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ABSTRACT
Near neighbor search in high dimensional spaces is useful in many
applications. Existing techniques solve this problem efficiently
only for the approximate cases. These solutions are designed to
solve r-near neighbor queries for a fixed query range or a set of
query ranges with probabilistic guarantees, and then extended for
nearest neighbor queries. Solutions supporting a set of query ranges
suffer from prohibitive space cost. There are many applications
which are quality sensitive and need to efficiently and accurately
support near neighbor queries for all query ranges. In this pa-
per, we propose a novel indexing and querying scheme called Spa-
tial Intersection and Metric Pruning (SIMP). It efficiently supports
r-near neighbor queries in very high dimensional spaces for all
query ranges with 100% quality guarantee and with practical stor-
age costs. Our empirical studies on three real datasets having di-
mensions between [32-256] and sizes up to 10 million show a supe-
rior performance of SIMP over LSH, Multi-Probe LSH, LSB tree,
and iDistance. Our scalability tests on real datasets having as many
as 100 million points of dimensions up to 256 establish that SIMP
scales linearly with the query range, the dataset dimension, and the
dataset size.

1. INTRODUCTION AND MOTIVATION
Search for near neighbors of a given query object in a collec-

tion of objects is a fundamental operation in numerous applica-
tions, e.g., multimedia similarity search, data mining, information
retrieval, and pattern recognition. The most common model for
search is to represent objects in a high-dimensional attribute space,
and then retrieve points near a given query point using a distance
measure. Many variants of the near neighbor problem, e.g., near-
est neighbor queries, top-k nearest neighbors, approximate nearest
neighbors, and r-near neighbor (r-NN) queries, have been studied
in the literature. In this paper, we study r-NN queries, also called
r-ball cover queries.

Let U be a dataset of N points in a d-dimensional vector space
Rd. Let d(., .) be a distance measure over Rd. An r-NN query is
defined by a query point q ∈ Rd and a search range r from q. It
is a range query whose result set contains all the points p satisfy-
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ing d(q, p) ≤ r. An r-NN query is useful for constructing near
neighbor graphs, mining of collocation patterns [31], and mining
density based clusters [14]. An r-NN query can also be repeatedly
used with increasing query ranges, starting with an expected range,
to solve the nearest neighbor family of problems [16, 19, 22].

In order to get a practical performance in query processing, data
points are indexed and searched using an efficient data structure. A
good index should be space and time efficient, should yield accu-
rate results, and should scale with the dataset dimension and size.
There are many well-known indexing schemes in the literature,
mostly tree-based [4, 10, 17], for efficiently and exactly solving
near neighbor search in low dimensions. It is known from the lit-
erature that the performances of these methods deteriorate and be-
come worse than sequential search for sufficiently large number of
dimensions due to the curse of dimensionality [34]. iDistance [19]
is a state-of-the-art method for an exact r-NN search. It has been
shown to work well for datasets of dimensions as high as 30. A
major drawback of iDistance is that it works well only for clustered
data. It incurs expensive query costs for other kinds of datasets and
for very high dimensional datasets.

There are many applications which need efficient and accurate
near neighbor search in very high dimensions. For example, con-
tent based multimedia similarity search uses state-of-the-art 128-
dimensional SIFT [25] feature vectors. Another example is DNA
sequence matching which requires longer seed length (typically 60-
80 bases) to achieve higher specificity and efficiency while main-
taining sensitivity to weak similarities [8]. A common practice is to
use dimensionality reduction [30] techniques to reduce the dimen-
sions of the dataset before using an index structure. These tech-
niques being lossy transformations do not guarantee optimal qual-
ity. These techniques are also not useful for a number of datasets,
e.g., strings [35] and multimedia [25, 26], which have intrinsically
high dimensionality.

State-of-the-art techniques for r-NN search in very high dimen-
sions trade-off quality for efficiency and scalability. Locality Sensi-
tive Hashing (LSH) [18, 16] is a state-of-the-art method for approx-
imately solving r-NN query in very high dimensions. LSH, named
Basic-LSH here, solves (r0, ε)-neighbor problem for a fixed query
range r0. It determines whether there exists a data point within
a distance r0 of query q, or whether all points in the dataset are
at least a distance (1 + ε)r0 away from q. In the first case, Ba-
sic-LSH returns a point within distance at most (1 + ε)r0 from
q. Basic-LSH constructs a set of L hashtables using a family of
hash functions to fetch near neighbors efficiently. Basic-LSH is ex-
tended, hereby named Extended-LSH, to solve ε-approximate near-
est neighbor search by building several data structures for different
values of r. Extended-LSH builds a set of L hashtables for each
value of r in {r0, (1 + ε)r0, (1 + ε)2r0, · · · , rmax}, where r0 and



rmax are the smallest and the largest possible distance between the
query and the data point respectively.

LSH based methods and their variants, though efficient and scal-
able, lack 100% quality guarantee because of their probabilistic
nature. In addition, they are unable to support queries over flexi-
ble ranges. Basic-LSH is designed for a fixed query range r0, and
therefore yields poor result quality for query ranges r > r0. Ex-
tended-LSH suffers from prohibitive space costs as it maintains a
number of index structures for different values of r. The space us-
age of even Basic-LSH becomes prohibitive for some applications
like biological sequence matching [8] where a large numbers of
hashtables are required to get a satisfactory result quality. Recently,
Lv et al. [26] improved Basic-LSH to address its space issue with a
novel probing sequence, called Multi-Probe LSH. However, Multi-
Probe LSH does not give any guarantee on quality or performance.
Tao et al. [33] proposed a B-tree based index structure, LSB tree, to
address the space issue of Extended-LSH and the quality issue of
Basic-LSH for query ranges which are any power of 2. Nonethe-
less, LSB tree is an approximate technique with a high space cost.

We find that none of the existing methods simultaneously offer
efficiency, 100% accuracy, and scalability for near neighbor queries
over flexible query ranges in very high dimensional datasets. These
properties are of general interest for any search system. In this
paper, we propose a novel in-memory index structure and querying
algorithm called SIMP (Spatial Intersection and Metric Pruning).
It efficiently answers r-NN queries for any query range in very high
dimensions with 100% quality guarantee and has practical storage
costs. SIMP adopts a two-step pruning method to generate a set of
candidate near neighbors for a query. Then it performs a sequential
search on these candidates to obtain the true near neighbors.

The first pruning step in SIMP is named Spatial Intersection
Pruning(SIP). SIMP computes multiple 2-dimensional projections
of the high dimensional data. Each projection is computed with
respect to a different reference point. SIMP partitions each 2-
dimensional projection into grids. It also computes the projection
of the query answer space. SIMP generates a set of candidates for
a r-NN query by an intersection of the 2-dimensional grids and
the projection of the query answer space. It preserves all the true
neighbors of a query by construction. A hash based technique is
used in this step to gain space and query time efficiency. The sec-
ond step of pruning is called Metric Pruning (MP). SIMP partitions
the dataset into tight clusters. It uses triangle inequality between a
candidate, candidate’s nearest cluster center, and the query point to
further filter out false candidates.

We also design a statistical cost model to measure the perfor-
mance of SIMP. We show a superior performance of SIMP over
state-of-the-art methods iDistance and p-stable LSH on three real
datasets having dimensions between [32-256] and sizes up to 10
million. We also compared SIMP with Multi-Probe LSH and LSB
tree on two real datasets of dimensions 128 and 256 and sizes 1 mil-
lion and 1.08 million respectively. We observed that SIMP compre-
hensively outperforms both these methods. Our scalability tests on
real datasets of sizes up to 100 million and dimensions up to 256
show that SIMP scales linearly with the query range, the dataset
dimension, and the dataset size.

Our main contributions are: (a) a novel algorithm that solves r-
NN queries for any query range with 100% quality in a very high
dimensional search space; (b) statistical cost modeling of SIMP;
and (c) extensive empirical studies. We discuss related work in
section 2. We develop our index structure and query algorithm in
section 3. A statistical cost model of SIMP is described in section 4.
We present experimental results in section 5. We describe schemes
for selecting the parameters of SIMP in section 6.

2. LITERATURE SURVEY
Near neighbor search is well solved for low dimensional data

(usually less than 10). Gaede et al. [15] and Samet et al. [30]
present a survey of these multidimensional access methods. All
the indexing schemes proposed in the literature fall into two major
categories: space partitioning and data partitioning. Berchtold et
al. [6] partition the space using a Voronoi diagram and answer a
query by searching for the cell in which the query lies. Space parti-
tioning trees like KD-Tree recursively partition the space on differ-
ent dimensions. Data partitioning techniques like R-Tree [17], M-
Tree [10] and their variants enclose relatively near points in Mini-
mum Bounding Rectangles or Spheres and recursively build a tree.
The performance of these techniques deteriorates rapidly with an
increase in the number of data dimensions [34, 7].

For very high dimensions, space filling curves [23] and dimen-
sionality reduction techniques are used to project the data into low
dimensional space before using an index. Weber et al. [34] pro-
posed VA-file to compress the dataset by dimension quantization
and minimize the sequential search cost. Jagadish et al. [19] pro-
posed iDistance to exactly solve r-NN queries in high dimensions.
The space is split into a set of partitions and a reference point is
identified for each partition. A data point p is assigned an index
key based on its distance from the nearest reference point. All the
points are indexed using their keys in a B+-Tree. iDistance per-
forms well for clustered data of dimensions up to 30. The metric
pruning of SIMP is inspired from this index structure.

Near Neighbor search is efficiently but approximately solved in
very high dimensions [16, 2]. Locality sensitive hashing (LSH)
proposed by Indyk et al. [18] provides a sub-linear search time and
a probabilistic bound on the result quality for approximate r-NN
search. LSH uses a family of hash functions to create hashtables. It
concatenates hash values from k hash functions to create a hash key
for each point. It usesL hashtables to improve the quality of search.
LSH hash functions put nearby objects in the same hashtable bucket
with a higher probability than those which are far apart. One can
determine near neighbors by hashing the query point and retrieving
elements stored in the bucket containing the query. Many families
of hash functions have been proposed [16, 9, 12, 1] for near neigh-
bor search. p-stable LSH [12] uses vectors, whose components are
drawn randomly from a p-stable distribution, as a family of hash
functions for lp norm. As discussed in section 1, LSH suffers from
the quality and the space issues.

Many improvements and variants [3, 28, 29, 26, 13, 21, 33, 24]
have been proposed for the LSH algorithm to solve the approximate
near neighbor search. Lv et al. [26] proposed a heuristic called
Multi-Probe LSH to address the space issue of Basic-LSH [16].
They designed a novel probing sequence to look up multiple buck-
ets in hashtables of Basic-LSH. These buckets have a high proba-
bility of containing the near neighbors of a query. Multi-Probe LSH
does not have any quality guarantee and may need a large number
of probes to achieve a desired quality, thus making it inefficient.

A B-tree based index, called LSB tree (a set of LSB trees is
called an LSB forest), was proposed by Tao et al. [33] for near
neighbor search in relational databases to simultaneously address
the space issue of Extended-LSH [18] and the quality issues of
Basic-LSH for query ranges which are any power of 2. Each d-
dimensional point is transformed into an m-dimensional point by
taking its projection on m p-stable hash functions similar to p-
stable LSH [12]. Points are indexed using a B-Tree on their z-order
values which are obtained by partitioning them-dimensional space
with equi-width bins. Near neighbor search is carried by obtaining
points based on the length of the longest common prefix of z-order.
LSB tree is an approximate technique with weak quality guaran-



q(rq): A query with point q and search range rq v: A viewpoint nv : Number of viewpoints
G(v): Polar grid of viewpoint v N : Number of data points in U h(s): A hashtable of SIMP
p: A data point o: Origin of the data space s: Signature of a hashtable
θ: Angle of a data point p relative to a viewpoint v
and its angular vector ov

S: Percentage of the data points obtained by an
algorithm as candidate for a query (selectivity)

C: Candidate set obtained by an algorithm for a
query

r: Distance of a point p from a viewpoint v b: Bin id of a point in a polar grid P : Number of probes used by Multi-Probe LSH
L: Number of hashtables in the index structure k : Size of a hash signature s d: Dimension of the dataset
wr : Radial width between rings of a polar grid wθ : Angle between radial vectors of a polar grid nz : Number of mballs used for Metric Pruning

Table 1: A descriptive list of notations used in the paper.

(a) One viewpoint (b) Two viewpoints

Figure 1: Spatial Intersection Pruning. (a) Answer space of
query q(rq) is bounded within the distance range [r1, r2] rel-
ative to viewpoint v1. Shadowed region contains all the can-
didates of query q(rq) relative to viewpoint v1. (b) Shadowed
region contains all the candidates of query q(rq) relative to two
viewpoints v1 and v2. Intersection over two viewpoints gives
better pruning of the false candidates.
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(a) An example dataset (b) Polar grid relative to v

Figure 2: (a) A dataset with data space origin o and a view-
point v. Values r and θ for point p are computed relative to v
and its angular vector ov. (b) Partition of the data space using
equi-width wr rings and equi-angular wθ radial vectors rela-
tive to viewpoint v and v’s angular vector ov. Each bin is given
a unique id that places a canonical order on the bins.

tees and can have prohibitive costs. It is noteworthy that all the
LSH based techniques create index structures independent of the
data distribution.

A cost model for near neighbor search using partitioning algo-
rithms was provided by Berchtold et al. [5]. An M-Tree cost model
was presented by Ciaccia et al. [11]. Weber et al. [34] and Böhm et
al. [7] developed these ideas further.

3. ALGORITHM
We develop the idea of SIMP using a dataset U of N points in

a d-dimensional vector data space Rd. Each point p has a unique
identifier. We use Euclidean metric to measure the distance d(., .)
between a pair of points inRd. We take o as the origin of the data
space. An r-NN query q(rq) is defined by the query point q and the
search range rq . The answer set of the query q(rq) contains all the
points of the dataset U which lie within a hyper sphere of radius rq
and center at q. This hyper sphere is the answer space of the query
q(rq). We describe all notations used in this paper in table 1.

3.1 Preliminaries
We first explain the idea of intersection for Spatial Intersection

Pruning (SIP) that effectively prunes false candidates. Then we de-
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Figure 3: Bounding range B={[r1, r2],[θ1,θ2]} of qball of a
query q(rq) relative to a viewpoint v and angular vector ov.

scribe how intersection is performed using multiple projections of
the data points, each relative to a different reference point, to find
candidates. We show that the projection relative to a random view-
point is locality sensitive: a property that helps SIMP effectively
prune false candidate by intersection. Finally, we explain the idea
of Metric Pruning (MP).

We explain SIP using figure 1. Let v1 be a randomly chosen
reference point, called a viewpoint, in the d-dimensional data space
Rd. We compute distance r=d(v1, p) for each point p in the dataset
relative to v1. Let the answer space of a query q(rq) be contained
in the distance range [r1, r2] from v1 as shown in figure 1. All the
points having their distances in the range [r1, r2] from v1 form the
set of candidate near neighbors for the query q(rq). We show the
region containing the candidates in shadow in figure 1(a). Let v2
be another viewpoint. Let [r′1, r

′
2] be the distance bounding range

for the answer space of the query q(rq) relative to v2. Now, the
true near neighbors of the query q(rq) must lie in the intersection
of the range [r1, r2] and [r′1, r

′
2] as shown with shadowed region in

figure 1(b). We see that an intersection over two viewpoints bounds
the answer space more tightly, and thus achieves better pruning of
false candidates.

We describe how the intersection is performed using an example
dataset shown in figure 2(a). Let v be a viewpoint. The vector ov
joining origin o to the viewpoint v is called v’s angular vector.
We compute distance r=d(v, p) and angle θ for each point p in
the dataset relative to v and ov. The range of the distance r is
[0, rmax], where rmax is the distance of the farthest point in the
dataset from v. The angle θ lies in the range [0◦, 180◦] and is
computed as

θ = cos−1(ov.vp/(d(o, v)× d(v, p))) (1)

Thus, we get the projection of the d-dimensional dataset onto a 2-
dimensional polar (r, θ) space relative to v. We partition this polar
space into grids using equi-width wr rings and equi-angular wθ
radial vectors relative to the viewpoint v as shown in figure 2(b).
This partitioned data space is called v’s polar grid G(v). For a
given query q(rq), we compute the projection q′ of the query point
q relative to the viewpoint v and the angular vector ov. Then, the
projection of the answer space of the query q(rq) relative to v and
ov, named qball, is a circle with radius rq and center q′. All the
true neighbors of q(rq) are contained in this qball. We make a
choice to use polar coordinates because both of its dimensions, dis-
tance r and angle θ, reflect an aggregate value of all the original
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Figure 4: We see that point p2 having d(q, p2) > rq lies out-
side the bounding range of the qball of query q(rq) relative to
viewpoint v lying on the line L. Point p1 having d(q, p2) ≤ rq al-
ways lies within the bounding range of the qball of query q(rq)
for any viewpoint v.
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Figure 5: Values of Pr2 obtained for varying c, where
d(q, p)=c × rq , and varying number nv of viewpoints used for
spatial intersection on 128 and 256 dimensional real datasets.
The value of Pr1 is always 1.

dimensions in Rd. Any other coordinate system can be similarly
used in place of polar coordinates.

Let the qball of the query q(rq) be enclosed within the bound-
ing range B={[r1, r2], [θ1, θ2]} relative to a viewpoint v as shown
in figure 3. We find a set of bins of polar grid G(v) that encloses
the bounding range B. Points contained in these bins form the set
of candidates for the query q(rq) relative to v. For a set of nv
viewpoints, a candidate set is obtained for each viewpoint indepen-
dently. An intersection of the candidate sets obtained from the nv
viewpoints gives the final set of candidates.

We next show that the projection relative to a random viewpoint
v is locality sensitive. Let v be a randomly chosen viewpoint from
the data space and G(v) be its polar grid. Let the qball of a query
q(rq) be enclosed within the bounding rangeB={[r1, r2], [θ1, θ2]}
relative to v. The bounding range B is computed as shown in sec-
tion 3.3. Let p be a point at distance r=d(v, p) from v and at an
angle θ from v’s angular vector ov. Point p is chosen as a candi-
date if r1 ≤ r ≤ r2 and θ1 ≤ θ ≤ θ2. If nv randomly chosen
viewpoints are used for intersection, then a point p is a candidate
only if it lies in the intersection of the bounding ranges obtained
from each of the viewpoints independently. Let Pr1 be the prob-
ability that p is selected as a candidate when r ≤ rq . Let Pr2 be
the probability that that p is selected as a candidate when r > rq .
Probabilities are computed with respect to the random choices of
viewpoints. We say that the projection with respect to a random
viewpoint is locality sensitive if Pr2 < Pr1.

LEMMA 1. The projection of points on a polar (r, θ) space rel-
ative to a random viewpoint is locality sensitive.

PROOF. Let points p1 and p2 be such that d(q, p1) ≤ rq and
d(q, p2) > rq . Let p1 be at an angle θp1 and p2 be at an angle θp2
relative to the angular vector ov of a random viewpoint v.

Point p1 satisfies r1 ≤ d(q, p1) ≤ r2 and θ1 ≤ θp1 ≤ θ2 for
any viewpoint v by construction as shown in figure 4. Therefore,
Pr1=1.

q

rq

z

d(p, z)
p

Figure 6: Metric Pruning. z is the nearest mcenter of point
p. p is a candidate for q(rq) only if rq ≥ d(q, p) ≥| d(p, z) −
d(q, z) |.

Next we show that Pr2 < 1 by geometric considerations using
figure 4. We draw a line L passing through q and p2 as shown in
figure 4. We draw the enclosing rings of the query q(rq) at radii
r1=(d(v, q)− rq) and r2=(d(v, q) + rq) from a randomly chosen
viewpoint v on the line L. We see that the point p2 lies outside the
enclosing ring, i.e., d(v, p2) < r1 or d(v, p2) > r2. This is true
for any viewpoint lying on the line L. Therefore, Pr2 < 1

We empirically observed that the probability Pr2 rapidly de-
creases with an increase in the distance of a point p from the query.
This also implies that the probability of a false near neighbor be-
ing selected as candidate decreases with its distance from the query
point. To derive these results, we computed the values of Pr2 for a
query q(rq) for varying c, where d(q, p)=c×rq , using Monte Carlo
methods. We also computed values of Pr2 for different number of
viewpoints nv used for intersection. We used two real datasets of
dimensions 128 (SIFT) and 256 (CHist) for the simulation. We de-
scribe these datasets in section 5. We performed simulation using
10 million random viewpoints. We observed that the value of Pr2
decreases at a fast rate with increasing value of c, as shown in fig-
ure 5. For example, the value of Pr2 is zero for 128-dimensional
dataset for c=4 and nv=4. The value of Pr1 is always 1.

SIMP achieves a high rate of pruning of false near neighbors due
to Lemma 1 and the intersection of the qball of a query with po-
lar grids of multiple viewpoints. This makes SIMP a very efficient
method for r-NN search with 100% quality guarantee. In this pa-
per, we develop a suitable data structure and search algorithm using
hashing to implement the idea of SIP.

To get extra performance, we augment SIP with metric pruning.
This pruning is based on triangle inequality and is carried with re-
spect to data clusters. To obtain a good pruning, these clusters need
to be quite small. As a result, we cluster all the data points into
nz tight clusters where a cluster is named an mball. We name the
center of an mball as an mcenter. Let z be the nearest mcenter
to a point p. From triangle inequality, we know that a point p is a
candidate only if rq ≥ d(q, p) ≥| d(p, z) − d(q, z) |, as shown
in figure 6. The nearest mcenter z of each point p and the distance
d(p, z) are pre-computed for an efficient pruning using triangle in-
equality at runtime.

3.2 Index Structure
The index structure of SIMP consists of data structures for effi-

cient processing of both SIP and MP. A set of hashtables and bit
arrays constitute the index structure of SIP. The index structure of
MP consists of three associative arrays.

We first discuss the construction of the index structure for SIP.
We randomly choose nv viewpoints V ={vi}nv

i=1 from the d-dimens-
ional dataset. We construct a polar grid for each of the nv view-
points. For each polar grid G(v), a data point p is assigned the id
of the bin of the polar grid in which it lies. The bin id of a point p
having distance r=d(v, p) and angle θ relative to a viewpoint v and
v’s angular vector ov is

b = (br/wrc × (b180◦/wθc+ 1)) + bθ/wθc.

For example, if we take wr=50 and wθ=45◦ for creating a polar



grid and a point p at r=70 and θ=40◦ from the viewpoint, then the
bin id of p is 1 × 5 + 0=5. The distance r of any point p from a
viewpoint v lies between [0, rmax], where rmax is the distance of
the farthest point in the dataset from v. The angle θ of any point p
relative to ov lies between [0◦, 180◦].

Polar grids incur a high space cost if stored separately. A polar
grid can be stored in an array whose entry at index i is the collection
of the data points in the bin i of the polar grid. A point is stored
only by its identifier in the array. This gives a space cost of nv×N
for nv polar grids and a dataset of size N . This space cost may
become unmanageable for large values of nv and N . For example,
if N is 100 million points and nv=100, then the total space cost of
the index is 40GB.

We develop a hash based index structure to reduce the index
space. We assume without loss of generality that nv=k × L for
some integers k and L. We use a value of k=4 for SIMP. We split
nv viewpoints into L groups, each of size k. A set of k viewpoints
is called a signature s={v1, · · · , vk}. Thus, we construct L sig-
natures si such that (si ∩ sj)=∅ for any two signatures si and sj ,
and ∪Li=1si =V . We create a hashtable h(s) for each signature s.
We generate a k-size {b1 · · · bk} hash key for each data point p for
a signature s by concatenating the bin ids of p obtained from the
polar grids of the viewpoints v ∈ s. All the data points are hashed
into the hashtable h(s) using their k-size keys by a standard hash-
ing technique. A point is stored by its identifier in the hashtable.
Each hashtable h(s) defines an intersection over k polar grids. The
space cost of L hashtables is L×N , which is k times less than the
space cost of storing nv polar grids (nv ×N ).

We describe the creation of hashtables with an example. Let
V ={v1, v2, v3, v4} be a set of nv=4 viewpoints. We create two
signatures s1={v1, v2} and s2={v3, v4} for k=2. We create hashta-
bles h(s1) and h(s2) for signatures s1 and s2 respectively. Let the
bin ids of a point p in the polar grids of viewpoints v1, v2, v3, and
v4 be b1, b2, b3, and b4 respectively. Then, point p is hashed into
h(s1) and h(s2) using keys b1b2 and b3b4 respectively.

We also maintain a bit array called isEmpty for each polar grid
G(v). The size of this bit array is equal to 1 if rmax=0 and is equal
to ((brmax/ wrc + 1) × (b180◦/wθc + 1)) if rmax > 0. The
actual memory footprint of a bit array is negligible. A bin’s id in
a polar grid G(v) is its index in the bit array of G(v). All the bits
corresponding to empty bins of a polar grid G(v) are marked true.

The index structures of MP are created as follows. We split all
the data points into nz mballs. We assign a unique identifier to
each mcenter. We store mcenters in an associative array using their
identifiers as keys. We store the identifier and the distance of the
nearest mcenter for each data point in associative arrays using the
point’s identifier as key.

3.3 Search Algorithm
In this section, we present the search algorithm for SIMP to re-

trieve candidates for a query q(rq) using the data structures of SIP
and MP. SIMP performs a sequential scan on these candidates to
obtain the near neighbors of the query.

In the SIP step, SIMP first finds the nearest viewpoint v1 to the
given query point q. Then it obtains hashtable h(s) correspond-
ing to v1, i.e., v1 ∈ s. SIMP computes the keys of the buckets of
h(s) containing the candidates of the query q(rq) as follows. For
a query q(rq), SIMP finds a set of bins enclosing the qball of the
query from the polar grid of each of the k viewpoints v ∈ s. SIMP
takes a cartesian product of these k sets to get the keys of the buck-
ets containing candidates. The union of the data points in these
buckets gives the set of candidates from the hashtable h(s). For
example, let viewpoints {v1, v2} be the signature s of hashtable

Algorithm 1 getBins
In: q(rq): query, d(q, v): distance of query from the viewpoint v
In: θ: angle of the query relative to ov
In: A: isEmpty bit array of G(v)
1: BC ← φ /* ids of enclosing bins */
2: [r1, r2], [θ1, θ2]← bounding range of the qball of q(rq)
3: startBinR← br1/wrc, endBinR← br2/wrc
4: startBinθ ← bθ1/wθc, endBinθ ← bθ2/wθc
5: for all ri ∈ [startBinR, endBinR] do
6: for all θi ∈ [startBinθ, endBinθ] do
7: BC ← BC ∪ (ri × (b180◦/wθc+ 1) + θi)
8: end for
9: end for

10: for all b ∈ BC do
11: if A[b] is True then
12: BC ← BC \ b
13: end if
14: end for
15: return BC

h(s) for k=2. Let {b11, b12} be the set of bins of polar grid G(v1)
and {b21, b22} be the set of bins of G(v2) enclosing the qball of the
query q(rq). The union of the data points contained in the buckets
of h(s) having keys {b11b21, b11b22, b12b21, b12b22} gives the set
of candidates from h(s).

We explain here the method to determine a set of bins of a polar
grid G(v) that encloses the qball of a query q(rq) relative to a view-
point v. We first compute the bounding rangeB={[r1, r2], [θ1, θ2]}
of the qball relative to the viewpoint v as shown in figure 3. Let
d(q, v) be the distance of the query point q from the viewpoint v.
The values of r1 and r2 are obtained as follows:

r1 =

{
d(q, v)− rq if rq < d(q, v)
0 if rq ≥ d(q, v) (2)

r2 = d(q, v) + rq (3)

We find the aperture φ of the qball of q(rq) relative to v as follows:

φ = 2× sin−1(rq/d(q, v)). (4)

We determine angle θ of the query point q relative to viewpoint v
and its angular vector ov using Equation 1. The values of θ1 and
θ2 are given by

θ1 =

 θ − φ/2 if φ/2 ≤ θ
0◦ if φ/2 > θ
0◦ if rq ≥ d(q, v)

(5)

θ2 =

 θ + φ/2 if (φ/2 + θ) < 180◦

180◦ if (φ/2 + θ) ≥ 180◦

180◦ if rq ≥ d(q, v)
(6)

We compute the bins from a polar grid G(v) using the bounding
range B={[r1, r2], [θ1, θ2]} as described in Algorithm 1. We first
obtain the set of bins enclosing the qball of the query for radial
partitioning and angular partitioning independently in steps 3 and 4
respectively. We iterate through these bins to compute a set of bins
of G(v) that encloses the qball in steps [5-9]. We remove empty
bins from this set using isEmpty bit array of G(v) in steps [10-14].

In the MP step, SIMP uses triangle inequality between a candi-
date obtained from SIP step, candidate’s nearest mcenter, and the
query point q. It retrieves the nearest mcenter z of a candidate and
the distance to the mcenter d(p, z) from the index. SIMP computes
the distance d(q, z) between the mcenter z and the query point q.
SIMP discards a candidate if rq <| d(p, z)− d(q, z) |.

We describe the execution of SIMP using Algorithm 2. Spa-
tial intersection pruning is performed in steps [1-11]. SIMP finds



Algorithm 2 SIMP
In: q(rq): query,H: set of hashtables
In: Z: array containing the nearest mcenter of each data point
In: pz: array of distances of the points from their nearest mcenter
1: C ← ∅ /*candidate set */
2: v1 ← nearest viewpoint to q
3: h(s)←H(v1 ∈ s)
4: Y ← [1]
5: for all v ∈ s do
6: BC ← getBins(q(rq), d(q, v), θ, isEmpty)
7: Y ← Y ×BC
8: end for
9: for all key ∈ Y do

10: C ← C ∪ points ∈ h[key]
11: end for
12: /* Metric Pruning */
13: qz ← [ ] /* list of distances of mcenters z from q*/
14: for all c ∈ C do
15: z ← c’s nearest mcenter from Z
16: if qz[z] 6= Null then
17: d′ ← qz[z]
18: else
19: d′ ← qz[z]← d(q, z)
20: end if
21: if | pz[c]− d′ |> rq then
22: C ← C \ c
23: end if
24: end for
25: /*Sequential search */
26: for all c ∈ C do
27: if d(q, c) > rq then
28: C ← C \ c
29: end if
30: end for
31: return C

hashtable h(s) whose signature s contains the nearest viewpoint v1
to the query point q in steps [2-3]. For each viewpoint v in signature
s, SIMP obtains a set of bins BC enclosing the qball of the query
q(rq) in step 6. SIMP computes a set Y of hash keys by a carte-
sian product of the set of bins BC in step 7. SIMP takes a union
of the points in the buckets of hashtable h(s) corresponding to the
hash keys Y in steps [9-11]. Next, SIMP applies metric pruning in
steps [13-24]. For each candidate, SIMP gets the identifier of its
nearest mcenter z from a pre-computed array Z in step 15. SIMP
computes the distance of the query q from z if it is not previously
computed; otherwise it retrieves the distance from an array qz in
steps [16-20]. A candidate is tested using the triangle inequality in
step 21. Finally, all the true neighbors are obtained by computing
the actual distance of each of the candidates from the query point
in steps [26-29].

Extension to nearest neighbor search: The SIMP algorithm
for r-NN search can be extended for top-k nearest neighbor search
using the approach proposed by Andoni et al. [16]. For a dataset,
an expected distance E(r) of top-k nearest neighbors from query
points is estimated under the assumption that the query distribu-
tion follows the data distribution. We start the r-NN search with
r=E(r). If no nearest neighbor is obtained, then we repeat SIMP
with range ((1 + c)× r) until at least k points are retrieved.

4. STATISTICAL COST MODELING AND
ANALYSIS

We develop statistical models to measure the query costs of SIMP.
For a query q(rq), the number of buckets of a hashtable probed in
steps [5-11] and the number of candidates C to which distance is
computed in steps [26-30] of Algorithm 2 define the cost of SIMP.

We develop models to find the expected number of buckets of a
hashtable h(s) probed and the expected number of candidates ob-
tained for a query q(rq).

Data distribution: For a viewpoint v and a point p, let r=d(p, v)
be the distance of p from v and θ be the angle of p relative to v’s
angular vector ov. Let Pv(r, θ) be the spatial probability mass
function of the data space relative to the viewpoint v. A hashtable
h(s) defines an intersection over k viewpoints. Let [r, θ] represent
the list [ri, θi]

k
i=1. We represent a point p relative to k viewpoints

of a hashtable h(s) as p([r, θ]), where [r, θ] is the list of distances
and angles of p relative to all the viewpoints v ∈ s.

p([r, θ]) = [∪ki=1(rvi , θvi) for all vi ∈ s] (7)

Let P([r, θ]) be the joint spatial probability mass function of the
data space over k viewpoints. Let Q be the query space. The joint
spatial probability mass function Q([r, θ]) of the query space is
taken to be similar to the data space mass function P([r, θ]). All
the expectations are computed with respect to query mass function
Q([r, θ]). A query q(rq) is represented as q(rq, [r, θ]) relative to
k viewpoints.

Expected number of hash buckets probed: We compute the
set of binsBC of a polar grid G(v) enclosing the qball of the query
q(rq) using Algorithm 1. All the bits of isEmpty bit array are taken
to be false. The total number of buckets Y ([r,θ]) of a hashtable
h(s), whose signature s has k viewpoints, probed for a query q(rq ,
[r, θ]) is given by

Y ([r, θ]) =

k∏
i=1

| BCvi |

The expected number of buckets probed in a hashtable h(s) is ob-
tained by taking a sum over the query space Q with respect to the
query mass functionQ([r, θ]).

E(Y ) =

|Q|∑
x=1

Y ([r, θ]x)×Q([r, θ]x) (8)

Expected number of candidates: To obtain the expected num-
ber of candidates E(C), we first derive the probability of a random
point p being chosen as a candidate by spatial intersection prun-
ing. The bounding range B={[r1, r2],[θ1], θ2]} of the qball of a
query q(rq) relative to a viewpoint v is obtained as discussed in
section 3.3. For a viewpoint v, the probability that p is selected as
a candidate is

Prv(p is candidate) = Pr(p ∈ B)

=

θ2∑
θ1

r2∑
r1

Pv(r, θ).

For k viewpoints, a random point p is a candidate only if p lies in
the intersection of the bounding ranges of all the k viewpoints. Let
{B1, · · · ,Bk} be the bounding ranges with respect to k viewpoints.
Then, the probability that p is a candidate is

Prv(p is candidate) = Pr(p ∈ B ∩ · · · ∩Bk).

The intersection of the bounding ranges of k viewpoints is not inde-
pendent. Therefore, to obtain the probability Prv(p is candidate),
we compute the bounding volume of the qball of query q(rq) for
each viewpoint v independently. The bounding volume for a view-
point v is obtained by a cartesian product of the bounding distance
and angular ranges of the qball relative to v. The joint bounding



d=128 d=256
rq nz=5, 000 nz=15, 000 rq nz=5, 000 nz=15, 000
50 0.947 0.947 300 0.703 0.693

100 0.953 0.952 400 0.698 0.687
150 0.954 0.954 500 0.739 0.733
200 0.954 0.954 600 0.743 0.734

Table 2: Error ratio ξ(%) for expected number of candidates
E(C) for varying query ranges rq and varying number of
mballs nz .

volume of k viewpoints is obtained by

Vol =

k∏
i=1

[ri1, r
i
2]× [θi1, θ

i
2].

The probability that a random point p is a candidate, if k polar grids
are used, is obtained by taking a sum of the joint spatial probability
mass function P([r, θ]) of the data space over the joint volume

PrSIP (p is candidate) =
∑
V ol

P([r, θ]). (9)

Next, we derive the probability that a random point p is chosen as
a candidate by metric pruning. The distance probability distribution
of points of a data space relative to a point p1 is given by

Fp1(r) = Pr(d(p1, p) ≤ r).

The probability that a random point p, having the nearest mcenter
z, is a candidate for a query q(rq) is

PrMP (p is candidate ) = Pr(| d(p, z)− d(q, z) |≤ rq)
= Fq(rq) (10)

whereFq is the distance distribution of | d(p, z)−d(q, z) | relative
to q. It is not feasible to compute Fq at runtime or store it for all
possible queries. Therefore, we approximate it with Fzq , which
is the distance distribution of | d(p, z) − d(zq, z) | relative to the
nearest mcenter zq of the query point q.

The probability of a random point p being chosen as a candidate
for query q(rq, [r, θ]) using both SIP and MP is:

Pr(pcandidate) = PrMP (p is candidate)

× PrSIP (p is candidate) (11)

The total number of candidates C for a query q(rq, [r, θ]) is given
byC=Pr(p is cand)×N , where N is the dataset size. The expected
number of candidates E(C) is obtained by taking a sum over the
query space Q with respect to query mass functionQ([r, θ]).

E(C) =

|Q|∑
x=1

Pr(p is candidate )×Q([r, θ]x)×N (12)

It is worth noting that Equation 12 gives the expected number of
candidates E(C) for Algorithm SIMP. If the distance probability
distribution F ′q of the data points relative to the query point q is
known, then the actual number of candidates is F ′q(rq)×N .

We empirically verified the robustness of our model for E(C)
using error ratio ξ. If E(Ca) is the average number of candidates
obtained empirically, then

ξ =| E(Ca)− E(C) | /E(Ca) (13)

We computed ξ(%) for multiple query ranges rq and various num-
ber of mballs nz on two real datasets of dimensions 128(SIFT) and
256 (CHist) which are described in section 5. The values of ξ(%)
are shown in table 2. We see that ξ(%) on both the datasets is less
than 1% for all query ranges rq and the number of balls nz .

Space complexity: SIMP has a linear space complexity in the
dataset size N . We compute the memory footprint of SIMP for a
d-dimensional dataset having N points. Let the space usage of a
word be W bytes. Let each dimension of a point take one word.
Then, the space cost of the dataset is (N × d ×W ) bytes. Let a
point identifier take one word. A point is stored by its identifier
in a hashtable. Therefore, the space required for L hashtables is
(L×N×W ) bytes. The space cost of nz mcenters is (nz×d×W )
bytes. (N × log2(dmax) + N × log2(nz)) bytes are required to
store the distance and the identifier of the nearest mcenter for each
point. dmax is the maximum distance of a point from its nearest
mcenter. We fairly assume that log2(dmax) ≤W and log2(nz) <
W/2. Therefore, the total memory footprint is N ×W × (d+L+
(nz/N)d + 1 + 1/2) bytes = a × N × W ∝ N . Here, a is a
constant proportional to d and W is a constant. Thus, we see that
the space complexity of SIMP is O(N).

5. EMPIRICAL EVALUATIONS
We empirically evaluated the performance of SIMP on five real

datasets. We compared SIMP with four alternative methods: (1) p-
stable LSH [12], (2) Multi-Probe LSH [26], (3) LSB tree [33], and
(4) iDistance [19]. All these methods are briefly described in sec-
tion 2. p-stable LSH and iDistance are state-of-the-art methods for
an approximate and an exact search respectively, while Multi-Probe
LSH and LSB tree have been recently proposed. We first introduce
the datasets and the metrics used for measuring the performance of
the algorithms. Then we describe the query workload for our exper-
iments and the construction of an specific instance of SIMP index.
Next we describe the performance comparison of SIMP with the
alternative methods. Finally, we show scalability results of SIMP
on datasets having as many as 100 million points.

Dataset description: We used 5 real datasets of various dimen-
sions and sizes for our experiments. The first real dataset, called
SIFT, contains 128-dimensional 1 million SIFT [25] feature vec-
tors extracted from real images [20]. SIFT is a state-of-the-art fea-
ture used for content based image retrieval and object recognition.
The second dataset, called SIFT10M, and the third dataset, called
SIFT100M, has 10 million and 100 million 128-dimensional SIFT
feature vectors of real images respectively. We obtained these three
datasets from INRIA Holiday dataset1.

The fourth real dataset, called CHist, has 256-dimensional 1, 082-
, 476 color histograms of images. For this, we downloaded random
images from Flickr2. We transformed each image into gray-scale.
Then we extracted a 256-dimensional histogram from each image
by counting the number of occurrences of each color in the image.
The fifth dataset, called Aerial [32], has 10 million points of 32 di-
mensions. We obtained 82, 282 gray-scale aerial images from the
Alexandria Digital Library3. These aerial images are satellite im-
ages and air photos of different regions of California. The size of
these images varies from 320 × 160 pixels to 640 × 480 pixels.
We split each of the aerial images into non-overlapping tiles of size
32×32 pixels. The total number of tiles obtained are 10, 625, 200.
We computed a 32-dimensional histogram of the pixel values of
each tile in a manner similar to Color Structure Descriptor [27].

Performance metrics: We measured the performance of the
algorithms using following metrics: (1) recall, (2) selectivity, (3)
query time, and (4) space usage. These metrics validate the quality
of results, the efficiency, and the scalability of the algorithms. Re-
call measures the result quality of an algorithm. It is the ratio of the

1http://lear.inrialpes.fr/j̃egou/data.php
2http://www.flickr.com/
3http://www.alexandria.ucsb.edu/
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Figure 7: Comparative study of performance of SIMP with p-Stable LSH and iDistance on 256-dimensional CHist dataset.
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Figure 8: Comparative study of performance of SIMP with p-Stable LSH and iDistance on 128-dimensional SIFT dataset.
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Figure 9: Comparative study of performance of SIMP with p-Stable LSH and iDistance on 32-dimensional Aerial dataset.

number of the true neighbors retrieved by an algorithm to the total
number of the true neighbors in the dataset for a query. The true
near neighbors of a query in a dataset are obtained using sequential
search. iDistance and SIMP have 100% recall. The efficiency of
the algorithms are measured by their selectivity, query time, and
space usage. Selectivity of an indexing scheme is the percentage of
the data points in a dataset for which the actual distance from the
query is computed. Query time is the elapsed CPU time between
the start and the completion of a query. We verify the space effi-
ciency of the algorithms by computing the memory footprints of
their index structures. The main factors governing the query cost
of SIMP are the dataset size N , the dataset dimension d, and the
query range rq . We verify the scalability of SIMP by computing
its query time for varying values of N , d, and rq . We observed a
sequential search time of 311ms for SIFT, 603ms for CHist, 774ms
for Aerial, 3, 209ms for SIFT10M, and 28, 000ms for SIFT100M.

Query workload: We randomly picked 1, 000 query points from
each of the SIFT, CHist, and Aerial datasets. We used the queries
of SIFT also for both SIFT10M and SIFT100M. Each result on a
dataset is reported as an average over all its query points. We per-
formed experiments for multiple query ranges rq for each query
point q. We used query ranges rq= {50, 100, 150, 200} for SIFT,
Aerial, SIFT10M, and SIFT100M and query ranges rq={300, 400,
500, 600} for CHist. For a dataset, query ranges are chosen such

that at least 90% of its data points have their top-1 nearest neigh-
bors within the largest query range. We computed the cumulative
mass function of distances of top-1 nearest neighbors of a large set
of random query points from each dataset. We found that more
than 90% of the queries of SIFT, Aerial, SIFT10M, and SIFT100M
have their top-1 nearest neighbor within a query range of 200. The
same was true for the query range of 600 for CHist.

SIMP index: Here we describe a specific construct of SIMP
index. The viewpoints for SIMP are picked randomly from the
dataset. SIMP uses a fixed signature size of k=4 for its hashtables.
The number of hashtables L is decided based on the memory con-
straints. We used two values of L={1, 25} for our experiments.
SIMP requires values of wr and wθ to create polar grids. A fixed
value of wθ=45◦ is used for creating the polar grids. The value of
wr is learned for each dataset by training. For our experiments,
we chose a training query range r0 and also randomly picked a set
of query points from each dataset. Then we measured the perfor-
mance of SIMP for a set of values of wr using r0 and the query
points. We chose the value of wr which produced the best result
for the dataset. We used k-means clustering to find mballs and
mcenters for metric pruning (MP). For our experiments, we used
nz=5, 000 mballs for metric pruning.

All the experiments were performed on Debian GNU/Linux 5.0
and quad-core Intel(R) Xeon(R) CPU 5, 140@2.33GHz with 4MB
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Figure 10: Comparative study of performance of SIMP with Multi-Probe LSH (MP) and LSB Tree on 128-dimensional SIFT dataset.
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Figure 11: Comparative study of performance of SIMP with Multi-Probe LSH (MP) and LSB Tree on 256-dimensional CHist dataset.

cache. All the programs were implemented in Java. We used Java
Hotspot 64-bit (16.3 build) Server VM.

5.1 Performance comparison with p-stable LSH
and iDistance

We present the performance comparison of SIMP with p-stable
LSH [12] and iDistance [19] on SIFT, CHist, and Aerial datasets.
We first describe the settings of the algorithms used for compara-
tive studies. Then we give empirical evidences to show that SIMP
is much superior than LSH on the result quality. Next we empiri-
cally show that SIMP is much more efficient than iDistance for all
datasets and query ranges. We also show that SIMP scales linearly
with the dataset dimension d and the query range rq . The scalabil-
ity of SIMP with the dataset size is shown in section 5.3. Finally,
we compare the space efficiency of these algorithms.

We used following settings of the algorithms for comparison. We
implemented p-stable LSH similar to Datar et al. [12] for Euclidean
norm. The parameters of LSH are the number of hashtables L,
the number of hash values k′ concatenated to generate a hash key,
and the bin-width w used to bucket the projected values. We used
the same number of hashtables L=25 for both LSH and SIMP. We
learned the values of k′ and w for LSH. We chose the query range
r0=50 for SIFT and Aerial and the query range r0=300 for CHist
for learning the parameters k′ and w of LSH and the parameter
wr for SIMP. We measured the performance of LSH for a set of
values of k′ and w on each dataset using the training query range
r0 and a set of randomly picked query points. We chose the values
of k′ and w for which LSH had 100% recall with the least query
time. For LSH, we learned the valuesw=1, 700 and k′=8 on CHist,
w=350 and k′=8 on SIFT, and w=250 and k′=8 on Aerial. For
SIMP, we learned the values wr=300 on CHist, wr=30 on SIFT,
and wr=100 on Aerial. We used nz=5, 000 mballs for SIMP. We
used the mcenters of these mballs as reference points for iDistance.

We observed that SIMP always guarantees 100% quality com-
pared to LSH whose quality falls below 50% for larger query ranges.
We show the performance of the algorithms on CHist, SIFT, and
Aerial datasets in figures 7, 8, and 9 respectively. We see that SIMP

and iDistance have 100% recall on datasets of all sizes and dimen-
sions and for all query ranges. Unlike SIMP, the recall of LSH falls
rapidly with an increase in the query range. LSH had a recall of
only 21.6% for rq=200 on Aerial dataset.

Our empirical results show that SIMP has a superior performance
than iDistance on datasets of all sizes and dimensions and for all
query ranges. Both the methods always yield 100% result quality
but SIMP significantly outperforms iDistance in efficiency. We see
from figures 7, 8, and 9 that iDistance has larger query time and
selectivity than SIMP on all the datasets. This difference in per-
formance widens with an increase in the dimension of the datasets
and the query range. SIMP had a selectivity of 5% compared to
42% selectivity of iDistance on CHist dataset for the query range
rq=300 as seen in figure 7.

We observed that the selectivity and the query time of SIMP
grows linearly with the dataset dimension d and the query range
rq . We see from figures 9 and 8 that SIMP has a selectivity of
0.2% and 0.7% on 32-dimensional Aerial and 128-dimensional
SIFT datasets respectively for the query range 50. This shows that
the selectivity of SIMP grows linearly with d. From figure 7, we
see that the selectivity of SIMP grows from 5% for rq=300 to 17%
for rq=600 on CHist dataset. This validates that the selectivity of
SIMP grows linearly with rq . The small values of the selectivity of
SIMP on all the datasets verify that SIMP effectively prunes false
candidates using its index structure. The linear behavior of SIMP
with d and rq is further confirmed by its query time on all the three
datasets. We see from figure 7 that the query time of SIMP grows
linearly from 50ms for rq=300 to 150ms for rq=600 on CHist. The
query time of SIMP also increases only linearly with d.

It is evident from the empirical results that SIMP is a superior
alternative for an accurate and efficient r-NN search. p-stable LSH
and SIMP have similar performance for the training query range
r0. With an increase in the query range rq > r0, the search qual-
ity of p-stable LSH falls sharply, whereas SIMP gives 100% result
quality with only a linear increase in the search cost. Further, p-
stable LSH is inefficient for queries with rq < r0. Thus, we see
that LSH index structure created for a fixed query range r0 can
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Figure 12: Comparative study of performance of SIMP with p-Stable LSH on 128-dimensional 10 million SIFT points.

not handle queries with varying query ranges accurately and effi-
ciently. SIMP performs much better than iDistance across all the
datasets of various dimensions. The performance difference be-
tween SIMP and iDistance grows with an increase in the dimension
of the dataset. The poor performance of iDistance is because of its
multiple searches on the B+ Tree and high selectivity. iDistance
searches B+ tree for each mball intersected by an r-NN query.

Space cost comparison: We now discuss the space costs of
SIMP, p-stable LSH, and iDistance. We compute memory foot-
prints of the algorithms for CHist dataset using parameters W=4,
N=1, 082, 476, L=25, dmax=22, 500, and nz=5, 000. dmax is the
maximum distance of any point from its nearest mcenter. The space
cost of the dataset for each algorithm is (N × d×W )=1, 109MB.
The memory footprint of LSH index is (N ×W ×L)=108MB and
SIMP index is (N×W ×L)+(nz×d×W +N× log2(dmax)+
N × log2(nz))=117MB. The extra space usage of SIMP over p-
stable LSH is from the data structures of the metric pruning. This
overhead remains constant for any value of L. The index structure
of iDistance needs a total of 14MB space. Each entry of iDistance
needs 32 bits for storing its distance from nearest mcenter as key
and 32 bits to store a pointer to a child node or a data object. Each
leaf node also needs 8 bytes for storing pointers of its neighboring
nodes. iDistance needs 5.12MB for storing 5, 000 mcenters. We
take 512 entries per node for B+ tree of iDistance. For L=1, the
memory usage of SIMP and iDistance is the same.

5.2 Performance comparison with Multi-Probe
LSH and LSB Tree

Here we describe the performance comparison of SIMP with
Multi-Probe LSH [26] and LSB tree [33] on 128-dimensional SIFT
and 256-dimensional CHist datasets. We first describe the settings
of the algorithms used for the comparison. Then we present results
to show that SIMP significantly outperforms both Multi-Probe LSH
and LSB tree on all the datasets for all the query ranges. Finally,
we compare the space efficiency of the algorithms.

We used a similar index structure for Multi-Probe LSH as p-
stable LSH. We implemented the Query-Directed probing sequence
algorithm for Multi-Probe LSH as it was shown to perform better
than the step-wise probing sequence [26]. Multi-Probe search algo-
rithm does not have a terminating condition, whereas LSB search
algorithm has a terminating condition for top-k search. Therefore,
we made the following choices for the termination of Multi-Probe
and LSB Tree in order to have a meaningful comparison, based on
both quality and efficiency, with SIMP for r-NN queries. We ter-
minated Multi-Probe after a fixed number of probes P . LSB search
was terminated for a fixed selectivity S that is the percentage of the
dataset explored by LSB search as candidates. We did not compare
against LSB forest because of its high space overhead, which can
be observed from its parameters in table 3 and has also been noted
by the authors. We used L=1 hashtable for both Multi-Probe and

Dataset t f p2 m L Hmax u B w
SIFT 217 15 0.61 24 354 478019 18 4096 4
CHist 22500 23 0.61 26 521 1.3327E8 27 4096 4

Table 3: Parameters of LSB Tree and LSB Forest for two real
datasets.

SIMP. We used nz=5, 000 mballs for SIMP. We learned the val-
ues wr=300 and wr=50 on CHist and SIFT datasets respectively
for SIMP. We learned the values w=1, 700 and k′=8 on CHist and
w=350 and k′=8 on SIFT for Multi-Probe.

A performance comparison of the algorithms on SIFT and CHist
datasets are shown in figures 10 and 11 respectively. We measured
the performance of Multi-Probe for P=6, 000 probes and LSB tree
for the selectivity S=25% on SIFT dataset. We used P=1, 500
probes for Multi-Probe LSH and a selectivity S=40% for LSB tree
on CHist dataset. Figures 10 and 11 show that the recall of both
Multi-Probe LSH and LSB tree decreases with an increase in the
query range, while SIMP has 100% recall for all query ranges.
Multi-Probe had a recall of 90% and LSB had a recall of 79% for
the query range 200 on SIFT dataset as seen from figure 10. These
results verify that SIMP always yields superior result quality than
Multi-Probe and LSB.

We empirically found that SIMP is much more efficient than
Multi-Probe and LSB tree. We see from figures 10 and 11 that
both Multi-Probe and LSB have larger selectivity and query time
than SIMP for all query ranges rq on both the datasets. For rq=50
on SIFT dataset, Multi-Probe was 24 times slower and had 24
times more selectivity than SIMP. For rq=50 on SIFT dataset, LSB
was 17 times slower and had 12 times more selectivity than SIMP.
SIMP was also significantly better than LSB Tree and Multi-Probe
on CHist dataset.

Our empirical evidences show that SIMP, that guarantees 100%
quality, is a superior alternative for an accurate and efficient r-
NN search over Multi-Probe LSH and LSB tree. Multi-Probe is
a heuristic with no performance and quality guarantees. A large
number of probes improves the result quality of Multi-Probe but
worsens its efficiency. Multi-Probe yields a high query time for
a large number of probes because of the high cost of the compu-
tation of the probing sequence and a high selectivity. The poor
performance of LSB can be mainly attributed to two reasons. First,
m-dimensional points obtained after projections are indexed into
a B-Tree based on their z-order values. The value of m increases
with an increase in the database size and dimension for constant
values of the other parameters. It is well known from the litera-
ture that the performance of tree-based indices deteriorate for large
dimensions, and so does B-Tree based LSB tree. The value of m
is 24 for SIFT and 26 for CHist as seen in table 3, which are suf-
ficiently large to make the LSB tree inefficient. Second, its query
time increases with an increase in candidate size because of a large
number of bit operations required for computing LLCP between
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Figure 14: Query time of SIMP on 128-dimensional real
datasets of varying sizes for varying number of hashtables L.

two z-orders. The size of a z-order value is m × u=24 × 18=432
bits for SIFT dataset and 26× 27=702 bits for CHist dataset.

Space cost comparison: Here, we discuss the space costs of
each of the algorithms using parameters d=256, N=1, 082, 476,
W=4, L=1, and nz=5, 000. The space cost of the dataset for each
algorithm is 1, 109MB. The memory footprint of Multi-Probe in-
dex is 4.5MB and SIMP is 13MB. The hashtables of Multi-Probe
LSH and SIMP store only the identifier of a point, which takes one
word (W bytes). The extra space usage of SIMP over Multi-Probe
is again from the data structures of metric pruning. We compute the
memory required by LSB tree using the parameters of CHist shown
in table 3. We use 512 entries per node for LSB. Each entry of LSB
tree stores a z-order value (to compute LLCP) as key and a pointer
to a child node or a data object. A z-order value needs m× u=702
bits for storage and a pointer needs 32 bits of storage. LSB tree
also needs to store forward and backward pointers of the imme-
diate neighbors of each leaf node. Thus, the total space required
for LSB is 100MB. For L=1, we find that the memory footprint of
LSB is at least 7 times worse than SIMP and 22 times worse than
Multi-Probe. For L=2, LSB takes 200MB whereas the space cost
of SIMP and Multi-Probe increase only by 4.5MB (for storing an
extra hashtable) to 17.5MB and 9MB respectively.

5.3 Large Scale Performance Evaluation
We validated the scalability of SIMP on 128-dimensional real

datasets of sizes up to 100 million. Our stress tests reveal that SIMP
scales linearly with the dataset size and the query range at very high
dimensions. We already showed in section 5.1 that SIMP scales lin-
early with the dataset dimension. We also further compared SIMP
with p-stable LSH for a large workload of 14, 700 queries on 128-
dimensional SIFT10M dataset having 10 million points. This test
again confirmed that SIMP efficiently and accurately queries near
neighbors for any query range, while p-stable LSH has a very poor

Figure 15: Data pruning (%) obtained by SIP and MP pruning
steps of SIMP using nz=5, 000 mballs for varying query ranges
on CHist dataset.

Figure 16: Data pruning (%) obtained by SIP and MP prun-
ing steps of SIMP using nz=15, 000 mballs for varying query
ranges on CHist dataset.

recall for query ranges larger than the training query range r0. We
used a value of wr=30 and nz=5, 000 for SIMP for these studies.

We computed the selectivity and the query time of SIMP on
SIFT, SIFT10M, and SIFT100M datasets to verify its scalability.
We computed these values for varying number of hashtables L={1,
25} and varying query ranges rq . We show the selectivity and the
query time of SIMP in figures 13 and 14 respectively. Each result
is an average over 1, 000 random queries. These results reveal that
SIMP has similar selectivity for the dataset of any size for a given
rq and L. This property implies that SIMP scales linearly with the
dataset size. This is further confirmed by the query time of SIMP.
We see from figure 14 that the query time of SIMP increases ap-
proximately 10 times with 10 times increase in the dataset for a
given rq and L. We also observed that the query time of SIMP has
a linear behavior with the query range.

SIMP had a query time of 0.4 seconds on 100 million points for
rq=50 and L=25 compared to 28 seconds of sequential search. For
SIFT100M dataset, we observed by random sampling that every
point has at least one near neighbor within the query range 50. This
shows that SIMP can be used to efficiently and accurately find the
nearest neighbors in very large datasets of very high dimensions.

The comparative results of SIMP with p-stable LSH on SIFT10M
dataset for 14, 700 random queries is shown in figure 12. We used
a value of L=25 for both SIMP and LSH. We learned the values of
w=350 and k′=8 for LSH using r0=50. We observed that SIMP is
60 times faster than sequential search for rq=50. For rq=50, LSH
had a query time of 54ms and a selectivity of 0.59% compared to a
query time of 53ms and a selectivity of 0.48% for SIMP. We found
that recall of LSH fell to 38.10% for rq=200 unlike SIMP which
had 100% recall for all query ranges.

5.4 Effectiveness of Pruning Criteria
We performed experiments on CHist dataset to study the prun-



ing effectiveness of spatial intersection pruning (SIP) and metric
pruning (MP) for varying query ranges. We show the results in fig-
ure 15 for nz=5, 000 and figure 16 for nz=15, 000. We observed
that the total pruning achieved by SIMP decreases with an increase
in the query range for a given number of mballs nz . SIP being the
first step contributes the most to the pruning. MP provides an addi-
tional pruning over SIP. We also observed that the contribution of
MP increases with an increase in the query range.

6. PARAMETER SELECTION FOR SIMP
The tunable parameters of SIMP are the number of hashtables L,

the radial bin-widthwr of polar grids, and the number of mballs nz
used for metric pruning. The parameters L and wr play a similar
role for SIMP as the number of hashtables and the bin-width of
p-stable LSH. The parameter wr is learned by training SIMP on a
dataset using a training query range r0. Though SIMP outperforms
existing techniques even for L=1 hashtable, a better performance
is achieved by using a larger number of hashtables. The value of L
can be determined based on the available memory. The mcenters
of SIMP play a similar role as the reference points of iDistance.
The number of mballs nz should be determined based on the data
distribution. It can be computed by fixing a value of Root Mean
Square Error for each cluster. It can also be learned by the methods
proposed by Jagadish et al. [19] for iDistance. We suggest to use a
value of nz=5, 000.

7. CONCLUSION
In this paper, we proposed SIMP for answering r-NN queries

in a high dimensional space. SIMP offers both 100% accuracy
and efficiency for any query range unlike state-of-the-art meth-
ods. SIMP uses projection, spatial intersection, and triangle in-
equality to achieve a high rate of pruning, and thus gains high
performance. We efficiently implemented the spatial intersection
approach by hashing. We also developed statistical cost models
to measure SIMP’s performance. SIMP captures data distribution
through its viewpoints and mcenters. We empirically showed a bet-
ter performance of SIMP over p-Stable LSH and iDistance on three
real datasets of dimensions 32, 128, and 256 and sizes 10 million, 1
million, and 1.08 million respectively. We also showed a much su-
perior performance of SIMP over Multi-Probe LSH and LSB tree
on two real datasets of dimensions 128 and 256 and sizes 1 mil-
lion and 1.08 million respectively. We empirically validated on the
datasets of sizes up to 100 million and dimensions up to 256 that
SIMP scales linearly with the query range, the dataset size, and the
dataset dimension.
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