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Abstract—We address the problem of & Nearest Neighbor
(kNN) search in networks, according to a random walk proximity
measure calledEffective |mportance. Our approach retrieves the
exact top neighborsat query time without relying on off-line
indexing or summaries of the entire network. This makes it
suitable for very large dynamic networks, as well as for compsite
network overlays mixed at query time. We provide scalabilit/
and flexibility without compromising the quality of results due
to theoretical bound guarantees that we develop and incorgate
in our search procedure. We incrementally construct a subgaph
of the underlying network, sufficient to obtain the exact top k
neighbors. We guide the construction of the relevant subgah in
order to achieve fast refinement of the lower and upper proxinity
bounds, which in turn enables effective pruning of infeasite
candidates.

We apply our kNN search algorithm on social, information
and biological networks and demonstrate the effectivenesand
scalability of our approach. For networks in the order of amillion
nodes, our method retrieves the exact to20 using less than0.2%
of the network edges in a fraction of a second on a conventioha
desktop machine without prior indexing. When employed for
nearest neighbors search in composite network overlays, ficales
linearly with the number of networks mixed in the overlay.

I. INTRODUCTION

frequent network changes and user-centric prioritizatibiine
different components.

Networks have also become popular in Bioinformatics for
modeling interactions of genes within the cell that perform
high level cellular processes. Edges in such networks septe
interactions between genes. Evidence for interactionsngmo
the same set of genes in a genome are often available from
multiple data sources and detected by a variety of methods.
Gene interaction networks are leveraged forsilico drug
design [11], functional inference [7] and phenotype predic
tion [24]. The drug design process, for example, involves
studying the effect of regulating a single or a set of genes on
the cellular apparatus. An essential computational chgéen
drug design is the ability to identify the set of highly imped
genes as a result of inhibiting a target gene of interest. The
affected genes map to the closest interaction partnerseof th
target in the network. For a specific drug design task, some
interaction data sources may be more relevant than othads, a
hence the need to find the closest network neighbors aceprdin
to a query-driven weighting of network layers in the compmsi
environment.

The common ground for networks of different genres and

The recent growth of online social and information networkisom diverse domains is the need for flexible and scalable

gave rise to the emerging field dfletwork Sciencd5].

analysis methods. We propose a scalable approachk for

It aims at studying and modeling the behavior of agentlearest NeighboriNN) search in networks. Given a query

interacting within communication, socio-cognitive andom

node in a network, the problem is to identify its closest

mation networks treated as a single composite ecosystemnofies. We generalizeNN to multiple networks over the same

inter-dependent layers. The individual network layershimit

set of nodes, called network overlays.

this system are typically large-scale and dynamic. Pagwis A scalable kNN search provides an important tool for
relations among entities and agents in networks arise framploration and analysis of the abundance of networked ttata

different sources and can be based on multiple featuredows for characterization of the neighborhood of a nod# an
For example, people may have accounts in several onlieeables diverse applications, such as community iderttdita
social networks, targeted towards different interactigges. A anomaly node detection, classification, link predictiord an
single individual can be a user &acebookto keep up with collaborative filtering. For example, in the case of comruni
her friends,LinkedIn to organize and maintain her businesglentification, one is interested in the underlying network
contacts, and.ast.fmto discuss musical trends with fellowclusters, formed due to network connections. One can ap-
listeners. This diverse social ambiance is complementeghbyproach this problem by first obtaining the nearest neighbbrs
information layer in the form of email communication, gennodes in the network and then merging nodes of significantly
eration and discussion of blog entries or shared photograpbverlapping neighbor sets. Such application scenariosaddm
Supporting exploratory and analysis tasks in such congosit scalable and flexibleNN search solution suitable for large
systems has to be flexible and scalable in order to refleaid dynamic networks.



Existing work on proximity in networks adopts either intion and biological networks should also incorporate weigh
dexing of the network to facilitate online queries [18], [14 on the edges as opposed to binary links. This is essential
or proximity approximations that work well in practice bufor kNN search in networks, as relations have inherently
lack theoretical accuracy guarantees [33], [6]. Time-asgpa different strengths that affect how close a given neighisor i
indexing approaches are not feasible when the underlyitgthe query. For example, interactions in gene networkg hav
network changes or when search is performed in a compogdéeels of certainty and magnitude captured by their metHod o
network, constructed according to query-specific pripation. detection. Similarly, co-authorship links in a scientifiapgr
Approximations may be undesirable when accuracy is a pcdellaboration network are “stronger” for collaboratorsttwi
ority. In addition, previous approaches are not flexibleugsio multiple joint manuscripts or when they have collaboratad o
to handle prioritization of layers at query time in compesita manuscript of high impact. A proximity measure and search
networks. We propose a scalable solution for nearest neighimethod should not be agnostic to this quantitative nature of
search that explores a small subnetwork around the quéhng links in networks.
node, sufficient to retrieve the exactnearest neighbors. We define a network proximity measure, calledfective

Instead of relying on off-line indexing, we adopt onlindmportance (El) El captures community structure in an online
pruning of infeasible candidate neighbors based on determiashion and at the same time exhibits advantageous theoret
istic bounds on their proximity to the query, computed ical properties that allow its efficient bounding. In adaoiitj
the fly at search time. The unique advantage of our onlirmir measure and pruning criteria are specifically tailored t
pruning, enabled by local bounds computed from scrataeighted links, which allow us to model strength of connec-
lies in its direct applicability to nearest neighbors sbkardions and determine the top closest neighbors according to i
in composite, query-centric mixtures of networks and large Our contributions in this paper are as follows:
dynamic networks undergoing frequent updates. For both of1) we introduce theEffective Importance (Eljs a prob-
these applications, the answer to the questWho are the top abilistic proximity measure in networks; this measure

neighbors of a given node&hould reflect a user prioritization captures community structure and can be computed
of the network layers, and should be provided based on local  efficiently with theoretical guarantees.

computation that does not involve the whole network. In line 2) We propose a scalable algorithm foNN search in

with the above goals, our design of /N search method networks that does not rely on off-line indexing.
revolves around two key pointsfiexibility in query expression  3) We develop effective pruning criteria, based on locality
and scalability. properties of our proximity measure.

Flexibility in layer prioritization is essential, sincevgig  4) We propose the problem of nearest neighbors search in
more weight to some tiers in a composite network, as opposed  a query-specific composition of networks and design a
to others, may result in qualitatively different query aessv scalable solution for it.

For example, the closest neighbors of a person for the purs) Our experimental evaluation demonstrates the scaiabili
pose of music recommendation are different than her closest of our approach. It is capable of retrieving the top

neighbors in terms of research collaboration opportusitie neighborsl00 times faster than an exhaustive technique
Our second key goal of scalability NN search with the while using less than.2% of all network edges.

size of the network is dictated by the tremendous rates at

which contemporary networks grow. Services like Facebook Il. RELATED WORK

and Twitter enjoy multi-million user base, generating &arg The problem of nearest neighbors search in networks has
amounts of information content. A practical neighbor shardeen previously addressed in the context of different ne¢wo
method for such scales and rates of changes should obtaintiipes and in terms of different proximity measures. The
k Nearest Neighbors of a node locally, without computatioshortest path measure has been propose@Nidt search on
involving the whole network. road networks [16], [26]. Although appropriate for navigat

The network proximity measure is the key ingredient for rat disregards the multiplicity of sub-optimal paths as wel
bust nearest neighbors search. The real value of netwodtad dhe degrees of connecting neighbors along the shortest path
lies in captured transitive connectivity information, eded in  Conversely, processes in information, social and bioklgic
the network structure. A good proximity measure shouldinconetworks may take place along multiple sometimes suboptima
porate a network’s structure, beyond the immediate neighhmaths. Another proximity measure that captures the efféct o
connections. Network nodes, in the same network communitwltiple paths is the maximum flow between two nodes [10].
that are connected by multiple good paths are intuitivedget However, it does not penalize longer paths and can be sensiti
than weakly connected nodes that do not cluster togethrsmall perturbations, since it depends on the capacithef t
Consider, for example, a network of two clusters that amttle-neck between the source and destination.
connected by a single link. Although the nodes, adjacemtiso t Network proximity has also been modeled Ieffective
link are direct neighbors, they belong to different comntiesi conductance (ECn an electrical circuit corresponding to the
and are expected to be less similar than direct neighbohérwit network graph [13], [20], [29]. As Faloutsos and colleagues
the community. point out in [13],EC does not account for large degree nodes,

A robust proximity measure employed for social, informaconnected to multiple small degree nodes. Drawbacks of EC,



are addressed by either introducing a universal sink [23]] [ shape of the stationary distribution of RWR, while we aim at
or by considering a cycle-free version of the effective aaid computing the top neighbors with guarantees.
tance [20]. Different from such topology augmentations, we Our proximity measure is related to a recent graph parti-
propose a measure that handles large degree nodes witleoutitiming method proposed by Andersen et al [3]. The method
need of additional parameters. approximates a random walk with restarts and performs
The stationary probability ofandom walks with restarts a sweep on thelegree-normalizedRWR vector to obtain
(RWR)has also been used as a proximity measure [31], [32]. small-conductance cut. The degree-normalized stationar
Tong et al. [31] proposed a RWR-motivated approach that cprobabilities were originally used by Lovasz et al to prove
capture both negative and positive personalization diift&a a mixing rate result for Markov Chains [22]. This normalized
follow-up approach [32], the authors improve the runnimgeti stationary probability renders nodes from the same network
of the method for bipartite graphs. Both algorithms are Baseluster closer than nodes from different clusters. We ¢ad t
on the pre-computation of a low-rank approximation of the adjuantity Effective Importance (Eland adopt it as a proximity
jacency matrix (or Laplacian) of the graph, originally pospd measure. We establish new theoretical properties of El that
in [30]. These methods are not applicable to dynamic grapésable our fast online and index-frédIN search algorithm.
as the low-rank approximation procedure is too expensive to
perform online. In addition, the RWR stationary probapilit
is not well-suited for a proximity measure due to its bias In this section we define and evaluate our proximity measure
towards high degree nodes. Our measure Effective Impatamnd establish its theoretical properties. We leverageethes
is related to the RWR probability, but addresses the problgiroperties to construct efficient locally-computed boutodtie
of high degree neighbors and captures community structurgroximity of candidate neighbors to a query node. The bounds
The use of random walk average commute time as proximaye then employed in the design of a scalable onkiN
measure was proposed by Sarkar et al. [27], [&8anch27] algorithm for large dynamic networks and network overlays.
adopts a truncated version of the commute time, in whichWe represent a network as a weighted undirected graph
walks are restricted to a threshold length, and discovesest G(V, E,W), whereV is the set of nodesE is the set of
neighbors according to this measure. In a later work, tleelges, andi? is a mapping of the edges to real weights
authors propose a better running time algorithm for truedatW : (4, j) — wi;,4,5 € V, (4,7) € E. The volume of a node,
commute time, based on sampling [28]. The latter methanotedw; is the sum of the weights of its adjacent edges
introduces probabilistic guarantees for the sampling @ppr w; = »_(; ;)cp wi;- The transition probability of a random
imation and demonstrates a significant speed-up suitable ¥ealk from nodei to node; is defined as—“. If the Markov
online search of the top neighbors. QtMN algorithm based chain corresponding to the graph random walk is ergodic then
on Effective Importance shares this query-time local compits stationary behavior is governed by a unique distribbutio
tation property, but it does not involve dynamic programgnin of state visit probabilities, calledtationary distribution The
and the topk guarantees we provide are deterministic astationary probability for RWR of nodg, if restarting to
opposed to probabilistic. Moreover, our method examinesnader with probability «, is denoted as®(j). This can be
query node’s locality adaptively based on decreasing pritxi expressed according to the balance condition as:
as opposed to defining a fixed hop-based truncation of the

IIl. EFFECTIVEIMPORTANCE ANDkKNN SEARCH

random walks adopted bgRanch 1— N o . i i
The problem of scalabl®WR computation has been ad- (i) = { EH— (01‘)_204(3,32):@\/(10;1(5{)/72%; o ii:
dressed in the World Wide Web and data mining communi- (4,5)eE\W5i/ W5 )Tr ] )

ties [6], [9], [12], [14], [15], [18], [33]. Haveliwala et &15] e will omit the o superscript when the context allows it.
showed that biasing the random walks to a set of restart nodes

is equivalent to a linear combination of the proximity to leacA. Effective importance (El): a measure to capture communit
of the targets. There are three major optimization direstfor structure
RWR from a single target: off-line index construction that f

cilitates on-line proximity queries [18], inexact evaliaat [6], proposed proximity measureEffective importance (El)We

[9], [12] or & combination of the two [14]. ~ discuss (i) previous theoretical results that guarantes El
Indexing approaches are not suitable for composite nfjality and (ii) empirical evaluation on four networks of
works, in which every distinct type of edges is weightegterent genres.

according to a user query, since the index, would need to beyefinition 1: The Effective Importance (EIpf a network

precomputed for every mixture of data sources. Although thgqe s jts volume-normalized RWR stationary probability,
methods presented in [6], [9], [12] produce experimentallyafined as:
very accurate RWR probability approximation, no theomdtic (1)

guarantees are provided. A recent method [33] provides an r (i)_ : w; _ @
aggregate bound on thiel error of the approximated station- For zero restart probabilityo = 0) on undirected graphs,
ary distribution, but no node-wise guarantees. In additiba El is a constants L for all nodes [21]. For increasing

above methods are tailored towards approximating the khctua El is higher for the restart node’s neighbors that keep the

This subsection introduces and evaluates the quality of our




walker in the restart node’s proximity. Such close neigkbor +Eecive Importance +Eecive Importance
. .. . 0.95| :RandomWalkswlmReslart 0dl :RandomWaIkswllhReslavt
receivemore visits per adjacent edgean nodes further away o} /... o~ o5eea Shortest Path
or nodes that let the walker “escape” to other parts of the £ossr
network. o
We propose the use OEl as a proximity measure of = .-

the restart node to all other nodes. Compared to the RWI °®
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probability which has also been used as a proximity measur ° v ® * o0 10 ® % w0
([31], [32]), EI assigns high proximity to nodes that connec (a) Flickr Friends (b) DBLP

to the restart node and its neighbors, as opposed to nodes -*

sheer high degree. It captures the effect of network clgster o “randon ek i pesar] 0] - Fadon ks win e
rendering nodes within the same cluster closer than nodes °s

tance

different clusters. 5N

-#-Random Walks With Restart: 03
-4-Effective Importance
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o () YeastNet (d) BioGRID

Fig. 2. Conductance of cuts based on Effective ImportaneedBm walks
with restarts and Shortest paths. Closest El neighbors tmetter clusters
kS around the query as compared to the closest RWR or SP negtbor
Flickr[25] (a), DBLP co-authors(b), YeastNet[24](c) andBioGRID[1] (d).
Lower cut corresponds to better separation of the #apeighbors from the
rest of the network.

2 4 6 8 10 12 14 16 18 20 22 24
Node Id

(a) Network example (b) Comparison of the proximity to nodé
based on El and RWR ) ) o
prove useful local properties of El that enable its efficient

computation and its applicability fok N N proximity search
in large dynamic graphs.

We illustrate the effect of using El as a proximity measure Next, we evaluate the_ ut|I!ty of using El as a proximity
in a small example graph and further quantify this effect il{ea\sure in real world biological and collaboration netvgork
t

Fig. 1. A network example (a) and the proximity to notleneasured by
RWR and Effective Importance (b).

real-world networks. Figure 1(a) shows a small network fq 0 qgantify the difference of .proximity rankings, we evaia .
which we compare the proximity of all nodes to nodbased e tightness of the clusters induced by the subgraph ¢ontai

on RWR and El (Figure 1(b)). Edges between nodes design%ﬂ%thﬁ c:ostest ??gh_bc;]r;. We fcons(;derlthehm;EI, RV\C/]IR d
similarity and for the sake of clarity they are unweightethis and shortest path neignbors of randomly chosen nodes an
example. RWR ranks nodeésand 6 as the nearest neighboréﬂeasure their separation from the rest of the networ_k mste_rm
of 1, due to their high degree compared to the other neighb(s)rfs.cm conductance [8]. The conductance of a cut is defined

of 1. Intuitively, node6 should not be among the closest and™

hence most similar nodes taas it is part of a different cluster, ?,(Q) = — )
. . . . min(>. o wi, Y. w;)

connecting to multiple non-neighbors tfin other wordse6 is €Q JEVAQ T

similar to a number of nodes, which are neither similar toenodvhere @ is the set of top neighbors of a query noge

1, nor to1's neighborhood. Conversely, El renders no8e8 The conductance measures the fraction of cut edges to all

and4 closer tol as they connect and are similar exclusivelgdges on the smaller size of the cut in terms of volume. It

to 1 and among themselves. EI measures the number of vis#sa well-established measure of the optimality of a two-way

per adjacent edge and thus ranks high nodes that connect wkittering [8], [19], [3]. The smaller the conductance tla¢tdr

with the query and contains the random walk in its vicinity.the separation of the nodes on both sides of the cut.

The ability of El to rank well-clustered neighbors around a Figure 2 presents a comparative analysis of employing El,
guery node has been exploited by a family of recent locBRBMWR and Shortest paths (SP) as proximity measures in social,
partitioning methods [4], [3], [2]. All above methods seeko-authorship and gene interaction networks [25], [1]] [2@r
to obtain a good-quality local cut around a target node ljetails on the datasets refer to the experimental Sectien 1V
performing a sweep based on El. All nodes are ordered By. We measure the conductance around a random target
their decreasing El from the target and a cut at every positioode for sets) comprised of the closest neighbors. We
is evaluated and the minimum of all such retained. Partitgulareport the average conductance $orrandomly chosen target
Andersen and colleagues [3] show that for any set of nodesdes in each of the networks. El achieves consistentlgbett
C of conductancey, they can produce a cut of conductanceonductance than RWR and SP for increasing position of the
O(y/vlog ) ,ccws) using the EI proximity vector from a cut k&. RWR’s worse performance can be explained by its
node in C. While the above methods use El as a rankingreference for high degree nodes. The good performance of SP
function, their goal is local partitioning. In this work, weon DBLP (2(b)) is due to the natural clusters corresponding t

D ieQ.iev\Q Wis
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academic labs with high degree among the lab members gdning irrelevant candidates residing iih without the need
not many connections to other labs. The SP measure suffefconsidering them as part of the active graph used at query
from instability due to multiple tied nodes in unweightedime. If we find a way of obtaining the largest actual EI within
networks (we order such nodes arbitrarily) and its inapilitthe fringe set?’, we can usé1 — «)-fraction of it as an upper
to account for multiplicity of paths. bound to all unobserved nodes in Obtaining the actual El

El can also be interpreted as the odds ratio of the visit F', however, requires computing the stationary distribution
probability of a random walkwvith restartsversus a random of the whole graph. Instead, we will apply this theorem using

walk without restarts an upper bound to the EIl iR’ derived based on analyzing the
ol as o a0 subgraph induced by |J F'.
ar (@) = m(3) /wi o< (2 (3) /i) Z wj = (0) /(1) Now we are ready to introduce our lower and upper bound
JEV

4) constructions for the values of El within the active $ét

Odds of visit for nodes closer to the restart node are higher-rheore",1 2:(L_ower bound) _For a modified network
than nodes far from it. Note that the normalization factor &rathlb n Wh'Ch every outgoing edgef,z) € E, f € F
the total network volume in (4) is common for all nodes, sg: replaced with a self-edgef, f), such thatws; =
comparing nodes by El is equivalent to comparing them B (f.z)eE Wfz = W/

restart/no-restartodds ratio. ) ] ,

Evidence for the advantages of using El as proximity mip (i) < (i), Vi€ K @)
measure are both based on theoretical analysis [3] and our Proof: Available in the appendix. u
empirical evaluation in Fig. 2. The ability of El to rank 1he above lower bound construction transforms all fringe
high well-clustered neighbors of the query coupled with tH&0des into sinks, as their incoming edges are kept but their
theoretical properties we derive in the following sectionske ©Utgoing edges are redirected to themselves. The random
it a useful graph measure for large dynamic networks amjalker in this augmented network cannot progress to thesiode

network overlays. in U and hencer] = 0. As a result, we can compute the
values ofrf in the sub-graph containing only nodesiAnJ F'
B. Bounds on the Effective Importance by solving for the stationary distribution of this smalleapgh.

Performing RWR witha > 0 creates a bias in the Effective The lower bound values;; approach the actual values®
Importance, causing neighbors of the restart node to recefi®| /| approachesV|. Refining the lower bound estimates is
more visits per adjacent edge. As a result, every node in th@ssible at the price of solving for the stationary distfiw
network, excluding the restart nodghas at least one neighbor©f 1arger sub-networks. This “pay-as-you-go” property loé t

of higher EI. construction allows for flexibility in defining the séf. In our
Lemma 1:(Unbalanced EI) Consider a random walk with experiments, the lower bound is very tight with respect ® th
restarta: > 0 to noder in a weighted graph. Then, actual value for small sizes @f. The bound for El is obtained

from the stationary distribution bound as follows:
Vi £, 3i{(,i) € B,q:(0) < (1— ), ()} (9) )
Proof: Available in the appendix. [ (i) = 22
Lemma 1 is central to deriving a bound to all nodes in the i
network based on a subgraph around the query as outlined iin order to provide guarantees for the tbmeighbors of a
the following Theorem 1. given node, we also need to bound each node’s El from above.
For the rest of our results, we assume a partitioning of tlégur upper bound construction is inspired by a push-based
nodes in the graph in three sets: (i) a set of known (activelgorithm that was originally proposed to obtain an approxi
nodesK; (ii) a set of fringe noded”, directly connected to mation of the RWR importance [6], [18] and later modified for
nodes ink; and (iii) the set of all other nodds. The restart performing efficient local graph partitioning [3]. We trdoisn
noder is a member ofK” and there is no direct edge betweeithe approximation algorithm into a upper-bounding procedu
K andU. Our kNN algorithm will operate on the sét, using The method in [3] computes anapproximation of the RWR
lower and upper bounds to all network nodes, also computeigtribution.
within K. The smaller the active sdt, the lower the online  Definition 2: An e-approximate RWR stationary distribu-

, Vie K (8)

search running time. tion for 7 is another distributionry_ ., computed by restart-

If the EI values of nodes inF are available, we can ing according to the restart vector 35, where0 < 5(i) < ew;.
established an upper bound on the El of all node& in Note that here we overload the adopted notation for restart-
Theorem 1:(Bound on El in U) ing to a single node by changing it to a vector specifying

multiple restart nodes. In the notation aboveis a vector
¢r-(u) < (1 -a) g ¢-(f), YueU. (6) containing1 in the position of the restart node and 0
Proof: Available in the appendix. B elsewhere and is a vector containing small non-negative

Note that according to Theorem 1, there are no restrictiomalues. The original approach [3] fixes the desired value of
on how the setK' | J F' is chosen as long as it contains the and computes the approximation in a size-unconstrained
restart node. This theorem provides a powerful mechanism gubgraph of the original graph. We turn the problem around



for our upper bound construction by evaluating the accurapyobabilities is obtained by adding the approximation galu

of the approximation for a fixed subgraph. We answer ttand the maximal deviatiorlline 15). Similar to the lower

question:“If the approximate vector is computed in a fixecbound, the upper bound to the El is obtained by normalizing

subgraph, what is the maximal node-wise devia&@h. the importance upper bound computed with the push algorithm
Our upper bound is computed by transferring mass bl every node’s volume:

decaying magnitude along the edges in our active set of nodes _

K of the network until the mass left to transfer from every qup (i) = ﬁ“b(l), Vi € KUF (9)

node becomes negligibly small. In this process we maintain i

two vectors: the approximation vectprand the push vector | emma 2:Let 5*) and 5(*) be the resulting vectors after

8, both of length|K|. We construct an upper bound on theypplying a single push operation from Algorithm 1 on the

RWR distribution vector based on the vectgrands. previousp ands. Then
Algorithm 1 Upper Bound P=7 .= p" =72 ., (10)
1 Input:r, o, K|JF Proof: The push operation we perform is the same as
2: Output: 72, in [3]. The only difference is that we work with generally
3 Qazy = 57 weighted graphs, however the same proof applies here as well
4: Initialize p(i) =0,Vie KJ F, u
5: Initialize (i) — 1 !f i=r Notice that after.performmg a push operatlon_ on all nodes in
’ 0 ifie KUF/{r} K, the correspondingdecreases. Formally, the initial pale=
6: while p"and 5 have not convergedio 0 is a valid trivial approximation of the stationary distrtmn,
7. Choose any € K however its corresponding approximation deviation is
8 i) + = aiezys(i) . 1
9: for Vj,(i,j) € E do €= max ) =, (11)
10: g(j) 4 = (1*0‘21azy)§‘(l')ww_iij iEKUF w; w;
11:  end for which is too loose to be practically used for bounding the EI.
122 §(i) = (1_(’2&5@) During the push operation, mass is moved from the push vector
13: end while B and added to the approximation vector. As a result, the norm
14: € = maxieKUF(%?) of p increases monotonically while the one &fdecreases
15: moy (1) = pli) + ew;, Vie K JF monotonically by the same amount. When this transfer of mass
16: return  mgy becomes close to zero, we terminate the push operations.

Theorem 3:(Upper bound) The vectorr, (i), computed

We first present our upper bound procedure in Algorithm by Algorithm 1 provides a node-wise upper bound6(i).
and later provide justification for its correctness. Theuinp Proof: Available in the appendix. [
to the algorithm includes the restart node the explored  We present our upper and lower bound constructions for
subnetworkK | J F, and the restart probability. The push the case of single restart node, for the purpose of simyplicit
algorithm is performed on a “lazy” version of the adjacencgf presentation. Due to the linear combination property of
matrix, in which every node has a self edge of weight equal stationary distributions of RWR showed by Haveliwala et
the volume of the node. As a result, at every node a rand@h[15], all results carry over to restarting to multiple msd
walker may (i) move to the restart node with probability with different restart probabilities.

(i) stay in the same node with probabilitf — «)/2 or (iii) The computational complexity for the evaluation of both
follow a random outgoing edge with probabiliff — «)/2. our bounds iSD(c|E|k ), where|E| is the number of edges
Andersen et al. [3] show that performing'lazy” RWR with adjacent to nodes ii. Thec term depends on the mixing rate
restart probabilityy,., is equivalent to computing mon-lazy of the Markov Chain, corresponding to the adjacency matrix
random walk with restart probabilit¥a;,., /(1 + cuazy). As  Of the nodes inK. In our experiments is typically a constant
our goal is to bound the distribution for a given input restain the order of100. The size and density of the active graph
probability, we first determine the corresponding “lazystat induced onK is the dominant component of the complexity.
probability (line 3). Next, the approximationy’ and pushi” Therefore, being able to determine the top neighbors using
vectors are initializedlines 4,5) Push steps are performeda small active subgraph is crucial for the small online query
until p" and+ converge. time.

Every push operation increases the approximation value ofin this section, we derived upper and lower bounds to the
the current nodgline 8), increases the push values of alkffective importance of nodes within a predefined subnetwor
neighbors(lines 9-11)and finally decreases the push valu¢hat contains the query node. In addition, in Theorem 1,
of the current noddline 12) We estimate the deviation ofwe showed that if the El is available for nodes in a fixed
the approximation vector from the actual stationary distri subnetwork, we can bound (from above) the El of all nodes in
tion, based on the maximal ratio of remaining push valube rest of the network. We combine these results for pruning
per unit mass(line 14). An upper bound to the stationaryinfeasible neighbor candidates.



C. Bound-Driven Candidate Pruning Algorithm 2 Online kNN Search

We employ our lower and upper bound constructions fort' INPUt: T o kandG
pruning nodes that are not among thenearest neighbors. % Output: Ordered set of top-nodes
We can also use the same node-wise bounds to determine the!nitidlize K = {r} U{j; (i, j) € E}

exact ranking among the top neighbors if the application Computeqlz andgqy,
demands this. 5: Computeqy, (u), u € U
: while Top k£ cannot be guaranteeatb

Extend K with the nodes highest;;
Refineq?,, ¢, and g, (u),u € U

: end while

IIIIII\ """" 10: return Top-k nodes

»

H
-
"

o

Effective Importance

D. Online kNN Search

The refinement of the feasibility intervals, discussed & th

previous section, comes at the cost of re-computing therlowe
Fig. 3. Pruning of infeasible candidates. and upper bounds for a larger instantiationfof We would
like to obtain the minimal sef{ that allows us to answer a

Figure 3 shows a running example of our pruning criteriopecific query. An exhaustive search procedure for an optima
for effective topk searching. The example assumes that the would have to evaluate all subsets of connected nodes that
active setK is available. Lower and upper bounds to the Edontain the query. For our applications on large and congosi
in K are computed and feasibility intervals are formed faietworks, any attempt to find an optimal subgraph would add
each node. These intervals are shown using vertical errsr ban impractical overhead. We define a greedy procedure that
in Figure 3 and nodes are sorted by decreasing lower boundes the previous bound estimates to direct expansion. We
The first 8 nodes comprise the known part of the networlidd a fixed number of nodes from the curréntto K that
K, nodes9-16 comprise the fringe set’ and nodesl7 and have the highest lower bound estimates.
on belong to the unknown part of the network. Since the Qur online kNN search is outlined in Algorithm 2. The
nodes inU are unknown, together with the edges amon@put consists of the query node the restart probability, the
them, we can only bound them from above according fumber of top neighboré and the network. The sek is
Theorem 1. Note that in order to apply Theorem 1 we negéltialized with the query node and its immediate neighbors
the actual maximum EIl in the fringe sét. Since Obtaining (|ine 3) Next' we Compute the lower and upper bOUl(Ika
the actual values requires computing the exact RWR stationa) of the EI of nodes in the subgragfix | , according to
distribution on the whole graph, we can use their upper bsunghe constructions and algorithm in Section 11I-B. The upper
instead, obtained according to Equation (9): bound for all unexplored nodes (part©@) is computed based

on Theorem Xline 5). A series of expansion and refinement
steps is performed until the taplist can be guaranteed usin
(1=a) I?g})«“( Gun(f) 2 (1= a) I.?gf)«“(q(f) Z @, VueU. (12) thepfeasillaaility intervals of car??idate nod@'mges 6-9) ’

If the query for this example ig-NN, we can guarantee 1 ne Size of the sef(, sufficient for determining the exact
that the first4 nodes are the actual topneighbors as all of KNN, depends on the network structure around the query.
their lower bounds dominate the upper bounds of the restRgrticularly, structures that result in close EI values fu t
the nodes ink | J F' and also dominate the upper bounds df-th and (k + 1)-th neighbors, demand a large number of
nodes inU. Note that we can give this guarantee, regardle§¥Pansions due to persistent overlap between their féasibi
of how many nodes comprigé and without exploring more intérvals. Our algorithm can be easily relaxed to overcome
nodes than the ones iff | F. The actual ordering of the top SUCh situations when very fast response is demanded and a
4, is not certain in this case as some of their feasibilityrivaes  Small uncertainty of the top-set is tolerable. In order to adapt
overlap and their actual order may possibly be differenhth&ur algorithm tom-tolerant kNN search, we terminate &ne
the one shown. 6 when less thann candidates are left to prune. The result

In the same running example, however, we cannot provi§gt contains at mosi + m nodes including the actual top-
guarantees for the exastnearest neighbors since the feasi?€ighbors. Evaluation of the computational savings froehsu

bility interval of the eight top candidate ik’ overlaps with @ rélaxation in our experimental section shows that sigmific
those of nodes i and U. In this case we can expanid online time is spent in pruning the last few candidates.

by including more nodes with full information about their _ .

neighbors. Subsequent expansions &f would refine the E. kNN in Composite Networks

bounds estimation and shrink the feasibility intervals mgk  Composite network overlays model the connections of a
guarantees possible for the nearest neighbors set. node in multiple networks in which it participates. We calesi

0 2 4 6 8 10 12 14 16 18 20



The DBLP co-author network consists of collaboration
links between scientific authors based on joint papgrs £
700k, |E| ~ 4.5m). This network is created from the public
DBLP! dataset by adding a link between two authors if they
have joint publications. Link weights are based on the count
of joint papers for the adjacent authors.

Another large scale network we evaluate contairthrae-
million-usersample of the Flickr social graph. We also infer a
second Flickr network layer based on common photo favorite
Fig. 4. Naive active set compared to an optimal composition-awarggokmarks of users. We use data provided by the authors
counterpart. of [25]. The dataset contains a list B4, 885,921 friendship
links connecting14, 648,975 anonymized users. We work

kNN search according to user prioritization of the nenNorlé’fv'th the largest connected component 8fmillion users and

in the overlay. We define the composit&N query as the 4,648,975 connections termeBRIENDSIn the experiments.

triple < r, k, B >, wherer Qndk are the query node and11-|-2h6e7 3F2|E)Ckrh tdatasedtf alsc_)t (lzjontliuns klr:jforrth;\tlor; about
the number of desired NN anglis a vector that specifies the ’ photos and favorite bookmarked photos by USETS.

user-defined weight of each layer. We assume there existﬁ%ng this data we construct a second network based on shared

one-to-one mapping between nodes that represent the s Ig}z]%kmarks by users. To score the similarity of user tastes we
entity in different layers use theDice set similarity coefficient.

One naive approach to performing compogitéN search 2| By, N Bu,|
is to (i) apply the onlinekNN procedure (Algorithm2) to s(up,ug) = —1—"2
each layer separately, (ii) discover the correspondingyesit | Bus [ + [ Bus |
subnetworksk,, in each network layei,, and then (i) wherewu; andu, are two users and,, and B,, are their
compose a network, induced BYJ,, K’} with links, weighted corresponding sets of bookmarked photos. We further thresh
according to the mixture vectgt. This approach is pictorially old the similarities, keeping only values greater thanl.
presented in Figure 4 for two-network overlay. Although iFor overlay experiments on Flickr we sample overlapping
would scale much better than performing a mix of the wholgsers that are both in the largest connected component in the
networks in each layer, it could lead to inefficient selattiofriendship network and in the similarity network termeayv
of the relevant subnetwork in the overlay. We refer to this the experiments.
approach adNaive Other experimental networks we use for evaluation come

The overlap of relevant nodes in each layer may be sm#&bm genomic research. We experiment with a functional yeas
for uncorrelated layers. For example, friends might notaisv interaction network BioGRIB Nodes represent gene products
have the same taste in music. Moreover, the expansion in eagld links represent interaction between them weighted &y th
layer should be driven according to its weight f High- interaction strength. The network contaid 630 edges and
priority layers should be expanded more aggressively than | 4913 genes.
priority ones. Another biological network isreastNeta functional gene

In order to select a small relevant subnetwork in the overlayetwork overlay ofl0 data sources available due to McGary et
we push the mixture vectop into the expansion step ofal. [24]. Each layer corresponds to interactions detecsiugu
our kNN search §tep 7 of Algorithm 2). We expand with a different experimental methodology. The overlay corstain
priority-aware best expansion candidates, taking int@aot 5400 genes and more thad50,000 interactions in all10
feasibility intervals computed according to all layers lag t layers.
previous expansion iteration. As a result, we use a smallerall synthetic networks are constructed according to
active setK™ (in Figure 4) as opposed to a union of separa®arabasi’s preferential attachment generative model [5].
layer active sets produced Naive

(13)

B. Scalability

We study the performance of o&lNN in terms of running

This section is dedicated to evaluating the scalability ang,o 41q pruning power. All experiments are performed on a
performance of oukNN search algorithm based on Effective-,sing|e machine witt2G B of main memory andG H > dual-

Importance. We describe the datasets that we use for expefe processor. Our proposed algorithms are implemented in
mentation and next we measure the savings due to our boupg-,

based pruning.

IV. EXPERIMENTAL EVALUATION

Our natural control comparison when reporting query time
A. Data is the evaluation of KNN on the full networks (traces marked

We experiment with four real world datasets: two from the 1t ¢ p: // dbl p. uni - trier. de/ xni / dbl p. xni
social information networks domain and two from Biology.  ?ww. bi ogri d. com
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Full in the figures). Another machine-independent perfor-s | s P
mance metric is the fraction of edgeNIN explores to evaluate &, 0_3 ]

a query, i.e. the pruning power of our lower and upper bounds  o&—— — e

a) Synthetic networksWe use controlled synthetic net- k k
works to evaluate the scalability with nodes and edge densit (e) BioGRID pruning (f) BioGRID time (Full:10.2s)
F'gur?s 5(a) and S(b) presen; the sc_alabllltyk;NN for in- Fig. 6. Average pruning power (a), (c), (e) and online rugriime (b), (d), (f)
creasing number of nodes, while keeping the average degreei DBLP, Flickr and BioGRID. Running time for computing tieeasure on
a synthetic network fixed t6. The expected growth behaviorthe whole network for Flickr is projected based on DBLP size do the
of scale-free graphs is in line with this experiment, singehs MaP1Yy o fit the whole network in the main memory (2GB).
graphs are typically characterized by a large number oflsmal
degree nodes and a small number of high-degree ones. The . ]
size of the active subnetworl, sufficient to answer the 9'aph takes’ seconds on average, while pruning more than
kNN query, remains constant for increasing network size®)-4% of the network edges forn > 0.3. The increased
We observe this both in the pruning traces 5(a) that decre&S&nPlexity, compared to the DBLP graph is due to the higher
linearly on alog-log scale and from the running time whichdensity and the bigger size of Flickr. TR&IN search expands
remains constant 5(b). In comparison, the exact stationdf{# known graph ta0% and higher in the BioGRID network
distribution (denoted Full 5(b)) for 400 thousand nodes due to its smaller size. The actual number of used edges is

network takes close t6 minutes to compute. Our aIgorithmabOUthk' allowing for sub-second evaluation. For all three
answerskNN queries in less than a second forup to 30 networks we tolerate at mo3tadditional candidate nodes that

which makes it ideal for online analysis. are not prunedr = 3), which eliminates corner cases of very

Next, we evaluate the scalability of our approach for a gingF'0S€k-th and(k + 1)-th neighbors.
synthetic network as it becomes denser (Fig. 5(c), 5(d)). WeRestart valuesx > 0.3 in Fig. 6 allow for practical (close
fix the number of nodes tv0k and increase the total numbett0 1) search performance. df is too low, the random walker
of edges. The average size of the active edgesset 6% for explores almost the whole network dfis too high (exceeding
80k edges, but increases to more than half of all edges whef), the walker is restrained to the immediate neighbors of the
the average degree reach¥®s Note thatl0k nodes anc00k duery and does not capture the deeper community structure.
edges corresponds to a dense scenario in which computingAh#alue of o should reflect the balance between these two
exact El in the whole network takeé®)s (traceFull in 5(d)). €xtremes.

b) kNN search in real-world networksDur performance ¢) Composite networksNext, we measure the perfor-
evaluation on single-layer real-world networks is presdrin  mance of kNN in composite networks. Fig. 7(a) shows a
Fig. 6. We achieve sub-second search time in DBLP for valuesmparison of the pruning power of ldaive composition
of k up to30, while using less thaf.2% of the network edges. search (tracekNN-Naivg and our tier-optimizediNN for
The actual El in the whole network takes more tHa&i0s to  overlay of two synthetic network$W(| = 10k, |E| = 80k, k =
compute. The top neighbor search for the Flickr friendshifp). We choose a mixture vectqﬁof norm1 and increase the
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Weight of one of the networks fromito 0.5 while decreasing Composite network results in search times up5tseconds'
the weight of the other correspondingly. ThBIN algorithm while computing the actual El for the whole network takes
explores two times fewer edges tharNisve counterpart and more than’0 seconds.
is twice as fast. For the same overlay, computing the exact El d) RelaxedkNN: We study the effect of relaxing the
(Full in 7(b)) is 100 times slower. kNN search tom-tolerantkNN search for values of up to
We also measure the performance for increasing numberigf (Fig. 10(a) and 10(b)). Significant savings both in running
equally-weighted networks in an overlay (Fig. 8(a) and B(b}time and pruning are observed for smail= 5 as compared
We generate the networks by computing random permutati@fexact evaluation. This is due to typically few nodes ofyver
of the nodes in single power-law network and reconnect tR@nilar El situated around the-th position. On averag&0%
permuted nodes using the original edges. In this respeet, fiore online time is required to separate the feasibilitgrivels
presented results are pessimistic, as the separate netwgfkhese few nodes, vits% increased expansion of edges. For
have unrelated (orthogonal) edge sets. The number of nogigge networks and overlays, this small tolerance can enabl

is fixed to 10k and edges of each separate overlay netwog!ﬁ order of magnitude performance improvement'
are 80k (trace kNN-80k) and 200k (trace kNN-200k). For

80k edge overlays, our onlinéNN completes in a second, V. CONCLUSION
while the respective full computation (trace F8ll%) is 1000 We address the growing need for online, index-free search
times slower on average. When mixing denser netwat8K algorithms tailored to dynamic and multi-tier networksass
edges inl0k node networks), the search time increases to temultiple genres. We propose a novel and intuitive proximity
seconds for7-network overlay. Even when adding) dense measure called Effective Importance that captures the com-
networks in an overlay, thus forcing the resulting netwark tmunity structure around a query node. Our proposed solution
have2 million edges (20% ofall possibleedges), the&kNN  for the pivotal problem oftNN search is scalable and pre-
search takes on average less than seconds. serves result quality without using precomputed indicas: O
Search time for real-world composite networks is reportegkperiments on real world and synthetic networks reveabup t
for Flickr (Fig. 9(a)) and YeastNet (Fig. 9(b)). The Flickri00 times running time improvement of owNN, compared
composite search time (traé&V+FRIEND) is similar to that to exact computation of the proximity measure. Our method
of the FRIEND layer on its own, fork up to 20, while further provides a practical on-the-fly search solution for real ldior
neighbors become harder to compute. The similar bookmaggamic networks with accuracy guarantees.
(trace FAV) layer is sparser (similarity is thresholded 16,
details in Appendix) and hence the lower running time. For VI. ACKNOWLEDGEMENTS
the gene overlay YeastNet 9(b), we iteratively add layers Research was sponsored by the Army Research Laboratory
and compute neighbors fat up to 40. Regardless of the and was accomplished under Cooperative Agreement Number
relatively small number of nodes>k), the density of the W911NF-09-2-0053. The views and conclusions contained
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The first three equations follow from the definition of El, and
the balance equation. The inequality follows from the atgib
inequality ab + ¢d < max(b,d)(a + ¢),a,b, c,d > 0. Finally,
we use the definition of the volume of a node. ]

Proof of Theorem 1

Proof: Choosei to be the node i/ with largestg, ().

Then from Lemma 1 and using the fact that U — u # r it
follows that3f{(f, @) € E, (1 — a)q.(f) >= ¢-(a)}. Due to
the choice ofi as the node of maximum El i, it follows that
fq_f U. The nodef is also not inK since there are no edges
betweenU and K. The only possibility is thayg € F as the
three sets are mutually exclusive. Then we get the following
thain of inequalities: )
gr(u) < ¢:(2) < (1 - @)qr(f) < (1 — a) maxsep ¢-(f), for
everyu € U. [ ]

Lower and Upper Bound Proofs

Before we prove our lower bound correctness, we will
introduce additional notation.

The stationary probability of RWR can be also expressed as
an infinite sum of tour probabilities. A tourin the network is
a sequence of traversed nodesv; — vy — - - - v, denoted
also ast : v1 — wv,. Each tour is associated with a length
I(t) =n — 1 and probability of traversal

_Vilit1 (14)

Jeh et al. [17], [18] introduce thiaverse p-distancand show
that it is equivalent to the stationary probability of a RWR.
Theorem 4:(Equivalence of inverse p-distance andr)

d(j) = Y PHa(l —a)'® = m,(j), (15)

tir—j



whered,.(j) is theinverse-p distange- and;j are nodes iri/,  Since after all push operatiop$i) = 72__(i) then the vector

S

t is a tour starting from node and ending at nodg allowing (i) + ew; provides a node-wise upper bound to the elements

cycles; and the sum is over all possible distinct tours in T, [ ]
Proof: Available in Jeh et al. [18] for unweighted graphs. Expressing the RWR probability as an infinite sum of path
The proof trivially extends to weighted graphs. m probabilities allows us to establish another desirablgrty
Proof of Theorem 2 of El as a proximity measure.

Proof: Consider a nodé € K. Let us denote the total Lemma 3: (Symmetric ETjhe effective importance is sym-
probability of all paths inG from r to k that stay inK and do metric ¢;(j) = ¢;(4).

not include a node " JU asT® =3, . ., P(tx)a(l— Proof of Lemma 3. Proof:
«)!’x)_ Similarly let us denote the total probability of paths ()
from r to k that include at least one node U asT*V. a(j) = ;}
As the above two sets of paths are mutually exclusive and N ('7,)
span the whole space of paths fronto £ we have: B AY

Wy

K FU _ PRYO)
T +T _}ggﬁ%ﬂdl @) (16) Y P)a(l — )l®

J pei—si
Let us denote the total probability of paths fromto & in 1 Z _ﬂ
the perturbed networky;, as 7K. Note, that the superscript = w—j Z P(trey)a(l — @)'trer)
K is added just to clarify the fact that all possible paths in T e ij i
the perturbed network do not include a vertex outsiddsof o ory(d)
due to the nature of the modification. There a is one-to-one T w
correspondence from all paths contributingZté in G to all (i)
paths inGy, that contribute t(ﬂ”l{f. The latter is true as we = Tz
have not removed any edges withifi, so every path within = ¢i).
K in G exists and has the same probabilityGfy,. We obtain
the following equality: The first and last three equalities follow from the introddice

X K definitions and Theorem 4. The fourth equality follows from
™ =1y . (17) the existence of one-to-one correspondence between phaths o

the formt¢ : ¢ — j and their reverse path§., : j — i

Using the introduced notation, (16) and (17), we have: ) . : N
traversing the same edges in the opposite direction. Every

mk) = Y Pt)o(l-a)® mapped pair(, t,.,) of paths have the same length and the
tir—k probabilities of the two paths are related as followgt) =
= TK —+ TFU, due to (16) Z_Zp(trev)- n
> T B. Handling tied EI values
= Ty, due to (17) One possible corner case for theVN algorithm is the
= (k). existence of ties in the El. If two or more nodes have the same

El with respect to a query node their feasibility intervaldl w
overlap for any instance ok during expansion. If a series
of tied nodes happen to overlap with theth and(k + 1)-th
positions in the tops order, the whole network will have to be
expanded in order to answer the query. Ties are possible due
N o S to nodes that map to each other in graph isomorphisms. Such
thae obtainedy’ = 7_; is also anc-approximation of the yos neeq 1o be detected early in the expansion as otherwise
Ty Accordlng%)to‘ Definition 2 the corresponding should the exact topt neighbors will require computing the actual
dominate all 7,7 € K'{JF, hence (Step 5) computes thesationary distribution. Detecting a graph isomorphisriR-
corresponding. _ _ ~ complete, since it is polynomial time reducible to the graph
The authors of [3] show that i . is ane-approximation isomorphism problem [23]. However, we can cheaply detect
of ¢, then a class of automorphisms consisting of nodes, connected “in
Z 7o (i) > Z Te(i) — € Z wi, (18) parallell” to e.xactI.y _the same set _of neighbo_rs. We detect mos
ties using this efficient check while performing the expansi

[ |
Proof of Theorem 3
Proof: From Lemma 2 and the fact that the initial
assignment ofis a(wi)—approximation ofr2 it follows that
after all iterations of phsh operations (Step 4) in Alganith

i€s ics =
where S is any subset of nodes in the network. If we ChOS%I’OCGSS.
the setS as a singleton node ik | J F' and by subtracting
€> ;e wi on both sides, we get:

m& (i) + ew; > wl(i),Vie K| JF. (19)
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