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Abstract

This paper presents a scalable high-performance software library to be used for graph analysis

and data mining. Large combinatorial graphs appear in many applications of high-performance

computing, including computational biology, informatics, analytics, web search, dynamical sys-

tems, and sparse matrix methods. Graph computations are difficult to parallelize using tra-

ditional approaches due to their irregular nature and low operational intensity. Many graph

computations, however, contain sufficient coarse grained parallelism for thousands of proces-

sors, which can be uncovered by using the right primitives.

We describe the Parallel Combinatorial BLAS, which consists of a small but powerful set of

linear algebra primitives specifically targeting graph and data mining applications. We provide

an extendible library interface and some guiding principles for future development. The library

is evaluated using two important graph algorithms, in terms of both performance and ease-of-

use. The scalability and raw performance of the example applications, using the combinatorial

BLAS, are unprecedented on distributed memory clusters.

Keywords: Mathematical Software, Graph Analysis, Software Framework, Sparse Matrices,

Combinatorial Scientific Computing.
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1 Introduction

Large scale software development is a formidable task that requires an enormous amount of hu-

man expertise, especially when it comes to writing software for parallel computers. Writing every

application from scratch is an unscalable approach given the complexity of the computations and

the diversity of the computing environments involved. Raising the level of abstraction of parallel

computing by identifying the algorithmic commonalities across applications is becoming a widely

accepted path to solution for the parallel software challenge (Asanovic et al. 2006; Brodman et al.

2009). Primitives both allow algorithm designers to think on a higher level of abstraction, and help

to avoid duplication of implementation efforts.

Primitives have been successfully used in the past to enable many computing applications.

The Basic Linear Algebra Subroutines (BLAS) for numerical linear algebra (Lawson et al. 1979)

are probably the canonical example of a successful primitives package. The BLAS became widely

popular following the success of LAPACK (Anderson et al. 1992). LINPACK’s use of the BLAS

encouraged experts (preferably the hardware vendors themselves) to implement its vector operations

for optimal performance. In addition to efficiency benefits, BLAS offered portability by providing

a common interface. It also indirectly encouraged structured programming. Most of the reasons

for developing the BLAS package about four decades ago are generally valid for primitives today.

In contrast to numerical computing, a scalable software stack that eases the application pro-

grammer’s job does not exist for computations on graphs. Some existing primitives can be used

to implement a number of graph algorithms. Scan primitives (Blelloch 1990) are used for solving
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the maximum flow, minimum spanning tree, maximal independent set, and (bi)connected com-

ponents problems efficiently. On the other hand, it is possible to implement some clustering and

connected components algorithms using the MapReduce model (Dean and Ghemawat 2008), but

the approaches are quite unintuitive and the performance is unknown (Cohen 2009). Our work fills

a crucial gap by providing primitives that can be used for traversing graphs.

The goal of having a BLAS-like library for graph computation is to support rapid implemen-

tation of graph algorithms using a small yet important subset of linear algebra operations. The

library should also be parallel and scale well due to the massive size of graphs in many modern

applications.

The Matlab reference implementation of the HPCS Scalable Synthetic Compact Applications

graph analysis (SSCA#2) benchmark (Bader et al.) was an important step towards using linear

algebra operations for implementing graph algorithms. Although this implementation was a success

in terms of expressibility and ease of implementation, its performance was about 50% worse than the

best serial implementation. Mostly, the slowdown was due to limitations of Matlab for performing

integer operations. The parallel scaling was also limited on most parallel Matlab implementations.

In this paper, we introduce a scalable high-performance software library, the Combinatorial

BLAS, to be used for graph computations on distributed memory clusters. The Combinatorial

BLAS is intented to provide a common interface for high-performance graph kernels. It is unique

among other graph libraries for combining scalability with distributed memory parallelism, which

is partially achieved through ideas borrowed from the domain of parallel numerical computation.
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Our library is especially useful for tightly-coupled, traversal-based computations on graphs.

The remainder of this paper is organized as follows. Section 2 summarizes existing frameworks

for parallel graph and sparse matrix computations. Section 3 describes the design and the guiding

principles of the Combinatorial BLAS library. Section 4 gives an overview of the software engi-

neering techniques used in the implementation. Section 5 presents performance results from two

important graph applications implemented using the Combinatorial BLAS primitives. Section 6

offers some concluding remarks as well as future directions.

2 Related Work

2.1 Frameworks for Parallel Graph Computation

This section surveys working implementations of graph computations, rather than research on

parallel graph algorithms. We focus on frameworks and libraries instead of parallelization of stand-

alone applications. The current landscape of software for graph computations is summarized in

Table 1.

Table 1: High-performance libraries and toolkits for parallel graph analysis

Library/Toolkit Parallelism Abstraction Offering Scalability

PBGL (Gregor and Lumsdaine 2005) Distributed Visitor Algorithms Limited
GAPDT (Gilbert et al. 2008) Distributed Sparse Matrix Both Limited

MTGL (Berry et al. 2007) Shared Visitor Algorithms Unknown
SNAP (Bader and Madduri 2008) Shared Various Both High

Combinatorial BLAS Distributed Sparse Matrix Kernels High
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The Parallel Boost Graph Library (PBGL) by Gregor and Lumsdaine (2005) is a parallel li-

brary for distributed memory computing on graphs. It is a significant step towards facilitating

rapid development of high performance applications that use distributed graphs as their main data

structure. Like the sequential Boost Graph Library (Siek et al. 2001), it has a dual focus on

efficiency and flexibility. It relies heavily on generic programming through C++ templates.

Lumsdaine et al. (2007) observed poor scaling of PBGL for some large graph problems. We

believe that the scalability of PBGL is limited due to two main factors. The graph is distributed by

vertices instead of edges, which corresponds to a one-dimensional partitioning in the sparse matrix

world. We have shown (Buluç and Gilbert 2008a) that this approach does not scale to large numbers

of cores. We also believe that the visitor paradigm is sometimes too low-level for scalability, because

it makes the computation data driven and obstructs opportunities for optimization.

The MultiThreaded Graph Library (MTGL) (Berry et al. 2007) was originally designed for

development of graph applications on massively multithreaded machines, namely Cray MTA-2 and

XMT. It was later extended to run on mainstream shared-memory architectures (Barrett et al.

2009). MTGL is a significant step towards an extendible and generic parallel graph library. As of

now, only preliminary performance results are published for MTGL.

The Graph Algorithm and Pattern Discovery Toolbox (GAPDT, later renamed KDT) (Gilbert

et al. 2008) provides both combinatorial and numerical tools to manipulate large graphs inter-

actively. KDT runs sequentially on Matlab or in parallel on Star-P (Shah and Gilbert 2004), a

parallel dialect of Matlab. Although KDT focuses on algorithms, the underlying sparse matrix
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infrastructure also exposes linear algebraic kernels. KDT, like PBGL, targets distributed-memory

machines. Differently from PBGL, it uses operations on distributed sparse matrices for parallelism.

KDT provides an interactive environment instead of compiled code, which makes it unique among

the frameworks surveyed here. Like PBGL, KDT’s main weakness is limited scalability due to its

one-dimensional distribution of sparse arrays.

The Small-world Network Analysis and Partitioning (SNAP) framework (Bader and Madduri

2008) contains algorithms and kernels for exploring large-scale graphs. SNAP is a collection of

different algorithms and building blocks that are optimized for small-world networks. It combines

shared-memory thread level parallelism with state-of-the-art algorithm engineering for high per-

formance. The graph data can be represented in a variety of different formats depending on the

characteristics of the algorithm that operates on it. SNAP’s performance and scalability are high

for the reported algorithms, but a head-to-head performance comparison with PBGL and KDT is

not available.

Both MTGL and SNAP are powerful toolboxes for graph computations on multithreaded ar-

chitectures. For future extensions, MTGL relies on the visitor concept it inherits from the PBGL,

while SNAP relies on its own kernel implementations. Both software architectures are maintainable

as long as the target architectures remain the same.

Algorithms on massive graphs with billions of vertices and edges require hundreds of gigabytes of

memory. For a special purpose supercomputer such as XMT, memory might not be a problem; but

commodity shared-memory architectures have limited memory. Thus, MTGL or SNAP will likely
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to find limited use in commodity architectures without either distributed memory or out-of-core

support. Experimental studies show that an out-of-core approach (Ajwani et al. 2007) is two orders

of magnitude slower than an MTA-2 implementation for parallel breadth-first search (Bader and

Madduri 2006b). Given that many graph algorithms, such as clustering and betweenness centrality,

are computationally intensive, out-of-core approaches are infeasible. Therefore, distributed memory

support for running graph applications of general purpose computers is essential. Neither MTGL

nor SNAP seems easily extendible to distributed memory.

2.2 Frameworks for Parallel Sparse Matrix Computation

We briefly mention some other work on parallel sparse arrays, much of which is directed at numer-

ical sparse matrix computation rather than graph computation. Many libraries exist for solving

sparse linear system and eigenvalue problems; some, like Trilinos (Heroux et al. 2005), include

significant combinatorial capabilities. The Sparse BLAS (Duff et al. 2002) is a standard API for

numerical matrix- and vector-level primitives; its focus is infrastructure for iterative linear system

solvers, and therefore it does not include such primitives as sparse matrix-matrix multiplication

(SpGEMM) and sparse matrix indexing (SpRef). Global Arrays (Nieplocha et al. 2006) is a par-

allel dense and sparse array library that uses a one-sided communication infrastructure portable

to message-passing, NUMA, and shared-memory machines. Star-P (Shah and Gilbert 2004) and

pMatlab (Kepner 2009) are parallel dialects of Matlab that run on distributed-memory message-

passing machines; both include parallel sparse distributed array infrastructures.
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3 Design Philosophy

3.1 Overall Design

The first class citizens of the Combinatorial BLAS are distributed sparse matrices. Application

domain interactions that are abstracted into a graph are concretely represented as a sparse matrix.

Therefore, all non-auxiliary functions are designed to operate on sparse matrix objects. There are

three other types of objects that are used by some of the functions: dense matrices, dense vectors,

sparse vectors. Concrete data structures for these objects are explained in detail in Section 4.

We follow some design principles of the successful PETSc package (Balay et al. 1997). We

define a common abstraction for all sparse matrix storage formats, making it possible to implement

a new format and plug it in without changing rest of the library. For scalability as well as to avoid

inter-library and intra-library collisions, matrices and vectors can be distributed over only a subset

of processors by passing restricted MPI communicators to constructors. We do not attempt to

create the illusion of a flat address space; communication is handled internally by parallel classes

of the library. Likewise, we do not always provide storage independence due to our emphasis on

high performance. Some operations have different semantics depending on whether the underlying

object is sparse or dense.

The Combinatorial BLAS routines (API functions) are supported both sequentially and in par-

allel. The versions that operate on parallel objects manage communication and call the sequential

versions for computation. This symmetry of function prototypes has a nice effect on interoper-
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ability. The parallel objects can just treat their internally stored sequential objects as black boxes

supporting the API functions. Conversely, any sequential class becomes fully compatible with

the rest of the library as long as it supports the API functions and allows access to its internal

arrays through an adapter object. This decoupling of parallel logic from sequential parts of the

computation is one of the distinguishing features of the Combinatorial BLAS.

3.2 The Combinatorial BLAS Routines

We selected the operations to be supported by the API by a top-down, application driven process.

Commonly occurring computational patterns in many graph algorithms are abstracted into a few

linear algebraic kernels that can be efficiently mapped onto the architecture of distributed memory

computers. The API is not intended to be final and will be extended as more applications are

analyzed and new algorithms are invented.

We address the tension between generality and performance by the zero overhead principle:

Our primary goal is to provide work-efficiency for the targeted graph algorithms. The interface

is kept general, simple, and clean so long as doing so does not add significant overhead to the

computation. The guiding principles in the design of the API are listed below, each one illustrated

with an example.

(1) If multiple operations can be handled by a single function prototype without degrading the

asymptotic performance of the algorithm they are to be part of, then we provide a generalized

single prototype. Otherwise, we provide multiple prototypes.
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For elementwise operations on sparse matrices, although it is tempting to define a single func-

tion prototype that accepts a binop parameter, the most-efficient data access pattern depends on

the binary operation. For instance, ignoring numerical cancellation, elementwise addition is most

efficiently implemented as a union of two sets while multiplication is the intersection. If it proves

to be efficiently implementable (using either function object traits or run-time type information),

all elementwise operations between two sparse matrices may have a single function prototype in

the future.

On the other hand, the data access patterns of matrix-matrix and matrix-vector multiplications

are independent of the underlying semiring. As a result, the sparse matrix-matrix multiplication

routine (SpGEMM) and the sparse matrix-vector multiplication routine (SpMV) each have a single

function prototype that accepts a parameter representing the semiring.

(2) If an operation can be efficiently implemented by composing a few simpler operations, then

we do not provide a special function for that operator.

For example, making a nonzero matrix A column stochastic can be efficiently implemented by

first calling Reduce on A to get a dense row vector v that contains the sums of columns, then

obtaining the multiplicative inverse of each entry in v by calling the Apply function with the unary

function object that performs f(vi) = 1/vi for every vi it is applied to, and finally calling Scale(v)

on A to effectively divide each nonzero entry in a column by its sum. Consequently, we do not

provide a special function to make a matrix column stochastic.

On the other hand, a commonly occurring operation is to zero out some of the nonzeros of a
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sparse matrix. This often comes up in graph traversals, where Xk represents the kth frontier, the

set of vertices that are discovered during the kth iteration. After the frontier expansion ATXk,

previously discovered vertices can be pruned by performing an elementwise multiplication with

a matrix Y that includes a zero for every vertex that has been discovered before, and nonzeros

elsewhere. However, this approach might not be work-efficient as Y will often be dense, especially

in the early stages of the graph traversal.

Consequently, we provide a generalized function SpEWiseX that performs the elementwise

multiplication of sparse matrices op(A) and op(B). It also accepts two auxiliary parameters, notA

and notB, that are used to negate the sparsity structure of A and B. If notA is true, then

op(A)(i, j) = 0 for every nonzero A(i, j) 6= 0 and op(A)(i, j) = 1 for every zero A(i, j) = 0. The

role of notB is identical. Direct support for the logical NOT operations is crucial to avoid the

explicit construction of the dense not(B) object.

(3) To avoid expensive object creation and copying, many functions also have in-place versions.

For operations that can be implemented in place, we deny access to any other variants only if

those increase the running time.

For example, Scale(B) is a member function of the sparse matrix class that takes a dense

matrix as a parameter. When called on the sparse matrix A, it replaces each A(i, j) 6= 0 with

A(i, j) ·B(i, j). This operation is implemented only in-place because B(i, j) is guaranteed to exist

for a dense matrix, allowing us to perform a single scan of the nonzeros of A and update them by
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Table 2: Summary of the current API for the Combinatorial BLAS

Function Applies to Parameters Returns

SpGEMM

Sparse Matrix A,B: sparse matrices
Sparse Matrix(as friend) trA: transpose A if true

trB: transpose B if true

SpMV

Sparse Matrix A: sparse matrices
Dense Vector(as friend) x: dense vector(s)

trA: transpose A if true

SpEWiseX

Sparse Matrices A,B: sparse matrices
Sparse Matrix(as friend) notA: negate A if true

notB: negate B if true

Reduce
Any Matrix dim: dimension to reduce

Dense Vector
(as method) binop: reduction operator

SpRef
Sparse Matrix p: row indices vector

Sparse Matrix
(as method) q: column indices vector

SpAsgn

Sparse Matrix p: row indices vector
none(as method) q: column indices vector

B: matrix to assign

Scale
Any Matrix rhs: any object

none
(as method) (except a sparse matrix)

Scale
Any Vector rhs: any vector

none
(as method)

Apply
Any Object unop: unary operator

none
(as method) (applied to nonzeros)
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doing fast lookups on B. Not all elementwise operations can be efficiently implemented in-place (for

example elementwise addition of a sparse matrix and a dense matrix will produce a dense matrix),

so we declare them as members of the dense matrix class or as global functions returning a new

object.

(4) In-place operations have slightly different semantics depending on whether the operands are

sparse or dense. In particular, the semantics favor leaving the sparsity pattern of the un-

derlying object intact as long as another function (possibly not in-place) handles the more

conventinal semantics that introduces/deletes nonzeros.

For example, Scale is an overloaded method, available for all objects. It does not destroy

sparsity when called on sparse objects and it does not introduce sparsity when called on dense

objects. The semantics of the particular Scale method are dictated by its the class object and its

operand. Called on a sparse matrix A with a vector v, it independently scales nonzero columns

(or rows) of the sparse matrix. For a row vector v, Scale replaces every nonzero A(i, j) with

v(j) · A(i, j). The parameter v can be dense or sparse. In the latter case, only a portion of

the sparse matrix is scaled. That is, v(j) being zero for a sparse vector does not zero out the

corresponding jth column of A. The Scale operation never deletes columns from A; deletion

of columns is handled by the more expensive SpAsgn function described below. Alternatively,

zeroing out columns during scaling can be accomplished by performing A · Diag(v) with a sparse

v. Here, Diag(v) creates a sparse matrix with diagonal populated from the elements of v. Note

that this alternative approach is still more expensive than Scale, as the multiplication returns a
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new matrix.

SpAsgn and SpRef are generalized sparse matrix assignment and indexing operations. They

are very powerful primitives that take vectors p and q of row and column indices. When called on

the sparse matrix A, SpRef returns a new sparse matrix whose rows are the p(i)th rows of A for

i = 0, ..., length(p)−1 and whose columns are the q(j)th columns of A for j = 0, ..., length(q)−1.

SpAsgn has similar syntax, except that it returns a reference (an modifiable lvalue) to some portion

of the underlying object as opposed to returning a new object.

4 A Reference Implementation

4.1 The Software Architecture

In our reference implementation, the main data structure is a distributed sparse matrix object

SpDistMat which HAS-A local sparse matrix that can be implemented in various ways as long as

it supports the interface of the base class SpMat . All features regarding distributed-memory par-

allelization, such as the communication patterns and schedules, are embedded into the distributed

objects (sparse and dense) through the CommGrid object. Global properties of distributed ob-

jects, such as the total number of nonzeros and the overall matrix dimensions, are not explicitly

stored. They are computed by reduction operations whenever necessary. The software architecture

for matrices is illustrated in Figure 1. Although the inheritance relationships are shown in the

traditional way (via inclusion polymorphism as described by Cardelli and Wegner 1985), the class
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hierarchies are static, obtained by the parameterizing the base class with its subclasses as explained

below.

!"! #!"! $%&'()* !"+

"',-. "'#&*.,-. #)/*)#&*.,-.

#&*.,-.!0112%&3

Figure 1: Software architecture for matrix classes

To enforce a common interface as defined by the API, all types of objects derive from their

corresponding base classes. The base classes only serve to dictate the interface. This is achieved

through static object oriented programming (OOP) techniques (Burrus et al. 2003) rather than

expensive dynamic dispatch. A trick known as the Curiously Recurring Template Pattern (CRTP),

a term coined by Coplien (1995), emulates dynamic dispatch statically, with some limitations.

These limitations, such as the inability to use heterogeneous lists of objects that share the same

type class, however, are not crucial for the Combinatorial BLAS. In CRTP, the base class accepts

a template parameter of the derived class.
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The SpMat base class implementation is given as an example in Figure 2. As all exact types

are known at compile time, there are no runtime overheads arising from dynamic dispatch. In

the presence of covariant arguments, static polymorphism through CRTP automatically allows for

better type checking of parameters. In the SpGEMM example, with classical OOP, one would

need to dynamically inspect the actual types of A and B to see whether they are compatible and

to call the right subroutines. This requires run-time type information queries and dynamic cast()

operations. Also, relying on run-time operations is unsafe, as any unconforming set of parameters

will lead to a run-time error or an exception. Static OOP catches any such incompatibilities at

compile time.

The SpMat object is local to a node but it need not be sequential. It can be implemented as a

shared-memory data structure, amenable to thread-level parallelization. This flexibility will allow

future versions of the Combinatorial BLAS algorithms to support hybrid parallel programming.

The distinguishing feature of SpMat is contiguous storage of its sparse matrix, making it accessible

by all other components (threads/processes). In this regard, it is different from the SpDistMat,

which distributes the storage of its sparse matrices.

Almost all popular sparse matrix storage formats are internally composed of a number of ar-

rays (Dongarra 2000; Saad 2003; Buluç et al. 2009), since arrays are cache friendlier than pointer-

based data structures. Following this observation, the parallel classes handle object creating and

communication through what we call an Essentials object, which is an adapter for the actual

sparse matrix object. The Essentials of a sparse matrix object is its dimensions, number of nonze-
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// Abs t rac t base c l a s s f o r a l l d e r i v ed s e r i a l sparse matrix c l a s s e s
// Has no data members , copy cons t ruc t o r or assignment operator
// Uses s t a t i c polymorphism through cu r i o u s l y r e cur r ing t emp la t e s
// Template parameters :
// IT ( index type ) , NT ( numerical type ) , DER ( der i v ed c l a s s type )
template <class IT , class NT, class DER>

class SpMat
{

typedef SpMat<IT ,NT,DER> SpMatIns ;
public :

// Standard de s t ruc to r , copy cons t ruc t o r and assignment
// are genera ted by compi ler , they a l l do noth ing
// De fau l t cons t ruc t o r a l s o e x i s t s , and does noth ing more
// than c r ea t i n g Base<Derived >() and Derived ( ) o b j e c t s
// One has to c a l l t he Create f unc t i on to ge t a nonempty o b j e c t
void Create ( const vector<IT>& e s s e n t i a l s ) ;

SpMatIns operator ( ) ( const vector<IT>& r i , const vector<IT>& c i ) ;

template <typename SR> // SR: Semiring o b j e c t
void SpGEMM ( SpMatIns & A, SpMatIns & B, bool TrA, bool TrB ) ;

template <typename NNT> // NNT: New numeric type
operator SpMatIns ( ) const ;

void Sp l i t ( SpMatIns & partA , SpMatIns & partB ) ;
void Merge ( SpMatIns & partA , SpMatIns & partB ) ;

Arr<IT ,NT> GetArrays ( ) const ;
vector<IT> GetEs s en t i a l s ( ) const ;

void Transpose ( ) ;

bool operator== ( const SpMatIns & rhs ) const ;

o f s t ream& put ( ofstream& o u t f i l e ) const ;
i f s t r e am& get ( i f s t r e am& i n f i l e ) ;

bool i sZ e r o ( ) const ;
IT getnrow ( ) const ;
IT ge tnco l ( ) const ;
IT getnnz ( ) const ;

}

Figure 2: Partial C++ interface of the base SpMat class
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ros, starting addresses of its internal arrays and the sizes of those arrays.

The use of Essentials allows any SpDistMat object to have any SpMat object internally. For ex-

ample, communication can be overlapped with computation in the SpGEMM function by prefetch-

ing the internal arrays through one sided communication. Alternatively, another SpDistMat class

that uses a completely different communication library, such as GASNet (Bonachea 2002) or

ARMCI (Nieplocha et al. 2005), can be implemented without requiring any changes to the se-

quential SpMat object.

Most combinatorial operations use more than the traditional floating-point arithmetic, with

integer and boolean operations being prevalent. To provide the user the flexibility to matrices and

vectors with any scalar type, all of our classes and functions are templated. A practical issue is to

be able perform operations between two objects holding different scalar types, e.g., multiplication

of a boolean sparse matrix by an integer sparse matrix. Explicit upcasting of one of the operands

to a temporary object might have jeopardized performance due to copying of such big objects. The

template mechanism of C++ provided a neat solution to the mixed mode arithmetic problem by

providing automatic type promotion through trait classes (Barton and Nackman 1994). Arbitrary

semiring support for matrix-matrix and matrix-vector products is allowed by passing a class (with

static add and multiply functions) as a template parameter to corresponding SpGEMM and SpMV

functions.
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4.2 Management of Distributed Objects

The processors are logically organized as a two-dimensional grid in order to limit most of the

communication to take place along a processor column or row with
√

p processors, instead of

communicating potentially with all p processors. The partitioning of distributed matrices (sparse

and dense) follows this processor grid organization, using a 2D block decomposition, also called the

checkerboard partitioning (Grama et al. 2003). Figure 3 shows this for the sparse case.

SpDistMat<SpMat,CommGrid>

SpMat

Figure 3: Distributed sparse matrix class and storage

Portions of dense matrices are stored locally as two dimensional dense arrays in each processor.

Sparse matrices (SpDistMat objects), on the other hand, have many possible representations, and

the right representation depends on the particular setting or the application. We (Buluç and Gilbert

2008b; Buluç and Gilbert 2010) previously reported the problems associated with using the popular

compressed sparse rows (CSR) or compressed sparse columns (CSC) representations in a 2D block

decomposition. The triples format does not have the same problems but it falls short of efficiently
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supporting some of the fundamental operations. Therefore, our reference implementation uses the

DCSC format, explained in detail by Buluç and Gilbert (2008b). As previously mentioned, this

choice is by no means exclusive and one can replace the underlying sparse matrix storage format

with his or her favorite format without needing to change other parts of the library, as long as the

format implements the fundamental sequential API calls mentioned in the previous section.

For distributed vectors, data is stored only on the diagonal processors of the 2D processor grid.

This way, we achieve symmetric performance for matrix-vector and vector-matrix multiplications.

The high level structure and parallelism of sparse and dense vectors are the same, the only difference

being how the local data is stored in processors. A dense vector naturally uses a dense array, while

a sparse vector is internally represented as a list of index-value pairs.

5 Applications and Performance Analysis

This section presents two applications of the Combinatorial BLAS library. We report the perfor-

mance of two algorithms on distributed-memory clusters, implemented using the Combinatorial

BLAS primitives. The code for these applications, along with an alpha release of the complete

library, can be freely obtained from http://gauss.cs.ucsb.edu/code/index.shtml.

5.1 Betweenness Centrality

Betweenness centrality (Freeman 1977), a centrality metric based on shortest paths, is the main

computation on which we evaluate the performance of our proof-of-concept implementation of the
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Combinatorial BLAS. There are two reasons for this choice. Firstly, it is a widely-accepted metric

that is used to quantify the relative importance of vertices in the graph. The betweenness centrality

(BC) of a vertex is the normalized ratio of the number of shortest paths that pass through a vertex

to the total number of shortest paths in the graph. This is formalized in Equation 1, where σst

denotes the number of shortest paths from s to t, and σst(v) is the number of such paths passing

through vertex v.

BC(v) =
∑

s 6=v 6=t∈V

σst(v)

σst

(1)

A vertex v with a high betweenness centrality is therefore an important one based on at least

two different interpretations. From the point of view of other vertices, it is a highly sought-after

hop for reaching others as quickly as possible. The second possible interpretation is that v itself is

the best-situated vertex to reach others as quickly as possible.

The second reason for presenting the betweenness centrality as a success metric is its quan-

tifiability. It is part of the HPC Scalable Graph Analysis Benchmarks (formerly known as the

HPCS Scalable Synthetic Compact Applications #2 (Bader et al.)) and various implementations

on different platforms exist (Bader and Madduri 2006a; Madduri et al. 2009; Tan et al. 2009) for

comparison.
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5.2 BC Algorithm and Experimental Setup

We compute betweenness centrality using the algorithm of Brandes (2001). It computes single

source shortest paths from each node in the network and increases the respective BC score for nodes

on the path. The algorithm requires O(nm) time for unweighted graphs and O(nm+n2 log n) time

for weighted graphs, where n is the number of nodes and m is the number of edges in the graph. The

sizes of real-world graphs make the exact O(nm) calculation too expensive, so we resort to efficient

approximations. Bader et al. (2007) propose an unbiased estimator of betweenness centrality that

is based on sampling nodes from which to compute single-source shortest paths. The resulting

scores approximate a uniformly scaled version of the actual betweenness centrality. We focus on

unweighted graphs in this performance study.

Following the specification of the graph analysis benchmark (Bader et al.), we use R-MAT

matrices as inputs. We report the performance of the approximate algorithm with 8192 starting

vertices. We measure performance using the Traversed Edges Per Second (TEPS) rate, which is an

algorithmic performance count that is independent of the particular implementation. We randomly

relabeled the vertices in the generated graph before storing it for subsequent runs. For reproducibil-

ity of results, we chose starting vertices using a deterministic process, specifically excluding isolated

vertices whose selection would have boosted the TEPS scores artificially.

We implemented an array-based formulation of the Brandes’ algorithm due to Robinson and

Kepner (Kepner and Gilbert). A reference Matlab implementation is publicly available from the

Graph Analysis webpage (Bader et al.). The workhorse of the algorithm is a parallel breadth-first
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search that is performed from multiple source vertices. In Combinatorial BLAS, one step of the

breadth-first search is implemented as the multiplication of the transpose of the adjacency matrix

of the graph with a rectangular matrix X, where the ith column of X represents the current frontier

of the ith independent breadth-first search tree. Initially, each column of X has only one nonzero

that represents the starting vertex of the breadth-first search. The tallying step is also implemented

as an SpGEMM operation.

For the performance results presented in this section, we use a synchronous implementaton of the

Sparse SUMMA algorithm (Buluç and Gilbert 2008a; Buluç 2010), because it is the most portable

SpGEMM implementation and relies only on simple MPI-1 features. The other Combinatorial

BLAS primitives that are used for implementing the betweenness centrality algorithm are reductions

along one dimension and elementwise operations for sparse/sparse, sparse/dense, and dense/sparse

input pairs. The experiments are run on TACC’s Lonestar cluster (lon), which is composed of

dual-socket dual-core nodes connected by an Infiniband interconnect. Each individual processor is

an Intel Xeon 5100, clocked at 2.66 GHz. We used the recommended Intel C++ compilers (version

10.1), and the MVAPICH2 implementation of MPI.

5.2.1 Parallel Strong Scaling

Figure 4 shows how our implementation scale for graphs of smaller size. Figure 5 shows the same

code on larger graphs, with larger numbers of processors. Both results show good scaling for this

challenging tightly coupled algorithm. To the best of our knowledge, ours are the first distributed
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Figure 4: Parallel strong scaling of the distributed-memory betweenness centrality implementation
(smaller input sizes)

memory performance results for betweenness centrality. The performance results on more than 500

processors are not smooth, but the overall upward trend is clear. Run time variability of large-scale

parallel codes, which can be due to various factors such as the OS jitter (Petrini et al. 2003), is

widely reported in the literature (Van Straalen et al. 2009). The expensive computation prohibited

us to run more experiments, which would have smoothed out the results by averaging.

The best reported performance results for this problem are due to Madduri et al. (2009), who

used an optimized implementation tailored for massively multithreaded architectures. They report

a maximum of 160 million TEPS for an R-MAT graph of scale 24 on the 16-processor XMT machine.

On the MTA-2 machine, which is the predecessor to the XMT, the same optimized code achieved

353 million TEPS on 40 processors. Our code, on the other hand, is truely generic and contains
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Figure 5: Parallel strong scaling of the distributed-memory betweenness centrality implementation
(bigger input sizes)

no problem or machine specific optimizations. We did not optimize our primitives for the skewed

aspect ratio (ratio of dimensions) of most of the matrices involved. For this problem instance, 900

processors of Lonestar were equivalent to 40 processors of MTA-2.

5.2.2 Sensitivity to Batch Processing

Most of the parallelism comes from the coarse-grained SpGEMM operation that is used to perform

breadth-first searches from multiple source vertices. By changing the batchsize, the number of source

vertices that are processed together, we can trade off space usage and potential parallelism. Space

increases linearly with increasing batchsize. As we show experimentally, performance also increases

substantially, especially for large numbers of processors. In Figure 6, we show the strong scaling
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Figure 6: The effect of batch processing on the performance of the distributed-memory betweenness
centrality implementation

of our betweenness centrality information on an RMAT graph of scale 22 (approximately 4 million

vertices and 32 million edges), using different batchsizes. The average performance gain of using 256,

512 and 1024 starting vertices, over using 128 vertices, is 18.2%, 29.0%, and 39.7%, respectively. The

average is computed over the performance on p = {196, 225, ..., 961} (perfect squares) processors.

For larger numbers of processors, the performance gain of using a large batchsize is more substantial.

For example, for p = 961, the performance increases by 40.4%, 67.0%, and 73.5%, when using 256,

512 and 1024 starting vertices instead of 128.
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template <typename IT , typename NT, typename DER>
void I n f l a t e (SpParMat<IT ,NT,DER> & A, double power )
{

A. Apply ( bind2nd ( exponent ia te ( ) , power ) ) ;

/* reduce to Row, columns are c o l l a p s e d to s i n g l e e n t r i e s */
DenseParVec<IT ,NT> colsums = Reduce (Row, plus<NT>() , 0 . 0 ) ;

colsums . Apply ( b ind1st ( d iv ide s <double>() , 1 ) ) ;

/* s c a l e each Column with the g iven row vec to r */
A. DimScale ( colsums , Column ) ;

}

Figure 7: Inflation code using the Combinatorial BLAS primitives

5.3 Markov Clustering

Markov clustering (MCL) (Van Dongen 2008) is a flow based graph clustering algorithm that has

been popular in computational biology, among other fields. It simulates a Markov process to the

point where clusters can be identified by a simple interpretation of the modified adjacency matrix

of the graph. Computationally, it alternates between an expansion step in which the adjacency

matrix is raised to its nth power (typically n = 2), and an inflation step in which the scalar entries

are raised to the dth power (d > 1) and then renormalized within each column. The inflation

operation boosts the larger entries and sends the smaller entries closer to zero. MCL maintains

sparsity of the matrix by pruning small entries after the inflation step.

Implementing the MCL algorithm using the Combinatorial BLAS primitives generates a natu-

rally concise code. The full MCL code, except for the cluster interpretation, is shown in Figure 8;

the inflation subroutine is shown in Figure 7.
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int main ( )
{

SpParMat<unsigned , double , SpDCCols<unsigned , double> > A;
A. ReadDistr ibute ( ‘ ‘ inputmatr ix ’ ’ ) ;

o ldchaos = Chaos (A) ;
newchaos = oldchaos ;

// wh i l e t h e r e i s an ep s i l o n improvement
while ( ( o ldchaos − newchaos ) > EPS)
{

A. Square ( ) ; // expand
I n f l a t e (A, 2 ) ; // i n f l a t e and renormal i ze
A. Prune ( bind2nd ( l e s s <double>() , 0 . 0 0 0 1 ) ) ;
o ldchaos = newchaos ;
newchaos = Chaos (A) ;

}
I n t e r p r e t (A) ;

}

Figure 8: MCL code using the Combinatorial BLAS primitives
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Van Dongen provides a fast sequential implementation of the MCL algorithm. We do not

attempt an apples-to-apples comparison with the original implementation, as that software has

many options, which we do not replicate in our 10-15 line prototype. Van Dongen’s sequential mcl

code is twice as fast as our parallel implementation on a single processor. This is mostly due to

its finer control over sparsity parameters, such as limiting the number of nonzeros in each row and

column. However, serial performance is not a bottleneck, as our code achieves superlinear speedup

until p = 1024.

We have been able to cluster gigascale graphs with our implementation of MCL using the

Combinatorial BLAS. Here, we report on a smaller instance in order to provide a complete strong

scaling result. Figure 9 shows the speedup of the three most expensive iterations, which together

make up more than 99% of the total running time. The input is a permuted R-MAT graph of scale

14, with self loops added. On 4096 processors, we were able to cluster this graph in less than a

second. The same graph takes more than half an hour to cluster on a single processor. Note that

iteration #4 takes only 70 milliseconds using 1024 processors, which is hard to scale further due to

parallelization overheads on thousands of processors.

6 Conclusions and Future Work

Linear algebra has played a crucial role as the middleware between continuous physical models

and their computer implementation. We have introduced the Combinatorial BLAS library as

the middleware between discrete structures and their computer implementation. To accomodate
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Figure 9: Strong scaling of the three most expensive iterations while clustering an R-MAT graph
of scale 14 using the MCL algorithm implemented using the Combinatorial BLAS

future extensions and developments, we have avoided explicit specifications and focused on guiding

principles instead.

The Combinatorial BLAS aggregates elementary operations to a level that allows optimization

and load-balancing within its algebraic primitives. Our efficient parallel sparse array infrastructure,

which uses a 2D compressed sparse block data representation, provides efficiency and scalability,

as demonstrated by large scale experiments on two important graph applications.

One limitation of our work is that the user must cast elementary operations as semiring opera-

tors, which can sometimes be unintuitive. We plan to generalize our work to incorporate visitor/-

traversal based primitives in a coherent framework. Our MPI infrastucture, albeit portable due to

the widespread adoption of MPI, cannot take advantage of flexible shared-memory operations. Part
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of our future work will be to leverage the hierarchical parallelism that is characteristic of current

and future supercomputers.
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