
UNIVERSITY OF CALIFORNIA
Santa Barbara

Support for Resource Constrained
Microcontroller Programming by a Broad

Developer Community

TR ID: 2010-24

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Media Arts and Technology

by

Amichi Amar

Committee in Charge:

Professor Chandra Krintz, Chair

Professor Curtis Roads

Professor Steven Butner

December 2010

The Dissertation of
Amichi Amar is approved:

Professor Curtis Roads

Professor Steven Butner

Professor Chandra Krintz, Committee Chairperson

December 2010

Support for Resource Constrained Microcontroller Programming by a Broad

Developer Community

TR ID: 2010-24

Copyright © 2010

by

Amichi Amar

iii

Dedication and Gratitude

This dissertation is dedicated my grandfather Yaakov Amar, Z”L.

I would like to thank two women in my life that have been guiding lights through
this journey, without their support, guidance and sympathy this work may not have been
possible: my mother Shoshana Wolf-Amar and my advisor Professor Chandra Krintz.

I would like to thank Bob Frankel for his contribution to this work. I very much
enjoyed all our coffee talk programming language design sessions. Thank you for your
time and effort.

I would like to thank the Media Arts & Technology program for their support and
the opportunity to pursue this work. And thank you all my MAT friends that helped
make the whole experience that much better!

iv

IF
If you can keep your head when all about you

Are losing theirs and blaming it on you,
If you can trust yourself when all men doubt you

But make allowance for their doubting too,
If you can wait and not be tired by waiting,

Or being lied about, don’t deal in lies,
Or being hated, don’t give way to hating,

And yet don’t look too good, nor talk too wise:

If you can dream - and not make dreams your master,
If you can think - and not make thoughts your aim;

If you can meet with Triumph and Disaster
And treat those two impostors just the same;

If you can bear to hear the truth you’ve spoken
Twisted by knaves to make a trap for fools,

Or watch the things you gave your life to, broken,
And stoop and build’em up with worn-out tools:

If you can make one heap of all your winnings
And risk it all on one turn of pitch-and-toss,
And lose, and start again at your beginnings

And never breath a word about your loss;
If you can force your heart and nerve and sinew

To serve your turn long after they are gone,
And so hold on when there is nothing in you

Except the Will which says to them: ”Hold on!”

If you can talk with crowds and keep your virtue,
Or walk with kings - nor lose the common touch,
If neither foes nor loving friends can hurt you;
If all men count with you, but none too much,

If you can fill the unforgiving minute
With sixty seconds’ worth of distance run,

Yours is the Earth and everything that’s in it,
And - which is more - you’ll be a Man, my son!

- Rudyard Kipling

v

Acknowledgements

The image in Figure 2.2 is ifixit.com content licensed under the open source Cre-

ative Commons license.

vi

Curriculum Vitæ

Amichi Amar

Education

2010 Doctor of Philosophy in Media Arts and Technology
University of California, Santa Barbara.

2006 Master of Professional Studies
Interactive Telecommunications Program,
New York University, New York.

2001 Bachelor of Science in Computer Science
College of Creative Studies,
University of California, Santa Barbara.

Experience

2009 Course Developer & Instructor,
Modular Embedded Systems Programming,
University of California, Santa Barbara.

2008 Instructor,
Sensors and Interfaces for Media Art,
University of California, Santa Barbara.

2006-2007 Course Developer & Instructor,
Digital Design Studio for Creative Application Development,
University of California, Santa Barbara.

2004-2006 Freelance Technology Designer,
New York, New York.

2003 Lead Hardware & Software Engineer,
Engine 27 Sound Gallery for Spatial Audio,
New York, New York.

2002-2003 Lead Developer,
Studio for Electro-Instrumental Music (STEIM),
Amsterdam, The Netherlands.

vii

Awards

2006-2010 Regents Special Fellowship,
University of California, Santa Barbara.

2005 Individual Artist Grant Recipient,
New York State Council on the Arts.

2002-2004 Departamental Fellowship,
Interactive Telecommunications Program,
New York University.

Publications

”The Bass-Station: a community based information space.” Authors: A. Amar and M.
Argo. Proceedings of the ACM SIGGRAPH Conference, June 2003.

”WiFisense.” Authors: A. Amar and M. Iossifova. Proceedings of the ACM Conference
on Ubiquitous Computing, September 2003.

Field of Study: Media Arts and Technology, Computer Science

viii

Abstract

Support for Resource Constrained Microcontroller
Programming by a Broad Developer Community

TR ID: 2010-24

Amichi Amar

Resource constrained microcontrollers with as little as several hundred bytes of

RAM and a few dozen megahertz of processing power are the most prevalent com-

puting devices on earth. Microcontrollers and the many application components that

interface to them, such as sensors, actuators, transceivers and displays are now cheap

and readily available. Once costly development tools are now downloadable from the

Internet and usable for free. Interest in application development using resource con-

strained microcontrollers has expanded beyond embedded system engineers to a broad

audience of those that include artists, designers, students and product developers in all

sectors of industry and fields of research.

Developing application software for resource constrained systems is a complex pro-

cess. The lack of microcontroller resources preclude the use of modern high-level

programming languages and operating systems. Modern development practices that

support uniform software development across hardware platforms are virtually non-

existent. Additionally, device manufacturers adhere to customer lock-in business prac-

ix

tices making compatibility between vendor tools hard to come by and transitions be-

tween vendor technologies costly and time consuming.

The focus of this dissertation is to support the development of software for resource

constrained microcontroller-based systems by an audience with a broad range of tech-

nical skills. Our goal is to support uniform development for a diversity of application

categories on heterogeneous hardware. Specifically, we design, implement and evalu-

ate a new high-level programming language called Em with constructs and support for

modularity, abstraction, software reuse, portability and reconfigurability for differing

application requirements, hardware configurations, and quantities of runtime resources.

For additional application development support we design, implement in Em, and eval-

uate a hardware abstraction layer and model for runtime concurrency.

Our empirical results indicate that high-level language constructs can effectively

be used in a resource constrained environment and achieve at least equivalent resource

utilization compared to C and other related systems. We show through a demonstration

and evaluation of real applications how we can support modern software development

practices for authoring reusable, configurable, portable software for a diversity of hard-

ware platforms. A hardware abstraction layer and a runtime model for concurrency

provide additional support for development by, respectively, providing uniform inter-

faces to hardware functionality and relieving developers from individually implement-

ing concurrency mechanisms. Finally, we conduct a user study with university students

x

showing how non-embedded systems experts and people with generally less technical

expertise can successfully learn and develop non-trivial applications with Em.

xi

Contents

Dedication and Gratitude iv

Epigraph v

Acknowledgements vi

Curriculum Vitæ vii

Abstract ix

List of Figures xv

1 Introduction 1
1.1 Thesis Question . 4
1.2 Dissertation Organization . 8

2 Background 10
2.1 Resource Constrained Systems . 11
2.2 Application Development . 16

2.2.1 Development for Resource Rich Systems 17
2.2.2 Development for Resource Constrained Systems 23
2.2.3 Development by a Wider Audience 27

2.3 Definition of Domain . 29
2.4 Summary . 30

3 Related Work 33
3.1 Language Support for Modularity 34

3.1.1 NesC & TinyOS . 35
3.1.2 RTSC . 36

xii

3.1.3 Other Systems . 38
3.2 Microcontroller Development Support for Non-Experts 39

3.2.1 BASIC Stamp . 39
3.2.2 Wiring and Arduino . 40

3.3 High Level Programming Environments For Non-Programmers 43
3.3.1 Graphical Dataflow Process Networks 43
3.3.2 Max/MSP and PureData . 45
3.3.3 CLAM . 48
3.3.4 Other Tools and Systems 49

3.4 Summary . 50

4 Language Support for Application Development 53
4.1 Efficiency . 54
4.2 Readability and Writability . 56
4.3 Modularity and Abstraction . 58
4.4 Variability and Configurability . 62
4.5 Software Reuse . 66
4.6 Software Portability and Distributability 71
4.7 Dynamic Behavior . 73
4.8 Support for Legacy Content . 76
4.9 Summary . 77

5 The Em Programming Language 80
5.1 Modules and Types . 80

5.1.1 Pre-runtime Configuration 87
5.1.2 Runtime Configuration . 90

5.2 Interfaces . 92
5.3 Proxies . 94
5.4 Composites . 97
5.5 Templates . 100
5.6 Inheritance . 104
5.7 Support for Legacy Content . 107
5.8 Packages . 108
5.9 Translation . 109

5.9.1 Source Code Validity . 112
5.9.2 Generated C Code . 113

5.10 Comparison With Related Systems 117
5.11 Summary . 120

xiii

6 Non-Language Support for Application Development 122
6.1 Hardware Abstraction . 123
6.2 Runtime Concurrency . 125

6.2.1 Threads . 126
6.2.2 Reactive Concurrency . 130

6.3 Development Environment Support 133

7 Hardware Abstraction and Concurrency in Em 136
7.1 Hardware Abstraction . 136
7.2 Runtime Concurrency . 138
7.3 Development Environment Support 142
7.4 Comparison and Contrast . 144
7.5 Summary . 146

8 Demonstration and Evaluation 147
8.1 Reusability & Portability . 149

8.1.1 Reuse of software supporting hardware components 150
8.1.2 Reuse of non-hardware supporting software 156
8.1.3 Reuse of existing C code 168

8.2 Building Block Applications . 170
8.3 Event Model Comparison . 175
8.4 Learning Em & Developing Applications 180

8.4.1 Student Survey Results . 182
8.4.2 ViaCar . 185
8.4.3 Persistence of Vision Display 187
8.4.4 Ocarina Instructor . 189
8.4.5 The Game of Simon . 190

8.5 Summary . 192

9 Conclusion 195
9.1 Contributions and Impact . 201
9.2 Future Research Directions . 204

A Grammar 208

Bibliography 218

xiv

List of Figures

2.1 A printed circuit board with microcontroller. 12
2.2 A open device showing integrated PCB. 13

4.1 Proxy software design pattern in UML. 64

5.1 An Em module with public and private specification. 81
5.2 Dispatch function from the EventDispatcher module. 83
5.3 Using EventDispatcher to Blink a light emitting diode. 85
5.4 A general purpose input / output pin interface. 93
5.5 A module implementing the Gpio interface. 94
5.6 Part of an Led module using a proxy. 95
5.7 Part of an Led module binding proxy in configure function. 96
5.8 A composite representing a board configuration. 98
5.9 A template to generate GPIO modules. 102
5.10 Template to generate Led Module. 103
5.11 Part of an interface for an I/O pin. 105
5.12 An interface that extends GpioI. 105
5.13 Example of implementation inheritance by forwarding. 106
5.14 Part of a UART module interacting with C identifiers. 107
5.15 Build flow of the Em translator. 109
5.16 A Simple module. 114
5.17 The complete translated C program. 115
5.18 The generated header for the Simple module. 116
5.19 The generated C code for the Simple module. 116

7.1 Interface for interrupt source modules. 138
7.2 Simple capability to build and download applications. 143

8.1 Portion of CC2500 radio module. 151

xv

8.2 BoardC composite for wireless device. 152
8.3 Module and interface used for radio configuration. 154
8.4 Application-specific radio configuration. 155
8.5 Part of radio driver abstraction written in C. 156
8.6 A transport layer interface. 158
8.7 Part of a transport manager module specification. 159
8.8 Packet buffer manager interface and opaque type definition. 160
8.9 Packet buffer manager modules. 161
8.10 Packet buffer manager implementation with single buffer policy. . . . 162
8.11 A sample of the µIP process function. 163
8.12 µIP web server footprint and request duration. 164
8.13 Composite for configuring the network stack. 166
8.14 Template for modules wrapping library functionality. 169
8.15 Composite to instantiate modules from template. 170
8.16 Millisecond timer using driver library functions. 171
8.17 Resource usage for NesC/TinyOS, Arduino, and Em applications. . . 172
8.18 Split-phase client and implementing component in TinyOS. 177
8.19 Split-phase behavior implemented in Em. 179
8.20 Student created autonomous line following car. 186
8.21 Student developed persistence of vision display. 187
8.22 Student’s application design of persistence of vision display. 188
8.23 The game of simon developed by students. 191

xvi

Chapter 1

Introduction

Microcontrollers are small programmable computers with integrated CPU, memo-

ries and peripherals. These computers currently outnumber humans on our planet five

to one. 98% of CPUs manufactured globally each year are embedded and over 55%

go into microcontrollers [10] with as little as a few hundred bytes of RAM, several

kilobytes of program memory, and at most a few dozen megahertz of processing power.

These resource constrained computing devices interface our physical world to the dig-

ital and are embedded into all facets of our lives; they are in the roads we drive on, the

buildings we work in, the walls that house us, the vehicles that carry us, and even our

own bodies.

Systems that integrate microcontrollers are small, highly customizable, low-cost

and readily available. Dozens of online electronic component retailers exist offering

microcontrollers, accelerometers, wireless radios, small displays and other components

at low cost. The printed circuit boards that host the components can be fabricated

1

Chapter 1. Introduction

rapidly in any shape and size, ridged and flexible. Devices can be created to fit into

almost any form factor. The programmability of the microcontroller allows it to be

precisely customized for applications in diverse industries and fields of research.

A diverse audience is attracted to the applicability of resource constrained systems.

Artists are creating interactive artworks and performances that bridge the physical and

the virtual [61, 41]. Designers are prototyping new technological products and expe-

riences [35, 31]. Students from humanities to engineering sciences are learning the

fundamentals of technology, hands-on [50, 88]. Experts in various non-engineering

disciplines are creating custom instruments and tools to enhance their research and de-

velopment.

Software development for these resource constrained systems present challenges

not encountered in resource rich environments. Unlike our desktop and server com-

puters, high level programming languages cannot be used because their high degree of

dynamism and rich runtime environments compromise efficient use of scarce resources.

General purpose operating systems that abstract low-level hardware details and provide

services for concurrency and resource management do not fit within available resources.

Development tools and support is offered by device manufactures whose interest strictly

lies in developers using their devices. As such, there are technical challenges and little

incentive for uniform development across hardware platforms.

2

Chapter 1. Introduction

Attempts to advance the state-of-the-art in software development for micro-

controller-based systems remain limited to specific application domains and only ac-

cessible to highly skilled developers. Languages and tools that attempt to improve the

development practice target narrow application domains such as wireless sensor net-

works [81]. While these systems possess appealing features of modern programming

languages, their use remains accessible only to highly trained researchers and engi-

neers. More of an incremental advancement of the languages that exist, these systems

do little to support a diversity of hardware and broad application categories.

Development tools for non-experts either trivialize the user’s capabilities, compro-

mise critical system resources, or suffer from similar pitfalls of expert tools. To remain

accessible to a generally less technical audience, extant tools often limit the customiz-

ability of functionality and integration of hardware to what has been provided by the

tool maker. Other systems, in order to allow the use of expressive high-level languages,

impose a requirement to tether devices to resource rich hosts which control the device

remotely. Platforms that attempt to simplify and make the dominant languages and

technologies used by experts more accessible to non-experts, still fail to provide more

structured programming methodologies and support for more diverse hardware.

Support for resource constrained application development by a broad developer au-

dience is essential to enabling a future generation of progress and innovation. The

growing audience of non-programming experts have potentially innovative ideas yet

3

Chapter 1. Introduction

lack the proper means to realize them. Productivity and effectiveness of expert engi-

neers is compromised by a lack of modern programming technologies and practices.

Languages used for development by experts today are uninteresting for new program-

mers to learn and infrequently taught at an introductory level in institutions around the

world. Without support for high-level programming languages that are appealing and

usable by a less technical audience, while not compromising performance and resource

utilization needed by experts, the realization of compelling applications cannot scale to

meet the growing demand for creation.

1.1 Thesis Question

The key question we explore in this dissertation can be stated as follows:

Can a development environment be designed and implemented to facilitate
development of efficient software for a wide range of resource-constrained
microcontroller-based device applications by a wide range of developers?

Our research takes a programming language approach to answer this question. We

design, implement and evaluate a domain specific language for resource constrained

devices that is usable by experts in the field and accessible to relative novices. We

select features from existing high-level programming languages that have successfully

supported a broad range of application development by developers with diverse techni-

cal skills. We address the specific difficulties present in existing languages and software

4

Chapter 1. Introduction

development practices present in our domain. Namely, support for high-level language

constructs that enable abstraction, software reuse, portability across hardware architec-

tures, variability in software for differing hardware configurations and availability of

resources, and efficient support for concurrency.

This dissertation contributes a new programming language for resource constrained

microcontrollers called Em. Our language is for application development on resource

constrained microcontrollers and incorporates constructs that enable development prac-

tices present in modern high-level programming languages. To achieve a degree of ef-

ficiency available using existing languages in this domain, code written in Em is trans-

lated into portable C. We then utilize existing compilers for diverse microcontroller

targets and harness their mature optimization capabilities to achieve resource footprints

comparable to extant systems.

We design and implement a number of different features and tools that together,

make it easier to develop software and complex applications for microcontroller-based

systems that fit and execute efficiently within the severe resource constraints of these

devices. In particular, we employ constructs for modularity and the separation of con-

cerns through encapsulation and information hiding, which are popular and effective in

high-level languages. We implement the proxy design pattern as a language construct

that enables a separation of interface from implementation, adding abstraction capa-

bilities. Our use of proxies and interfaces also enables software support for differing

5

Chapter 1. Introduction

implementations of functionality that vary due to hardware specifics or execution en-

vironment constraints. We support systematic code reuse though interface inheritance,

templates that help sidestep copy-and-paste reuse, and by enabling the authoring of

adaptable and configurable software modules. We add further support for variability

and configurability through the holistic integration of a build-time execution context

that supports introspection, dynamic memory allocation and general purpose computa-

tion that executes on the resource rich build host. We introduce configuration param-

eters and host functions that enable module configuration along with opportunities to

offload computation from the target device onto the build-host. To support portability

and distributability we introduce a construct called a composite and support a packag-

ing construct similar to that present in Java. Finally, our language supports the use of

legacy C content in order to leverage existing software and ease developer’s transition

to the language.

We additionally contribute the design and implementation in Em of key non-

language support features for efficient application development. Specifically, a hard-

ware abstraction layer to enable the creation of software independent of low-level hard-

ware specific details and a reactive model for concurrency that is fitting to a resource

constrained environment with potentially strict power consumption requirements.

In this dissertation we furthermore contribute an empirical analysis of our language

implementation, a demonstration and evaluation of real applications in Em, and a user

6

Chapter 1. Introduction

study. We show how software reusability, variability, configurability and portability is

achievable. We find that we can effectively achieve a portable and reusable implemen-

tation of software supporting hardware functionality such as a device driver. We show

that we can also achieve reuse and portability of software functionality which depends

on, but does not support hardware. The code is configurable for differing amounts of

runtime resources and supports variable implementations of hardware functionality and

software policies without major modifications. Through an empirical evaluation of ap-

plications containing building block functionality we show that we can achieve equiv-

alent and better resource utilization as compared to existing systems. Lastly, through

teaching an introductory course on embedded systems programming at a university

level, we conduct a user study on the ability for non-embedded systems experts and

relative novice programmers to learn Em and implement non-trivial applications. We

discuss the results of surveys conducted and articulate several applications created by

students.

In summary, with this dissertation, we contribute a new high-level, general pur-

pose, embedded systems programming language for development of highly resource

constrained microcontroller applications, support for runtime concurrency and hard-

ware abstraction, an empirical analysis of our language design and implementation, a

demonstration and evaluation of real applications written in Em, and a user study with

non-embedded system engineers. We find that both expert developers and less experi-

7

Chapter 1. Introduction

enced programmers are capable of developing non-trivial applications with equivalent

or better resource utilization as compared to C and existing systems.

1.2 Dissertation Organization

We organize this dissertation as follows. In chapter 2 we first provide background

information, discuss terminology related to resource constrained systems, application

development, and define the domain within which our research applies. In chapter 3 we

discuss current state-of-the-art systems used to develop device applications and their

limitations. We look at tools, including high-level graphical systems, that are used

by experts and those accessible to and commonly used by non-engineers and relative

novices.

In chapters 4 and 5 we describe the design and implementation of a programming

language we contribute to address our thesis question. We present the design of the

language features necessary to support the development of applications for resource

constrained systems by a broader audience of people. We present the implementation

of the language and compare and contrast its details with extant systems closely related

to our domain.

Following the chapters on language support we present in chapters 6 and 7 addi-

tional non-language features important to support application development in our do-

8

Chapter 1. Introduction

main. The design of a hardware abstraction layer, a runtime concurrency model, and

development environment features for productivity are discussed, followed by discus-

sion of their implementation. We additionally compare and contrast our design and

implementation with other closely related systems.

In chapter 8 we present an empirical evaluation and demonstration of the efficacy of

our design choices and implementation. Chapter 9 summarizes our contributions and

discusses future research directions.

9

Chapter 2

Background

The goal of this dissertation is to bring high-level programming language constructs

and modern software development practices that are found in resource rich systems to

the domain of highly resource constrained embedded systems. Through a program-

ming language approach, we seek to enable the existence of an ecosystem of modular,

reusable and portable software in systems that tightly couple hardware and software

functionality. Furthermore, we are interested in providing support for developers to

adapt their software for this domain to various hardware configurations and to dif-

ferences in runtime resources with minimal effort. In addition, our goal is to enable

developers to extend their software with support for new hardware without significant

impact on existing code. The result, we believe, will enable people with a wider range

of backgrounds and levels of expertise, and thus a greater number of people, to create

applications with resource constrained embedded systems.

10

Chapter 2. Background

Before we describe how we have achieved these goals, we provide background

related to and in support of our methods. In particular, we define what we refer to as

resource constrained embedded systems. We discuss the state of the art of software

development for both resource constrained and resource rich environments, and we

articulate features of the latter that can benefit the former. We then define in detail the

domain that we target with our work.

2.1 Resource Constrained Systems

Resource constrained embedded systems, sometimes referred to simply as resource

constrained systems, are perhaps surprisingly, the most prevalent form of computer

system today. 98% of all processors (central processing units (CPUs)) manufactured

globally each year are embedded. More than 55% of these processors are 8-bit resource

constrained microcontrollers[10]. These devices take many forms and are ubiquitous

in our lives. They are often embedded into the products they enable and serve as the

primary interface between our physical world and the digital one. Some common ap-

plications for these systems are washing machines, microwaves, remote controls, video

game controllers, computer peripherals such as mice and drawing tablets, printers and

scanners, electronic toys, musical keyboards, radio controlled vehicles, wristwatches,

parking meters, car stereos and engine control units, car and garage door openers, med-

11

Chapter 2. Background

ical devices such as pacemakers and blood glucose monitors, thermostats and home

security systems, agricultural watering and monitoring systems, industrial manufactur-

ing equipment, and many more.

Figure 2.1: A printed circuit board with microcontroller.

A resource constrained system is comprised of a programmable microcontroller

unit (MCU) with limited amounts of integrated program and data memories, application

specific input and output devices, power supply and electronic connectors. The physical

components of the system are arranged in a specific configuration on a printed circuit

board (PCB) (e.g. see Figure 2.1) which is embedded within an enclosure or integrated

into a larger structure (e.g. see Figure 2.2). Software is programmed into the MCU

that drives the hardware peripherals and provides the device’s application functionality.

Each system is designed to perform a small number of domain specific functions as

required by the application they target. Moreover, there is a high-level of integration

between the hardware and software functionality.

12

Chapter 2. Background

Figure 2.2: A open device showing integrated PCB.

The term resource constrained herein refers to the limited amounts of on-chip mem-

ories of the microcontroller and stringent low-power consumption requirements of the

system as a whole. Data memory or on-chip RAM ranges from hundreds of bytes to

tens of kilobytes. On-chip program memory, where the microcontroller software re-

sides, sometimes referred to as ROM or flash memory, is typically less constrained

than RAM. The microcontrollers we target contain tens to a few hundred kilobytes

of program memory. Energy is also a constrained resource in many of these devices

since some applications of these systems require autonomous and/or extended opera-

tion (months to years) and utilize low power sources such as batteries and solar cells.

Along with the large number and diversity of applications of resource constrained

systems, there exists an even larger and more diverse array of hardware components for

them. Dozens of microcontroller manufacturers exist today each producing numerous

13

Chapter 2. Background

families of microcontrollers some with hundreds of devices with specifications dif-

fering in memory quantities, integrated peripherals, processing speed and power con-

sumption. Every year, manufacturers advance their product offering with even more

advanced and capable hardware. Hundreds of manufacturers that produce components

such as sensors, actuators, displays, power supplies, and application specific integrated

circuits also exist. Accelerometers, gyroscopes, pressure sensors, altimeters, thermis-

tors, solenoids, motors, buzzers, LEDs, LCD displays, OLED displays, mp3 encoders

and decoders, analog to digital converters, digital to analog converters, and power reg-

ulators, inverters and converters are some examples of the diversity. The proliferation

and diversity of these components grows considerably each year.

Resource constrained systems inherently interface with and are embedded into the

physical world and have different requirements than resource rich systems. Sensing and

responding to physical stimuli from humans, the environment or other machines, re-

source constrained systems have strict requirements for real-time, low latency response

to external stimuli unlike most resource rich systems. Additionally, since energy is a

constrained resource, and since power consumption is directly related to CPU utiliza-

tion, RAM and peripherals, many applications have requirements for periodic, limited

data processing that occurs in response to stimuli as opposed to the continuously run-

ning, heavy processing requirements of resource rich systems. Finally, since resource

constrained systems are embedded into other objects and are interacted with in many

14

Chapter 2. Background

ways, they require smaller, more compact and variable form-factors. This is also in

contrast to resource rich systems that often consist of a box to house the system, a

keyboard, a mouse, and monitor.

All resource constrained systems inherently have a high degree of variability in

components, their physical interconnection and their functional configuration. Appli-

cations in different domains require microcontrollers with different kinds of integrated

peripherals, processing speeds and power consumption. Additionally, several options

for the input/output devices that support application functionality exist with differences

in the way they interface to the microcontroller, size, cost and other characteristics. Fi-

nally, depending on the requirements and characteristics of their application, each com-

ponent may need to be configured in a specific manner. For example, the ubiquitous

car door opener requires a microcontroller and a wireless radio. The microcontroller

for this application must be cheap, small, power efficient and need not have much pro-

cessing power. The radio for the application must be power efficient, configurable and

easily connected to the microcontroller. Depending on the communication interfaces

available on the microcontroller (e.g. SPI, I2C, etc.) and the interface available on the

radio, their interconnection may differ; manufacturers often offer devices with iden-

tical functionality with differing interfaces. Since the door opener must be powered

from batteries and since the wireless signal should not interfere with other makes of

15

Chapter 2. Background

door openers, the transmission power and operational frequency of the radio must be

configurable in an application specific manner.

While many applications already exist for resource constrained systems, their pro-

grammability, compact form factor, low cost, and the diversity of components available

for them present many opportunities for new and innovative applications. The pro-

grammable nature of microcontrollers allow applications to be created for almost every

domain imaginable and those that are yet to be imagined. The continual miniaturiza-

tion of electronic components and circuit boards is enabling these systems to fit into

the smallest of spaces, from forks and knives to tire valves and heart valves. Their

relatively low cost makes the use of resource constrained systems economical in places

where previously either none were used, or were used more sparsely. For example,

from 2002 to 2004 the number of microcontrollers used in mid-range automobiles al-

most doubled [9], an indicator of decreasing costs and economic viability of their use.

Finally, the sheer number of configurations of components and microcontrollers that

exist can lead to innovative new applications and new application domains.

2.2 Application Development

The physical nature and use of resource constrained systems greatly affects the soft-

ware development for device applications. We refer to a device application as the com-

16

Chapter 2. Background

bination of hardware and software that collectively realize the system’s purpose. The

development of device application software shares similarities with software developed

for resource rich systems. Unfortunately, the software development technologies and

processes available for resource rich systems greatly outpaces those available for re-

source constrained systems.

In this section we present the state of the art of software development technologies

and processes available in resource constrained systems. We first, however, present

aspects of the state of the art in application development for resource rich systems. We

do so to draw a contrast between what is available for these two classes of systems.

We also identify the technologies available from tools and processes in the resource

rich domain that are lacking for the resource constrained domain. We also discuss the

potential impact that such features have should they be available for device application

development.

2.2.1 Development for Resource Rich Systems

Applications developed on resource rich systems rarely have to consider low-level,

platform specific, details because of the presence of an operating system. The operating

system manages the operation of hardware devices, provides support for concurrency,

arbitrates access to resources and hides the low-level, platform specific implementation

details of such processes from programmers. The very presence of operating systems

17

Chapter 2. Background

removes the need for the programmer to implement the features they offer in each

of their applications. With standard interfaces to OS facilities, programmers are also

able to write software usable on different operating systems without the need to even

consider hardware. Operating systems have thus enabled larger numbers of program-

mers with more diverse skill sets to develop applications. Today, the average software

developer has little, if any, knowledge of the implementation details of how their appli-

cations interact with and make use of the hardware, concurrency mechanisms and other

services they depend on.

High level languages and development tools that allow uniform development across

application domains and execution environments exist for resource rich systems. For

more than four years now, object oriented programming languages are the most preva-

lently used languages and eight of the ten currently most popular high-level languages

support the object-oriented programming model [83]. Irrespective of application do-

main - finance, ecommerce, health, agriculture, entertainment and others - these high

level languages are being used for development. Some of these languages are compiled

and others are interpreted. In both cases, the development tools - languages, compilers,

debuggers and development environments - that support them operate on and can target

the majority of resource rich platforms. For example, versions of the GNU compiler

collection (GCC) [27] exist for Linux, Windows and Macintosh operating systems,

support multiple object-oriented languages, and can build software for just about any

18

Chapter 2. Background

resource rich system. Also, Python interpreters [68] also exist for all the above men-

tioned operating systems on many different hardware platforms. Finally, development

environments such as Eclipse [22] also function uniformly across operating systems

and hardware platforms and support development in a number of high-level and object

oriented languages.

The success of high-level languages comes from the collection of formal constructs

they support. Support for modularity and the separation of concerns is one of the tenets

of high-level languages and is enabled through encapsulation and information hiding.

The decoupling of a modules functionality, or interface, from the implementation of

that functionality is another important aspect of high-level languages. This capability

is supported by language constructs such as interfaces along with polymorphic type

capabilities. Finally, features such as garbage collection, dynamic type systems and

succinct syntax also contribute to the success of today’s high-level languages.

Modularity, or the separation of concerns, has enabled abstraction in software and

more complex systems to be developed. By grouping related functionality and data

into modular units and enforcing the private and public access to them, software mod-

ules become treatable and usable like abstract objects. Once a software module is de-

veloped, a programmer need only concern themselves with its specified functionality,

which is often an abstract representation of a physical object or process. This has en-

abled programmers to develop applications by breaking down complex problems into

19

Chapter 2. Background

independently solvable units that are later combined into complete solutions. Differ-

ent developers can create parts of applications that others will use without concern for

implementation details, only functional purpose.

The decoupling of software modules’ interface from their implementation has been

key to supporting variability and change in software systems in addition to aiding in

software abstractions. The notion of an interface, or simply the specification of func-

tionality without provision of an implementation, allows programmers to abstractly

define the behaviors of software modules. Implementations of those interfaces can

vary while all modules implementing a specified interface can be assumed to provide

the same functionality. A type system that supports polymorphism permits the devel-

opment of code in which different modules that share a similar interface to take on

different behaviors at different times. This enables change and variability to take place

in software systems with minimal impact on existing software. New implementations

for modules already in use in a system can be changed or even replaced without re-

quiring change to software that depends on that functionality. As application or system

requirements change, software systems are capable of adapting with minimal develop-

ment overhead. When the change or variability is required to take place at runtime, a

dynamic polymorphic type system is used and many of today’s high-level languages

support such type systems.

20

Chapter 2. Background

Dynamic features of high-level languages such as runtime memory allocation, gar-

bage collection and runtime polymorphism are features that promote reliability and

productivity in development. By providing capabilities for allocation and automatic

disposal of data types at runtime has freed programmers from the error prone process

of managing memory usage in their applications. As a result, programs have become

more reliable, less prone to memory mishandling errors, and programmers are more

productive. Additionally, the flexible and dynamic type systems offered by some lan-

guages such as Python, Ruby, and others, and supported by rich runtime systems, has

relieved the programmer from arduous specification and restricted usage of types. All

of these dynamic capabilities of high-level languages remove time-consuming tasks of

development from the programmer and build them into the language runtimes, increas-

ing developer productivity and application reliability in the process.

The combined constructs and capabilities found in today’s high-level languages

have evolved a development process that subsists on software reuse, portability and

distribution. Since today’s languages and development tools transcend application do-

mains and are available on numerous platforms, software reuse is key for rapid, effec-

tive and reliable software development. Reusable elements of software that transcend

any one languages, also known as design patterns, have been enabled by high-level lan-

guages and are also prevalent in software engineering practices. With the support of

operating systems, many high-level languages have also overcome previously limiting

21

Chapter 2. Background

hardware boundaries. Software reuse across platforms, also known as software porta-

bility, has also been a focus of development productivity in software engineering. With

the connectivity that the Internet provides us today, the distribution of software that

functions across hardware platforms is essential. Many software libraries, frameworks,

code fragments and complete applications are available for download and reuse across

operating systems and hardware platforms.

The availability of large amounts of reusable, portable software content in high-

level programming languages has enabled a wider audience of people, even novice

programmers, to create applications. Today we see non-programmers using Javascript

to customize functionality of web-pages, novice programmers using web toolkits like

Ruby on Rails [73] to create non-trivial web applications, and generally less experi-

enced programmers reusing domain-specific content to develop powerful tools for their

fields of expertise. Leveraging the efforts of more experienced programmers through

straightforward reuse of their code, many more people are able to create functional

content. Through further learning, some are becoming more experienced programmers

while others simply continue to use other’s efforts. In both scenarios, the audience

of people developing software content has widened dramatically as a response to the

availability of high-level languages and reusable, portable content in resource rich en-

vironments.

22

Chapter 2. Background

2.2.2 Development for Resource Constrained Systems

General purpose operating systems that manage hardware resources and abstract

away low-level device details are unusable in the resource constrained systems we are

concerned with. Due to limited memories, requirements for low-latency response to

external stimuli and limited power consumption, general purpose operating systems

are not used. Instead, developers of applications for resource constrained systems must

implement the facilities found in an operating system that they require along with their

application logic. Device drivers, mechanisms for concurrency and memory manage-

ment facilities are often the responsibility of the application developer to implement.

The average developer for resource constrained software must therefore assume all the

roles of device driver programmer, operating system implementer and application de-

veloper.

Since developers must implement both low-level device specific functionality and

higher level application logic, the two are often interleaved with little separation be-

tween concerns. Counter principles of good software engineering practice, which ad-

vocate for a separation of concern between functionally distinct parts of an application,

it is common today to see the accessing of device specific registers, to drive a hardware

peripheral for example, interleaved with application specific logic. From applications

already deployed in the field to introductory tutorials for the novice microcontroller

programmer, the lack of separation of concerns is widespread.

23

Chapter 2. Background

Up until 2004 [10], the most prevalently used programming languages for resource

constrained systems software development did not formally support high-level con-

structs for modularity and abstraction. Assembly language and C were the most widely

used languages until the use of C++ surpassed assembly. While C++ does formally

support constructs for modularity and abstraction, many of the language’s high-level

features, such as interfaces, virtual functions and abstract classes, are not usable in

highly resource constrained systems. The memory overhead of virtual function tables

and the runtime overhead of resolving pointer indirections, make these languages fea-

tures compromise cycle accurate operations and therefore unusable.

In addition to a general lack of support for modularity and abstraction, the support

for reusable and portable software is largely lacking. The way most resource con-

strained software is written, with an interleaving of low-level code and high-level ap-

plication functionality, there is generally little code that is reusable across applications.

The lack of formal constructs for encapsulation in the language leaves it up to the de-

veloper’s programming discipline to write code such that it is reusable. Even if code

is written in a manner reusable by the programmer who wrote it, differences in pro-

gramming style and organization makes reuse of that code by others more complicated.

Moreover, since device applications are closely integrated with the hardware they uti-

lize, the standard practice is to write software for a specific set of hardware, fixed in

a specific configuration. This makes software, as its written today, even less reusable

24

Chapter 2. Background

and in no way portable. Complicating portability further is the fact that some microcon-

troller manufacturers augment their C compilers with device-specific extensions. While

meant to make some device capabilities easier to use, such extensions make code that

utilizes them non-portable. In general, portable software continues to be elusive in the

domain of resource constrained software.

The practice of software reuse that does exist today is largely a copy-paste-modify

approach. Without language support for modularity and the lack of practice of separa-

tion of concerns in resource constrained software, developers are left with error prone

copy-paste-modify approaches to software reuse. Microcontroller manufacturers that

provide example code and sample applications for using their devices, often do not for-

mat it such that it can be reused directly. Developers must read and understand the code,

find the parts that are relevant to their need, extract it from the sample and figure out

how to integrate it, along with any dependencies it may have, into their own implemen-

tations. It is only with the utmost care and discipline from an experienced embedded

systems programmer that software for resource constrained system exists and is usable

without the copy-past-modify approach.

The inherent variability in hardware components, their interconnectivity and config-

uration implies that resource constrained software must be adaptable to change and vari-

ability. However, the standard method to support change and variability is through pro-

gramming with extensive use of C preprocessor macros. Directives such as #defines

25

Chapter 2. Background

are used to define symbolic names for device registers and other hardware parame-

ters that may need to change. Conditional directives such as #ifdef/#endif are

interspersed and interleaved into programs such that blocks of code can be condition-

ally compiled into or left out of an application. While achieving the desired effect of

adapting an application for varied hardware configuration or differences in execution

resources, the use of both kinds of directives causes code to be more difficult to read,

understand, modify and maintain. Since often times the conditional directives are de-

fined in the language of a build tool such as Make, today’s process for adapting to

change and variability entails understanding the build tool language (e.g. Make), pro-

ficiency with the syntax and semantics of the C preprocessor, and the programming

language itself (C or C++).

The tools available for microcontroller application development are highly frag-

mented, largely as a result of microcontroller vendor’s business practices. Every mi-

crocontroller vendor has traditionally tried to attract developers to their microcontroller

products not only by competing hardware features but also through software support

for developing applications. Compilers optimized for their hardware, development en-

vironments that make programming easier, sample code for driving peripherals and

even sample applications are made available. To be certain they don’t lose customers,

those providing the tools - the microcontroller vendor or closely associated third par-

ties - make no effort towards compatibility with other vendor’s devices. Compilers are

26

Chapter 2. Background

extended with device specific features such that code written for that device cannot be

used in another; development environments only recognize and operate with a specific

vendors microcontrollers; sample code and applications are written with device specific

features and implementation details tightly interwoven. As a result, dozens of devel-

opment environments, compilers, and tools for downloading code onto devices exist

each for a specific vendor’s device. An expert developer working with several devices

often has several IDE’s and a handful of compilers installed on their workstation and

on their desk several hardware download utilities can be found, one for each vendor’s

microcontroller.

2.2.3 Development by a Wider Audience

In recent years, the cost of microcontroller development kits and peripheral compo-

nents has decreased dramatically while their availability has increased enabling many,

for whom device application development was previously out of reach, to embrace it.

A microcontroller development kit today costs on average $50USD and is available

though various online retailers, internationally. The same kit, less than ten years ago,

would have cost hundreds of dollars. To customize the development board, accelerome-

ters, gyroscopes, LCD and LED displays, motors and many other sensors, actuators and

miscellaneous components are available. Retailers such as Sparkfun Electronics [76],

Adafruit Industries [1], Jameco [36] and others sell both development boards and com-

27

Chapter 2. Background

ponents at prices within reach for hobbyists, students, designers, artist and others. To

make these components even more usable by such people, these retailers often de-

sign small hardware modules containing the main component that easily interface with

popular development boards. Due to the convenience of such offerings, even expert

developers purchase devices from such retailers.

The cost of software development tools have also decreased dramatically in re-

cent years. Development tools for microcontroller programming such as compilers,

debuggers, device programmers and integrated development environments used to cost

hundreds to thousands of dollars just a few years ago making development accessi-

ble only to businesses and research institutions that could afford their cost. Today,

open-source tools exist for free, downloadable from the Internet instantly, and support

microcontroller development for devices from numerous manufacturers (e.g. GCC for

ARM, AVR, MSP430). In addition to development environments made available by

microcontroller vendors, several simpler, open-source solutions have recently become

increasingly popular.

The decrease in cost and increase in availability of software development tools and

hardware components has broadened the scope of who is trying to develop microcon-

troller applications. For the same cost of a textbook, students can now purchase a

development board and several additional components in order to learn how to realize

a device application. In universities around the world, there are a growing number of

28

Chapter 2. Background

courses being offered in digital arts, electrical engineering and computer science that

aim to teach students how to develop microcontroller applications. In high schools,

predominantly in the USA and Europe there are growing numbers of robotics teams

and workshops in computational arts and crafts that utilize the same microcontroller

hardware and tools to teach how to make digitally enabled artifacts. Outside of an aca-

demic context, and as seen in newspaper articles [6, 43], television shows [18], popular

blogs [49, 28], and major events [48, 15, 59], there is a constant stream of creative

projects created by non-embedded systems engineers and relatively less experienced

programmers. Clearly, the interest in creating custom device applications, and those

attempting to create them, has expanded well beyond the traditional experts of resource

constrained application programmers.

2.3 Definition of Domain

Our work specifically targets the domain of software development for a wide spec-

trum of applications utilizing resource constrained microcontroller-based systems de-

veloped by an audience of people who have a diversity of programming skills, from

novice to expert. The microcontrollers used in device applications of our domain are

highly constrained and consist of a few hundred bytes to few tens of kilobytes of RAM.

They have a maximum of a few hundred kilobytes of program memory and are unable

29

Chapter 2. Background

to utilize currently available off-the-shelf general purpose operating systems such as

Linux. There is, and continues to be, a constant flux of hardware in our domain and

an even greater variation in the combinatorial possibilities of that hardware. We do

not define the intended applications of these resource constrained devices, however, the

general class of applications are those that require real-time low latency response to

external stimuli, have low data processing requirements, and potentially severe power

consumption constraints. The audience of developers includes expert embedded sys-

tems engineers well versed in C and assembly, existing programmers with little or no

knowledge of embedded systems programming, novice programmers and even non-

programmers that are familiar enough with basic scripting languages such as Javascript

and are capable of reusing existing content to customize existing applications for their

needs.

2.4 Summary

In summary, resource constrained systems are widespread and have unique func-

tional requirements that differ from those for resource rich systems. The ability to

respond to external stimuli in real-time with low latency is more crucial in resource

constrained systems than heavy data processing. The presence of very low quantities of

data and program memory as well as potentially strict power consumption requirements

30

Chapter 2. Background

heavily constrain the systems of the domain we are interested in. The lack of operating

systems to provide concurrency, resource management and to abstract away low-level

hardware details complicates software development.

Despite their differences, resource rich and resource constrained systems share sim-

ilarities in the development of software. Applications in both domains require pro-

gramming in a language that will enable rapid and efficient development of robust

software. Adaptability to changing application requirements and variability in hard-

ware with minimal impact on existing software is essential for both types of systems.

Reuse of software, its portability and ease of distributability is essential for enabling

productivity in the development of applications for both kinds of systems. However,

the tools, technologies and processes available for developing applications for resource

rich systems greatly outpaces what is available in our defined domain. Given the shared

similarities in application development for both domains, the languages, tools and pro-

cesses for application development in our domain could greatly benefit from features

found in the domain of application development for resource rich systems.

Finally, the availability of affordable hardware and free development tools has

helped many people beyond domain experts take their first steps towards development

of device applications. However, the software development tools and processes for

those applications is a stumbling block for many. Downloading and installing develop-

ment tools from the Internet is easy. Purchasing hardware and components for a custom

31

Chapter 2. Background

application is simple and affordable. Connecting the parts together is relatively straight-

forward. Programming device drivers to enable the hardware, implementing operating

system facilities, and then developing the application functionality is complex for peo-

ple of all levels of expertise. Relieving the lack of readily available, reusable software

that can be used across device application hardware without compromising critical re-

sources can help expand the number and diversity of people creating compelling and

potentially innovative applications.

32

Chapter 3

Related Work

Our work takes a programming language approach to advancing the state of the art

of application development using resource constrained microcontrollers. Our intent is

to support a broad audience of application developers that are able to rapidly create

robust applications utilizing the diversity of hardware that is readily available today

and will be available tomorrow. Language support for modularity, software reuse and

portability are central in our work along with flexible application configurability to

support variability in hardware and software. Without compromising efficient usage

of critical resources, our work aims to support both novices developers and experts

embedded systems engineers.

In this chapter we discuss work and systems related to our research. Work in both

language and non-language support for embedded systems application development is

discussed. Technology for providing high-level language constructs with efficient im-

plementations is related to our work and several systems are discussed. Additionally,

33

Chapter 3. Related Work

we discuss systems targeting development of microcontroller applications by novices.

High level programming environments have enabled domain experts with less program-

ming experience develop complex applications and we discuss such related systems

targeted at both engineers and non-engineers. The broad audiences of such tools are

a point of related interest to our work. While we discuss work related to our efforts

in this section, we empirically compare and contrast some of these systems in further

individual chapters.

3.1 Language Support for Modularity

In this section we describe existing systems that provide language support for mod-

ularity in software for resource constrained systems. We also describe systems that

have attempted to provide high-level language constructs without compromising scarce

resources. The systems discussed have been used by members of highly technical com-

munities in academia and industry. In some instances the development has been in-

tended for a specific application domain such as wireless sensor networks, while others

attempt to provide more general facilities.

34

Chapter 3. Related Work

3.1.1 NesC & TinyOS

The nesC programming language [26] and TinyOS operating system [81] is an at-

tractive platform for sensor network application development using microcontroller-

based devices. The nesC language is a dialect of C that provides a structured, compo-

nent-oriented programming model for reusable software modules. TinyOS is a collec-

tion of software components integrated into an application that provides support for a

specific set of hardware devices, task concurrency via reactive runtime and scheduler,

and other domain-specific functionality.

The component model of nesC uses a strictly local namespace for modules [82],

completely decoupling module implementations from one another. Modules commu-

nicate through narrow interfaces that define fine grained functionality. NesC requires

configurations that ”wire” together users and providers of interfaces in order to resolve

the local references of modules to concrete implementations. Applications are imple-

mented in nesC by providing configurations that wire together a set of modules used in

the application.

The rational for nesC’s model is that component implementations remain stable

over time, while configurations of components into applications varies from applica-

tion to application. Configurations therefore are meant to enable flexible component

reuse. Additionally, the use of narrow interfaces as the method of communication be-

tween modules is meant to enable a fine granularity of component reuse saving micro-

35

Chapter 3. Related Work

controller resources [82, 4] by not including in an application functionality that is not

necessary.

While flexible component reuse and efficient use of scarce hardware resources are

goals shared by Em, the pattern of usage in nesC’s component model for reusing avail-

able components and creating applications is fundamentally different than the one we

aim for. Requiring configurations and component wiring to utilize modules has not

shown itself to be a straightforward or intuitive approach. Furthermore, time has shown

that the black-box reuse of TinyOS has been largely unrealized [4] and it is widely

acknowledged that using components and creating applications through configurations

and wirings is a complex, intellectually challenging process [82]. The complexity as-

sociated with nesC’s programming model restricts its use to a highly specialized expert

community and makes it not amenable to the intended audience of Em which has a

wide range of skills, from expert to novice.

3.1.2 RTSC

The RTSC/XDC [71, 72] toolset provides component oriented microcontroller pro-

gramming facilities. The toolset provides an interface description language (IDL) that

allows for the specification of modular units of code. The implementation of the inter-

face is carried out in C with specific syntactical requirements in the naming of functions

and variables such that they match the interface specification. The toolset additionally

36

Chapter 3. Related Work

provides the ability to script build-time functionality into modules with a scripting lan-

guage similar to, yet different from, the IDL. The three languages together enable the

support for modularity. The complexity of learning and using three different languages

to realize software modularity is non-trivial. Existing embedded engineers often lack

the high-level language skills to utilize such software based infrastructure. Novices in-

experienced in either area face significant challenges in utilizing the toolset. The build-

time configuration capabilities available are similar to those incorporated in our work,

however RTSC/XDC utilize a language different from the implementation language for

such functionality, unlike our design. While the toolset has been shown to work on a

highly resource constrained device, large parts of the infrastructure were omitted and

only one device from the manufacturer of the toolset was shown to be supported.

Since RTSC/XDC lacks any runtime services for concurrency, the DSP/BIOS [19]

system was developed in RTSC/XDC and provides runtime services for concurrency.

The DSP/BIOS real-time operating system from Texas Instruments provides sophisti-

cated runtime support and a partial device driver model for applications. However, this

system has been designed for devices requiring significantly more resources than those

available in our domain. A resource constrained microcontroller has been targeted by

this system, however it has not been shown that multiple platforms from differing ven-

dors have been supported.

37

Chapter 3. Related Work

3.1.3 Other Systems

Embedded Java[74] devices such as the Javelin stamp [37] and JStamp/TINI pro-

cessors [38] use Java to provide an object-oriented programming model for embedded

processors. The way some systems use Java (JVM vs Java to native code compilation)

and due to a lacking device abstraction model, code is not reusable across systems.

Runtime support for concurrency is not uniformly supported in these devices either,

with some providing elaborate real-time Java support and others lacking support all to-

gether. Systems offering real-time Java support require more resources than available

in our target processors.

Jiazzi [53] adds explicit language constructs to Java for organization of code in

terms of reusable software components. The authors identify key properties that are

required by component systems to work with OO languages for large-scale modu-

lar construction of programs. Concepts of components and reusability from this past

work are applicable to our work, however, this work does not target severely resource-

constrained devices.

ExoVM [84] is a Java virtual machine and language design that together target em-

bedded systems development. ExoVM provides analysis for computing reachable code

and data in Java applications. Subramonian et. al discuss dynamic and static config-

uration mechanisms in component middleware for distributed real-time and embedded

systems [77]. Both of these works provide insight into optimization techniques applica-

38

Chapter 3. Related Work

ble to the build process in Em. However, they target more resource-rich environments

than our domain of resource-constrained embedded systems.

3.2 Microcontroller Development Support for Non-Ex-

perts

The popularity of microcontroller programming among hobbyists and non-experts

has grown slowly though the 1990’s and much more rapidly in the last five years. Early

tools such as the BASIC Stamp carried much of the community that existed in the

1990’s and more recent tools such as Wiring and Arduino are now leading a quickly

expanding audience of people into device application development.

3.2.1 BASIC Stamp

The BASIC Stamp is a microcontroller break-out board that hosts a BASIC inter-

preter in ROM and has been used by hobbyists and amateurs since the early 1990’s [62].

Compared to non-hobbyist development kits at the time, the BASIC stamp cost half the

price and contributed to is popularity. The programming language for the device was

BASIC which was relatively easier to use than C which, at the time, was often extended

with device specific intrinsic functions. The availability of the BASIC Stamp helped

extend the reach of microcontroller programming to less expert developers.

39

Chapter 3. Related Work

Despite being programmed in BASIC, the code written suffers from the same prob-

lems articulated above. Expressions directly manipulating device registers are inter-

leaved with application functionality. There are no constructs for modularity in the

language and code reuse is achieved through a copy-paste-modify approach. The lan-

guage itself has been extended with functions for device specific peripherals. The de-

velopment environment distributed with the device resembles those in use by experts

and difficult for beginners to understand. Furthermore, a limiting aspect of the devel-

opment board is the runtime interpretation of the application. Already lacking in re-

sources, the additional CPU cycles required to interpret instructions limits the applica-

tion domains the device can be used in. Time-critical applications with sub-millisecond

response times are difficult to achieve. Furthermore, communication with external de-

vices through serial interfaces is highly limited in bandwidth.

3.2.2 Wiring and Arduino

The Arduino platform [5], which is based on Wiring [90], is currently the most

popular development platform for non-expert developers of resource constrained device

applications. Arduino has lowered the barrier to entry for microcontroller programming

by creating hardware that easily interfaces to a simple development environment and

presenting users with an uncomplicated API to basic microcontroller capabilities. Due

40

Chapter 3. Related Work

to Arduino’s initial ease of use and open-source offering, it has grown a large and

vibrant user community that creates and openly shares a wide range of applications.

The API provides functions to set input/output directions for the microcontroller

pins and to read/write their state. A simple, synchronous analog to digital converter

read function, delay functions for millisecond and microsecond delays based on busy-

wait loops, functions for reading and writing serial data from the UART and serial

peripheral interface (SPI) port, and functions for attaching an interrupt handler triggered

by a change of an input pin state exist.

The base Arduino API hides the low-level details of interacting with microcontroller

registers to enable the functionality. Other features of the Arduino’s microcontroller

such as interfacing to the full set of interrupt sources, accessing peripheral state registers

and configuring specific details of peripherals are not available. While Arduino’s API

does not abstract away its hardware, it does provide a simpler method of interacting

with the fixed hardware that is present.

Beyond this API, the Arduino community has code supporting different devices

such as LCD displays, sensors, and wireless radios. This code, however, is reused

through a copy-paste-modify approach that is complex and highly error prone. Only

advanced users with knowledge of low-level hardware details and sophisticated pro-

gramming skills manage to take full advantage of what already exists. Because, there

is no framework in support of modularity and that facilitates reuse of contributed code,

41

Chapter 3. Related Work

many less-experienced users struggle to make even basic applications fully functional

(we have experienced this first-hand as we have attempted to help such users (students)

in the classroom).

Reacting to concurrent environmental stimuli in a timely manner is an essential

requirement for many applications in our domain. For example, responding to hu-

man input and reacting with display output, controlling sensors, and other activities

in this domain, are time-sensitive operations. Moreover, performing these operations

simultaneously requires support for concurrency. Arduino provides no such support.

Coordinating the execution of application code and servicing multiple sources of I/O is

functionality left entirely up to the developer to implement, thus developers implement

the same functionality independently and repeatedly.

Finally, while Arduino does support a narrow collection of hardware with differing

configurations, there is no structured programming model with the proper abstractions

and capabilities to quickly adapt code to new configurations. Adding support for a new

device involves adding code to and modifying the programming environment. Fur-

thermore, all Arduino code assumes execution on microcontrollers from a small set of

Atmel’s AVR [8] family of processors. Non-Atmel processor support is not available.

This lack of the necessary abstractions to introduce support for new devices (of which

there are vast diversity) makes it infeasible to write software for new platforms using

Arduino.

42

Chapter 3. Related Work

3.3 High Level Programming Environments For Non-

Programmers

Part of the intent of this dissertation is to enable a wider audience of non-program-

mers to develop resource constrained device applications. High level programming

environments exist for non-programmers with knowledge or expertise in a particular

domain. These environments are related to our work since they have considerable usage

and have enabled non-programmers to develop custom content with high level graphical

programming environments.

3.3.1 Graphical Dataflow Process Networks

Graphical dataflow process networks are a formally defined model of computation

that describe a computational system in terms of a graph. A process network consists

of nodes, programmed in a host programming language, that represent a quantum of

computation and arcs, representing data pathways, that interconnect the nodes. Rules

defining how nodes ’fire’ based on availability of data dictate how a graph will execute.

The semantics of how arcs can be used in addition to the firing rules of the nodes is

called the network’s coordination language and defines how a complete computation

system, or program can be created.

43

Chapter 3. Related Work

Variations on the firing rules can cause the dataflow network to have behaviors and

characteristics that have and continue to feed an entire field of research. For example,

when processing nodes statically define the amount of data they consume and produce,

also known as synchronous dataflow networks [45], an execution schedule for the net-

work can be statically determined. This eliminates the complexity and overhead of

runtime scheduling and ensures a graph configuration that is executable [44]. If special

processing nodes are allowed to alter their data production and consumption rate, as

in boolean and dynamic dataflow networks[14, 13], the network cannot be statically

scheduled and a runtime scheduler is necessary. However, in these dynamic networks,

flow control constructs such as if/then/else and do/while, become available for use. One

model, therefore, can have a faster execution speed at the expense of lacking expressive

constructs, while the other model requires more runtime resources and allows for more

dynamic behavior.

The programming model of graphical dataflow networks is clear, concise, and in-

tuitive, and depending on the choice of network properties, various programming con-

structs are available to the programmer. Additional constructs exist in these networks

which helps reduce programming complexity. Nesting networks within nodes enables

hierarchical construction of process networks and is similar to the constructs of encap-

sulation and data hiding.

44

Chapter 3. Related Work

Several environments for working with dataflow process networks exist, most no-

tably is the Ptolemy project [65]. These environments however, are not suitable for

our domain as they are used primarily for research modeling and simulation. While

code generation for embedded devices exists on some level [91] and embedded systems

projects have been developed with these systems [40, 89], they are targeted for use by

researchers and highly specialized experts within the embedded systems domain.

Dataflow process networks are related to other graphical models of computation

such as Petri nets [63] and Kahn process networks [39]. Statecharts [30] are also a

graphical model to describe system behaviors. Each of these models differs in their

domain of application, as well as the rules that dictate composition of a computation.

Dataflow process networks are a generalized case of the Kahn process network.

3.3.2 Max/MSP and PureData

Max [66] and PureData (PD) [67] are two graphical programming environment

that are popular with performers, composers, artists, hobbyists and students working

with music and multimedia. These development environments facilitate the creation

of real-time, interactive, audio, video, and control data processing software. Max is a

commercial product while PD is open source and historically, the two programs come

from a common origin and are conceptually similar [52].

45

Chapter 3. Related Work

Max and PD have a clear programming model that has been largely appealing to

its users as is evidenced by the large following these applications have. Both envi-

ronments embody a form of the graphical dataflow model of computation [46] which

lends itself well to processing real-time data streams – an intuitive and effective model

of computation for many cyber-physical applications. A processing graph is made up

of objects, each of which is a component from a loadable C/C++ or Java library. The

objects are interconnected with patch cords that represent data and event streams. Data

sources bring audio, video, timing, and control data into the environment which then

flows through the cords to drive the processing graph. Data and event sinks within the

graph facilitate output of information from the environment.

The programming model of Max and PD has enabled large numbers of users of our

domain to develop sophisticated software applications. However, neither Max nor PD is

intended for development of embedded device applications as they inherently assume

execution on resource rich environments using conventional operating systems. The

majority of objects in these environments focus on digital signal processing of audio

and video and execution on a resource constrained microcontroller would impede their

function. Additionally, the environments rely entirely on the underlying operating sys-

tem for the transferring of data between hardware devices and the software application.

Thus, timely handling of data input and output is hard to guarantee and application de-

lays or bottlenecks are addressed by using faster processors and more memory. In the

46

Chapter 3. Related Work

hardware systems of our domain, resources are inherently constrained in CPU power,

memory size, and potentially battery supply. Most applications created in Max or PD

will not function effectively (or even at all) in these environments.

In addition, some Max and PD applications are used only to generate or process

control data instead of to manipulate audio and video. The interfaces available to these

applications for input and output of control data is dependent on the operating system

drivers and Max/PD objects available to access the hardware. Thus, these types of

applications tend to be limited to using interfaces such as USB, Ethernet and serial

ports. Adapting the Max and PD environments to new hardware is also challenging

as both an operating system driver and a Max or PD object must be developed to do

so. The complexity is problematic for our domain as frequently, new hardware must be

added to a system and the environment must be flexibly adaptable to supporting it.

The Max and PD environments however, do facilitate expressibility by providing

a rich set of programming constructs. Processing objects enable fine grained control

over the flow of data through a network. Patcher objects in Max encapsulate entire net-

works and through the use if inlets and outlets in the encapsulating patcher, the network

becomes a simple object. This construct allows for the reduction of complexity and ab-

straction of functionality in order to build sophisticated systems. Finally, processing

objects in these environments are loadable libraries that can be reused on any platform

the software is supported on. Also, networks made up of objects, called patches, can

47

Chapter 3. Related Work

be saved and reused as objects inside other patches. Max and PD therefore provide

inherently modular and reusable functionality.

3.3.3 CLAM

The C++ Library for Audio and Music (CLAM) [3, 2], developed at the Music

Technology Group of the University Pompeu Fabra, is a complete software framework

for research and application development in the audio and music domain. CLAM uses

the synchronous dataflow network model of computation. The host language for pro-

cessing elements is C++ and an extensive object oriented hierarchy of elements exist

which are available to extend and specialize. The coordination language of CLAM is

either C++ or, alternatively, a simple network editor application exists which provides

a visual environment for constructing and executing networks. More advanced users of

CLAM may use C++ as their mode of development, however those knowledgeable in

the audio and music domain that are not technically skilled in programming can still

develop advanced applications through the visual development environment.

CLAM embodies most of the programming language constructs we have outlined

as necessary for expressibility in our domain. Additionally, it implements a variation

of the synchronous dataflow model of computation which allows its data and event

streams to be combined in a processing graph [85] that can be scheduled statically,

enabling efficient execution of the application. Due to CLAM’s choice of dataflow

48

Chapter 3. Related Work

model it does not have the ability to alter or control the flow of data using if/then/else or

do/while constructs. Moreover, CLAM is a platform for research in the audio and music

domain and uses analysis and synthesis algorithms that make use of complex, advanced,

computational techniques restricting its use on resource constrained systems. Finally,

because of the varying formats of analyzed audio data, CLAM has at its core a flexible

and highly dynamic type system, a useful feature for resource rich environments but

prohibitive for execution on microcontrollers.

Other systems with design intent similar to CLAM are ChucK [87] and OpenSound-

World [16]. ChucK is an audio programming language for real-time synthesis, com-

position, performance, and analysis. It differs from CLAM in its programming model,

as ChucK doesn’t use a dataflow processing model, and its capabilities to modify code

dynamically. OpenSoundWorld is an extendible programming environment to process

sound in response to real-time control input. Like CLAM it is based on a dataflow

model and its applications can be programmed in C++ or using a visual editor. Unlike

CLAM, however, OpenSoundWorld allows dynamic manipulation of the application at

runtime.

3.3.4 Other Tools and Systems

Other high-level programming environments that can process digital signals ex-

ist such as LabView [42], Isadora [34], OpenMusic [12], and Quartz Composer [69].

49

Chapter 3. Related Work

These environments all use forms of dataflow programming models and differ in their

intended applications. LabView is for digital signal processing for data acquisition and

control systems. Isadora is primarily focused on video processing with only minimal

support for audio. Open Music is focused on audio signal processing. Quartz Composer

is focused on digital image and video processing although also has capabilities for au-

dio analysis and manipulation. All these environments share the capability of handling

control input from various sources to control data processing and none of them can

currently execute on resource constrained microcontrollers.

3.4 Summary

In this chapter we present extant systems and tools which represent various as-

pects of the state of the art as related to our work. Systems with language support for

modularity exist although they are targeted at specialized application domains or more

resource rich devices and remain accessible only to highly trained researchers and en-

gineers. These systems do not support a general purpose solution to modularity in

resource constrained devices and either their programming model is challenging even

for the experts that use them or they require mastery of several programming languages

to employ them.

50

Chapter 3. Related Work

Other, high-level, object-oriented languages such as Java and C++, while appealing

for their familiarity and rich constructs, demand more resources for their dynamic ca-

pabilities than available in our target devices and are therefore not suitable as a basis

for a general solution. Other systems that demonstrate techniques for optimization in

compilation and runtime environments inform mechanisms for resource conservation.

However, these extant systems target more resource rich environments and would be

non-trivial to modify for use in devices of our domain.

Platforms for resource constrained application development in use by a less techni-

cal audience today lower the barrier to entry for development, however, since they are

based on the same extant languages and tools already in use, they ultimately suffer from

similar problems found in expert tools. These environments do not provide language

constructs for modularity, software reuse depends on a copy-paste-modify approach,

only a narrow set of devices from a single manufacturer is supported, and it remains

difficult for non-experts to take full advantage of functionality present in the hardware

they support.

High-level programming environments for non-programmers have successfully sup-

ported large communities of developers. The extant systems, while useful in a broad

range of application domains, assume execution in resource rich environments and can-

not be augmented to effectively enable development in highly resource constrained en-

51

Chapter 3. Related Work

vironments. Their ability to support a broad community of users, however, does inform

us of usage models and environment features necessary to do so.

Our work, described in the chapters ahead, develops the programming language

support necessary for application development in resource constrained environments.

We address shortcomings in extant systems by providing constructs for modularity,

software reuse, variability, configurability and portability that does not compromise

critical resources and is suitable for a wide range of devices and application domains.

Furthermore, we strive in our design and implementation to make such language sup-

port accessible to and usable by a less-technical audience; goals which have not been

successfully addressed by other systems for this domain.

Following the chapters on the design and implementation of our language support,

we address additional development support for effective hardware abstraction, concur-

rency, and general application development. Such support is essential for expediting the

development process and relieving the burden on developers to repeatedly write device

drivers and operating system facilities to support their applications. In the final chap-

ters of the dissertation, we provide an empirical evaluation of our work demonstrating

our ability to support efficient development, relative to extant systems and technolo-

gies, that is usable on a diversity of hardware, in differing applications of significant

complexity and by an audience with generally less technical expertise.

52

Chapter 4

Language Support for Application
Development

The goal of our work is to advance the state of the art of resource-constrained mi-

crocontroller application development. Taking a programing language approach to our

problem, we design and develop a domain-specific language that will support a broad

range of programmers with diverse technical skills in the realization of a spectrum of

device applications. The language itself must posses features that enable the realiza-

tion of robust and complex software systems. Additionally, the language must support

modern software development practices that depend on the existence of an ecosystem

of software that is reusable and portable across application domains and hardware plat-

forms.

In this chapter, we describe the language features we have selected for the design of

a programming language specific to our stated domain. The features have been selected

from existing high-level languages where they have proven to achieve objectives desir-

53

Chapter 4. Language Support for Application Development

able in, yet lacking from, a language for resource constrained microcontrollers. We

articulate both the objectives desired and the language features that have been chosen

to meet those objectives. We also point out some languages features popularly found

in high-level languages that have been explicitly left out of our design. To conclude the

chapter, we contrast our selection of features with existing work in our domain.

4.1 Efficiency

A primary objective in our design is runtime efficiency. As discussed in the back-

ground section, many resource constrained applications interface with the physical

world and require deterministic or cycle accurate response times to external stimuli.

Assembly language and C are the most widely used languages in this domain precisely

because they afford such requirements to be satisfied. Furthermore, the compiler and

assembler technologies available today have benefited from decades of refinement to-

wards the optimal use of the microcontroller’s data and program memories.

Any new language to support resource constrained software development must not

compromise the levels of efficiency and accuracy that can be achieved today using

existing languages. To that extent, we have elected to use C as a portable assembly

language. All the high-level constructs our language design introduces translate into

efficient C code. Moreover, we do not introduce additional runtime behavior above

54

Chapter 4. Language Support for Application Development

what exists in the C runtime. This decision enables us to achieve at least the level of

execution efficiency expected and available today. Additionally, this decision allows

us to take advantage of existing compiler technology for the numerous microcontroller

targets that exist and leverage all the optimization capabilities they posses.

Traditionally, in our domain, runtime efficiency has come at the expense of applica-

tion development efficiency and it is our objective that this not be the case in our design.

The use of low-level assembly language may produce cycle accurate results, however,

any such code must be rewritten in its entirety to function on a microcontroller with a

differing architecture. This demands significant development resources; both time and

money. While C, being higher level than assembly, can be used to produce portable

code, it is used in practice as a more advanced assembly language with programmers

interleaving access to low-level device registers with higher level application function-

ality. This practice stifles the reuse and portability of software and limits the efficiency

and effectiveness of the development process.

A balance between resource and development efficiency has not been struck by ex-

isting languages in our domain, however, development efficiency is significantly more

advanced in other domains. Development processes and the languages to support them

have advanced and been refined for more than two decades in resource rich environ-

ments. While less critical of resource consumption, processes of software development

and architecture, with formal constructs in languages to support them, have achieved

55

Chapter 4. Language Support for Application Development

significantly higher levels of development efficiency. In the subsections that follow that

describe the language constructs in our design, it is our intention throughout to preserve

the resource efficiency and accuracy achievable in today’s languages for resource con-

strained application development while supporting the effective development processes

that exist elsewhere.

4.2 Readability and Writability

The developer community that we target with this work is significantly broader than

the traditional embedded systems community. In addition to experts of resource con-

strained microcontroller programming, we seek to advance the capabilities of novice

and non-programmers to create device applications. Our intention for this comes from

the fact that thousands of non-technical people have in the last five years embraced the

customization of technology for many applications that require an interface between

the physical and digital world; people from arts, music, digital media, and many other

non-engineering disciplines. Interestingly, members of the same audience we target

have been successful in creating rich Internet applications in recent years using script-

ing languages such as Javascript, PHP, Python and Ruby. These languages appear to

be readable, understandable and usable by an audience with less technical skill as well

56

Chapter 4. Language Support for Application Development

as by experts. Beyond readability and writability, the style of the languages mentioned

also seem to draw people to learn them.

While a less technical design decision, we feel the ability for novice and expert

alike to be able to read, understand and write code written in our language is critical

for its success. Several factors contribute to the readability and writability of code

including the language’s overall simplicity and its syntactic elements. To address the

overall simplicity of the code we have chosen a style of programming that reads from

top to bottom and does not incorporate any compile-time constructs that selectively

include or exclude code that is present in the source file (e.g. #define/#ifdef

preprocessor directives in C) or that alters the flow of execution of the code at runtime

in an unstructured manner (e.g. the goto statements of C).

To address the readability of code in our design we have chosen a syntactic style

that attempts to find a balance between what existing programmers are familiar with

and what new and novice programmers have found success with in scripting languages.

Specifically, the syntactic constructs for designating code blocks, control statements

and general expressions found in C, C++ and Java have been selected since a tremen-

dous amount of existing programmers, across application domains, can instantly read

and understand them; we have not deviated from the semantics of these syntactic ele-

ments. We also believe that the syntactic elements of these languages helps in writing

clean code which lends itself greatly to readability. To leverage the momentum of pop-

57

Chapter 4. Language Support for Application Development

ularity of scripting languages, we also attempt to match the syntactic style and feel

of scripting languages. Specifically, in our design we have relaxed the requirement of

terminating lines with semicolons, have chosen variable and function declaration con-

structs found in Javascript, Python and Ruby, and have employed sparse syntax con-

structs such as not requiring parameter types to be respecified in function definitions.

A critical factor of enabling people to write their own applications is that they be

able to read them. Beyond that however, to support the writability of applications we

have attempted to select keywords that reflect their intent in the representation of control

and data structures. The following section discusses these representations.

4.3 Modularity and Abstraction

Modularity is inherent in the physical design of device application hardware. Each

chip on a circuit board serves a specific function whose precise implementation is

largely unknown. The functionality of each component is enabled through interaction

with the interface the device provides. The microcontroller software must then drive the

devices it is interfaced with and coordinate the flow of data and commands between de-

vices and higher-level application processes. In our design, we seek to have a software

representation of the devices and subsystems that make up the device application.

58

Chapter 4. Language Support for Application Development

Having formal support for modularity in the language helps establish a separation of

concerns between distinct parts of the application while lending itself to structuring the

software in a manner that reflects the hardware structure. Since hardware components

and subsystems are often singular, we have chosen to have each software module be

a singular entity. In our design, modules are not replicable through instantiation as

objects are from classes in object oriented languages. Our decision for this relates to the

fact that device applications in our domain have a tight integration between hardware

and software.

Formal support for the separation of concerns is a cornerstone of high-level pro-

gramming languages and brings about modularity. By grouping related functionality

and data into modular units, or encapsulation, programmers can solve complex prob-

lems by breaking them down into smaller, more manageable units. The separation

of concerns also entails removing, to the extent possible, dependencies between func-

tional groups, or modules, that make up a program. These smaller modular units then

come together and interact to solve the larger problem on hand. Teams of potentially

geographically distributed programmers can develop large applications and each pro-

grammer can focus on a smaller problem at any one time, leading to more reliable

implementations. When errors in applications are encountered, finding and fixing them

is assisted by the separation of concerns since functionality is localized and interde-

pendence between other application functionality has been minimized. As a testament

59

Chapter 4. Language Support for Application Development

of its widespread use in modern high-level languages, formal constructs for modularity

exist in nine out of ten of today’s most commonly used languages [83].

Constructs for modularity and its benefit to software development are largely lack-

ing from prevalently used languages in resource-constrained systems. Both assembly

language and C lack the formal constructs that enable modularity. As such, develop-

ers are left to their own discipline of programming to bring about the advantages that

modularity brings about. It is the case, as a result of this practice, that incompatibilities

between programmer’s styles of implementing modularity exist, making it difficult for

developers to leverage the efforts of others in their own work. Furthermore, it is the

exception, and not the rule that software is developed with an inherent separation of

concerns. To leverage the well proven benefits of modularity, we find it necessary in

our design to formally provide the language support to enable it.

In conjunction with encapsulation, information hiding enables modular units to be

treated abstractly and brings about software abstraction. Information hiding is the en-

forcement of public or private access to data and functionality that has been encapsu-

lated within a module. This enforcement allows programmers to interact with modules

based on the public functionality they expose with no assumption or knowledge of their

implementation. This abstraction of a module’s implementation further reduces the de-

tails a programmer must be concerned about at any one time and allows them to focus

on the functionality of the application as a whole. Furthermore, abstraction gives pro-

60

Chapter 4. Language Support for Application Development

grammers the ability to reason with programmatic elements as concepts or ideas, aiding

in the fluid translation of ideas into functional software systems.

In addition to information hiding, the construct of an interface aids in furthering the

ability to abstract away implementation details. The notion of an interface, as present

in Java and C#, specifies the functionality a module will possess without specifying

any implementation. Software modules implement the interface by providing defini-

tions for all the functions specified in it. Contractually, interfaces make it clear to the

programmer what functionality a module possesses and entirely abstracts away and re-

moves concern for implementation details. This abstraction furthers developer’s ability

to reason about complex software systems and effectively translate them into working

implementations.

Formal enforcement of modularity and constructs that enable abstraction such as

interfaces, are also largely lacking in the dominant languages used for resource-con-

strained microcontroller programming. While the use of C++ has introduced some

modularity into resource-constrained software, the language generally lacks interfaces

as present in Java and C#. While functionality similar to interfaces can be reaped from

C++, the overhead of its usage makes it unsuitable for our domain. Because of the

benefit of abstraction brought about by modularity and the use of interfaces, we have

incorporated them both in the design of our language.

61

Chapter 4. Language Support for Application Development

4.4 Variability and Configurability

A microcontroller-based device application is made up of both hardware and soft-

ware. The hardware consists of a printed circuit board which hosts a microcontroller,

a variety of peripherals needed by the application, supporting circuitry and connectors.

The software, usually embedded into the microcontroller’s on-chip flash memory, con-

tains both drivers to enable and interact with the hardware as well as the higher-level

application-specific logic. For each device that is created, something about the config-

uration of physical hardware or software of that device is different from others. For

example, hardware components are wired to the microcontroller differently, quantities

of microcontroller memories and their specific memory maps differ, the method of con-

trolling peripherals differs and the trade off between requirements of time and space for

applications differs.

In addition to the inherent variability in devices, change, in both hardware design

and software requirements, often occurs during the development process. Sometimes

hardware components are replaced due to new offerings, availability or economic con-

siderations. The physical PCB layout often changes because of mistakes or space con-

siderations, and software that depends on particular hardware functionality may need

to adapt to new or evolving application needs. Clearly, the software supporting the

62

Chapter 4. Language Support for Application Development

functionality of a microcontroller-based device application must be able to endure and

adapt to variability and change with minimal use of programmer resources.

Applications developed for resource-rich environments such as our desktop and lap-

top computers have largely been shielded from low-level hardware details by operating

systems. These general purpose operating systems (OSs) provide interfaces to hardware

specific functionality and resource management facilities such as virtual memory. By

utilizing the abstract interfaces and services the OS provides, programmers can assume

a uniform execution environment and are relieved from the the burden of implementing,

or even considering, low-level, hardware specific code and the need to consider config-

uration of their application functionality for a particular execution context. Moreover,

features and constructs found in high-level languages such as polymorphism and dy-

namic type systems provide additional support for software development to cope with

change.

In the resource-constrained environment, general purpose operating systems and

language features such as polymorphism and dynamic type systems consume too much

memory and too many CPU cycles to be utilized. Current mechanisms to cope with

change and variability using C, the dominant language of microcontroller program-

ming, involves interleaving preprocessor directives such as #define and #ifdef/

#endif with application functionality. To vary the configuration of applications and

tune them for particular execution contexts, developers currently use tools such as Make

63

Chapter 4. Language Support for Application Development

and other build systems to pass to the C preprocessor and compiler the appropriate

definitions that will build the application as necessary. Such practices make reading,

understanding and maintaining code arduous and error prone. Furthermore, it requires

developers to use yet another tool in the development process that demands significant

effort and experience to learn how to use. In our design of a language for resource-

constrained devices, we see it essential that the language have constructs and features,

with unobtrusive syntax and easy to understand semantics that allow software to be

written such that it can cope with change, variability and be configured for specific

execution contexts from the onset of development.

Figure 4.1: Proxy software design pattern in UML.

A language construct and software technique we have identified to cope with change

and variability that does not demand runtime resources are interfaces and the proxy

software design pattern [25]. As stated in the above section, an interface specifies the

64

Chapter 4. Language Support for Application Development

functionality a module provides without defining an implementation. Modules in turn

implement the interface and provide a specific implementation. The proxy software

design pattern, shown in Figure 4.1, makes use of interfaces, a proxy, and a delegate

module to enable the decoupling of a module’s interface from its implementation. Soft-

ware modules requiring a particular functionality, referred to here as clients, utilize a

proxy which implements a particular interface. The proxy presents the client with the

functionality the interface specifies. The proxy, however, does not provide any imple-

mentation and makes use of a delegate module that implements the same interface as

the proxy for that purpose. The binding between the proxy and its delegate is a loose

one allowing different delegate modules implementing the same interface to be bound

to the proxy. In Figure 4.1 a client module utilizes a proxy that implements an interface

for the functionality of a microcontroller’s general purpose I/O pin. Two other mod-

ules shown implement the functionality of the interface for the Atmel AVR and Texas

Instruments MSP430 microcontrollers. By changing the proxy’s binding to a delegate

the client can be adapted to different implementations of the same functionality.

To support capabilities of configuring modules for differing application require-

ments and execution contexts, we have designed functionality that exists in application

build tools directly into the language itself. Specifically, we have allowed module vari-

ables and functions to be designated as configuration parameters and host executable

functions. A phase in the software build process permits the inspection and manip-

65

Chapter 4. Language Support for Application Development

ulation of configuration parameters and utilization of the configuration functions by

modules. Functions designated as host executable functions that are programmed into

modules allow modules to utilize a build-time execution context. It is during this con-

text that modules can inspect other modules and adapt their functionality accordingly.

We have designed this functionality to utilize syntax and semantics symmetrical to other

module functions. The result of this design allows modules to be built such that they

can configure themselves, or be configured by other modules at a point in time, specif-

ically at application build time, when the precise application requirements, modules

included in an application and target hardware configuration are all known.

4.5 Software Reuse

Modern software development practices depend on the existence of reusable soft-

ware and high-level languages support such practices. Software development efforts

consume both time and money and making the process as efficient as possible is im-

perative to rapidly building complex systems. Key to making the development process

efficient is avoiding redeveloping functionality for an application that has already been

developed in the past. Software reuse via copy-and-paste may work well for a single

developer or a small team. However, this method does not scale and does not enable a

systematic reuse of code.

66

Chapter 4. Language Support for Application Development

Language features such as inheritance and dynamic parametric polymorphism (dy-

namic dispatch) have traditionally supported systematic reuse of code. Inheritance sup-

ports reuse by letting programmers absorb existing functionality saving the retyping and

continual maintenance of that code. Polymorphism supports reuse by letting existing

software use different implementations of functionality without requiring modification.

Unfortunately, both of these features pose challenges for our device domain and the de-

sign goals we have previously laid out. Traditional methods of inheritance can violate

modularity due to a problem known as the fragile base class problem [57]. Inheritance

of implementation (code bodies) enables a programmer to leverage the functionality

of a software element by absorbing all or parts of the implementation of the element.

Saving the retyping of existing code and reusing its functionality, the programmer then

only needs to implement the variations on the existing functionality they require. The

sharing of implementation details between inherited and inheriting elements however

can lead to a violation of the principles of encapsulation and data hiding, or modular-

ity. When modular elements have their implementation details exposed to and being

depended on by inheriting elements they become fragile; any modifications to the in-

herited element can potentially break the functionality of the inheriting one.

Dynamic dispatch introduces overhead at runtime to both time and space. In terms

of time, this feature requires that a function (or field access) be done at runtime depend-

ing on the underlying type of an object. This level of indirection introduces overhead

67

Chapter 4. Language Support for Application Development

for look-up and indirect function invocation. We must use space to track this type infor-

mation at runtime and to provide support for dynamic dispatch in the implementation

of the runtime.

In our design, we seek to enable a systematic reuse of software while not consuming

critical runtime resources or compromising development efforts. Toward this end, we

employ limited forms of both inheritance and polymorphism in support of reuse. Our

design includes inheritance of interfaces but not inheritance of implementation. By for-

bidding implementation inheritance we avoid the problem where a slight modification

of an existing piece of code by one developer breaks the code of another because of

some dependency on an inherited feature. We have, however, kept the ability for inter-

faces to inherit from other interfaces, since they strictly specify functionality without

implementations (code bodies).

Our design provides static polymorphism, i.e. polymorphism at build-time, to facil-

itate flexibility in binding implementations to interfaces. In our design, modules can be

developed using proxies that implement a specific interface as a substitute for a module

implementing that interface. The binding of an implementation to the proxy can take

place as late as the actual build process - once a specific hardware and software config-

uration is known. Different implementations of the same interface can be bound to the

proxy in different contexts.

68

Chapter 4. Language Support for Application Development

Using such static polymorphism, programmers can write modules that depend on

other modules for functionality such that they are completely decoupled from an imple-

mentation. Modules that utilize hardware resources can use proxies with interfaces that

define the hardware functionality becoming decoupled from a particular implementa-

tion and reusable across hardware systems. Likewise, modules that depend on other

potentially software-only subsystems can utilize proxies for those subsystems enabling

the module to be reused with differing implementations of those subsystems.

Other features within the design of our language in support of reuse include au-

tomatic source generation, limited delegation, and associating modules that target a

particular functional purpose. To preclude cut-and-paste reuse but to gain benefits that

are similar, we automate creation of new modules from existing ones through a feature

called templates.

One benefit that users achieve from implementation inheritance is the ability to

employ an implementation from another module directly, to customize the implemen-

tation, or to replace the implementation. Programmers can achieve such functionality

though a limited form of delegation. If a programmer wants to extend an existing mod-

ule with new functionality, she creates a new module with, at least, the same interface

as the other module (the one she wants to extend). Where the functionality of the orig-

inal module is required, the new module calls the existing module’s functions within

its function of the same name. If functionality differs, then the new module can take

69

Chapter 4. Language Support for Application Development

its differing actions before and after the call to the original module. In this manner,

the implementation of the original module is completely reused and the new module is

immune to any implementation changes in the module it is using.

Finally, we include a construct we call a composite in our design. Composites are

modules that aggregate and configure existing modules for a specific purpose. Com-

posites aim to achieve reuse though composition [79]. Composites do not implement

new functionality, rather they allow for the configuration of existing modules to pro-

vide functionality specialized for a particular context or application. For example, a

composite can be used to create a module that represents a TCP/IP stack for a highly-

resource constrained microcontroller configuring the protocol options available and

packet buffer size, for example. Another composite can be used to create a stack con-

figured in a different manner for a microcontroller with more resources, reusing the

same modules.

We have included these reuse-based features in our design because they are likely

to enable more people to create applications. The existence of large amounts of soft-

ware content that spans application domains has contributed significantly to enabling

less experienced and non-programmers create applications. We see this today in the

domain of web applications, where libraries, frameworks, and other software content

has enabled relative novices to create usable applications, and those with slightly more

development experience, create viable products and services.

70

Chapter 4. Language Support for Application Development

4.6 Software Portability and Distributability

Very little microcontroller software exists today that is usable across resource con-

strained device applications and readily packaged for distribution. While downloading

C code for a microcontroller from the Internet is quite simple, it is far from likely that

it will function on a microcontroller and hardware configuration different from the one

for which it was developed.

In contrast, and using Java as an example, software in resource rich environments is

by default portable across numerous hardware configurations and the language itself has

constructs to easily package it for distribution. Our language design seeks to enable mi-

crocontroller software to be downloadable from the Internet and usable in applications

with differing microcontroller architectures and hardware configuration. That software

should be able to support a diversity of hardware components such as microcontrollers,

sensors, actuators, communication interfaces and displays. The process should be as

simple as downloading a module or collection of modules from the Internet, placing

them in a directory and utilizing their functionality in applications immediately.

Our language design addresses portability and distributability by utilizing the con-

structs of the interface, proxy, and composite described previously. With interfaces

we can define a hardware abstraction layer that defines the basic functionality of com-

mon microcontroller functionality such as general purpose input/output pins (GPIO),

71

Chapter 4. Language Support for Application Development

timers, serial ports, analog to digital converters (ADC), and other integrated periph-

erals. The same can be done for non-integrated peripherals. The presence of such

interfaces enables the development of higher level software that depends on hardware

functionality without any concern for, or knowledge of, lower-level implementation

details. A standard set of such interfaces along with microcontroller specific imple-

mentations right away enables code that utilizes them - free of device specific features -

to be portable. When these interfaces represent non-integrated peripherals, the capacity

to write portable device drivers also exists.

In conjunction with a hardware abstraction layer, proxies and configuration param-

eters enable software modules that utilize other modules to be written portably. The

manner in which proxies enable reuse was described in the previous section. Along

with the ability to use configuration parameters, modules that depend on hardware in

a specific configuration can be written such that they can be portable. For example,

the functionality of controlling a light emitting diode (LED), commonly used on hard-

ware as a status indicator, is independent of any hardware or application. However, it

uses a microcontroller pin to control the light which can be wired to the pin in one of

two different ways. By implementing an LED module utilizing a proxy for the GPIO

interface and a configuration parameter to specify if the physical LED is wired to the

microcontroller in an active high or active low configuration, the module can be usable

in any hardware configuration

72

Chapter 4. Language Support for Application Development

To make entire applications portable, composites can be used to provide a central

point of configuration for proxies and hardware specific configuration parameters. With

all configuration for an execution context being made inside a composite, an entire

application can be ported, simply by creating a new composite which configures the

application modules differently. Of course, device specific implementations for all the

interfaces used must be provided and identical hardware functionality must be present

on each device on which the application is to function on.

To support ease of distributability of software, we have incorporated a packaging

construct in our design similar to that which exists in Java. Every module belongs to a

specific package and the construct for defining packages is identical to that in Java. This

simple construct provides a way to both organize modules with related functionality as

well as package them for easy distribution. By simply wrapping up a package the

modules within it are distributable as a unit. Furthermore, with the use of composites

to configure modules, an entire package can be configured for a particular purpose and

be distributed in a ready-to-use manner.

4.7 Dynamic Behavior

Many behaviors associated with dynamism in high-level languages come from the

ability to allocate and deallocate application memory at runtime and from dynamically

73

Chapter 4. Language Support for Application Development

polymorphic type systems. Both of these general features of dynamism consume sig-

nificant memory and CPU cycles and complicate the runtime system. As such, we omit

them from our design. This decision, however, does not preclude the extension of our

language and runtime with such functionality in the future.

The allocation of memory at runtime requires logic for a policy that will manage

available memory. The deallocation of memory requires a garbage collector (GC) if

the programmer is to be free from this error prone activity, or again, complex logic is

necessary for the memory management policy if a GC is not available. The use of a

GC is impractical since its functionality demands scarce data memory and CPU cycles

at runtime, potentially interfering with the timely response to external stimuli. Explicit

memory management imposes a significant burden on programmers.

Type systems that support dynamic polymorphism are also unsuitable for resource

constrained systems because of the resources they demand. Additional memory is re-

quired at runtime to hold a virtual function table associated with each software element,

or module. Since modules can potentially contain many functions and since the avail-

ability of memory is so constrained, this features is not suitable for resource constrained

systems. Additionally, to support dynamic polymorphism, precious CPU cycles must

be utilized to resolve overloaded functions. This indirection involved with function

calls accumulate and can cause real-time deadlines to be missed. In an environment

where CPU cycles are scarce, this aspect of dynamism has lower priority.

74

Chapter 4. Language Support for Application Development

The downside of omitting dynamic memory allocation and dynamic type systems is

a reduced degree of flexibility for programmers. Complex systems may have intricate

memory use requirements and without dynamic allocation and memory management

the burden of this complexity remains with the programmer. Lacking a dynamic type

system, programmers lose the ability to flexibly modify the structure and operation of

system components at runtime. Such flexibility could aid in code reuse and sophisti-

cated application behavior.

While runtime dynamism is difficult to support in resource constrained environ-

ments, we have chosen to support a level of dynamism in our design that exists at the

time applications are built, or build-time. Since our design incorporates an execution

context at build-time, we provide the ability to allocate memory dynamically at this

time. The allocation becomes static once an application is compiled, but during build-

time, data structures can be created similarly to how they are created at runtime in other

languages. Furthermore, values can be placed in the allocated data structures and ma-

nipulated. The fact that this takes place on the build host implies that zero runtime

resources are required yet a level of dynamism is available.

75

Chapter 4. Language Support for Application Development

4.8 Support for Legacy Content

The majority of code that exists for resource constrained systems is written in C

and our design incorporates mechanisms to access such content. It is standard prac-

tice that a header file, distributed by microcontroller manufacturers, define the devices

internal memory map. Applications written in C include this header file in order to

access register addresses symbolically. Additionally, some microcontroller manufac-

turers support their devices with libraries of drivers written in C. We do not feel that it

should be necessary to rewrite such existing content in our language in order to use it

and incorporate a syntactic mechanism to ”drop down” into C to use symbolic names

defined in headers and call functions of existing libraries. This is similar to the way

assembly directives can be written in C applications allowing the programmer to ”drop

down” into assembly.

There are two sides to this decision that are important to consider. On the one hand,

providing a mechanism to allow often poorly structured yet functional code to be uti-

lized in our language may lead programmers to lazily use this mechanism to avoid the

overhead of redeveloping that code. While this may expedite an implementation, the

pitfalls that come along with existing code written in C are carried into the implemen-

tation in our language. Over time, some programmers may get used to this practice

and the language becomes a slightly better version of C, much like C is often used

76

Chapter 4. Language Support for Application Development

as a slightly better version of assembly language. On the other hand, forbidding any

such content to be reused requires reimplementation of a significant amount of existing

content. This requires significant time and effort and could potentially detract from

peoples’ interest in the language.

We made the decision to support legacy content from a pragmatic point of view

as opposed to an idealistic one. We feel it is necessary to incrementally evolve the

solutions existing developers are already familiar with as opposed to force upon them

entirely new systems and methods.

4.9 Summary

In this chapter, we present the design of a programming language for device applica-

tions using resource constrained microcontrollers. Overall, our design seeks to advance

the state of the art in language support for device applications developed by existing

programmers and intentionally supporting a broader audience with less technical skills.

In consideration of and to appeal to our broader audience we have made decisions re-

lated to the readability and writability of the language. Syntactic simplification and a

cohesive coding style that reads from top to bottom has been chosen. Modularity and

the separation of concerns, a key concept of the majority of high-level programming

languages, is central in our design. In conjunction with constructs for modularity, the

77

Chapter 4. Language Support for Application Development

availability of an interface construct supports abstraction in the development process.

To allow code to adapt and be usable in the numerous configurations that exist in the

hardware systems of our domain, support for variability and configurability is essential.

Our design supports variability and configurability through the decoupling of interface

and implementation enabled by a construct based on the proxy design pattern. Addi-

tionally, the use of module configuration parameters and integration of the software

build process into the language is a source of support for configurability.

Our design is sufficient to enable an ecosystem of reusable and portable software to

exist and be easily distributable. In our selection of mechanisms for reuse, we intention-

ally avoid constructs that may violate modularity (e.g. implementation inheritance). We

provide many of the benefits of implementation inheritance via delegation, templates,

and proxies. The constructs we select to support configurability and variability, namely

the interface/proxy combination, also lend themselves to software reuse and portability.

Our introduction of a construct we call a composite helps support high-level configura-

bility and a pattern for portability. Lastly, our design incorporates a simple construct

for packaging modules for distribution.

Runtime and development efficiency are of critical importance in our design deci-

sions. Maintaining the runtime efficiency achievable with today’s languages and tools

while introducing high-level language features is essential. To that extent our language

design leverages the availability and optimization capabilities of extant tools. Addi-

78

Chapter 4. Language Support for Application Development

tionally, our design omits a degree of dynamism as its runtime behavior and resource

requirements are too costly in our domain. Lastly, our design chooses to enable existing

code written in C to be usable despite the trade-offs this option presents.

79

Chapter 5

The Em Programming Language

This chapter presents the implementation of the language design presented in chap-

ter 4. We call our language Em; reminiscent of its use in embedded systems. We

present and discuss each language construct discussed in the previous chapter and give

concrete examples of their usage.

5.1 Modules and Types

The fundamental unit of code in Em is the module. Figure 5.1 shows an example

of an Em module. Em modules encapsulate the functions and data they define and

implement. We refer to such functions and data as the module’s features.

All features are declared (given names/types) within the module (public specifi-

cation) or private (private specification) blocks. We differentiate such blocks syn-

tactically to make data hiding explicit and clear. Modules can only access the public

80

Chapter 5. The Em Programming Language

Figure 5.1: An Em module with public and private specification.

features of other modules. We refer to modules that do so as clients of the module they

access. Modules in Em are singletons [25] and are not instantiated. Em has no notion

of global functions or data, obviating external data dependencies. Names in a mod-

ule cannot be reused and all names available to other modules are accessed via their

fully qualified (module and feature) name (e.g. BasicListManager.List used in module

81

Chapter 5. The Em Programming Language

EventDispatcher of Figure 5.1 is a data type defined in the public specification of the

module BasicListManager). Data types are discussed more below.

Function declarations take the form function fnName ([paramType]∗):

returnType, where fnName is the function name, [paramType]∗ are zero or more

parameter data types separated by commas, and returnType is the data type of the

return value. All functions must be declared and all declarations must be in specification

blocks. All primitive data types in Em are passed by value while composite data types

are always passed by reference. Further discussion of types in Em follows below.

Function definitions follow the specification blocks in a module. Function defini-

tions take the form def fnName ([paramName]∗) {...}. We employ a sparse

syntax approach of modern scripting languages for Em, to reduce significantly the

amount of typing required (and thus potential for errors). For example, a semicolon

is optional to end a line or a declaration and argument types are omitted in signatures

of function definitions. The notion here is that a growing number of programmers are

attracted to and familiar with scripting languages that reduce verbosity of code by re-

laxing syntactic notations often required by other languages. Em seeks to appeal to

such programmers in its style of programming.

Module data is represented by variables with primitive and composite data types.

Primitive types of integer, float and character exist. In the case of integers, their size

must be specified at declaration time and must explicitly be declared as signed or un-

82

Chapter 5. The Em Programming Language

Figure 5.2: Dispatch function from the EventDispatcher module.

signed with a size of 8, 16, or 32 bits; there is no Int type. Floating point numbers are

always taken to be 32 bits in length. Composite data types available in Em are strings,

arrays, structs and opaque types. Strings are represented as arrays of characters. The

semantics of arrays are similar to their use in C/C++ and can hold instances of their

declared type. Structs follow the semantics of C where only data, primitive or com-

posite can be declared within a struct and all struct members are publicly accessible to

anyone.

Opaque types are user defined types that can contain primitive, composite and

other opaque types. All data defined as part of an opaque type, however, are pri-

vate and accessible only through functions that are declared as part of the opaque.

The name opaque refers to the fact that the data representation of the composite type

are not visible to clients. The declaration of an opaque type takes the form type

typeName: opaque { [host] functionDeclaration* }. The public

83

Chapter 5. The Em Programming Language

specification of Figure 5.1 shows the declaration of an opaque type called Event.

The declaration only specifies the publicly accessible functions init, initOnHost,

post, and postFromInterrupt. Since the data of opaque types are private, the

definition of the structure of an opaque is in the private specification. In the example of

Figure 5.1, the Event opaque type declares two other opaque types,

BasicListManger.Element and EventHandler, as its members. Functions

associated with opaques are declared like other module functions with the addition

of the opaque’s name prefixing the function name. For example the signature of the

opaque Event’s init function would be def Event.init(handler){...}.

Finally, while data internal to an opaque type is inaccessible to clients, they are accessi-

ble to the public and private functions of the module the opaque is defined within. This

features is similar to the friend concept available in C++.

The intuition behind opaque types is that data inherently associated with a specific

module often needs to be declared for use in and/or passed around to another module

without compromising that data’s safety. For example, an event dispatcher module

which implements a scheduler for an event system must have events declared in and

associated with modules that utilize those events. However, modules that use events

should not be able to directly manipulate the internal representation of the event type;

only the event dispatcher needs such control. The opaque type in Em therefore allows

instances of the type to be declared in any module and be passed around safely. Only

84

Chapter 5. The Em Programming Language

through the public functions of the opaque can clients interact with its data, and only

the defining module of the type can directly access and manipulate the private data of

the type.

Figure 5.3: Using EventDispatcher to Blink a light emitting diode.

85

Chapter 5. The Em Programming Language

Figure 5.3 shows another module, BlinkP, which is a simple application to blink

an Led and makes use of the EventDispatcher module and its publicly defined Event

type. BlinkP is only able to interact with Event data using the functions declared in

the opaque type for Event.

In addition to its use in declaring opaque types, Em uses the keyword type to alias

a type similar to how typedef functions in C. This is useful when symbolic names to

existing types make more sense to programmers who are reading code. For example, in

Figure 5.1 a reference to a function that takes an Event type as an argument is renamed

more appropriately to EventHandler. The type keyword can only be used in the public

or private specification blocks of a module.

Module variables must be declared within the public/private specification blocks.

The only other types of variables are local variables within functions. All data types

are known and all storage is allocated statically. Type coercion is possible in Em but

must be specified explicitly. Since subtle runtime memory errors can be introduced by

coercion [17] Em forbids implicit type coercion by design. Variables are declared using

the keyword var followed by the variable name, a colon, its data type, and optionally

an equal sign and value (initialization).

Em supports reference variables whose semantics are similar to C++ references.

References are declared using the & operator (following the type name, e.g. var

event: Event&) for primitive and composite data types. Unlike C++ references

86

Chapter 5. The Em Programming Language

Em references can be assigned a null value at declaration and may be reassigned after

declaration. Reference types provide developers with an option of a safer alternative to

pointers. Pointer types are allowed in Em and have the same semantics as in C and C++.

However, complex functionality can be achieved without pointers given the parameter

passing semantics of Em and references. Advanced functionality requiring pointers and

pointer manipulation is still available if necessary.

5.1.1 Pre-runtime Configuration

Em gives programmers the ability to configure modules before code is loaded onto

the microcontroller target and executed. We refer to code that is executed on the micro-

controller as target code and that which is executed on the build host while the applica-

tion is being built as build-time or configuration code. Configuration parameters, host

variables and host functions enable developers to program configuration functionality

into modules. The syntax and semantics of host variables and functions are identical

to target code. At the time an application is being built, the physical configuration of

the hardware is fixed and known and all modules that make up the application are also

known. The configuration parameters and host functions, therefore, can be utilized to

leverage the rich resources of the application build host to configure a module for a

precise hardware configuration and application execution context.

87

Chapter 5. The Em Programming Language

A configuration (config) parameter is a variable that is fully mutable at build time

and results in a static constant when the process completes. We refer to the data and

functions that are manipulated on the target device as target data and target functions,

respectively. Figure 5.3 shows the config parameter rate of module BlinkP which sets

the blink rate of an LED. Configuration parameters that appear in a module’s public

specification can be inspected and modified by other modules at build time enabling

modules to reflect, act on, and respond to a particular application’s configuration.

In Figure 5.3, the rate of BlinkP can be inspected and modified by other modules

at build time before becoming a static constant in the resulting binary. Such constants

are typically placed in a microcontrollers read-only memory to save scarce RAM. Con-

figuration parameters that are never referenced by target functions have no represen-

tation in the target binary. Developers can identify such variables explicitly using the

keyword host. This makes the variable available at build time only and the Em trans-

lator will issue an error during translation if the variable is referenced from within a

target function.

The host keyword also applies to functions. Host functions implement code that

executes on the development host during the build process. For example, a module that

implements a band-pass filter can expose configuration parameters for clients to de-

scribe characteristics of the filter, e.g. its passband and its order. The module can then

use a host function to access a filter design package on the build-host to compute the

88

Chapter 5. The Em Programming Language

filter’s coefficients, to have them ultimately become static constants on the target mi-

crocontroller. In our current implementation, host functions are translated to Javascript

and interpreted using Rhino [70]. Host functions can access the full power of Javascript

and, since the interpreter is Java aware, any Java functionality to provide a wide-range

of build time services including computations that cannot be performed on the target

microprocessor due to resource constraints or missing functionality, e.g. arbitrary com-

putations, data acquisition over a network, tests or target simulation, profiling, etc.

Host functions can access public members of any module as well as the private

specification of their defining module. Host functions cannot execute target functions

however. Since both the host and target code are implemented in Em, it unifies the

syntax and combines the development and configuration languages. That is, developers

need not learn multiple languages (e.g. C/Make, Java/ant, RTSC/XDC, and others) for

their target and configuration operations. Moreover, developers can now be creative

in deciding what build time operations to include. initOnHost of the opaque type

Event from our first example module (Figure 5.1) is an example of a host function. This

function statically initializes the event type’s data members saving the operation from

taking place at runtime.

Each module has three functions that are intrinsically part of the module and we

refer to them as intrinsic functions. These functions are host-only functions and, if

they are present in the module, get executed automatically at build-time. The func-

89

Chapter 5. The Em Programming Language

tions em$configure and em$construct are used to configure the public and pri-

vate specifications of a module at build-time respectively. em$construct is anal-

ogous to a constructor of an object in object-oriented languages and is often used to

initialize private features of the module. Figure 5.3 shows an event being initialized

with its handler function in em$construct. em$configure is similar only it is

used on any mutable public features. For example, proxies that are public are often

bound to concrete implementations in em$configure. The last intrinsic function is

em$generateCode which can be used to inject code into a module’s C represen-

tation during translation from Em into C. A simple use of em$generateCode is to

include a C header file by injecting a #include directive into a module’s C source.

We provide an example of this in a subsequent subsection once we define a few other

features of Em.

5.1.2 Runtime Configuration

Every device application has a lifecycle which it goes through. At every stage of

the lifecycle the application must often perform critical operations to ensure a proper

execution environment. For example, upon applying power to the device, the micro-

controller is reset at which time it must be configured properly to ensure the rest of the

application can execute. Most device applications are intended to run perpetually with

90

Chapter 5. The Em Programming Language

a power-off condition indicating failure. However, some applications do require the

ability to be shutdown and need certain operations to take place during that process.

Em modules each have a set of intrinsic functions which serve as entry-points for

developers into a module’s lifecycle at runtime. Functionality implemented in these

intrinsics is commonly found in applications although where it resides and how it is

integrated into an application’s structure differs. Having these entry points defined

and knowledge of their invocation at specific points of runtime makes understanding

application functionality more direct.

The intrinsic functions associated with a module’s runtime lifecycle are

em$reset, em$run, em$shutdown, em$startup, em$startupDone,

em$fail and em$halt. Each of these functions can be defined in any module, how-

ever, except for em$startup, only the first definition of each intrinsic encountered

during translation is used. em$startup can appear in every single module and is

used by modules to perform initialization at runtime on the target.

Upon powering up the microcontroller, the first function called, if it exists, is

em$reset, followed by each occurrence of em$startup found in any module. The

order in which em$startup functions are executed is undefined. Upon completion

of all calls to em$startup the function em$startupDone is called to perform

any further tasks that require modules to be in an already initialized state, yet must

take place before the main application functionality begins. Finally em$run which is

91

Chapter 5. The Em Programming Language

Em’s equivalent of main() in C is called. Since the majority of embedded systems are

intended to operate indefinitely, the remaining functions, em$shutdown, em$fail

and em$halt can be used to gracefully enter fail states should they be encountered at

runtime.

5.2 Interfaces

To support software variability and change, Em provides interfaces and proxies,

which together, decouple a module’s interface from its implementation. Interfaces also

aid in providing software abstraction. An Em interface, depicted in Figure 5.4, contains

a collection of functions and type declarations that are to be implemented by a module.

The notion is that interfaces only specify features that are incomplete. A module that

implements a particular interface, in turn, must provide the complete implementation

for all of the functions and data representations for opaque types declared in the inter-

face they implement. Interfaces in Em resemble and function much like interfaces in

Java.

Figure 5.4 shows the definition of an interface that represents the functionality pro-

vided by a microcontroller’s general purpose input / output (GPIO) pin. As can be seen,

the basic capabilities are specified and no implementation is provided. Figure 5.5 shows

part of a module that implements the interface for a specific microcontroller family. Fol-

92

Chapter 5. The Em Programming Language

Figure 5.4: A general purpose input / output pin interface.

lowing the name of the module is the keyword implements followed by the interface

name. This specifies that the module provides implementations for all the functions

declared in the interface. The implementing module does not respecify the interface

functions in its public specification; the semantics of the keyword implements is

such that all interface functions become part of the public specification of the module.

Figure 5.6 shows an Led Module that makes use of a proxy that implements the GPIO

interface. Proxies are further discussed in the following section.

Interfaces aid in abstraction in two ways. First, they allow developers to define

functionality modules will implement separately from any specific implementation.

This enables developers to think strictly in terms of capabilities and purpose of the

module. Second, modules that implement interfaces enable developers that use them to

not be concerned with their implementation; there is a contract as to what capabilities

the modules possesses. Collections of interfaces, such as the GPIO interface above,

can be used to define a hardware abstraction layer, for example. Such a collection

93

Chapter 5. The Em Programming Language

Figure 5.5: A module implementing the Gpio interface.

of interfaces ultimately enables modules that depend to hardware functionality to be

implemented without any particular microcontroller target in mind.

5.3 Proxies

Em introduces a language construct, based on a common software design pattern,

known as a proxy [25]. Proxies add a level of indirection between clients of a module’s

functionality and the supplier of that functionality. In conjunction with interfaces, prox-

ies provide a notion akin to a static form of polymorphism. Specifically, modules in Em

94

Chapter 5. The Em Programming Language

Figure 5.6: Part of an Led module using a proxy.

declare proxies which are specified to implement an interface. The proxy can then be

used throughout the implementation of the module with the guarantee that some mod-

ule, whose implementation is unbeknownst to its client, will provide the functionality.

Figure 5.6 shows an Led module that makes use of a general purpose I/O pin (GPIO)

proxy (called Pin) for its implementation.

Before a module that declares proxies can be utilized, its proxies must be bound to

modules that implement the same interface as the proxy. A module is bound to a proxy

using the keyword seal followed by the proxy name followed by the keyword as

followed by the module name. The binding of proxies can be specified in a module’s

95

Chapter 5. The Em Programming Language

Figure 5.7: Part of an Led module binding proxy in configure function.

intrinsic functions; in em$configure if the proxy is declared in the public speci-

fication or in em$construct if declared in the private specification. Additionally,

proxies defined in the public specification can be bound within composites. The benefit

of specifying the binding in a composite is that if a different module must be bound

to the proxy, the module declaring the proxy need not be modified allowing that code

to be reliably stable over time. Composites are further discussed in the next section.

Figures 5.7 and 5.8 show how a proxy is bound in both the module itself as well as

within a composite.

The combination of interfaces and proxies in Em enable modules to be written to a

particular interface without knowledge of the implementation of that interface. Many

implementations of an interface may therefore exist and are interchangeable which is

analogous to the way classes that implement a particular interface in Java can be substi-

96

Chapter 5. The Em Programming Language

tuted anywhere an object of the interface’s type appears. There is no notion of dynamic

dispatch of functions in Em to reduce complexity of the runtime and overhead due to

function dispatch.

5.4 Composites

A composite in Em is a special module that is used to configure proxies and set con-

figuration parameters of other modules. Composites are special in that they contain no

target code, i.e. they are host-only modules. Figure 5.8 shows a composite representing

part of a device’s hardware configuration.

Composites function and are usable like other modules, namely, they have a specifi-

cation and an implementation and can be used by other modules to access the modules

exported in their public specification. Composites can define functions as part of their

private specification. All such functions are inherently host functions although must

still be specified as such for consistency. Functions defined by composites can be used

at build time for any computation that must be carried out or for logic to determine how

proxies or configuration parameters must be bound and set respectively.

Composites have two intrinsic functions defined in which most of its configura-

tions take place: em$configure and em$preconfigure. em$configure is

where mutable configurations are made. That is, other modules may, at some point

97

Chapter 5. The Em Programming Language

Figure 5.8: A composite representing a board configuration.

in the build process, change the configurations that take place within that composite.

em$preconfigure is where immutable configurations occur. Since the BoardC

composite in Figure 5.8 reflects some hard-wired aspects of an application’s hardware,

namely its oscillator’s frequency and a GPIO pin connected to an Led, these aspects

must be configured such that no other module may change them. The Em transla-

98

Chapter 5. The Em Programming Language

tor enforces that configurations within em$preconfigure are not changed by other

modules.

In Figure 5.3, BlinkP imports the Led and TimerMilli0 modules from BoardC of

Figure 5.8. The composite’s public specification exposes modules, potentially under

aliased names. The composite’s implementation provides configurations in the form

of proxy bindings and settings for configuration parameters. Code within a composite

does not make its way on to the target device - it is used only at build time to configure

modules.

Composites can also be used to achieve application portability. Using the capability

to export modules under aliased names, an application can be written such that all refer-

ences to hardware features come from a top-level composite under application-specific

names. For example the BlinkP application in Figure 5.3 imports an Led and millisec-

ond timer from the BoardC composite shown in Figure 5.8. BlinkP’s functionality is

now dependent only on the modules named Led and TimerMilli0. For BlinkP to be

ported to different hardware only a new composite must be created that exports a mil-

lisecond timer and Led under the same names BlinkP expects. None of the application

code must be modified. Applications of all complexities can follow this pattern to de-

couple their dependencies on low-level hardware specific implementations and achieve

portability.

99

Chapter 5. The Em Programming Language

5.5 Templates

A second special module is the template. Templates are used at configuration time

to generate other Em modules automatically. Templates also, if required, can generate

C code. Template modules, like composites, only exist at build time and execute on

the build host (all template functions are host functions). We refer to the generation

of a module from a template as instantiation of a template. Figure 5.9 shows an Em

template.

A template intrinsic, em$generateUnit, is defined and is invoked at build time

for each template instantiation that is encountered. The public specification of a tem-

plate specifies parameters that are necessary for its instantiation. Templates, like com-

posites, may have functions declared in their private specifications and implemented

in their bodies. These functions are host-only functions and must also be declared

as such for consistency. Template functions can be implemented to assist in deci-

sion making and computation necessary to generate a module via the template. Fig-

ure 5.8 shows an instantiation of an Led module via the LedT template. Within the

em$generateUnit intrinsic the |-> symbol denotes text that will be generated by

the template and, within that line, text within backticks enables access to data and

functions of the template module itself. Any logic and computation can be interwoven

between lines of generated text to control how the resulting module is generated.

100

Chapter 5. The Em Programming Language

In addition to the intrinsic function em$generateUnit, templates have two often

used host-only intrinsics variables, em$packageName and em$unitName. Since

every module resides within a package the value of em$packageName is always

defined to be the name of the package the template is instantiated in. For the Led

module instantiated from template LedT in Figure 5.8, em$packageName will have

a value of board.arduino. The value of em$unitName is always defined to be

the name given to the module at instantiation and is Led for Figure 5.8.

It occasionally occurs that multiple instances of a module must exist that operate

on different data values or must access different hardware registers, yet function identi-

cally. Since modules are singletons programmers should have a more efficient method

to create such modules. Our goal with templates is to avoid copying and pasting across

modules. That is, templates are used to generate modules that have similar functional-

ity with minor variations – to reduce the potential of bug propagation from copy-paste

activities.

As an example, the operation of a general purpose I/O pin is identical for all pins

although each pin has a distinct bit in a specific hardware register it must operate on.

In Figure 5.9, we define a template for the GPIO module. The module’s public speci-

fication shows that the module requires a port name and pin number as input. A GPIO

module is instantiated from within a composite or a module by importing the tem-

plate, specifying its parameters, and naming the resulting module. Specifically, the

101

Chapter 5. The Em Programming Language

Figure 5.9: A template to generate GPIO modules.

statement import GpioT {port: "P1", pin: 0} as P1 0 will create a

GPIO module with the name P1 0.

As another example, the LedT template shown in Figure 5.10 is used to generate a

module to control a light emitting diode (LED). It could be the case that a hardware de-

sign incorporates multiple LEDs. The control logic is identical for each LED, however

to control each one independently they are often physically wired to different micro-

102

Chapter 5. The Em Programming Language

Figure 5.10: Template to generate Led Module.

controller pins. Additionally, the manner in which they are wired - an active high verses

active low - can differ. To save the programmer from implementing a module for each

device, the template was created. The parameters for the template specify which mi-

crocontroller pin the LED is connected to and the exact configuration of its wiring. In

this manner, multiple instances that share the same functionality can be easily created.

103

Chapter 5. The Em Programming Language

Finally, it is occasionally necessary to generate some C code for microcontroller

specific functionality required by the application. For example, the definition of inter-

rupt handling functions requires specific attributes added to the generated C function

signature. To properly decorate this signature, a template can be used to generate that

code. Additionally, in devices with configurable interrupt vectors, a template can be

used to generate the entire table at build-time with knowledge of the exact interrupts

being used. This allows the table to be initialized statically, saving both runtime mem-

ory and CPU cycles to achieve the same purpose on the target itself.

5.6 Inheritance

Inheritance, a common language feature of higher-level, object-oriented languages,

is available to a limited degree in Em. In particular, interface and composite inheritance

is supported while implementation inheritance is not. In addition, we support only

single inheritance in these cases.

We achieve interface inheritance by extending an existing interface and declaring

its defined functions as shown in Figure 5.12. All functions and type declarations are

inherited by the extending interface. Composite inheritance enables an existing com-

posite to be extended by another with the extending composite inheriting the public

interface, that is the set of exports, of the extended composite.

104

Chapter 5. The Em Programming Language

Figure 5.11: Part of an interface for an I/O pin.

We disallow implementation inheritance in Em since it can lead to situations where

changes in an inherited class, either syntactic and semantic, break an inheriting class.

This is the well known problem of the fragile base class [57, 78]. Such issues can lead

to a breach in modularity, which with Em, we attempt to maintain strictly.

Figure 5.12: An interface that extends GpioI.

The major benefits of implementation inheritance, however, can be achieved in Em

through a simple pattern of forwarding. For example, suppose a module M imple-

ments the GpioI interface illustrated in Figure 5.11 and another module N implements

the EdgeDetectGpioI interface which extends the interface of GpioI in Figure 5.12. To

105

Chapter 5. The Em Programming Language

avoid re-implementing the functionality of M within N, module N defines each function

of the GpioI interface and then in each defined function forwards the call to the imple-

mentation in M, as shown in Figure 5.13. If the GpioI functions of module N must

behave differently from the existing functionality defined in M, it can take its necessary

actions before and after the calls to module M.

Figure 5.13: Example of implementation inheritance by forwarding.

Equivalent to implementation inheritance, if functions defined in M are modified,

then N will utilize these modifications without requiring any change. Unlike imple-

mentation inheritance however, M’s internal representation may be modified without

consequence to N. With the aid of an integrated development environment such as

Eclipse, it is trivial to automate the definition of functions that forward calls to save the

programmer from typing them.

106

Chapter 5. The Em Programming Language

5.7 Support for Legacy Content

The Em language has several mechanisms with which Em code can interact with

existing C code. There are two common reasons for such interaction. The first is

to incorporate legacy source (e.g. as an initial step to get something running before

refactoring it using Em). The second is to access the C code that is generated during

module translation directly.

Figure 5.14: Part of a UART module interacting with C identifiers.

The ˆ operator placed in front of an identifier, or an expression bounded by ˆˆ in-

structs the Em translator to bypass parsing of the identifier or expression and pass it,

unchecked, through to the generated C code. Referencing symbolic names of memory-

mapped registers, calling functions defined in existing C code, and inserting inline as-

sembly, for example, can be handled using these mechanisms. Figure 5.14 shows part

107

Chapter 5. The Em Programming Language

of a UART module that references both symbolic register names and calls functions

defined in an existing C library. These mechanism in Em make it possible to integrate

existing C code into Em modules in a straightforward manner.

5.8 Packages

Finally, every module in Em must reside within a package (e.g. namespace). The

BoardC composite in Figure 5.8 for example, resides within the board.arduino

package. Modules can bring another module into their namespace using the import

statement. Imported modules can be aliased by suffixing the import statement with

as followed by the alias. Modules within the same package can simply import the

module by name. Modules that reside in different packages must qualify the module’s

package by using the from clause as seen at the top of Figure 5.3.

Packages are present in Em as formal construct to aid in both organization of code

and in its distribution. Modules of related functionality are often placed in packages

that reflect their intended purpose. The packaging mechanism in Em resembles Java’s

packaging semantics. As an example, a hardware abstraction layer (HAL) we have

created, which consists of interfaces defined for commonly found hardware peripherals

were placed in a packaged called em.hal. Distribution of this package is simplified

108

Chapter 5. The Em Programming Language

since all the files of the package are also located within the same physical directory on

a storage medium.

5.9 Translation

Em applications are ultimately translated to a single C file that is compiled into

binary images for their intended microcontroller targets. In this section, we describe

the process of transformation of an Em program from a single source module into a

binary image and constitutes what we refer to as build time. Figure 5.15 depicts the

high-level flow of build time artifacts, starting with the module ModP.em source file

and ending with the ModP-prog.out binary image.

Figure 5.15: Build flow of the Em translator.

109

Chapter 5. The Em Programming Language

Each Em source file (a module, interface, composite, or template) represents an in-

dependent unit of translation. From Figure 5.15, starting at the top-level unit, ModP.em,

the translator recursively processes an N-element hierarchy of translation units that

ModP directly or indirectly imports. Cycles may not occur in the hierarchy and if one

is encountered the translator issues an error and stops.

The translation of ModP yields a top-to-bottom partial ordering of dependent units.

The translation of modules produces three corresponding output files that are consumed

in subsequent phases of the build-process. These are (i) ModP.h, which contains the

public and private feature declarations of ModP translated into a C header file; (ii)

ModP.c, which contains function definitions within ModP translated into equivalent C

code, and (iii) ModP.js, which is a Javascript implementation of ModP that implements

the host configuration functionality. All template instantiations encountered in mod-

ules trigger the generation of Em modules which are then recursively translated into C

header, C implementation, and Javascript implementation files. The subsection below

depicts and discusses examples of the generated source files.

Following translation, the configuration phase of an Em program begins. All gen-

erated Javascript files are amalgamated and interpreted by a Javascript interpreter. This

process makes three top-to-bottom passes over the N-element hierarchy and executes

module intrinsic host functions along with any other host function referenced from

those functions. The choice of Javascript in the Em translator implementation was

110

Chapter 5. The Em Programming Language

arbitrary and other languages could have been used as the underlying configuration

language. The use of Javascript however, does enable host functions to access external

Java functionality and leverage the rich amount of existing content for many purposes.

For example, accessing a database, potentially on the Internet, of profile metrics that

can aid in configuring the application for optimal performance.

Each pass invokes a different set of intrinsic functions, for example, on the first pass,

the em$preconfigure function within composites is called to bind proxy variables

to delegate modules. As a consequence of the first pass of configuration, the original

N-element hierarchy becomes pruned to an M-element subset which comprises only

those modules that are actually used within the program. The second pass calls each

participating module’s em$configure function. This function configures all public

aspects of each module (e.g. public configuration parameters).

The final configuration pass calls module’s em$construct functions. These

functions use the public features of other modules, all of which have already been

configured, to initialize the private aspects of the modules (e.g. private configuration

parameters). Moreover, the ability to inspect other module’s public configuration pa-

rameters enables a form of introspection, or reflection, into the state of the applica-

tion being built, providing opportunity for modules to adapt given the particular hard-

ware/software configuration. The result of configuration is a single .c file that is com-

111

Chapter 5. The Em Programming Language

piled by a target specific compiler, aggressively optimized by that compiler, and linked

into a binary executable for the target system.

5.9.1 Source Code Validity

The following rules are currently adhered to when checking for the validity of an

Em source file. For all module types - modules, interfaces, composites and templates -

only one module may appear in a single source file and both the file and module name

must be identical. If a filename does not match a module name, the translator issues an

error and translation halts. This behavior is similar to that found in Java. Additionally,

multiple opaque types may be declared within a module and all opaque types must be

defined within the module that specifies the opaque type’s data representation. Not

specifying a representation for an opaque type which has been defined is flagged as an

error.

Within all modules, if a private specification exists it must follow the public speci-

fication of the module. Following the private specification, definitions for all publicly

and privately declared module and opaque type functions must appear. The order in

which function definitions appear within a file does not matter and can be interleaved

or out of order. However, if definitions appear before the public or private specifications

of the module, translation halts with an error.

112

Chapter 5. The Em Programming Language

All identifiers not declared within the module most be imported into the module’s

namespace using the import keyword. Each module has a unique namespace defined

by its fully qualified name which consists of a dot (.) separated list of packages the

module belongs to, followed by the module name. For example, the EventDispatcher

module in Figure 5.1 has a fully qualified name of em.bios.EventDispatcher.

Two modules in the same package with the same name is an error which is caught by

the translator when one module attempts to import the other or when a third module

attempts to import one of the two similarly named modules.

5.9.2 Generated C Code

Figure 5.16 shows a simple module that makes use of a proxy. In this subsection

we walk through the C code generated by this module during the translation process.

All modules participating in an application are individually translated to C source and

headers as discussed in the previous section. Additionally, a C source file is generated

for the whole application, which then includes the other generated C sources in order

to present a C compiler a single file representing the entire application.

Figure 5.17 shows the complete C translation of the Simple module. The first part

of the file provides mappings between functions which have been called on a proxy and

the implementation of the functions provided by, or delegated to, the module which

was bound to the proxy. The definitions in this proxy section fully specify the dele-

113

Chapter 5. The Em Programming Language

Figure 5.16: A Simple module.

gates of all proxies. Following the proxy definitions come the inclusion of the headers

defined by each module involved in the application. The header generated for the Sim-

ple module is depicted in Figure 5.18. The header contains #include directives for

other headers which define types necessary within the module’s namespace. The list

of headers is defined by the set of imports the original Em module makes. Declara-

tions of structures, constants, opaque types, configuration parameters, module func-

tions, opaque type functions and private variables follow. Each module header has an

identical structure.

Following the inclusion of headers in the complete translation of Figure 5.17 are

forward declarations of functions and values. These forward declarations may be nec-

114

Chapter 5. The Em Programming Language

Figure 5.17: The complete translated C program.

essary due to inclusion dependencies which are resolved in the initial passes of transla-

tion. Variable definitions follow next along with inclusion of the C files generated for

other modules. Figure 5.19 shows the C file generated for the Simple module which

contains the bodies of all functions defined within the module. After the inclusion of

the C files in the complete translation, is the definitions of intrinsic functions related

to application lifecycle and only the run function appears in the figure. Lastly ap-

115

Chapter 5. The Em Programming Language

pears an inclusion of a file which contains the necessary C main function which simply

invokes the run function.

Figure 5.18: The generated header for the Simple module.

Figure 5.19: The generated C code for the Simple module.

116

Chapter 5. The Em Programming Language

5.10 Comparison With Related Systems

The system most closely related to Em in language features, and that also targets

resource constrained microcontrollers, is nesC. NesC is an extension of the C program-

ming language and fully supports all features present in C, including ones that lead to

unstructured programming such as goto statements. Our design and implementation

of Em explicitly removes such C constructs. While nesC depends on common prac-

tices that utilize C preprocessor macros and directives for conditional compilation and

static variable definitions, Em explicitly does away with such features since they make

reading, understanding and maintaining code difficult and error prone. Expressivity in

Em is not lost since its build-time execution context and availability of proxies provide

similar support.

NesC has constructs for modularity called components. Unlike Em, components

do not exist within a global namespace requiring that the interaction between modules

be specified in what nesC calls configurations. NesC requires at least two files to con-

struct an application, a configuration that interconnects collaborating components, and

at least one component. Em’s notion of modularity is more closely related to the object-

oriented model where programmers can explicitly define what functions and parameters

modules make public or private. The namespace of other modules in Em is made ac-

cessible by directly importing a module into its namespace. The difference in Em is

117

Chapter 5. The Em Programming Language

therefore a reduction in the steps necessary to create applications and a reduction in the

need to specify interfaces and behavior in abstract levels at the start of development.

Development in Em is also more familiar for experienced object-oriented programmers

since it inherets many of these features from existing high-level langauges. Using Em,

abstractions and reductions in dependencies between modules come as a refinement of

application development, whereas nesC requires the upfront definition of such abstrac-

tions and intricate wiring of modules, making development often challenging.

The separation of interface from implementation in nesC is required for all software

components. While technically the separation is beneficial to allow software reuse and

variability in systems, practically, this requirement poses challenges to development

even for experts to use. Wiring interfaces together in nesC configurations is also chal-

lenging since components often use multiple fine grained interfaces, applications con-

sist of potentially large quantities of modules, and all module interfaces must be wired

together to operate. Em allows the complexity to scale by providing mechanisms for

the separation of interface from implementation but does not require it at the onset of

development. Em allows an incremental, agile development process where enhance-

ments such as higher levels of abstraction, support for variability, and module reuse can

be applied incrementally. NesC, in contrast, in our experience, compels the developer

to invest larger amounts of time and effort at the onset of development.

118

Chapter 5. The Em Programming Language

NesC also lacks the build-time execution context for configuration that Em offers.

The make UNIX utility [29] and the C preprocessor are the mechanisms used in NesC

to support build-time application configuration capabilities. Developers must be knowl-

edgable in both nesC, the C preprocessor, and the Make build system to leverage the

configuration capabilities that are integrated directly into Em. Opportunities to offload

computation from the target device onto the build host and optimizations that save target

resources are therefore not as easily achievable in nesC as they are in Em. Addition-

ally, Em’s configuration capabilities are more accessible to less experienced developers

since a single language syntax and semantics must be understood to harness both build-

time and application operations.

NesC is fundamentally not an object-oriented language, while Em strives to achieve

functionality proven to be effective for development found in such languages. Con-

structs for interface inheritance and packages are therefore not found in nesC. Addi-

tionally, while nesC has mechanisms for generic interfaces, the templating constructs

available in Em allow for more general purpose usage such as complete module gener-

ation.

The Arduino platform is another system that is related to Em. However, Arduino

utilizes C/C++ as its implementation language. While C++ is used to afford modu-

larity, many of the language’s features are unusable in such constrained environments.

We found that a simple Arduino program in C++ that dynamically allocates a variable

119

Chapter 5. The Em Programming Language

consumes nearly 60% of the device’s program memory. We measured this by writing

a simple C++ class using the Arduino platform, with the main application allocating

an instance of it using the new keyword. The pitfalls of C as applied in the resource

constrained domain are shared by the Ardunio platform as application functionality

becomes non-trivial.

5.11 Summary

In summary, this chapter presents the implementation of the language design we

articulate in chapter 4. Our language, called Em, supports modules as the fundamental

unit of code. Em modules enable encapsulation and enforce information hiding and

contribute to the language’s abstraction capabilities. To support build-time configura-

tion and standard runtime initialization procedures, modules have intrinsic functions

as convenient hooks and points of entry to both processes, respectively. Module host

functions and configuration parameters allow Em modules to holistically interface with

a build-time configuration context.

Em has the ability to define new data types as opaque structures that can safely

be passed and shared between modules. Additionally, we support standard primitive

types available in C with the additional requirement of explicitly specifying byte width

in variables that can have multiple definitions e.g. integers. While C-style pointers are

120

Chapter 5. The Em Programming Language

currently available in Em, the availability of C++ style references in Em make the direct

use of pointers largely unnecessary.

In support of abstraction, software variability, configurability, reusability and porta-

bility we implement the constructs of interfaces, proxies, configuration parameters and

composites. The definition and use of these constructs are demonstrated and we show

their direct applicability in a simplified context. Chapter 8 has a more detailed analysis

and complex usage of these features. Additionally, templates are a feature in Em that

sidestep copy-and-paste reuse and provide a flexible mechanism to generate C code that

may be necessary for applications. Lastly, to preserve modularity at all costs, we imple-

ment a limited form of inheritance and demonstrate a simple pattern that leverages the

benefits of implementation inheritance without its implementation into the language.

To achieve a level of efficiency, currently available in systems developed in C,

Em’s high-level language features are translated to C. The translation process pro-

ceeds through steps that involve the generation of C header and source files in addi-

tion to Javascript configuration code. An execution context at build-time, provided by

a Javascript interpreter, executes the configuration code to generate a single C source

file that can be aggressively optimized by existing C compilers for numerous micro-

controller targets.

121

Chapter 6

Non-Language Support for
Application Development

In this chapter we present the design of additional features to support development

of resource constrained systems applications that are enabled by and have not been

incorporated into our language design. We see these additional capabilities as essen-

tial to fully supporting the creation of device applications in our defined domain. The

ability to abstract hardware in our domain of highly variable hardware devices is essen-

tial. Support for runtime concurrency is necessary to enable efficient multitasking and

straightforward implementation of complex behaviors. Simple development environ-

ment features are also important for supporting application development. We discuss

the design of each of these aspects in the sections that follow.

122

Chapter 6. Non-Language Support for Application Development

6.1 Hardware Abstraction

Abstraction of hardware and low-level operating system details is commonplace

in conventional computer systems. If to create a piece of software, every application

programmer was required to write device drivers, operating system code and their appli-

cation, the base of existing programmers, and existing software, would be significantly

reduced. The uniform, high-level interfaces to low level device functionality along with

a structured model for extending device functionality and adding new hardware support

has been pivotal to growing the enormous base of programmers and software that ex-

ists today. Those interfaces and structured models do not exist in a standard way in our

domain and are key for productivity and expressibility.

In order to let programmers focus on implementing their application functionality

without concern for hardware specifics we have designed a hardware abstraction layer

(HAL). The HAL has been designed as a package containing a set of module interfaces

that specify core functionality for hardware. By abstracting the functionality into inter-

faces, implementations supporting many devices can exist while components that make

use of the functionality can be developed and exist without being aware of implementa-

tion specific details. Specifically, we have created a package named em.hal in which

we have defined the McuI, GlobalInterruptsI, GpioI, and UartI interfaces, among others

for basic microcontroller initialization, enabling and disabling global interrupts, inter-

123

Chapter 6. Non-Language Support for Application Development

acting with general purpose I/O pins, and sending and receiving data over the UART,

respectively. Our definition of these interfaces has been informed by [81].

Through the use of proxies, the defined interfaces allow the authoring of software

modules such that they are independent of hardware specifics. The EventDispatcher

module depicted in Figure 5.1 utilizes a proxy that implements the GlobalInterruptsI

interface which allows necessary atomic operations to be performed by the dispatcher,

such as pulling a new event to dispatch off the event queue. The hardware specific

part of this operation happens independently of hardware details in the module. Ad-

ditionally, the LedT template of Figure 5.10 shows the use of a Gpio module to allow

for the creation of a module dependent on hardware, yet entirely definable independent

of any low-level details. In both the examples given, the availability of interfaces that

have implementations for different microcontrollers in conjunction with proxies has al-

lowed code to treat the underlying hardware abstractly and function on any hardware

that provides an implementation for the interface.

The abstraction provided by interfaces and the use of proxies also enables straight-

forward support for new microcontroller platforms, or any hardware device. Support for

a new microcontroller unit (MCU) is achieved by simply implementing device-specific

modules for all the interfaces the MCU supports. All existing code that has been im-

plemented using proxies and these interfaces may now be usable on the new hardware.

Adding software support for entirely new hardware and allowing it to be used abstractly

124

Chapter 6. Non-Language Support for Application Development

can be achieved by defining an interface for its functionality and providing a module

implementation of it. For existing interfaces and modules that utilize those interfaces

with proxies, the hardware has already been abstracted. To adapt an existing module to

new hardware, a new implementation for an interface need only be bound to the using

module. No other changes or low-level changes are necessary.

6.2 Runtime Concurrency

Cheap, readily available, highly constrained microcontroller devices are primar-

ily used in applications that react to external stimuli whether from the environment,

human or machine interaction. These systems must respond, often concurrently, to

multiple sources of stimuli in a timely manner and need a form of runtime support to

notify an application of the occurrence such events. This runtime support must provide

a timely mechanism for concurrency in addition to being mindful of scarce resources

such as RAM and power consumption. Since general purpose operating systems, which

provide the mechanisms for concurrency in resource rich environments, do not fit the

constraints of our domain, developers often must implement a model for concurrency

with each application. To save programmers this effort, especially those without knowl-

edge and experience in implementing operating system facilities, we have designed an

instance of a model we feel is appropriate.

125

Chapter 6. Non-Language Support for Application Development

Two fundamental models of concurrency exist, a thread based model and a reac-

tive model. Each of these models is discussed in more detail in the subsections below.

While support for concurrency is essential we felt it would be limiting to incorporate

any one model into the design of our language. While threads may be familiar for ex-

isting programmers, other models exist and should potentially also be usable. Multiple

models can exist concurrently and their usage can be informed by application require-

ments. Our design puts in place a reactive model of concurrency to handle and process

application events as they occur.

6.2.1 Threads

A thread based model for concurrency is most prevalent in resource rich environ-

ments. All modern and prevalently used operating systems - Linux, Windows, and

MacOS - implement a thread based model for concurrency. In this model a program

is allowed to create multiple paths of execution, each of which is called a thread, and

can execute in parallel relative to other threads. Each thread can carry out computation

independently of others although all threads of an application share a single process

address space. Sharing and passing data between threads presents many synchroniza-

tion problems and many mechanisms, such as locks, mutexes, semaphores, monitors,

etc., have been created to allow this to take place. The operating system scheduler and

126

Chapter 6. Non-Language Support for Application Development

the underlying hardware determine the order of execution for threads and if any true

hardware parallelism is performed.

The majority of programming languages used in resource rich environments sup-

port the threading model and programmers are familiar with this model. A platform

independent standard defining an operating system interface to threads exists (POSIX

pthreads) with implementations for all the popular operating system platforms. Some

languages utilize the threading library of an operating system while others have in-

corporated it directly into the language with facilities and constructs for their usage.

Programmers developing applications on resource rich systems are familiar with the

threading model since its essentially the only model that exists to achieve concurrency.

Furthermore, the model is quite simple as it allows a programmer to think in terms of

multiple paths of execution and must only consider the intricacies and complexities of

sharing data between threads.

With a threading model, each thread requires the use of an execution stack per

thread which consumes runtime memory for each stack. The stack of a thread holds

its execution context, namely the function’s parameters, a pointer to the address the

function must return to, and when not in an active state, the state of registers used by

the thread. Storage of this runtime data requires memory and to ensure that execution

contexts of threads do not intermix, each thread has its own stack.

127

Chapter 6. Non-Language Support for Application Development

Applications that use threads must frequently share data and other resources be-

tween threads. Synchronization mechanisms mentioned above enable a thread to wait

for a particular resource or data to become available if it is occupied by another thread.

When a thread must wait for a resource it is put to sleep and either wakes up period-

ically to check for its availability or it is awoken by another thread that has finished

using the resource. When a thread is put to sleep, it makes the processor available for

another thread to execute. To run the available thread, a scheduler must remove the

execution context of the sleeping thread, save it in all in memory, and then replace the

execution context of the thread that is ready so it may pick up from the last place it left

off. This process is called a context switch.

A context switch is a RAM intensive operation that lends itself to higher power con-

sumption. Anytime a thread must wait for a resource to become available, or wait for

data to be produced by another thread, a context switch is necessary. This is necessary

so threads that are ready to execute may have a chance to do so. During the context

switch data must be saved into and then read out of RAM and the accessing of RAM is

a power consuming operating, not to mention the processing time required to conduct

the context switch. On resource rich platforms both the memory and execution time

this takes is insignificant. However, in resource constrained environments where power

consumption is potentially a critical resource and CPU cycles are not abundant, the cost

of a context switch is high.

128

Chapter 6. Non-Language Support for Application Development

The model of threads for concurrency may be more familiar to programmers how-

ever the relatively inefficient use of resources makes the model less attractive in a re-

source constrained environment. In resource constrained environments it is often the

case that an action only takes place when a specific event has occurred or stimulus re-

ceived. It is the case then, that in this environment a threading model will frequently

have threads that are waiting on a resource. Since each thread consumes already scarce

RAM, having multiple inactive threads consuming memory is one significant pitfall

of the threading model in our context. Additionally, when threads wait on resources, a

context switch must occur and context switches consume some power due to the reading

and writing of RAM. If threads are frequently waiting on resources, context switches

are also occurring frequently resulting in an overall higher power consumption of the

system.

As a result of the above mentioned pitfalls of the threading model, we have decided

to not incorporate any constructs into our language design that impose an execution

model on the programmer. Moreover, we have decided that a threading model is not

the most appropriate model for concurrency in resource constrained systems and have

designed instead a method of concurrency based on a reactive model.

129

Chapter 6. Non-Language Support for Application Development

6.2.2 Reactive Concurrency

Reactive systems [11, 75] are ones where actions take place in response or in re-

action to external or internal stimuli. These systems often remain dormant, or inactive

until precisely the moment of stimulus which then causes a precise reaction that may

involve single or multiple actions to take place. In these systems, stimuli can arrive

at any point in time and potentially simultaneously. Furthermore, some reactions may

require non-trivial processing to take place before the inactive state of the system can

be reached again. Additional stimuli could enter the system at the same time as a pro-

cessing of a previous reaction is taking place.

A reactive model of concurrency supports the above behavior. In this model, ap-

plications are structured in terms of actions that must take place only once a particular

event occurs. The application as a whole then sits in an idle state until an event is

encountered. Once it is encountered, an event dispatching scheduler invokes the ap-

propriate handler for that event. This structure makes the system entirely available to

respond to any event as it occurs. If multiple events occur simultaneously a queue of

events is built up and as event handlers complete, others are invoked, until the system

is idle again. The primary source of events is hardware interrupts which triggers an in-

terrupt service routine (ISR). The ISR is invoked asynchronously at any point in time,

even if an event handler is currently running, and execute in a different context. The

execution context for interrupt service routines is created by the compiler and takes

130

Chapter 6. Non-Language Support for Application Development

care saving and replacing any system registers used by any process running before the

interrupt occurred. The asynchronous handling of interrupts and the event dispatcher

that invokes event handlers as they occur is what provides the concurrency support for

the behavior of reactive systems.

The reactive model is better suited for our domain of applications and more resource

efficient than the threading model. Applications in our domain continually receive and

must respond to stimuli from their environment. Moreover, applications require short,

non data-intensive processing that must take place while not compromising the ability

of the system to respond to more stimuli. The reactive model in general is therefore

more fitting for our domain. Additionally, instead of having threads of execution wait-

ing on resources to become available, the reactive model causes code that services a

resource to be invoked only when the resource is ready to be serviced. This removes

the need to have threads as the basis for concurrency and with that, removes the addi-

tional runtime resources that a threading model requires. If the immediate response to

stimuli takes place within an interrupt context (i.e in an interrupt service routine) while

further processing occurs outside of interrupt context, a context switch as described in

the threading model need not take place. Power savings, necessary by applications in

our domain, is better achievable with the reactive model than the threaded one.

The reactive model is less familiar to programmers although it is used extensively

in graphical user interface programming (GUI). Since resource rich environments uti-

131

Chapter 6. Non-Language Support for Application Development

lize a threading model, fewer programmers have naturally been exposed to a reactive

method of programming. However, the execution model used in GUI programming is

very similar to the reactive model. Graphical interfaces usually function with an event

system where events are triggered in response to user input. Applications are struc-

tured and written such that event handlers for user actions are invoked when the user

triggers an event. Short, non-blocking, event handlers are invoked by the event system

sequentially and as a result, the perception of concurrency is achieved.

We have chosen a reactive model of concurrency for providing concurrency support

to users because of its efficient use of resources and congruency with applications in

our domain. The fact that applications using a reactive model remain idle until events

occur resembles the true nature of resource constrained systems. This congruency in-

fluenced our decision to adopt this model in our design. The model furthermore does

not require the utilization of multiple function stacks to maintain the multiple execu-

tion contexts and saves critical resources. Moreover, not conducting context switches

between threads reduces the overall system RAM usage, which contributes to a power

savings overall and further influences our decision to adopt the model. Lastly, despite

the fact that fewer programmers are familiar with reactive models of concurrency, its

presence in GUI programming acknowledges the fact it is within the grasp of program-

mers in general.

132

Chapter 6. Non-Language Support for Application Development

6.3 Development Environment Support

In considering the design of a development environment to support the broad range

of devices, applications and developers of our domain a number of important features

must exist. Today, the tools for application development are highly fragmented. The

available development environments often support only one manufacturer’s microcon-

troller. The environment itself does not have the tools that are used to ultimately down-

load the compiled code onto the microcontroller integrated in; separate software tools

are used. Moreover, the environments only directly support a subset of the code down-

loading utilities. The result is that the typical expert developer’s workstation has a

collection of environments installed - one for each manufacturer, numerous download-

ing utilities that may or may not interface to the environment and various hardware

downloading tools that ultimately interface with the actual hardware.

Any design of an environment for our domain must support the holistic integration

of numerous manufacturer’s devices, enable extant downloading utilities to plug into

the environment, and support a large number of the download hardware tools. Such

support is necessary since the typical application development cycle involves a rapid

code-compile-download and test cycle. Namely, software must be incrementally writ-

ten, built for a specific target, downloaded onto the device and then its execution tested.

The fragmentation of the extant tools not only constricts the range of devices usable

133

Chapter 6. Non-Language Support for Application Development

in a single environment, it also makes this often repeated cycle unnecessarily slow

and complicated. For any suitable design, the development environment must not be

specific to one manufacturer’s device. Additionally, for each device the environment

supports it must also support the integration of the necessary target compiler and code

downloading utilities.

The integration should be such that a single user action, such as a button press, can

invoke the compilation of an application and seamless downloading of the application

onto the hardware. The presence of such a feature in an environment has broadened the

range of people capable of getting started with development. The Arduino platform,

for example, integrated the compilation and code downloading process, making it ac-

cessible from a single click of a button. Users plug their hardware into the computer

and can instantly get code working on their devices. The setup and integration of such

tools into a development environment is not a trivial task and can be a stumbling block

or even a barrier to entry for many without significant technical expertise.

In addition to facilities that ease and expedite a code-compile-download-test de-

velopment cycle, in future designs, the development environment should also facilitate

the discovery of usable software content for applications and a graphical method of

development. As development proceeds, a facility within the environment should be

available to guide the developer to software content related to what they are develop-

ing. Both finding reusable content and accessing API documentation should be simple

134

Chapter 6. Non-Language Support for Application Development

and direct since many developers, both novice and expert, depend on such content for

functionality, ideas and a rapid development process. An environment designed to sup-

port the discovery of such content and allow its rapid integration into applications has

the potential to enhance the productivity and development capabilities of a broad audi-

ence of users.

The application creation process, especially one utilizing a high degree of reusable

software, involves both the creation of new components and integration of existing

ones. A graphical representation of such software, with the ability to visually select,

interconnect, and configure components as a mode of development is a desirable ca-

pability in an environment intended to support a broad audience of developers. Extant

visual development environments [65, 42, 67, 51] have shown that domain experts with

less programming skills are capable of assembling and creating sophisticated applica-

tions. Likewise, experts are capable of creating new features and functionality into

such environments that are both necessary for their applications while simultaneously

being reusable and accessible to other kinds of developers. The design of a develop-

ment environment with the above mentioned support can leverage and bring together

the language and non-language support mechanisms available to enable the potential

for rapid application development in our domain.

135

Chapter 7

Hardware Abstraction and
Concurrency in Em

In this chapter we discuss our implementation in Em of the additional non-language

features for supporting device application development presented in the previous chap-

ter. Specifically, we discuss the implementation of a hardware abstraction layer, an

event dispatching scheduler to support concurrency in a reactive model, and features

added to a development environment to assist the development process.

7.1 Hardware Abstraction

Em’s hardware abstraction layer has been implemented as a set of interfaces that

define device specific functionality. We currently have modules that implement in low-

level, device specific details, the interfaces that match a microcontrollers capabilities

136

Chapter 7. Hardware Abstraction and Concurrency in Em

for the Atmel ATmega128 and ATmega168 [8], TI MSP430 [58], NXP LPC2138 [60],

LuminaryMicro LM3S811 [55] and LM3S6965 [54] Microcontroller units (MCUs).

The hardware abstraction layer consists of a package of interfaces named em.hal

which contains definitions for MCU startup initialization, timers, general purpose in-

put/output pins, interrupt sources, serial peripheral interfaces such as UART, SPI and

I2C. Other interfaces that do not deal with MCU integrated peripherals have also been

defined, for example LEDs, Buttons, and an accelerometer. Our selection of functions

for some of these interfaces was informed by [80]. Figure 5.4 shows part of the in-

terface defined for a microcontroller GPIO pin and the other interfaces mentioned are

similarly defined for their intended purpose.

The hardware abstraction layer along with the module implementations for the

above mentioned microcontrollers has enabled us to create both full applications, as

well as simple test applications that are entirely reusable and portable across all the

devices. As an example, the BlinkP program in Figure 5.3 is a simple application to

blink an LED every 500 milliseconds. The program is fully portable, yet it controls

a physical LED wired to a microcontroller pin and utilizes a hardware based timer

that is integrated into the microcontroller. Through the use of the hardware abstraction

layer we implemented and the use of a composite that represents the hardware mod-

ule’s available on the device’s printed circuit board, the program is utilizing hardware

abstractly. The more complex applications discussed in a later chapter all use the same

137

Chapter 7. Hardware Abstraction and Concurrency in Em

hardware abstraction layer, proxies and composites to abstract away hardware and en-

able the creation of fully portable, reusable modules and applications.

7.2 Runtime Concurrency

To provide runtime support for concurrency in Em applications, we have imple-

mented modules that represent hardware interrupt sources and a hardware-independent

event dispatcher that provides a portable event type, event posting capability, an event

queue and a scheduler for event handler invocation. Figure 7.1 shows the interface

defined for an interrupt source, Figure 5.1 shows part of the event dispatcher module

specification, and Figure 5.2 shows the event dispatcher’s dispatch function.

Figure 7.1: Interface for interrupt source modules.

A module representing an interrupt source encapsulates the interrupt service rou-

tine which gets called by the microcontroller and has a minimal interface to read, clear,

138

Chapter 7. Hardware Abstraction and Concurrency in Em

enable and disable the interrupt source. Every microcontroller has a different mech-

anism for registering interrupt service routines in its interrupt vector. The interface

therefore only defines a function to register the interrupt handler, and leaves it to the

implementing module to specify exactly how the handler is registered in the interrupt

vector. Users of the module call the setHandlerOnHost function to register the

interrupt handler with the module. This happens in a host function so the vector can

be statically assigned at build time, allowing the implementing module an opportunity

to carry out any additional operations it may need to do so, at build time, for example,

determining if a handler has already been registered and taking appropriate action if so.

This implementation allows modules to treat and interact with interrupts as any other

module.

Functions invoked by interrupt handlers, unlike other module functions, execute in

interrupt context and are highly sensitive to prolonged computation. Long running op-

erations conducted within an interrupt handler can compromise ability of the system to

respond to additional stimuli. As such, only the minimal operation necessary to service

the interrupt is conducted at interrupt time. As discussed below, the interrupt handler

often sets in motion additional actions by posting an event to the event dispatcher, which

will invoke the actions outside of interrupt context.

The event dispatcher in Figure 5.1 defines an Event type which other modules

use to interact with the event system. By declaring an instance of the event type in

139

Chapter 7. Hardware Abstraction and Concurrency in Em

their specification and initializing it with a module function that will be invoked by

the event dispatcher, that is the event handler, modules can utilize the event system

for concurrency. Modules pass the event type they declared to other modules that

will post the event when a particular action of interest has occurred. The BlinkP

program in Figure 5.3 declares an event in its private specification and sets its func-

tion blink as the event handler. The millisecond timer TimerMilli0 is used to

trigger the blink event handler every 500 milliseconds. The event is passed to the

TimerMilli0.start function so that the timer can post the event to the dispatcher

by invoking the event’s post function.

The TimerMilli0 module used in BlinkP is internally using the hardware timer pe-

ripheral and its interrupt source to providing the timing. The TimerMilli0 module con-

tains the interrupt handler for the timer interrupt and when it is triggered, it posts the

event received by the BlinkP module’s call to the TimerMilli0.start function.

Two things are occurring concurrently in this example, the timer peripheral is counting

milliseconds while every 500 milliseconds the BlinkP module toggles its LED. If the

MCU of the application’s hardware had multiple timers, the BlinkP module could uti-

lize multiple timers, multiple events and multiple event handlers to have more things

occur simultaneously.

The event dispatcher is implemented as a statically sized, non-prioritized FIFO

queue of events that contain function pointers to event handlers. When modules post an

140

Chapter 7. Hardware Abstraction and Concurrency in Em

event it is pushed onto the dispatchers FIFO and the dispatcher will invoke the events

handling function at a later time. Since all event handlers are non-preemptable by other

handlers, they must be non-blocking and short to allow other handlers to execute in a

timely manner. Handlers that need more time for computation, must break up the com-

putation into smaller pieces and advance processing by posting events to themselves.

Event handlers, are however preemptable with respect to interrupt handlers. At any

point in time an incoming interrupt will stop the currently executing event handler, if

one is executing, and jump to the interrupt handling function. Compilers tend to set

up an execution context for interrupts that either utilize a different set of processor reg-

isters than the previously executing code, or it generates additional code to save and

replace the registers used in the interrupt handler. This action by the compiler removes

the need to perform a context switch as performed in a threading model.

Prioritized queuing and a scheduler with preemption has also been implemented

in Em. The prioritization of events allows some module functions to take precedence

relative to others, and potentially preempt an operation, if it should occur before other

operations. This prioritization and preemption is necessary when there is a hierarchy

of operations that must take place. For example, an averaging filter that uses data from

an analog to digital converter is dependent on the availability of data to conduct its

operation. If the filtering function is currently executing, and new data is available for

buffering, it make sense to preempt the filter in order to conduct the buffering opera-

141

Chapter 7. Hardware Abstraction and Concurrency in Em

tion, returning to the filtering once the data has been buffered. If a large amount of data

must be buffered, it should not be carried out in an interrupt handler, instead the inter-

rupt handler should post an event to invoke the buffering function outside of interrupt

context. With preemption, if the filtering operation is currently executing, it will be

stopped and the buffering operation conducted.

7.3 Development Environment Support

The typical developer of a device application incrementally writes code, downloads

it to the microcontroller on the device, and tests it. Given the many incompatibilities of

downloading utilities with development environments and devices, we have attempted

to integrate into an existing environment, namely Eclipse, the ability to write Em code

for multiple devices, compile it and download it onto the microcontroller seamlessly.

Our plugin enables a simple code, download, test development cycle. The plugin

implements a text editor with syntax highlighting capability and a file browser. A con-

figuration file contains the specification of the target microcontroller, the compiler it

requires, and any special compilation flags necessary for building code. By setting the

configuration file for the board used the plugin knows which compiler to use and how

to invoke it. The file browser provides the ability to create packages for organizing

modules and Figure 7.2 shows some packages with microcontroller specific modules

142

Chapter 7. Hardware Abstraction and Concurrency in Em

Figure 7.2: Simple capability to build and download applications.

such as em.distro.arduino.duamilanove. By selecting a module, a menu

enables the building of the code and loading it onto the device. Only modules that are

complete applications, distinguished by the presence of the em$run function, can be

loaded onto the target. With the help of the mentioned configuration file, code can be

easily built for and downloaded onto different device targets.

143

Chapter 7. Hardware Abstraction and Concurrency in Em

Once the code is on the microcontroller, it is often helpful to see output from the

executing process on the host. To enable this, we have incorporated a console into the

plugin that can interface with the target device and display characters output by the

application. An additional command the plugin contains is to build, load, and open the

console such that an application is compiled, downloaded to the target, and its output is

immediately viewable on the console. This makes the repetitive actions in the iterations

of application development simple, direct and fast.

7.4 Comparison and Contrast

The use of real-time kernels in resource constrained systems is a common approach

to incorporating concurrency into applications. The predominant model of concurrency

for these systems is a threaded one with FreeRTOS [24] being a frequently used, open-

source solution. The system itself only provides a preemptive multi-tasking scheduler.

Despite the relative inefficiency of a threading model as compared to a reactive model

of concurrency, threading is more familiar to developers and therefore more often used.

Integration of existing kernels into applications for specific hardware platforms is left

as a task for the developer themselves. This complex and often time-consuming task

leaves such kernels within reach of only the most experienced developers. Manipulating

144

Chapter 7. Hardware Abstraction and Concurrency in Em

header files to match system resources and incorporating hardware access to global

interrupts are some of the steps required to make use of such kernels.

While some kernels provide a model for concurrency, they lack additional support

for hardware abstraction and device driver models. Developers must implement their

own hardware abstraction mechanisms and put in place a methodology for integrating

hardware into designs. Applications that succeed in doing so are usually incompatible

with other such systems since their designers do not have a standard to adhere to.

TinyOS along with nesC, support the concurrency and reactivity requirements of

Em’s intended applications. A major difference between Em and nesC/TinyOS is that

Em does not integrate a specific execution model into the language. An asynchronous

event based concurrency model features identical to the one present in nesC is imple-

mented in Em allowing other models to be implemented if necessary. Detailed compar-

ison of the nesC and Em concurrency mechanism is discussed in chapter 8.

Finally, TinyOS provides hardware abstraction and a structured model affording

support for differing microcontrollers and hardware. While the current offering of mi-

crocontrollers of differing architectures is plentiful, the mainline microcontroller sup-

port in TinyOS is primarily for the Atmel AVR and Texas Instruments MSP430 families

of processors. TinyOS’s hardware abstraction layer is well defined in documents, al-

though inspection of application source code shows that programmers do not adhere to

the layering defined in the model. Ultimately, with hardware abstraction, nesC and Em

145

Chapter 7. Hardware Abstraction and Concurrency in Em

are similar in that the language model affords necessary development support without

integrating capabilities into the language itself.

7.5 Summary

Non-language features that are enabled by, but not incorporated into the program-

ming language we have designed, are important to support application development in

our domain. In this chapter we presented the implementation of these features, namely,

a hardware abstraction layer to raise developers level of abstraction above hardware

specific details, a runtime mechanism to support concurrency in a manner suitable for

our domain that does not compromise critical resource utilization, and features of an

integrated development environment that enable a rapid code, download and test cycle.

All the features mentioned are critical to broadening the audience of people capable

of developing resource constrained device applications. At the same time, we have ex-

plicitly decided to implement these features in our language, as opposed to implement

them into our language. The decision was motivated by the fact that many options

exist and could potentially be viable under particular circumstances and we felt the

need to allow them to exist without narrowing the scope or capabilities of our designed

language.

146

Chapter 8

Demonstration and Evaluation

In this chapter, we investigate and demonstrate, using real and sophisticated pro-

grams written in Em, how well the language features we have chosen facilitate reuse

and portability, integration of legacy code, refactoring, and efficient use of device re-

sources. To enable this, we implement and consider applications of varying complexity

for a number of off-the-shelf hardware platforms, these include

• A low-power Texas Instruments MSP430-based wireless sensor node [33],

• A LuminaryMicro ARM Cortex-M3 system with Ethernet support [54],

• An Atmel AVR based Arduino hardware [5], and

• An NXP LPC2100 ARM device [60].

The applications we consider range from an embedded web server utilizing a TCP/IP

stack, to device drivers for peripherals external to the microcontroller, to a number of

frequently used application building blocks. We evaluate our implementations on the

147

Chapter 8. Demonstration and Evaluation

basis of application footprint relative to related systems. Additionally, where appli-

cable, we compare the methodology of development in Em with that of C and other

popular systems used for developing resource constrained device applications.

We find that Em provides developers with many of the programming advantages

facilitated by languages for more resource-rich systems (C++, Java, Python, Ruby). It

does so by leveraging the existing capabilities of C and by further incorporating a sub-

set of features from these languages (modularity, composition, inheritance, separation

of concerns, separation of interface from implementation, support for popular design

patterns, and others) and combining them with novel support for automatic source gen-

eration (legacy and generic), opaque types, and a unified configuration / target devel-

opment language system. Together, these features enable reuse and portability of code

that can be shared and extended by distributed developers for a wide range of devices

and components. We show that despite the availability of these features in Em, appli-

cation resource utilization is not compromised and comparable, if not better, than other

systems in our domain.

Lastly, we evaluate the ability of relative novices to learn our language and to imple-

ment non-trivial applications. We articulate our experience teaching an undergraduate

course for computer science and computer engineering students in modular embedded

systems software development utilizing our language. We report results of surveys con-

148

Chapter 8. Demonstration and Evaluation

ducted to gain insight into how well students were able to understand the concepts of

the language and realize applications.

8.1 Reusability & Portability

In this section, we conduct an evaluation of the reusability and portability of soft-

ware written in Em. We investigate the reuse of software supporting a hardware com-

ponent that is not integrated into the microcontroller itself. Such device drivers are

common and the ability to author them in a reusable, portable fashion rarely exists

today. We then investigate the reusability of software functionality that is not tied to

a particular piece of hardware, yet depends on hardware functionality for its purpose.

Specifically, we port an existing TCP/IP networking stack to Em showing the architec-

tural benefits of doing so along with demonstrating the software’s reuse on hardware

platforms with communication transport mechanisms. We show how our implemen-

tation does not decrease the performance of the original code written in C. Lastly, we

evaluate the ability to reuse existing C code within Em applications. Such capability

can expedite development, where necessary, by not having to rewrite entirely existing

functionality in Em.

149

Chapter 8. Demonstration and Evaluation

8.1.1 Reuse of software supporting hardware components

We first investigate the reuse and portability of code that Em enables using an imple-

mentation of a device driver for a radio transceiver. For this experiment, we use a devel-

opment board [33], representative of low-power wireless sensor network nodes, with a

low-power microcontroller and the popular ChipCon CC2500 2.4GHz radio transceiver

[32]. Since the radio transceiver can be used in many hardware devices and interfaced

to microcontrollers from different vendors, the goal of this experiment is to create a

reusable, portable driver for the transceiver that can be easily adapted, without modi-

fication to the driver, to different board configurations as well as different application

configurations.

The CC2500 radio transceiver interfaces to a microcontroller via the serial periph-

eral interface (SPI) port and two general purpose I/O lines. The SPI port hardware is

integrated into the microcontroller itself. The microcontroller configures and interacts

with the radio via its SPI port. Multiple SPI ports could be resident on a microcon-

troller and many microcontroller pins can interface with the I/O lines of the transceiver.

Therefore, for the transceiver driver to adapt to different hardware configurations, we

must decouple its use of low-level hardware from the driver’s implementation.

To achieve this decoupling in Em, we use two interfaces defined in our hardware

abstraction later, namely SpiI and GpioI. Within each interface, we define the essen-

tial functionality of each peripheral, informed by [81]. Implementations for controlling

150

Chapter 8. Demonstration and Evaluation

each peripheral are written for the development board’s microcontroller, in this experi-

ment, a Texas Instruments MSP430.

Figure 8.1: Portion of CC2500 radio module.

Figure 8.1 shows an excerpt of the public specification of the CC2500 driver mod-

ule. Defined at the top, is a collection of proxies the driver depends on, including SPI

port and Gpio proxies which implement their corresponding interfaces. Clients of a

proxy, in this example, the radio driver, can be sure that at some point before an appli-

cation is built, a module providing an implementation for the proxy’s interface will exist

and be bound. Therefore, the radio driver can be implemented without knowledge of

151

Chapter 8. Demonstration and Evaluation

microcontroller-specific details. Furthermore, since Em makes it possible to bind dif-

ferent modules implementing the SPI and Gpio drivers to the driver, different physical

configurations of the hardware can be supported with a single driver implementation.

Figure 8.2: BoardC composite for wireless device.

Figure 8.2 shows the BoardC composite representing the development board’s phys-

ical hardware configuration. The radio’s SPI proxy is bound to the microcontroller’s

SPI0 port and the radio’s GDO0 and GDO2 I/O lines are bound to pins EdgeDetectP2 6

and P2 7, respectively. The proxies that define the radio driver’s hardware interconnec-

tion to the microcontroller are now configured. Should a different piece of hardware

152

Chapter 8. Demonstration and Evaluation

using the CC2500 radio be physically wired differently, only the driver’s proxy bindings

must change and the driver itself need not be modified.

With time and use on different hardware the driver will become stable and trust-

worthy for use on differing platforms in variable configurations. Hardware vendors,

engineers, and others can develop such code and make it available for others to use

thereby obviating the need for clients of this code to understand the low-level details

of the radio. Less experienced programmers can simply can use the radio within their

applications.

Such applications configure the radio according to their needs. Node address,

power levels, communication frequencies and other critical settings can vary, and often

must, per application. To support this variability without requiring modification to the

driver itself, we structured the application such that it uses an interface for configura-

tion modules. In our example we provide an interface called CC2500ConfigurationI.

The interface defines one host function: setContextValuesOnHost. The module

CC2500Context comprises all of the driver’s configuration options.

Figure 8.3 depicts the interface and module. The CC2500 module contains a proxy,

shown in Figure 8.1, that implements the CC2500ConfigurationI interface and in its

em$construct intrinsic, uses the proxy to call setContextValuesOnHost. This func-

tion sets all of the application-specific configuration values as shown in Figure 8.4.

153

Chapter 8. Demonstration and Evaluation

Figure 8.3: Module and interface used for radio configuration.

Each instance of an application can now create a module that implements the

CC2500ConfigurationI’s interface. Such a module implements the interface to set the

application-specific configuration as shown in Figure 8.4. This module can then be

bound to the driver’s proxy. During its runtime initialization, the CC2500 driver reads

and sets configuration values from the CC2500Context module. The module structure

above now allows individual applications to define settings as necessary without modi-

fication to the driver.

In C, the common way to support both variability in hardware and application con-

figurations is through C-preprocessor macros, #define directives, and code wrapped

in #ifdef/#endif blocks. Figure 8.5 shows a part of the original radio driver code

written in C, not shown in the figure is how additional preprocessor directives are inter-

154

Chapter 8. Demonstration and Evaluation

Figure 8.4: Application-specific radio configuration.

leaved both within and across function boundaries. Em significantly improves readabil-

ity (amount algorithmic code can be viewed per screen of text), maintainability (ability

to understand and correctly extend code), and code stability (localized change) over this

alternative by avoiding all use of these mechanisms. The more variation that exists, the

more macros and directives one encounters upon reading the code. Understanding what

code is ultimately compiled in to a binary and where to make modifications demands

close inspection of the code. Modification of these directives, often defined in drivers

themselves, changes the overall modification date of the driver effecting code stabil-

ity in the face of inevitable variation. The CC2500 driver developed in Em has been

created in a reusable and portable fashion allowing individual applications to define

configurations settings without requiring modification of the original driver source.

155

Chapter 8. Demonstration and Evaluation

Figure 8.5: Part of radio driver abstraction written in C.

8.1.2 Reuse of non-hardware supporting software

We next demonstrate how Em supports the creation of reusable software that is not

hardware specific although depends on hardware specific functionality. This demon-

stration furthermore shows how Em can be used to refactor existing C code to avoid re-

dundancy, separate concerns, and promote code stability by enabling variability without

requiring extensive modifications to the code base. Common error prone C constructs,

such as goto statements and conditional macros, which also make code difficult to read,

debug and maintain were entirely eliminated. For this investigation we ported µIP [21],

156

Chapter 8. Demonstration and Evaluation

a popular RFC compliant TCP/IP stack for resource constrained microcontrollers to

Em. On top of the TCP/IP stack we implemented a simple HTTP server which serves

a static HTML page.

Since RAM is often a microcontroller’s most scarce resource, µIP’s RAM usage

is configurable at compile time and is determine by various features of the stack such

as the size of its protocol buffer, the number of concurrently active TCP connections,

the ability for the stack to open connections to remote hosts, and the number of listen-

ing TCP connections. µIP contains a single statically allocated packet buffer for both

incoming and outgoing data and depends on an underlying device specific transport

peripheral, such as an Ethernet controller, to send and receive packets. Some micro-

controllers may have sufficient RAM to support a different buffering policy, which

may lead to more efficient networking. For such devices, the authors of µIP pro-

vide lwIP[20] which has a more sophisticated packet buffer policy in addition to more

memory-intensive protocol features. While µIP and lwIP share identical functionality

in many places, they have been implemented and are maintained as two separate code

bases.

With Em, we have been able to provide a single implementation of the TCP/IP

stack that enables variability in transport layers and packet buffer management policies

without modification to other aspects of the stack. Furthermore, the implementation

in Em modularizes the protocol code, separating each protocol into its own module,

157

Chapter 8. Demonstration and Evaluation

which enables different versions of the protocol to be used in the stack given particular

memory constraints. Finally, the stack’s implementation completely does away with

goto statements and conditional macros, which appear heavily in the C implementation

of µIP, making the code easier to read and maintain. Figure 8.11 shows part of the µIP

packet processing function illustrating frequent use of goto statements and conditional

macros.

Figure 8.6: A transport layer interface.

To enable variability in the transport layer we created an interface, TransportI Fig-

ure 8.6, containing the features required by transport layer modules. A module called

TransportManager, Figure 8.7 bottom, contains a proxy of type TransportI and is re-

sponsible for coordinating the reception and transmission of data between the transport

layer and the stack. By binding the proxy in TransportManager to different implemen-

tations of transport modules the upper layers of the stack can send and receive data on

different mediums such as wireless radios, serial ports etc. without modification.

158

Chapter 8. Demonstration and Evaluation

Figure 8.7: Part of a transport manager module specification.

The TransportManager also handles the buffers for data that is sent and received by

the application. To facilitate different buffer management policies to exist and to pro-

vide flexible configuration of the stack given a specific policy, we employ the following

design. We create a BufferManagerI interface (Figure 8.8) to define a Buffer type and

the functions of the manager. Only one buffer manager must exist in any application

yet we want to allow different representations of the buffer type. To enable this, we use

the Provider pattern [64].

A module named BufferManager which we present in Figure 8.9, defines all the

functions of the BufferManagerI interface and a representation for the Buffer opaque

type. A proxy within BufferManager implements the BufferManagerProviderI inter-

face. This interface inherits the BufferManagerI interface and the BufferManager for-

wards all calls to its functions to the provider proxy in Figure 8.9. We can now create a

concrete BufferManagerProvider module with the implementation of the management

159

Chapter 8. Demonstration and Evaluation

policy an buffer representation. In our implementation in Figure 8.10, we create a Sin-

gleBufferManager that statically allocates a single buffer of configurable length.

Figure 8.8: Packet buffer manager interface and opaque type definition.

Our stack implementation now supports variability in transport mediums and buffer

management policies in a single code base without requiring modification of the upper

layers of the stack. In contrast, the µIP implementation in C would need to be rad-

ically modified to support multiple packet buffers since it relies entirely on a single,

globally accessible buffer, with global length variables modified in various points of

the code. Regarding transport mechanisms, µIP itself does not contain any transport

specific code, however it does integrate ARP into the main packet processing function

which assumes an Ethernet transport. The implementation in Em removes ARP from

the stack functionality and abstracts that functionality into the transport layer.

160

Chapter 8. Demonstration and Evaluation

Figure 8.9: Packet buffer manager modules.

µIP’s packet processing algorithm is contained in its entirety in a single function.

The function is heavily dependent on conditional macros to selectively include or omit

parts of the code and as a result compromises the readability of the code. goto state-

ments are heavily used in the function and it is claimed by the author of µIP that this

is for optimization purposes however both readability and maintainability of such code

is laborious and error prone. A sample of the µIP process function is shown in Fig-

ure 8.11. Furthermore in the name of optimization, the code relies on global variables

for temporary variables, connection states and packet buffer lengths so multiple local

variable declarations and parameter passing to functions can be avoided. Finally the

161

Chapter 8. Demonstration and Evaluation

Figure 8.10: Packet buffer manager implementation with single buffer policy.

packet processing for various protocols are all interleaved into the one function with

parts related to UDP processing interleaved with that for TCP and ICMP.

The implementation in Em separates the concerns of each protocol into individual

modules where, for example, all TCP processing and connection state management

only appears in the TCP module. The stack’s packet processing function no longer

interleaves different protocol processing code. Protocol and connection state is not

shared between any modules in the form of global variables, and large functions with

goto statements were replaced by smaller, more manageable functions. Overall, Em

162

Chapter 8. Demonstration and Evaluation

Figure 8.11: A sample of the µIP process function.

enabled the µIP functionality to be written in a way that avoids many maintainability

pitfalls and promotes more readable, understandable code.

We now compare the resource consumption and performance of our web server

application implemented using the ported µIP stack in Em with the same application

implemented in C, using the original unmodified µIP stack. Both applications were

implemented for the Luminary Micro LM3S6965-EK evaluation board and compiled

163

Chapter 8. Demonstration and Evaluation

Figure 8.12: µIP web server footprint and request duration.

using the same gcc compiler (version 4.4.1) for the ARM Cortex-M3 architecture. We

report RAM and Flash memory footprints when the code is optimized for performance

(using -O3) and optimized for size (using -Os). The performance of each application

we report is the average duration of an HTTP request from a sample of 100,000 re-

quests. In our measurements both application implementations had the same stack fea-

tures selected. Specifically, the stacks had the same protocols enabled, used a statically

assigned IP address, did not allow active TCP connections from the device to remote

hosts, had a single packet buffer of identical size, and the same number of maximum

connections and listening ports.

When we build the application and optimize for size, the Em application memory

footprint is 2.4% smaller than the C implementation, uses 12 bytes more RAM, and per-

forms HTTP requests 500 microseconds faster on average. When build the application

and optimize for performance, the C program memory footprint is smaller, there was

no change in data memory size, and the two implementations perform similarly. The C

164

Chapter 8. Demonstration and Evaluation

implementation makes heavy use of goto statements whereas the Em implementation

divides the single packet processing function into multiple functions. The inlining of

these functions in several call locations causes the larger program memory footprint in

the Em implementation for the performance-optimized case. Additionally, the use of

local temporary variables and additional parameters to functions in the Em implemen-

tation results larger data memory size in the performance-optimized case. Despite its

use of modularity, design patterns, and configurability, an Em implementation does not

compromise performance and resource utilization.

Reuse of improved code

With the TCP/IP stack ported to Em and usable in one application, we now demon-

strate how the entire stack was reused on a different device having a different trans-

port mechanism. For this demonstration, we use the MSP430 wireless development

kit mentioned in the above section, created an Echo [23] client/server and reused the

TCP/IP protocol stack we implemented in Em. The development kit includes two iden-

tical boards each containing a 2.4GHz wireless transceiver. The data memory (RAM)

capacity of these devices is 1KB. To utilize the existing stack in this application, we

implement a new transport layer module and configure the packet buffer according to

the availability of memory.

165

Chapter 8. Demonstration and Evaluation

Figure 8.13: Composite for configuring the network stack.

To support the wireless radio transport in this application we create a new module

that implements the TransportI interface. The module, RadioTransport, encapsu-

lates all the data and functionality required to send and receive data over the wireless

radio. RadioTransport implements the interface functionality to get data in and out

of the TCP/IP stack and uses our radio driver from, shown in Figure 8.1, for sending

and receiving data over the radio. We implement all transport layer address resolution

protocols and facilities in this module.

166

Chapter 8. Demonstration and Evaluation

To utilize the new transport module, and to demonstrate its use without modification

to the stack, we encapsulate the configuration of the network stack within a composite

called NetC shown in Figure 8.13. The composite imports all the modules necessary

to set various configuration parameters and bind proxies present in the imported mod-

ules. Specifically, the figure shows the CC2500 radio module being bound to the stack

transport proxy. The previous section’s evaluation, which used an Ethernet enabled de-

vice, bound this proxy to an Ethernet transport module. Additionally, the configuration

parameter maxBufferSize of the BufferManager Provider is set according to the

memory constraints of this system, namely the size of the packet buffer is set to 62

bytes in length.

No other modification to the TCP/IP stack or its protocols were necessary for this

demonstration. A new transport layer module to support the hardware’s transport layer

and a configuration of the packet buffer size for system memory constraints were the

only actions taken. The entire TCP/IP stack, a piece of software with over a thousand

lines of code which depends on hardware functionality, was reused without modifi-

cation. Em’s support for modularity and the language’s ability to decouple interface

from implementation were essential to enabling this software to be reused on different

hardware.

167

Chapter 8. Demonstration and Evaluation

8.1.3 Reuse of existing C code

We next investigate how to use Em to reuse legacy C source code within microcon-

troller applications. For this demonstrations, we employ the popular Luminary Micro

library of drivers. This software package includes the driver code for all peripherals

integrated into their ARM Cortex-M3 devices [56]. The library is written in C and

is available as a collection of source files from Luminary Micro. With Em, we can

reuse the entire driver library without modification within applications using Luminary

Micro’s devices.

In the library, each peripheral’s functionality is defined in a source file named for

the peripheral. For example, the file Timer.c contains the peripheral driver for timers.

In Em, we create a template to instantiate modules that each incorporates a peripheral’s

C source. Figure 8.14 shows the template. Upon instantiation of a module from the

template, clients of the module can access any C symbol - functions, data types, register

definitions.

We also create a composite to instantiate modules from the template and to export

the modules under descriptive names. Figure 8.15 shows part of the composite and its

exports for modules that represent peripheral drivers from the library.

To enable applications to be written independently of hardware peripheral imple-

mentations, we write a collection of interfaces that includes GpioI, UartI, TimerMilliI

and others. We create modules that implement these interfaces, each of which imports

168

Chapter 8. Demonstration and Evaluation

Figure 8.14: Template for modules wrapping library functionality.

from the composite the particular peripheral module that it requires. Figure 8.16 shows

a millisecond timer module, TimerMilli32BitTimer0. This module imports

from StellarisWareC, the modules Sysctl and Timer. Any symbol defined in the

source files of these two peripherals is accessible from within TimerMilli32Bit...

The start function of TimerMilli32Bit.. calls functions and references sym-

bols defined in Timer.c.

This process enables any part of the Luminary Micro driver source library to be

reused without modification. The Em translation integrates automatically only the

source used by the application. The code becomes part of the resulting C file gen-

erated by the Em translator and as such, undergoes whole program analysis for aggres-

sive optimization and tight coupling of application and library code. Finally, if source

files for a legacy library are not available (i.e., they are only available as header and

object files), we can incorporate them into an Em application by having the template

169

Chapter 8. Demonstration and Evaluation

Figure 8.15: Composite to instantiate modules from template.

import the libraries header files and linking the application against the library during

build-time.

8.2 Building Block Applications

In this section we evaluate the differences between programs written in nesC/-

TinyOS, the Arduino platform, and Em, through a comparison of four building blocks

applications – simple functionality used in the majority of applications in this domain

– that are compatible across these development platforms. Our goal is to understand

the differences in performance (memory footprint and cycles executed) produced by

each platform and to evaluate whether Em is able to offer similar or better performance

given the design decisions we employ to improve ease-of-development through intu-

170

Chapter 8. Demonstration and Evaluation

Figure 8.16: Millisecond timer using driver library functions.

itive and familiar software engineering support (module-focused, global address space,

component model, composition support, etc.).

The null or empty application demonstrates the bare minimum program and reflects

the lowest overhead of each system. The blink application blinks an LED periodically

and uses hardware interrupts to dispatch a single event whose handler accesses the

hardware synchronously. The sense application reads a sensor value from an analog to

digital (A/D) converter asynchronously and displays three bits of the value read on dig-

ital I/O lines. This application uses multiple interrupt sources, exercises asynchronous

interaction with hardware and manages multiple events. The sensemod application

reads an A/D value asynchronously and uses the value to modulate the blinking rate of

an LED. This application also uses multiple interrupt sources, manages multiple con-

171

Chapter 8. Demonstration and Evaluation

current events from asynchronous processes that interact with hardware. We evaluate

each application by building it for the equivalent Atmel AVR5 family of processors,

specifically the ATmega128 and ATmega168 processors, using the gcc v4 toolchain

and inspecting the resulting binaries using the standard binutils package. We present

our results in Figure 8.17.

Figure 8.17: Resource usage for NesC/TinyOS, Arduino, and Em applications.

With respect to memory usage by each sample application, our results show that the

Em implementations consume 44% - 62% less program memory than those employ-

172

Chapter 8. Demonstration and Evaluation

ing the other systems. Em offers the same or less (30%) data memory consumption

than TinyOS for equivalent functionality. The savings in program and data memory

is partially due to the use of build-time computations to determine configuration pa-

rameters that are used at runtime. The build-time calculation of these values is key

because it saves program memory, data memory, and runtime resources as instructions

for the computation need not be generated or executed on the device. Moreover, the re-

sulting values are stored as constants in program memory instead of data memory and

employed for constant-propagation by the compiler. The use of gcc’s whole-program

analysis and optimizations provide further savings by optimizing across module bound-

aries inlining code and eliminating function call overhead. The savings in memory

enables more complex functionality to fit into the limited program space of the micro-

controllers. For applications with equivalent functionality, the savings in data memory

can provide power savings over other systems since RAM usage is typically a primary

consumer of overall system power.

NesC/TinyOS components use fine-grained interfaces in an effort to reduce resource

consumption in applications. By using narrow interfaces, components can use and pro-

vide the minimal amount of code to enable their functionality [4, 47]. Em components

are specified with more coarse-grain functionality (that we believe is more intuitive –

i.e. related functions are grouped together). We find in our experimentation however,

that using course-grain interfaces achieves equal or better utilization of resources by

173

Chapter 8. Demonstration and Evaluation

relying upon whole-program optimization to remove dead code and provide optimiza-

tions mentioned above.

Arduino does not provide any runtime support for concurrency. Thus, the lack of

an event system and scheduler is reflected in the numbers that show lower resource

consumption for some applications. We implement the sample applications in Arduino

using only the functionality the platform provides to its user [7] so that the program

semantics are as similar as possible for the intended purpose. This means that we

use strictly sequential, synchronous, code for these applications (all but sensemod –

which we discuss below). While the implementations may have achieved a similarity

in behavior with the Em and TinyOS applications, they are not equivalent. We include

them only as a reference. Without support for event handling and scheduling, users

must write/rewrite their own versions leading to significant redundancy and a lack of

reusability. As such, Arduino is not appropriate for our context (application develop-

ment for heterogeneous devices and platforms).

Next, we attempt to evaluate the complexity of writing these applications in each

system by looking at the number of source files and number of lines of code required for

an implementation. Arduino applications are all implemented in a single file and have

the fewest number of lines of code implying ease-of-development. However, the event

handling capabilities of both TinyOS and Em are not available and implementing the

174

Chapter 8. Demonstration and Evaluation

same functionality for Arduino applications is a non-trivial task requiring significantly

more code.

TinyOS applications all required at least two source files since modules have a

strictly local namespace and modules that provide functionality cannot be used with-

out being configured, or wired, to at least the main application configuration. In the

Em applications, since modules can be directly used from within other modules, only

a single source file is necessary. In all applications evaluated, the Em versions used

equal or fewer lines of code to express the same functionality as TinyOS. Reducing

the number of source files and lines of code a programmer must write and maintain re-

duces programming complexity and enables a more direct, intuitive mapping between

the abstract structure of an application and the physical form it takes in code.

8.3 Event Model Comparison

In this section, we evaluate the performance of the concurrency mechanism we

implemented in Em and compare it to a similar mechanism found in nesC/TinyOS. We

have provided this concurrency mechanism as non-language support for application de-

velopment; we did not develop the mechanism into the language itself. NesC/TinyOS,

on the other hand, has implemented its mechanism directly into the language, with key-

words and constructs that are necessary to utilize the feature. The basis of the event

175

Chapter 8. Demonstration and Evaluation

dispatching in our implementation for this evaluation was identical to that found in the

NesC implementation.

The NesC/TinyOS concurrency model supports tasks, split-phase functionality, and

uses bi-directional interfaces. Split-phase functionality means that a request for ac-

tion returns immediately and completion of the request is acknowledged by a call-

back. This functionality is necessary in reactive systems so that long-running op-

erations do not block the requesting client, potentially interfering with system reac-

tivity. Tasks are the mechanism through which split-phase functionality is imple-

mented in NesC/TinyOS. Bi-directional interfaces refer to the pairing of functions

called commands and events. A command requests functionality and is imple-

mented by interface providers and events signal the completion of the request and are

implemented by interface users. While some clients that issue commands need notifi-

cation of their completion, it is often the case that many do not. Unfortunately, even in

such cases, clients must still provide implementations (empty implementations in this

case) for all events of used interfaces.

The left side of Figure 8.18 shows a TinyOS interface, Send, providing a bidirec-

tional pair of functions, the command send and the event sendDone. Below the

interface are the parts of the split-phase interaction. The client call to the command

send starts the operation and returns immediately with a return value indicating if the

request succeeded or failed. Upon completion of the requested action, the provider

176

Chapter 8. Demonstration and Evaluation

Figure 8.18: Split-phase client and implementing component in TinyOS.

of the functionality will signal requesting client that the operation completed invoking

their sendDone function. Regardless of whether the client wishes to be informed the

command’s completion, they must provide an implementation of sendDone in order to

use the send interface.

The right side of Figure 8.18 shows how the split phase functionality is implemented

by the provider of the Send interface. When the send command is invoked, if the

component can carry out the operation it will post a task, which it implements itself

and defer completion of the operation until a later time so that the call can return to the

client. At a later time, the TinyOS scheduler will dispatch the posted task (sendTask)

177

Chapter 8. Demonstration and Evaluation

which will carry out the send operation and when it completes it will raise the signal

sendDone in effect invoking the clients sendDone event function.

The Em concurrency model supports the same behavior as TinyOS only in a more

general manner. Events in Em are simple structures, associated with the module they

are defined within and hold a pointer to a function within the same module that will

handle the event when it occurs. If a module’s function may block a calling client,

it must be implemented such that it takes a reference to its client’s event which will

be posted when the called function’s action completes. Module’s can post events to

themselves and use this as a way to return from a clients call and defer completion

of the call’s action until a later time, notifying the client by posting their event. This

concurrency model provides the same split-phase and event notification behavior as

NesC/TinyOSs while not requiring that developers implement bi-directional interfaces.

On the left side of Figure 8.19, the module MyModule defines a private event

called sent and a function hasSent. The implementation of MyModule defines the

hasSent function and within the my func function makes use of the Sender module

(imported at the top). The send operation of the Sender module, defined in the right

side of Figure 8.19, is potentially a long running operation. To not block its caller,

Sender.send has been implemented to take a reference to a client’s event which Sender

will use to notify the client when the operation has completed. Thus far, MyModule

interacts with module Sender using split-phase behavior equivalent to TinyOS. Notice

178

Chapter 8. Demonstration and Evaluation

Figure 8.19: Split-phase behavior implemented in Em.

The right side of Figure 8.19 shows how the Sender module implements the split-

phase behavior. The Sender module defines an event sendData and holds a reference

to another event clientEvent. It defines its public function send and a private

function doSend. When a client invokes send, if Sender is capable of carrying out the

send operation, it stores a reference to an event, passed in by the client, that will be

posted when the operation completes. Sender then posts its own event sendData to

the scheduler, deferring the work of the send operation, and allowing send to return

to the client. When the sendData event is dispatched the doSend function will

be invoked to carry out the sending operation and ultimately, if the clientEvent

179

Chapter 8. Demonstration and Evaluation

reference is valid, post the clientEvent event. If the clientEvent event was

valid and dispatched, its handler, hasSent will be invoked, signaling completion of the

split-phase operation.

Our evaluation shows that the event model we have implemented in Em can achieve

equivalent split-phase behavior as TinyOS. Furthermore, in our implementation, we do

not require bi-directional interfaces and we leave the decision of being informed of

split-phase operation-completion up to the client. By relaxing the requirement to have

bi-directional interfaces and always implement functionality in a split-phase manner the

programmer has to write less code and when bi-directional functionality is required, it

is implementable.

8.4 Learning Em & Developing Applications

To investigate the ease of learning and developing non-trivial applications in Em,

we taught a ten-week course on modular embedded systems programming to com-

puter science and computer engineering undergraduate students. The course comprised

18 students in a technical discipline, however, their knowledge of programming and

technical skills in general varied as there were both freshmen and seniors. We asked

students enrolling in the course to have rudimentary experience with two programming

languages. The majority of students had been exposed to programming in Java and

180

Chapter 8. Demonstration and Evaluation

C++ and had no prior experience programming a microcontroller. A few students had

only been exposed to C in an introductory course.

The first four weeks of the course introduced students to embedded systems con-

cepts such as device drivers, interrupt handling and concurrency through lectures and

demonstration of implementations in Em. Exercises were given that tested both the

student’s understanding of the concepts they were working with as well as their im-

plementation in Em. An emphasis was placed on thinking about embedded software

in terms of concepts prevalent in high-level languages such as encapsulation, abstrac-

tion, software reuse and portability. In the remaining six weeks of the course, students

implemented a project of their choosing using one of three off-the-shelf development

boards, namely the Arduino Duemilanove [5], the Texas Instruments EZ430-RF2500

kit [33], or the LuminaryMicro LM3S811 evaluation board [55].

In the following subsections, we present the qualitative results of surveys given to

students on the first and last days of the course and describe some non-trivial projects

created. With the initial survey we sought to gauge the students’ level of experience

with programming in general and programming microcontrollers in specific. The final

survey was given to understand the students experience learning and using Em. With

respect to the student projects, we present several successful implementations notable

for either their design, complexity or the student’s level of skill. For each project we

also present the application’s footprint and number of lines of code.

181

Chapter 8. Demonstration and Evaluation

8.4.1 Student Survey Results

In the course we taught we gave our students a survey on the first day of class to

gauge their level of technical knowledge in general, and knowledge of concepts related

to embedded systems in specific. Our course was an elective for computer science and

computer engineering students and thus attracted mostly junior and senior students.

The course was comprised of eighteen students; one freshman, three sophomores, five

juniors, eight seniors and one graduate student.

The programming languages most familiar to students were Java and C++, with

general exposure to C. Other languages students frequently mentioned having expo-

sure to were Python, Ruby and C#. Despite the majority exposure to object oriented

languages, 56% of students failed to accurately describe the main concepts of object

oriented languages such as encapsulation, information hiding, inheritance and poly-

morphism. The majority of students understood the concept of software modularity.

More than 72% of the students had never programmed for or had been exposed to mi-

crocontrollers. With respect to systems level understanding, 67% of the students had

not been exposed to operating systems concepts and while a majority of students de-

scribed the concept of concurrency accurately, a large majority of students were not

familiar with how it was implemented. Similarly, 67% of students understood what a

device driver was while 94% of students had never been exposed to the implementation

of one. Finally, it was rare that a student had been concerned with software reuse and

182

Chapter 8. Demonstration and Evaluation

portability in the past and many noted their biggest struggle with C and C++ was under-

standing and working with pointers and memory management. Our first survey showed

that the students in our course were members of the audience our domain targets.

Upon completion of the course we conducted a second survey to gain an under-

standing of the student’s experience learning and develop applications in Em. When

asked what was most challenging in working with Em the most frequent responses

noted that it was learning the syntax and understanding the modularity of the language.

Regarding the modularity, Em modules are singletons and are not instantiated like ob-

jects in an object oriented language. This notion was not familiar to many students.

Regarding learning of syntax, the majority of students did not have proficiency in mul-

tiple languages and this could be related to the process of learning a new language.

Other responses by multiple students on the challenges of working with Em related

to understanding parameter passing semantics and several reported that it was a lack

of reference documentation and example code. In our current implementation of Em,

function signatures that accept aggregate types such as opaque types and structs must

explicitly be denoted as being passed by reference. Many students overlooked this

requirement and encountered difficulties.

When students were asked to list the concepts that were new to them when learning

Em, the most frequent responses, in order of frequency, were: working with an event

driven programming model, utilizing proxies, and working with a build-time execution

183

Chapter 8. Demonstration and Evaluation

context. Other than the event programming model, the responses did not note that

these concepts were overwhelmingly challenging to understand or difficult to work

with. With respect to student’s perceived difficulty utilizing an event driven model for

concurrency, on a scale of one to five, 67% of students rated it as a three implying it was

moderately difficult for them. 22% rated the perceived difficulty level at a two. Overall

50% reported having been exposed to event driven programming prior to the course.

The remaining survey questions pertained to the student’s perception of Em as a

high-level language and given their experience with Em, how they might improve the

language. 63% of students reported they perceived Em as a high-level language. When

asked what they would have liked to spend more time on in class, the majority of

responses mentioned further explanation of the use of interfaces, proxies and the build-

time execution context. The emphasis on these language features, as opposed to low

level hardware topics, we assume implies the students were more attuned to the high-

level aspects of the language. Regarding improvements to the language, the responses

were quite varied. The most common responses had to do with aspects related to the

maturity of the language itself, such as more helpful errors from the translator, the

availability of documentation, code examples, and more diverse libraries.

Overall, the students in the course were successful in learning Em and were capa-

ble of developing non-trivial applications in the language. The perception of Em as a

high-level language, we feel, helped students employ their past programming experi-

184

Chapter 8. Demonstration and Evaluation

ence without too much concern for low-level programming in a resource constrained

environment. The challenges many students encountered could have been related to

the task of learning a new language, while the repeated difficulty with topics such as

parameter passing by value verses by reference have lent themselves to informing us

how to reduce such difficulties in the future. The following subsection details four ap-

plications created by students in the six weeks they had to execute an idea of their own

choosing.

8.4.2 ViaCar

ViaCar [86] is an undergraduate design competition where teams of students design,

build and race an autonomous car which must follow a track marked by 1-inch tape

on a dark carpet. As a course project, a second year computer engineering student,

having only a rudimentary understanding of C and minimal exposure to object oriented

programming, developed the software for his teams entry to the competition in the

course. The developed vehicle with the microcontroller development board mounted

on top is pictured in Figure 8.20.

The student’s design used an ARM-Cortex development board, and an array of

twelve infrared (IR) LED and phototransistor pairs arranged perpendicularly to the

track being followed. The application used periodic timer interrupts to actuate the

IR LEDs and read the phototransistors to determine the location of the tape across the

185

Chapter 8. Demonstration and Evaluation

Figure 8.20: Student created autonomous line following car.

array. Given the location, an error factor would be computed and passed to the PID

controller to determine a correction factor which would in turn be used to adjust the

PWM duty cycle of the servo steering motors.

Modules developed by the student included the PID controller, motor control logic

using a PWM generator integrated in the microcontroller, IR LED actuation and pho-

totransistor input. The development board came with a library of drivers for the micro-

controller peripherals written in C, which was entirely reusable by the student. The car

finished in 4th place out of 17 contestants in the competition. The application consisted

186

Chapter 8. Demonstration and Evaluation

of 1072 lines of code and had a footprint of program and data memory of 12KBytes

and 1080 bytes, respectively.

8.4.3 Persistence of Vision Display

Figure 8.21: Student developed persistence of vision display.

Persistence of vision (POV) is the phenomenon of the eye by which an after-image

is though to persist for approximately 1/25th of a second on the retina. A third year

computer science student with no previous microcontroller programming experience

developed an LED-based POV display using the Arduino Duemilanove development

board, an accelerometer and a strip of 8 LEDs. Critical to this application is the con-

tinuous sensing of motion along with timely coordination of the blinking of LEDs such

187

Chapter 8. Demonstration and Evaluation

that as the device is moved the appropriate LEDs are illuminated to give the POV effect

- the appearance of textual messages in the air. Using a timer module, the application

samples the accelerometer data at a frequency of 100Hz. When motion is detected

beyond a particular threshold, an event is posted to a module responsible for blinking

out the sequence of LEDs to display the message. The message blinker module uses

another virtual timer to update the strip of LEDs at 1ms intervals.

Figure 8.22: Student’s application design of persistence of vision display.

Particularly noteworthy of this student’s application design was their use of Em’s

abstraction, reuse and portability mechanisms, specifically interfaces, proxies and com-

posites. A diagram of the high-level design of the application is depicted in Figure 8.22.

Interfaces, such as AccelerometerI, MessageBlinkerI, and

188

Chapter 8. Demonstration and Evaluation

POVInputI were created to define the abstract functionality of the accelerometer, the

message blinker and the input source for messages to display respectively. Since each

of these components can vary, yet are independent of the core functionality of the ap-

plication, the student used proxies to enable ease of variation. To allow the hardware

to be configured easily and enable the main application to be entirely portable across

hardware, the student created the POVDeviceC composite. The application software

contained approximately 930 lines of code and had a program and data memory foot-

print of 5154 bytes and 670 bytes respectively.

8.4.4 Ocarina Instructor

A student interested in learning to play the ocarina, a small flute-like wind instru-

ment, developed an application to instruct himself how to play the instrument. The

student was in his senior year of studies and had never developed and embedded sys-

tems application. The application, consisting of about 659 lines of code, was developed

using the Arduino Duemilanove development board, an 8x8 LED matrix display and a

push button for user input.

Each LED on a row of the display corresponded to a hole on the flute. The Illu-

minated LEDs on a row would instruct the user to cover those holes in order to play

a particular note. To teach the user a song, the application would display notes in se-

quence, illuminated for the note’s duration. If the note was to be held for particular

189

Chapter 8. Demonstration and Evaluation

duration, it would ”fall” from the top of the display to the bottom in the appropriate

amount of time. The device’s button allowed a user to interact with the application to

restart a particular song from the beginning or to skip ahead to another song stored in

the microcontroller’s memory.

The existence of several modules to control hardware, specifically the SPI port and

simple button input, helped the student focus on developing application functionality.

The LED display used in the application was controlled via the SPI port. Having a

module for driving the SPI port allowed the student to control the display and start

implementing his application functionality within the first hour of obtaining the display.

Along with a module for receiving input from a button connected to the microcontroller,

the student was able to start physically interacting with his project on the first day of

development. The remaining weeks of the course, the student focused entirely on the

high-level software functionality of his application.

8.4.5 The Game of Simon

Another project created by a student team with no prior microcontroller program-

ming experience was the popular memory game Simon. Using the Arduino Duemi-

lanove development board, four buttons, a collection of LEDs and a buzzer, the students

implemented the game which flashes out progressively more complicated sequence of

190

Chapter 8. Demonstration and Evaluation

Figure 8.23: The game of simon developed by students.

light patterns for the game player to emulate. The implementation is shown in Fig-

ure 8.23.

Having interest and familiarity with software design patterns, the students modeled

their application design around the Model-View-Controller (MVC) [25] pattern. Three

modules (model, view and controller) were created containing approximately 423 lines

of code with a program and data memory footprint of 5236 bytes and 765 bytes respec-

tively.

191

Chapter 8. Demonstration and Evaluation

The controller module polled the game buttons for any input. On detecting a but-

ton press an event would be posted to the model module which would determine what

action needed to be taken. Program state would be updated and as a response events

would be generated and posted to the view module which would display the color pat-

terns on the LEDs. Each module in the MVC pattern was decoupled from the other,

communicating strictly though events. This decoupling made the design easily modifi-

able for different display or input options without effecting or requiring the main game

model to be modified.

In this application, the students were able to apply software engineering method-

ology used with high-level programming languages, namely design patterns. The stu-

dents did not have trouble learning Em and were able to apply their previous knowledge

of high-level application design, and implementation directly in this domain.

8.5 Summary

In this chapter we presented a demonstration and evaluation of the Em program-

ming language. We first demonstrated the ability to write reusable and portable soft-

ware in Em. Software that supports hardware functionality can be written such that it

is reusable across hardware platforms with variation in physical and application con-

figurations. This was articulated through an example of the design and implementation

192

Chapter 8. Demonstration and Evaluation

of a device driver for a wireless transceiver component that was not integrated into a

microcontroller. We then demonstrated the ability to reuse non-hardware supporting

software in Em through the porting of a popular RFC-compliant TCP/IP protocol stack

implemented in C. The modular structure of the protocol stack implementation in Em

affords an interchangeable transport layer and protocol buffer management policy with-

out requiring modifications to the stack itself. We implemented a web server using the

stack and evaluated its implementation in terms of runtime performance and applica-

tion footprint relative to an implementation in C. Our results show that the modular

implementation in Em did not decrease the performance relative to C. The applica-

tion footprint was only slightly larger due to the presence of more function parameters

as a result of separating concerns given the lack of such separation in the original C

implementation. It was also demonstrated how the entire TCP/IP stack was reused

unmodified on a different hardware platform with tighter memory constraints using a

different transport layer. To conclude the reuse and portability section we articulated

how existing C code can be reused and integrated into an Em application.

We then compared on the resource consumption of simple building block applica-

tions whose functionality is found in most device applications. The comparison was

conducted against identical applications written in Em, nesC/TinyOS, and the Arduino

platform. Our results show that Em implementations consume 44% - 62% less program

memory than those employing the other systems and offers the same or less (30%) data

193

Chapter 8. Demonstration and Evaluation

memory consumption than TinyOS for equivalent functionality. The Arduino platform

lacked the ability to interact with hardware asynchronously as well as a mechanism

for concurrency. The comparison was conducted with Arduino because it is currently

the most popular development platform used by non-technical experts in our domain.

Additionally, we compared the concurrency mechanism implemented in Em with the

one present in NesC/TinyOS. The mechanisms achieve the same functional purpose,

however our implementation was not integrated into the language, where NesC’s was.

It was demonstrated that the split-phase functionality found in NesC/TinyOS is achiev-

able with Em, however we have relaxed the requirement for bi-directional interfaces

which require the programmer to always implement both sides of the split-phase oper-

ation, even when one is less frequently utilized.

As a demonstration of the ability for non-technical experts to learn Em and imple-

ment non-trivial applications, we presented four projects created in a 10 week course.

The students in the course ranged from freshman to senior. The majority of students

had never been exposed to microcontroller programming and a number of students

had only minor exposure to programming in general. Prior knowledge of high-level

programming language concepts and development technique familiar to student were

usable in Em. Survey results from the student’s experience using the language were

presented.

194

Chapter 9

Conclusion

In this dissertation we investigate language and runtime support for software devel-

opment in resource constrained microcontroller-based device applications. Tradition-

ally, only highly skilled engineers and developers with significant financial resources

had access to hardware and tools necessary for developing applications. Today, the low

cost and availability of development kits, application specific hardware components,

and development tools has significantly broadened the audience interested in and at-

tempting to create applications.

Due to constraints on the availability of program and data memory, CPU processing

speed and power consumption, application development has proceeded differently than

in resource rich environments such as our desktop and server computers. High-level

programming languages with dynamic features, general purpose operating systems for

hardware abstraction and resource management, and uniform development environ-

ments that support development of reusable, portable systems all lack from resource

195

Chapter 9. Conclusion

constrained environments. A tight coupling between hardware functionality and ap-

plication logic exists, low-level languages such as assembly and C are predominantly

used, and general purpose operating systems typically require more resources that are

available on these devices.

The goal of our work is to bring high-level language constructs and development

practices that exist in resource rich environments down to resource constrained envi-

ronments without compromising efficient use of resources. Moreover, our goal is to

support a broad audience - spanning from novice programmers through to expert em-

bedded systems developers - that is able to access and utilize such language support. In

addition to language support, our work investigates non-language features essential for

effective, productive development by such a broad audience.

We investigate the design, implementation and evaluation of a high-level program-

ming language for developing resource constrained microcontroller software. We select

features from existing high-level languages that have been proven to support abstrac-

tion, modularity and the separation of concerns, a decoupling of interface from imple-

mentation, configurability and variability of software for differing hardware configura-

tions and availability of runtime resources. We adopt a sparse syntactic style common

in scripting languages popular among non-programmers and relative novices in order to

appeal to their taste and interest. We additionally design, implement and evaluate non-

language support for resource conscious models of concurrency, hardware abstraction,

196

Chapter 9. Conclusion

and development environment features to support uniform development across hard-

ware platforms.

The design and implementation of our domain-specific programming language is

described in chapters 4 and 5 and the design and implementation of non-language sup-

port is described is described in chapters 6 and 7. Our empirical evaluation and demon-

stration of the efficacy of our work is presented in chapter 8. We seek to enable the

existence of an ecosystem of software such that it is easily distributable and reusable

across a wide range of heterogenous hardware platforms and application domains while

being usable by non-technical experts and uncompromising for the most experienced

developers. As such, our work supports:

• High-level language constructs. We incorporate successful features from exist-

ing, high-level languages that have proven to enable the expression of complex

ideas in software systems. We incorporate modules as the fundamental unit of

code in our language. Encapsulation and data-hiding, in addition to enabling the

separation of concerns, lend themselves to enabling software abstraction. We em-

ploy interfaces to further extend abstraction capabilities. We find that a popular

design pattern called the Proxy pattern, employed in the language itself, provides

a lightweight and robust mechanism to decouple interface from implementation.

The use of interfaces and proxies together enable the creation of software that

can adapt to differing physical hardware configuration and application require-

197

Chapter 9. Conclusion

ments without modification to code. To further extend configuration capabilities,

and provide a degree of dynamism that is too expensive for runtime we intro-

duce a build-time execution context that can leverage the rich resources of the

build host. Holistically integrated into the language with identical syntax and

semantics, the build-time context enables introspection, dynamic memory allo-

cation, and offloading runtime computation from the target microcontroller onto

the build host.

• Efficiency. Given microcontrollers with as little as several hundred bytes of

memory and a few kilobytes of program memory that potentially utilize severely

limited power sources, efficiency in the use of scarce resources is of utmost im-

portance. Languages and tools in use today achieve a desirable level of effi-

ciency and must not be compromised with the addition of high-level language

constructs. Our design and implementation leverages existing compilers with

their refined optimization capabilities by translating our high-level language into

portable C code. This code in turn is compiled and optimized for a specific

microcontroller target. We find that despite the high-level constructs in our lan-

guage, we can achieve at least equivalent performance to the languages used in

this domain with respect to resource utilization.

198

Chapter 9. Conclusion

• Modern Software Development Practices. Modern software development prac-

tices depend on the availability of large amounts of readily available, reusable,

portable software content. To enable systematic reuse of existing code we limit

language constructs that may violate modularity such as implementation inher-

itance. We introduce configuration parameters and late binding of proxies to

enable content to be written such that it can be flexibly reused in differing con-

texts. We introduce a construct called a composite which enables a pattern for

portability and high-level configurability. We incorporate templates which save

copy-and-paste reuse of code in modules with closely related functionality. We

incorporate lightweight packaging semantics to easily distribute collections of

related functionality. The collection of constructs and features we employ enable

modern development practices to be utilized in a domain that largely lacks such

practices.

• Hardware diversity. The diversity of available microcontrollers and hardware

components for applications is extensive. Existing tools for development are

fragmented and do not support a wide range of hardware. To support a diversity

of hardware we leverage our language’s abstraction capabilities to implement a

hardware abstraction layer. Definitions for common functionality of microcon-

troller peripherals and other components enable higher level software to utilize

hardware resources strictly based on defined functionality, not implementation.

199

Chapter 9. Conclusion

In conjunction with the use of proxies, the decoupling of interface from imple-

mentation is achieved and enables software supporting hardware functionality to

be written independent of low-level device specific implementation details. The

result, as articulated in our evaluation, is an ability to support a wide range of

microcontrollers and application hardware.

• Concurrency. The reactive nature of resource constrained systems demand time-

ly, simultaneous, response to external stimuli. The resource consumption of gen-

eral purpose operating systems preclude their use in the resource constrained do-

main. Developers, therefore, are left to implement mechanism for concurrency

individually. We demonstrate the implementation of a reactive model of con-

currency in our language which relieves the programmer of implementing such

complex functionality. We compare the reactive model to the more common

threading model and articulate why we have chosen one model over the other.

We additionally compare our implementation to a similar model in an extant sys-

tem. We find that our implementation relaxes some requirements imposed by the

other system without losing the ability to express all its intended functionality.

Our empirical evaluation and demonstration of applications shows that our language

and non-language (runtime) support, with its claimed benefits, enable development

of sophisticated functionality without compromising scarce resources. Additionally,

200

Chapter 9. Conclusion

through surveys and evaluation of an undergraduate course taught using our language,

we find that non-embedded systems experts can successfully learn the language and

develop non-trivial applications on resource constrained microcontroller devices.

9.1 Contributions and Impact

In this section we summarize our main contributions and discuss their impact.

Our primary contribution is the design and implementation of a high-level program-

ming language for our specified domain. Specifically, a language that supports mod-

ern programming constructs and practices for the development of resource constrained

microcontroller-based device applications by a broad audience with diverse technical

skills. The contributions made in this dissertation are as follows:

• A new high-level, general purpose, embedded systems programming language

called Em that incorporates successful object oriented language and engineering

techniques for the development of highly resource constrained microcontroller

applications

• Language support, enforced by translation to C, for modularity, encapsulation,

data hiding, and code reuse using techniques from modern high-level object-

oriented languages including C++ and Java.

201

Chapter 9. Conclusion

• Unified programming support for single file, similar syntax, application and con-

figuration coding.

• Support for separation of concerns in code and code reuse via interfaces, inde-

pendent implementation, proxies for substitution, opaque types, interface inheri-

tance, and automatic source generation (templates).

• A reduction in the verbosity of the C language specifically to make it accessible

to new/non-programmers (similar to that done for modern scripting languages).

• Demonstration of code reuse, portability, interchangeability, integration of legacy

source, using real applications and sophisticated embedded systems components.

• An extensive empirical evaluation of the footprint and resource consumption for a

number of program building blocks and real applications. In addition, we provide

an evaluation of ability for non-expert embedded systems programmers to learn

and develop non-trivial applications through the use of Em in an undergraduate

college course.

The general impact of our work is an advancement in the state-of-the-art of pro-

gramming languages and development practices in the specific domain of resource con-

strained microcontroller-based application development. Languages in this domain are

predominantly low-level with C being the most prevalently used language. While suit-

able for development of efficient systems level software, the development practices of

202

Chapter 9. Conclusion

expert developers in our domain continues to limit the scope of who can develop appli-

cations and the rate at which applications can take advantage of new hardware offerings.

Our work puts in place the ability to create modular, configurable, reusable and portable

software that functions across application domains and hardware configurations.

The fact that our work has introduced high-level language constructs into resource

constrained systems without compromising resources shows that existing practices can

evolve to the level we enjoy in application development for resource rich environments.

Specifically, we can create device drivers for hardware components that are reusable on

differing hardware platforms, in various configurations and adaptable to available re-

sources. Developers can write software independent of hardware that can be easily

distributed over the Internet and quickly integrable into diverse applications. Program-

mers can take more advantage of the capabilities of devices, which must remain cheap

and efficient, since complexity from hard-to-understand practices have been reduced.

High-level abstractions, design patterns, and other efficiencies of modern development

practices are feasible.

A significant consequence of our work is the potential to enable a future generation

of innovative applications to be developed. Artists, designers, students, hobbyists and

people who are specialized in non-technical disciplines are currently limited in what

they can accomplish using todays tools and technologies in this domain. Ideas for how

microcontrollers can be applied by non-technical experts are growing with new attempts

203

Chapter 9. Conclusion

being highlighted in newspapers, magazines, blogs and expositions internationally. It

is clear that as a tool being applied in diverse application domains, microcontrollers

are powerful and effective. It is inadequate to demand that these people, experts in

their own domain, must master the tools and intricacies of multiple highly-technical

disciplines in order to realize their ideas. Our work can continue to lower the barrier to

entry for this growing audience of people and furthermore, enable them to get further

in realizing their ideas than they are able to today.

Our work has shown that Em provides the necessary support to create and sustain an

ecosystem of software for resource constrained environments, as exists for resource rich

computing environments. Such an ecosystem expedites the application development

process which is important for both reducing time-to-market of professional products,

as well as the prototyping of new ideas. It is counterintuitive that the most prevalent

computing systems on earth - the resource constrained systems - lag behind the tech-

nologies available for resource rich environments. Our work has made advances to

bridge the gap in novel and interesting ways.

9.2 Future Research Directions

In this section we identify several directions for future research. Our work in this

dissertation motivates further refinement of the language itself, the exploration of ef-

204

Chapter 9. Conclusion

ficient and intuitive models for concurrency, environments for graphical development

of applications, stream-oriented software frameworks, and new teaching methods that

enable less-experienced programmers and novices of various ages to develop micro-

controller applications.

With respect to language features, we believe Em can be refined to eliminate the use

of pointers by programmers. Pointers are a major stumbling block for novices learn-

ing how to program and a major source of software errors. Eliminating pointers from

our language, we feel, can make it more accessible to novices and non-programmers

without losing efficiency or expressivity required by experts.

While a reactive concurrency model was chosen in our design and implementation,

it is unclear how successful this model will be or how easy it is to learn for developers

with varying technical skills. The most familiar model for existing programmers is a

threaded model. Event driven programming may be familiar to some although further

exploration into the usability of our chosen model is a possible future direction.

Reactive programming, as common in our domain, is data driven. Data sources

and sinks represent stimuli to and reaction of the system and data that enters it is

processed as it flows through various computational steps. A framework for stream-

oriented application development is an interesting direction for future research. The

stream-oriented approach has been successfully utilized in an embedded systems con-

text in the past however its application remains within a highly specialized area of

205

Chapter 9. Conclusion

digital signal processing. Expansion of the stream-oriented method to a broader do-

main which is accessible to a wider audience of developers could potentially provide

an expressive methodology of development.

The modular constructs in our programming language, the use of proxies capable

of binding differing implementations, and composites as used for application config-

uration lend themselves well to a graphical representation. In Chapter 3 we discuss

graphical programming environments for both experts working in an embedded sys-

tems domain and non-experts working in an entirely different application domain. The

use of such environments has been successful in enabling more people, specialized in

their particular domain yet lacking programming skills, to be productive and expressive.

Since the language constructs present in our language lend themselves well to a graphi-

cal representation, it is a potentially fruitful avenue to pursue creation of a development

environment that affords a graphical process of application development.

Lastly, the understanding of technology and systems in general is of utmost im-

portance to society. Future generations should be taught, at a high-level, the inner

workings of the technical infrastructure they depend on and utilize daily. Putting pro-

grammable microcontroller systems that can react and interact with their environment

in the hands of high-school students around the world could profoundly impact chil-

dren’s understanding of the technical world around them. Continuing to explore how to

make microcontroller programming more accessible, expressive and robust for young

206

Chapter 9. Conclusion

and non-technical audiences is a future research direction with profound implications

for society.

In summary, our contributions open up various avenues with promising opportuni-

ties for continued research in the domain of resource constrained microcontroller-based

application development. Advancements in this domain not only impact the ability to

realize novel and potentially innovative applications, it can impact society’s ability to

understand and work with technology.

207

Appendix A

Grammar

208

feature-declaration:
constant-declaration
config-declaration
variable-declaration
function-declaration
type-declaration
struct-type-declaration
opaque-type-declaration
opaque-type-representation
proxy-declaration

feature-declaration-list:
feature-declaration feature-declaration-listopt

feature-name:
identifier

constant-declaration:
hostopt const feature-name : type-specification initializer ;opt

config-declaration:
hostopt config feature-name : type-specification initializeropt ;opt

variable-declaration:
hostopt var feature-name : type-specification initializeropt ;opt

function-declaration:
hostopt function function-name (argument-declaration-listopt):type-specification ;opt
template feature-name (argument-declaration-listopt)

function-name:
feature-name

argument-declaration:
argument-name : type-specification initializeropt

argument-declaration-list:
argument-declaration
argument-declaration , argument-declaration-list

argument-name:
identifier

argument-name-list:
argument-name
argument-name , argument-name-list

type-declaration:
hostopt type type-name : type-specification ;opt

enum-type-declaration:
hostopt type type-name : enum { enum-value-list ,opt } ;opt

struct-type-declaration:
hostopt type type-name : struct { field-declaration-list } ;opt

opaque-type-declaration:
hostopt type type-name : opaque { function-declaration-list } ;opt

opaque-type-representation:
209

def type type-name : struct { field-declaration-list } ;opt

type-name:
feature-name

enum-value-list:
enum-value
enum-value , enum-value-list

enum-value:
identifier

field-declaration:
field-name : type-specification ;opt

field-name:
identifier

field-declaration-list:
field-declaration field-declaration-listopt

field-declaration:
field-name : type-specification ;opt

field-name:
identifier

function-declaration-list:
function-declaration function-declaration-listopt

proxy-declaration:
proxy feature-name implements interface-name ;opt

type-specification:
base-type type-operator-listopt &opt

base-type:
intrinsic-type
declared-type

declared-type:
type-name
unit-name . type-name

type-operator-list:
* type-operator-listopt
[expressionopt] type-operator-listopt
[length] type-operator-listopt
(argument-type-listopt) type-specification type-operator-listopt

argument-type-list:
type-specification
type-specification , argument-type-list

intrinsic-type:
Bool | Char | IArg | Int8 | Int16 | Int32 | Ptr |
Ref | String | UArg | UInt8 | UInt16 | UInt32 | Void

initializer:
= expression

210

expression:
basic-expression
binary-expression
call-expression
cast-expression
conditional-expression
escape-expression
hash-expression
index-expression
selector-expression
size-expression
vector-expression

expression-list:
expression
expression , expression-list

basic-expression
intrinsic-name
identifier
literal
(expression)

binary-expression
expression binary-operator expression
expression assignment-operator expression

binary-operator:
one of: + - * /% ==!= < <= > >= & | ^ && ||

assignment-operator:
one of: = =+ =- =* =/ =% =<< =>> =& =| =^

call-expression:
expression (expresssion-listopt)

cast-expression:
< type-specification > expression

conditional-expression:
expression ? expression : expression

escape-expression:
^ identifier
^^ arbitrary text ^^

hash-expression:
{ }
{ hash-initializer-list ,opt }

hash-initializer-list:
hash-initializer
hash-initializer , hash-initializer-list

hash-initializer:
feature-name : expression
field-name : expression

index-expression:
expression [expression]

211

selector-expression:
expression . feature-name
expression . field-name
expression . length

size-expression:
sizeof < type-specification >
alignof < type-specification >
offsetof < type-specification . field-name >

unary-expression:
prefix-operator expression
postfix-operator expression

prefix-operator:
one of: + - * ! & ++ --

postfix-operator:
one of: ++ --

vector-expression:
[]
[expresssion-list ,opt]

statement:
assert-statement
basic-statement
break-or-continue-statement
do-statement
for-statement
if-statement
local-declaration-statement
print-statement
program-termination-statement
return-statement
seal-statement
switch-statement
text-generation-statement
while-statement

statement-list:
statement statement-listopt

assert-statement:
assert expression ;opt

basic-statement:
expression ;opt

break-or-continue-statement:
break ;opt
continue ;opt

do-statement:
do { statement-listopt } while (expression) ;opt

for-statement:
for (expressionopt ; expressionopt ; expressionopt) { statement-listopt }
for (local-declaration-statement ; expressionopt ; expressionopt) { statement-listopt }212

if-statement:
if (expression) { statement-listopt } elif-clause-listopt else-clauseopt

elif-clause-list:
elif (expression) { statement-listopt } elif-clause-listopt

else-clause:
else { statement-listopt }

local-declaration-statement:
var local-name : type-specification initializeropt ;opt

local-name:
identifier

print-statement:
printf print-format ;opt
printf print-format , print-value-list ;opt

print-format:
string-literal

print-value-list:
expression , print-value-list

program-termination-statement:
fail ;opt
halt ;opt

return-statement:
return expressionopt ;opt

seal-statement:
seal expression as expression ;opt

switch-statement:
switch (expression) { case-clause-listopt default-clause-listopt }

case-clause-list:
case expression : statement-listopt case-clause-listopt

default-clause:
default : statement-listopt

while-statement:
while (expression) { statement-listopt }

translation-unit:
module-unit
interface-unit
composite-unit
template-unit

unit-name:
identifier

module-unit:
package-designation import-directive-listopt module-header public-features private-implementation

213

module-header:
hostopt module module-name module-implementsopt

module-name:
unit-name

module-implements:
implements interface-name
implements interface-name using module-name

interface-unit:
package-designation import-directive-listopt interface-header public-features

interface-header:
hostopt interface interface-name interface-extendsopt

interface-name:
unit-name

interface-extends:
extends interface-name

composite-unit:
package-designation import-directive-listopt composite-header public-features private-implementation

composite-header:
composite composite-name composite-extendsopt

composite-name:
unit-name

composite-extends:
extends composite-name

template-unit:
package-designation import-directive-listopt template-header public-features private-implementation

template-header:
template template-name

template-name:
unit-name

package-designation:
package package-name ;opt

package-name:
identifier
package-name . identifier

import-directive:
import-fromopt import module-name import-asopt ;opt
import-fromopt import interface-name import-asopt ;opt
import-fromopt import composite-name import-asopt ;opt
import-fromopt import template-name import-template-parameters import-as ;opt

import-directive-list:
import-directive import-directive-listopt

import-from:
214

from package-name
from composite-name

import-template-parameters:
hash-expression

import-as:
as unit-name

public-features:
{ export-directive-listopt feature-declaration-listopt }

export-directive-list:
export-directive export-directive-listopt

export-directive:
export module-name ;opt
export module-name implements interface-name ;opt

private-implementation:
private-featuresopt function-definition-listopt

private-features:
private { feature-declaration-listopt }

function-definition-list:
function-definition function-definition-listopt

function-definition:
def declared-function-name (argument-name-listopt) { statement-listopt }

declared-function-name:
intrinsic-name
function-name
type-name . function-name

lexical-element:
intrinsic-name
identifier
literal
comment

intrinsic-name:
identifier prefixed with em$

identifier:
identifier-first-letter
identifier identifier-letter

identifier-first-letter:
one of: A..Zora..zor_

identifier-letter:
one of: A..Zora..zor0..9or_

literal:
boolean-literal
character-literal
integer-literal
string-literal

215

boolean-literal:
true
false

character-literal:
' single-character '
' escape-sequence '

single-character:
one of: !..~ but not ' or \

integer-literal:
decimal-numeral integer-literal-suffixopt
hexadecimal-numeral integer-literal-suffixopt
octal-numeral integer-literal-suffixopt

integer-literal-suffix:
lorL

decimal-numeral:
0
non-zero-digit digitsopt

non-zero-digit:
one of: 1..9

digits:
digit
digits digit

digit:
0
non-zero-digit

hexadecimal-numeral:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-numeral hexadecimal-digit

hexadecimal-digit:
one of: 0..9orA..Zora..z

octal-numeral:
0 octal-digit
octal-numeral octal-digit

octal-digit:
one of: 0..7

string-literal:
" string-charactersopt "

string-characters:
string-character
string-characters string-character

string-character:
one of: !..~ but not " or \
escape-sequence

escape-sequence: 216

\ b
\ t
\ n
\ f
\ r
\ "
\ '
octal-escape

octal-escape:
\ octal-digit
octal-escape octal-digit

comment:
single-line-comment
documentation-comment
multi-line-comment

single-line-comment:
plus all remaining text on this line

documentation-comment:
#! plus all remaining text on this line

multi-line-comment:
multi-line-comment-begin intervening text multi-line-comment-end

multi-line-comment-begin:
#/* in column 1

multi-line-comment-end:
#*/ in column 1

217

Bibliography

[1] Adafruit Industries. http://www.adafruit.com.

[2] X. Amatriain. A domain-specific metamodel for multimedia processing systems.
IEEE Transactions on Multimedia, 9(6):1284–1298, 2007.

[3] X. Amatriain, M. de Boer, E. Robledo, and D. Garcia. Clam: An object oriented
framework for developing audio and music applications. In Proceedings of 17th
Annual ACM Conference on Object-Oriented Programming, Systems, Languages
and Applications, pages 1284–1298. ACM Press, Nov. 2002.

[4] W. Archer, P. Levis, and J. Regehr. Interface contracts for tinyos. In IPSN ’07:
Proceedings of the 6th international conference on Information processing in sen-
sor networks, pages 158–165, New York, NY, USA, 2007. ACM.

[5] The Arduino Project. http://www.arduino.cc.

[6] Imagining a World of Hardware Mashups, February 8 2009. http://
tinyurl.com/22mygnb.

[7] Arduino API Reference. http://arduino.cc/en/Reference/
HomePage.

[8] Atmel AVR 8-Bit RISC processor. http://www.atmel.com/products/
AVR/.

[9] R. Bannatyne. Microcontrollers for the automobile. http://www.
mcjournal.com/articles/arc105/arc105.htm.

[10] M. Bar. Real men program in C. http://www.embedded.com/columns/
barrcode/218600142.

[11] A. Benveniste and G. Berry. Readings in hardware/software co-design. In
G. De Micheli, R. Ernst, and W. Wolf, editors, Proceedings of the IEEE, chap-
ter The synchronous approach to reactive and real-time systems, pages 147–159.
Kluwer Academic Publishers, Norwell, MA, USA, 2002.

218

http://www.adafruit.com
http://www.arduino.cc
http://tinyurl.com/22mygnb
http://tinyurl.com/22mygnb
http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Reference/HomePage
http://www.atmel.com/products/AVR/
http://www.atmel.com/products/AVR/
http://www.mcjournal.com/articles/arc105/arc105.htm
http://www.mcjournal.com/articles/arc105/arc105.htm
http://www.embedded.com/columns/barrcode/218600142
http://www.embedded.com/columns/barrcode/218600142

Bibliography

[12] J. Bresson. Sound processing in openmusic. In Proceedings of the International
Conference on Digital Audio Effects, Sept. 2006.

[13] J. T. Buck and E. A. Lee. Scheduling dynamic dataflow graphs with bounded
memory using the token flow model. In Proceedings of IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, pages 429–432, Minneapo-
lis, Apr. 1993. IEEE Press.

[14] J. T. Buck and E. A. Lee. The Token Flow Model, pages 267–290. IEEE Press,
1995.

[15] Burning Man Festival. http://www.burningman.com/.

[16] A. Chaudhary, A. Freed, and M. Wright. An open architecture for real-time au-
dio processing software. In Audio Engineering Society 107th Convention. Audio
Engineering Society, 1999.

[17] D. W. Cho, H. S. Kim, and S. Oh. A new approach to detecting memory access
errors in c programs. Computer and Information Science, ACIS International
Conference on, 0:885–890, 2007.

[18] CNN News Network. http://cnn.com/.

[19] Texas Instruments DSP/BIOS Real-Time OS. http://focus.ti.com.

[20] A. Dunkels. Lightweight implementation of tcp/ip protocol suite. http://
www.sics.se/∼adam/lwip/.

[21] A. Dunkels. Full tcp/ip for 8-bit architectures. In MobiSys ’03: Proceedings of the
1st international conference on Mobile systems, applications and services, pages
85–98, New York, NY, USA, 2003. ACM.

[22] The Eclipse Foundation. http://eclipse.org/.

[23] Echo protocol rfc. http://www.faqs.org/rfcs/rfc862.html.

[24] FreeRTOS. http://www.freertos.org.

[25] E. Gamma, R. Johnson, R. Helm, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, 1994.

[26] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesc
language: A holistic approach to networked embedded systems. In PLDI ’03:
Proceedings of the ACM SIGPLAN 2003 conference on Programming language
design and implementation, pages 1–11, New York, NY, USA, 2003. ACM.

219

http://www.burningman.com/
http://cnn.com/
http://focus.ti.com
http://www.sics.se/~adam/lwip/
http://www.sics.se/~adam/lwip/
http://eclipse.org/
http://www.faqs.org/rfcs/rfc862.html
http://www.freertos.org

Bibliography

[27] GNU Compiler Collection. http://gcc.gnu.org/.

[28] Gizmodo. http://gizmodo.com/.

[29] GNU Make. http://www.gnu.org/software/make/.

[30] D. Harel and E. Grey. Executable object modeling with statecharts. In Proceed-
ings, 18th International Conference on Software Engineering, pages 246–256.
IEEE Press, Mar. 1996.

[31] B. Hartmann, L. Abdulla, M. Mittal, and S. R. Klemmer. Authoring sensor-based
interactions by demonstration with direct manipulation and pattern recognition. In
Proceedings of the SIGCHI conference on Human factors in computing systems,
CHI ’07, pages 145–154, New York, NY, USA, 2007. ACM.

[32] T. Instruments. Chipcon cc2500. http://focus.ti.com/docs/prod/
folders/print/cc2500.html.

[33] T. Instruments. ez430-rf2500 development board. http://focus.ti.com/
docs/toolsw/folders/print/ez430-rf2500.html.

[34] Isadora. http://www.troikatronix.com/isadora.html.

[35] H. Ishii and B. Ullmer. Tangible bits: towards seamless interfaces between people,
bits and atoms. In Proceedings of the SIGCHI conference on Human factors in
computing systems, CHI ’97, pages 234–241, New York, NY, USA, 1997. ACM.

[36] Jameco Electronics. http://www.jameco.com.

[37] The Javelin Stamp Module. http://www.parallax.com/.

[38] Real-time Native Java Module. http://jstamp.systronix.com/
Resource/jstamp datasheet.pdf.

[39] G. Kahn. The semantics of a simple language for parallel programming. In Infor-
mation Processing ’74: Proceedings of the IFIP Congress, pages 471–475, 1974.

[40] A. Kalavade and E. A. Lee. Hardware/software co-design. In Proceedings of
the IFIP International Workshop on Hardware/Software Co-Design. IEEE Press,
May 1992.

[41] T. Kiriyama and M. Sato. Analyzing human behaviors in an interactive art instal-
lation. In Proceedings of the 13th International Conference on Human-Computer
Interaction. Part IV: Interacting in Various Application Domains, pages 345–352,
Berlin, Heidelberg, 2009. Springer-Verlag.

220

http://gcc.gnu.org/
http://gizmodo.com/
http://www.gnu.org/software/make/
http://focus.ti.com/docs/prod/folders/print/cc2500.html
http://focus.ti.com/docs/prod/folders/print/cc2500.html
http://focus.ti.com/docs/toolsw/folders/print/ez430-rf2500.html
http://focus.ti.com/docs/toolsw/folders/print/ez430-rf2500.html
http://www.troikatronix.com/isadora.html
http://www.jameco.com
http://www.parallax.com/
http://jstamp.systronix.com/Resource/jstamp_datasheet.pdf
http://jstamp.systronix.com/Resource/jstamp_datasheet.pdf

Bibliography

[42] National Instruments LabVIEW. http://www.ni.com/labview/.

[43] J. Lahart. Taking an open-source approach to hardware. Wall Street Journal,
page B8, November 27 2007.

[44] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow
programs for digital signal processing. IEEE Transactions on Computers, C-
36(1):24–35, Jan. 1987.

[45] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. In Proceedings of
the IEEE, volume 75, pages 1235–1245. IEEE Press, Sept. 1987.

[46] E. A. Lee and T. M. Parks. Dataflow process networks. In Proceedings of the
IEEE, volume 83, pages 773–799. IEEE Press, 1995.

[47] P. Levis and D. Gay. TinyOS Programming. Cambridge University Press, 2009.

[48] Maker Faire. http://makerfaire.com/.

[49] Make: technology on your time. http://blog.makezine.com/.

[50] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and N. Rusk. Programming by
choice: urban youth learning programming with scratch. In Proceedings of the
39th SIGCSE technical symposium on Computer science education, SIGCSE ’08,
pages 367–371, New York, NY, USA, 2008. ACM.

[51] The Max Programming Environment. http://www.cycling74.com/
products/maxoverview.

[52] History of Max. http://freesoftware.ircam.fr/article.php3?
id article=5.

[53] S. McDirmid, M. Flatt, and W. C. Hsieh. Java component development in jiazzi,
2001.

[54] L. Micro. Ek-lm3s6965 microcontroller development kit. http:
//www.luminarymicro.com/products/lm3s6965 ethernet
evaluation kit.html.

[55] L. Micro. Ek-lm3s811 microcontroller development kit. http://www.
luminarymicro.com/products/stellaris 811 evaluation
kits.html.

221

http://www.ni.com/labview/
http://makerfaire.com/
http://blog.makezine.com/
http://www.cycling74.com/products/maxoverview
http://www.cycling74.com/products/maxoverview
http://freesoftware.ircam.fr/article.php3?id_article=5
http://freesoftware.ircam.fr/article.php3?id_article=5
http://www.luminarymicro.com/products/lm3s6965_ethernet_evaluation_kit.html
http://www.luminarymicro.com/products/lm3s6965_ethernet_evaluation_kit.html
http://www.luminarymicro.com/products/lm3s6965_ethernet_evaluation_kit.html
http://www.luminarymicro.com/products/stellaris_811_evaluation_kits.html
http://www.luminarymicro.com/products/stellaris_811_evaluation_kits.html
http://www.luminarymicro.com/products/stellaris_811_evaluation_kits.html

Bibliography

[56] L. Micro. Stellarisware peripheral library. http://www.luminarymicro.
com/products/software.html.

[57] L. Mikhajlov, E. Sekerinski, and T. C. F. C. Science. A study of the fragile base
class problem. In In European Conference on Object-Oriented Programming,
pages 355–382. Springer-Verlag, 1998.

[58] Texas Instruments MSP430 processor. http://www.ti.com/msp430.

[59] WIRED NextFest Festival. http://www.wired.com/wiredscience/
tag/nextfest-2008/.

[60] NXP Semiconductors Microcontrollers. http://www.nxp.com/.

[61] D. Overholt. The musical interface technology design space. Org. Sound, 14:217–
226, August 2009.

[62] Parallax Basic Stamp. http://www.parallax.com/tabid/295/
Default.aspx.

[63] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Technische Universitat
Darmstadt, Germany, 1962.

[64] Provider design pattern. http://msdn.microsoft.com/en-us/
library/ms972319.aspx.

[65] The Ptolemy Project. http://ptolemy.eecs.berkeley.edu.

[66] M. Puckette. Combining event and signal processing in the max graphical pro-
gramming environment. Computer Music Journal, 15(3):68–77, 1991.

[67] M. Puckette. Pure data: another integrated computer music environment. In
Proceedings of the Second Intercollege Computer Music Concerts, pages 37–41,
1996.

[68] Python Programming Language. http://python.org/.

[69] Quartz Composer. http://developer.apple.com/
graphicsimaging/quartz/quartzcomposer.html.

[70] Rhino: JavaScript for Java. http://www.mozilla.org/rhino/.

[71] Realtime Software Components. http://eclipse.org/dsdp/rtsc/.

[72] XDCspec Language Reference. http://rtsc.eclipse.org/.

222

http://www.luminarymicro.com/products/software.html
http://www.luminarymicro.com/products/software.html
http://www.ti.com/msp430
http://www.wired.com/wiredscience/tag/nextfest-2008/
http://www.wired.com/wiredscience/tag/nextfest-2008/
http://www.nxp.com/
http://www.parallax.com/tabid/295/Default.aspx
http://www.parallax.com/tabid/295/Default.aspx
http://msdn.microsoft.com/en-us/library/ms972319.aspx
http://msdn.microsoft.com/en-us/library/ms972319.aspx
http://ptolemy.eecs.berkeley.edu
http://python.org/
http://developer.apple.com/graphicsimaging/quartz/quartzcomposer.html
http://developer.apple.com/graphicsimaging/quartz/quartzcomposer.html
http://www.mozilla.org/rhino/
http://eclipse.org/dsdp/rtsc/
http://rtsc.eclipse.org/

Bibliography

[73] Ruby on Rails. http://rubyonrails.org/.

[74] U. P. Schultz, K. Burgaard, F. G. Christensen, and J. L. Knudsen. Compiling java
for low-end embedded systems. In LCTES ’03: Proceedings of the 2003 ACM
SIGPLAN conference on Language, compiler, and tool for embedded systems,
pages 42–50, New York, NY, USA, 2003. ACM.

[75] J. N. Seizovic. The reactive kernel. Technical report, Caltech, Pasadena, CA,
USA, 1988.

[76] Sparkfun Electronics. http://www.sparkfun.com.

[77] V. Subramonian, L.-J. Shen, C. Gill, and N. Wang. The design and performance
of configurable component middleware for distributed real-time and embedded
systems. In RTSS ’04: Proceedings of the 25th IEEE International Real-Time
Systems Symposium, pages 252–261, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[78] C. Szyperski. Independently extensible systems - software engineering potential
and challenges -. In In Proceedings of the 19th Australasian Computer Science
Conference, 1996.

[79] C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Professional, 2002.

[80] TinyOS 2: Hardware Abstraction Architecture. http://www.tinyos.net/
tinyos-2.1.0/doc/html/tep2.html.

[81] TinyOS. http://www.tinyos.net.

[82] TinyOS Programming Manual. http://www.tinyos.net/tinyos-2.x/
doc/pdf/tinyos-programming.pdf.

[83] TIOBE Index. http://www.tiobe.com.

[84] B. L. Titzer, J. Auerbach, D. F. Bacon, and J. Palsberg. The exovm system for
automatic vm and application reduction. SIGPLAN Not., 42(6):352–362, 2007.

[85] H. W. van Dijk, H. J. Sips, and E. Deprettere. Conext-aware process networks.
In Proceedings of the Application-Specific Systems, Architectures, and Processors
(ASAP’03), pages 6–16. IEEE Press, June 2003.

[86] Viacar competition. http://ieee.ucsd.edu/viacar.

223

http://rubyonrails.org/
http://www.sparkfun.com
http://www.tinyos.net/tinyos-2.1.0/doc/html/tep2.html
http://www.tinyos.net/tinyos-2.1.0/doc/html/tep2.html
http://www.tinyos.net
http://www.tinyos.net/tinyos-2.x/doc/pdf/tinyos-programming.pdf
http://www.tinyos.net/tinyos-2.x/doc/pdf/tinyos-programming.pdf
http://www.tiobe.com
http://ieee.ucsd.edu/viacar

Bibliography

[87] G. Wang. The ChucK Audio Programming Language. PhD thesis, Princeton
University, 2008.

[88] B. Weiss, G. Gridling, and M. Proske. A case study in efficient microcontroller
education. SIGBED Rev., 2:40–47, October 2005.

[89] M. C. Williamson. Synthesis of Parallel Hardware Implementations from Syn-
chronous Dataflow Graph Specifications. PhD thesis, University of California at
Berkeley, 1998.

[90] Wiring. http://wiring.org.co/.

[91] G. Zhou, M.-K. Leung, and E. A. Lee. A code generation framework for actor-
oriented models with partial evaluation. In Proceedings of International Confer-
ence on Embedded Software and Systems, pages 786–799. Springer-Verlag, May
2007.

224

http://wiring.org.co/

	Dedication and Gratitude
	Epigraph
	Acknowledgements
	Curriculum Vitæ
	Abstract
	List of Figures
	Introduction
	Thesis Question
	Dissertation Organization

	Background
	Resource Constrained Systems
	Application Development
	Development for Resource Rich Systems
	Development for Resource Constrained Systems
	Development by a Wider Audience

	Definition of Domain
	Summary

	Related Work
	Language Support for Modularity
	NesC & TinyOS
	RTSC
	Other Systems

	Microcontroller Development Support for Non-Experts
	BASIC Stamp
	Wiring and Arduino

	High Level Programming Environments For Non-Programmers
	Graphical Dataflow Process Networks
	Max/MSP and PureData
	CLAM
	Other Tools and Systems

	Summary

	Language Support for Application Development
	Efficiency
	Readability and Writability
	Modularity and Abstraction
	Variability and Configurability
	Software Reuse
	Software Portability and Distributability
	Dynamic Behavior
	Support for Legacy Content
	Summary

	The Em Programming Language
	Modules and Types
	Pre-runtime Configuration
	Runtime Configuration

	Interfaces
	Proxies
	Composites
	Templates
	Inheritance
	Support for Legacy Content
	Packages
	Translation
	Source Code Validity
	Generated C Code

	Comparison With Related Systems
	Summary

	Non-Language Support for Application Development
	Hardware Abstraction
	Runtime Concurrency
	Threads
	Reactive Concurrency

	Development Environment Support

	Hardware Abstraction and Concurrency in Em
	Hardware Abstraction
	Runtime Concurrency
	Development Environment Support
	Comparison and Contrast
	Summary

	Demonstration and Evaluation
	Reusability & Portability
	Reuse of software supporting hardware components
	Reuse of non-hardware supporting software
	Reuse of existing C code

	Building Block Applications
	Event Model Comparison
	Learning Em & Developing Applications
	Student Survey Results
	ViaCar
	Persistence of Vision Display
	Ocarina Instructor
	The Game of Simon

	Summary

	Conclusion
	Contributions and Impact
	Future Research Directions

	Grammar
	Bibliography

