in the opposite direction. Every
mapped pair(t, trev) of paths have the same length and the
probabilities of the two paths are related as follows:P (t) =
wj

wi
P (trev).

B. Handling tied EI values

One possible corner case for thekNN algorithm is the
existence of ties in the EI. If two or more nodes have the same
EI with respect to a query node their feasibility intervals will
overlap for any instance ofK during expansion. If a series
of tied nodes happen to overlap with thek-th and(k + 1)-th
positions in the top-k order, the whole network will have to be
expanded in order to answer the query. Ties are possible due
to nodes that map to each other in graph isomorphisms. Such
ties need to be detected early in the expansion as otherwise
the exact top-k neighbors will require computing the actual
stationary distribution. Detecting a graph isomorphism isNP-
complete, since it is polynomial time reducible to the graph
isomorphism problem [23]. However, we can cheaply detect
a class of automorphisms consisting of nodes, connected “in
parallel” to exactly the same set of neighbors. We detect most
ties using this efficient check while performing the expansion
process.

