
A static, packer-agnostic filter to detect similar malware samples

Abstract

The steadily increasing number of malware variants is becoming a significant problem, clog-
ging the input queues of automated analysis tools and polluting malware repositories. The
generation of malware variants is made easy by automatic packers and polymorphic engines,
which can produce many distinct versions of a single executable using compression and encryp-
tion. Malware analysis tools and repositories rely on executable digests (hashes) for indexing
malware programs and discarding duplicates. Unfortunately, these executable digests are differ-
ent for each malware variant. Thus, a great deal of time and resources are wasted by analyzing,
running, and storing numerous instances of almost identical programs. To address this problem,
we require a more robust similarity measure that can quickly identify and filter these variants,
avoiding repeated (costly) analyses that provide no additional insights to a malware analyst.

In this paper, we present a robust filter to quickly determine when a malware program
is similar to a previously-seen sample. Compared to previous work, our similarity measure
is efficient because it does not require the costly task of preliminary unpacking, but instead,
operates directly on packed code. Our approach exploits the fact that current packers use
compression and weak encryption schemes that do not break all connections between the original
programs and their transformed version (that is, some indicators of similarity between two
original programs can still be extracted from their packed version). In addition, we introduce
a packer detection technique that is able to distinguish between different levels of protection,
such as unpacked, compressed, encrypted, and multi-layer encrypted code. This allows us to
configure (optimize) the sensitivity parameter for the similarity computation. We performed
experiments on a large malware repository containing 795 thousand samples. Our results show
that the similarity measure is highly effective in filtering out malware variants obtained by simple
re-packing or re-encryption, and can reduce the number of samples that need to be analyzed by
a factor of three to five.

1 Introduction

Often motivated by financial gains, malware authors release an ever-increasing number of malware
samples on the Internet. For example, in 2009, Panda Labs reported up to 55,000 new malware
samples per day [19]. Overwhelmed by the quantity of new samples, malware analysts cannot
rely on manual analysis to examine the characteristics and behavior of these malware samples. As
a result, the analysts use automated dynamic analysis tools such as Anubis [1], CWSandbox [2],
Norman Sandbox [3] or ThreatExpert [4]. These tools monitor the execution of malware samples
in a controlled environment, and provide a detailed report of their activity (e.g., interactions with
processes, files, the registry, or the network). The drawback of the dynamic approach mainly lies
in the time required for the execution, especially considering that the instrumented environments
used to confine malware and prevent them from harming real systems are usually much slower
than “real” execution environments. In general, the length of the dynamic analysis process is
hard to determine, but, usually, it takes several minutes before a malware sample performs enough
suspicious operations to allow for a correct characterization of its behavior. The time necessary to
revert and restart the instrumented environment in a clean state must also be taken into account.
With the continuous increase of malware submissions, the execution time is quickly becoming a
bottleneck for automated analysis tools.

1

Throwing more hardware at the problem offers only temporary relief, considering the growing
number of malware variants produced by malware authors. Moreover, it is a wasteful approach,
as a large majority of released malware samples are simple variations of existing ones. Thus,
instead of re-running the same programs thousands of times, it would be preferable to spend the
available resources on previously unseen malicious programs. To this end, we require an approach
to determine whether a new sample is similar to one that was analyzed before. Of course, to be
useful, this approach must deliver results faster than it takes to dynamically analyze a sample.

In the past years, different approaches have been explored to statically address the problem
of malware similarity. In [10], the authors introduce a distance-based approach that uses the edit
distance, whereas the approaches described in [13] and [26] rely on the cosine vector distance over
n-gram distributions of instructions. Other approaches replace the one-to-one distance function
with more complex classification algorithms (see, for example [18, 21, 25]). In [8] and [11], the
authors introduce a graph-based approach, which compares graph representations extracted from
the disassembled code. Some of these approaches are computationally expensive. More importantly,
they all require that the malicious code is unpacked and disassembled first. Unfortunately, existing
generic unpackers rely on the dynamic instrumentation of executables [12, 17, 23]. As a result,
they need to run samples, and hence, suffer from similar performance limitations as the dynamic
analysis tools themselves.

In this paper, we present an efficient, static technique that can identify samples that are similar
to those that were analyzed previously, without the need to execute them. That is, our similarity
measure is directly computed over packed and encrypted samples. This is possible because existing
packers and their compression/encryption algorithms retain some of the properties present in the
original code. Thus, two packed executables, produced by a certain packer, are likely to remain
similar (in certain ways) if they were originally similar.

The work closest to our proposed filter is peHash [27], a system that also attempts to detect
and remove duplicate malware samples without executing them. To this end, peHash leverages
the structural information extracted from malware samples, such as the number, size, permission
settings, and Kolmogorov complexity of the sections in a PE executable1. While this approach
makes the system efficient, its reliance on ephemeral features is not robust, and peHash can be
trivially confused. Our similarity measure, on the other hand, is based on properties directly
derived from the code of the malware program, and hence, more difficult to tamper with.
To summarize, the contributions of this paper are the following:

• We introduce an efficient and robust similarity comparison technique for malware samples.
This technique operates directly on the packed code section(s) of the malicious program.

• We present a packer detection method that can identify the type of packing algorithm used:
compression, encryption, and multi-layer encryption. The detection output is used to auto-
matically configure the sensitivity of the similarity measure.

• We discuss a prefiltering method to select candidate samples within a malware repository.
This prefilter relies on efficient heuristics to quickly discard irrelevant samples.

• We have developed a system based on our novel techniques, and we have evaluated this
system over a large malware repository containing 795 thousand samples. Our experiments
demonstrate that our similarity measure is effective in filtering out malware variants obtained
by re-packing or re-encrypting the same, original malware. Moreover, the results show that
the system can reduce the number of samples that need to be considered by dynamic analysis
tools by a factor of three to five.

1PE is the executable format used by Microsoft Windows.

2

2 Similarity and the packing issue

Techniques to compute the static code similarity between malware samples face the same problems
as static malware detection; the packers and mutation engines (e.g., polymorphism, metamorphism)
that are widely used by malware writers to evade signature detection also blur the similarity be-
tween malware variants. According to [17], the percentage of malware that is packed has grown
steadily, up to more than 80% of samples currently found in the wild. Initially, packers were only
used to reduce the size of the executables by using compression. However, because compression is
deterministic, it was easily reversed and the number of generated variants was limited. Thus, to
hinder reverse engineering and detection, malware authors soon added an encryption step. Encryp-
tion makes unpacking more difficult and increases the number of variants that can be generated by
simply changing the encryption key. Very recently, protections based on virtualization have been
introduced, where the original program is translated to virtual instructions that are then executed
by an embedded virtual machine [22]. In this work, we do not address virtualization-based packing
since it is still restricted to a small number of commercial packers that malware writers rarely use.

In general, compression and encryption severely hinder any similarity computation on executa-
bles because the contents of the code sections are modified, and, with this, their byte sequences and
statistical properties. To better understand the ways in which current packers modify the body of
an executable, we manually examined (reverse engineered) a number of popular tools frequently
used by malware authors (see Table 3, page 12).

A first, important observation is the limited number of underlying key algorithms that are at
the core of current packers. For compression, dictionary-based approaches are the most widely used
(mostly LZ77), sometimes combined with entropy and range encoders. With respect to encryption,
reversible arithmetic operations (such as add/sub, rol/ror, xor with 8-bits or 32-bits keys) are the
most commonly used form. The use of stronger cryptographic algorithms (such as RC4, DES, or
AES) is rare because these algorithms are much slower and need to be reimplemented to avoid
using standard OS crypto APIs and/or libraries (using such APIs could raise suspicion and makes
reverse engineering and detection easier).

Table 1 presents the key algorithms used by packers, as well as their impact on the byte align-
ment, sequence, and distribution of the packed program. The table entry “alignment” indicates
whether a byte-aligned data block remains aligned after packing. The entry “byte sequence” dis-
cusses the effects of packing on the order of bytes (or regions) in the original program. The table
entry “byte distribution” characterizes how the distribution of bytes (or n-grams) in the original
binary is altered by the packing process.

Compression algorithms. Dictionary-based packers keep certain (incompressible) parts of the
original program intact, while they compact other parts by replacing an entire sub-sequence with
a reference (relative offsets) to a previously-seen, uncompressed occurrence of this sub-sequence.
If two executables are similar before packing, their incompressible parts will be mostly similar as
well. As for the compressed sub-sequences, one can expect that most of the relative offsets into the
uncompressed regions are also similar. Dictionary-based algorithms align both the uncompressed
regions and references to previously-seen regions on byte boundaries.

Entropy encoders operate by replacing frequent bytes (or blocks) with shorter bit strings (sym-
bols). The lengths of these bit strings are typically not a multiple of a byte, and hence, the byte
alignment is destroyed. This also significantly alters the byte distribution. However, observe that
when considering the encoded symbols, their distribution is identical to the byte (block) distribution
of the data before entropy encoding. Similar considerations hold for range encoders.

3

Dictionary Principle Frequent byte sequences are replaced by relative references to previous occurrences.
compression Alignment Byte alignment preserved by incompressible data and aligned references.

Sequences Order of incompressible sequences is preserved. Relative references are interleaved
in between, but their number is bound by the size of the reference window.

Distribution Distribution is flattened because frequent byte sequences are replaced by
relative references that tend to introduce infrequent (random) byte values.

Examples LZ77, which is at the core of LZO (used by PolyEnE) and NRV (used by UPX).

Entropy Principle Most-frequent bytes (or blocks) are encoded by bit strings (symbols) of smaller size.
encoding Alignment Byte alignment destroyed by the shortened representations.

Sequences Byte blocks are replaced by shorter representations but their sequence is preserved.
Distribution Byte distribution is destroyed due to lost alignment, but distribution can be

reconstructed over the encoded representations (symbols).
Examples Huffman, which is combined with LZ77 for deflate (used by gzip).

Range Principle Entire byte sequences are replaced by a single (large) integer range representation.
encoding Alignment Byte alignment destroyed by the shortened representations.

Sequences Sequences are shortened, but order remains.
Distribution Bytes distribution is destroyed due to lost alignment, but distribution can be

recomputed over the encoded representation).
Examples Range encoding is combined with LZ77 for LZMA (used by NsPack).

Arithmetic Principle Blocks of bytes are independently encrypted using reversible arithmetic operations.
encryption Alignment Byte alignment preserved by the key and blocks.

Sequences Sequences are preserved, except that blocks are replaced by their encrypted values.
Distribution n-gram distribution is permuted, where n is the size of the encryption block.
Examples xor, add/sub or rot/rol are used for 32-bit encryption in PolyEnE.

Key or Principle A different key or operation is used for the encryption of each new block.
operation Alignment Byte alignment preserved by the key and blocks.
variation Sequences If variation is cyclic, repeated blocks at the same relative position in the cycle have

the same encrypted value, otherwise, sequences are lost by the variable encryption.
Distribution If variation is cyclic, the effect is identical to encryption of larger blocks (whose

lengths are equal to the cycle length multiplied by the size of the original blocks).
Examples Yoda’s Crypter uses a cycle of xor, add/sub or rot/rol encryption operations.

Multi-layer Principle The entire input is encrypted multiple times.
encryption Alignment Byte alignment preserved by the key and the byte blocks.

Sequences If layers are aligned with identical block sizes, equivalent to a single encryption,
otherwise equivalent to key variation due to the overlap.

Distribution If layers are aligned with identical key sizes, equivalent to a single encryption,
otherwise equivalent to key variation due to the overlap.

Examples tElock uses multiple layers of 8-bit xor encryption.

Table 1: Impact of the different packing algorithms on the binary content.

Encryption algorithms. The simple arithmetic operations used by crypters only achieve a
simple substitution of the byte blocks in the original code. Also, most existing crypters do not
implement any chaining or other form of key and operation variation, and, when they do, the
variation is always cyclic. Arithmetic encryption results in a permutation of the distribution of the
original n-grams. The alignment of bytes is typically not affected.

An important conclusion that can be drawn from the aforementioned observations is that pack-
ers preserve certain properties of the original code. Compressors tend to alter the byte alignment.
However, when considering the symbols compressed by encoding, some sequences are incompress-
ible by dictionary-based compression and references to compressed sequences are deterministically
determined. Compressors thus preserve similarity because distributions coming from originally
similar programs will be computed over similar, compressed data. Crypters do not alter the byte
alignment. However, they create a permutation of the distribution of bytes (blocks) in the original
program, where the permutation depends on the encryption key. In the next section, we will discuss
how we can leverage these insights to perform similarity computations directly on packed code.

4

Structural modifications. In addition to modifications to the code itself, the packing process
affects the structure of the executable. The sections hosting the packed code and data are often
renamed and possibly merged. The read, write, and execute permissions of these sections are
modified to allow the modification of their image in memory. Moreover, an additional code loader
is appended to the executable to recover the original code during runtime. The entry point is
accordingly redirected to point to the loader, which transfers control back when the original code is
unpacked. Finally, the packing process also alters the linking information by destroying the Import
Address Table(IAT), which lists the different APIs imported by the executable. The original IAT
is then rebuilt at runtime by the loader.

3 Description of the similarity measure

The filter that we introduce in this paper is designed to detect malware programs that are similar to
previously-seen samples. Leveraging this filter, we can prioritize submissions to dynamic malware
analysis systems (such as Anubis) and discard samples that are too similar to ones already analyzed.
For this use case, we require a similarity measure that is fast, while offering sufficient robustness
to tolerate small changes in the malicious code.

To compute the similarity between two (malware) programs, we compute the distance between
their code signals. A code signal is essentially a bigram distribution over the raw bytes of the code
section, but extracted in a novel way to compensate for the modifications (noise) introduced by
packers (as discussed in the following section).

An overview of the system is presented in Figure 1. We keep a database of previously-analyzed
malware programs that stores, for each sample, its code signal. Whenever a new sample arrives,
we extract its code signal. Then, we compute the distance to those stored within the database (see
Section 3.1). If this distance is below a certain threshold, a very similar malware sample already
exists in the database, and no further analysis is performed. If the distance is above the threshold,
the sample is submitted for further analysis and the database is updated accordingly.

To increase the speed and the precision of the distance computations, two additional steps are
introduced. First, we use a packer detector that automatically configures the sensitivity of the
distance computation based on the type of packing that was used (see Section 3.2). Second, the
distance computations are not performed for all samples in the database. Instead, a prefilter selects
likely candidates (see Section 3.3) to reduce the number of necessary calculations.

Figure 1: Architecture of our similarity filter.

3.1 Extracting and comparing code signals

As mentioned previously, we employ code signals to characterize the executable section of a binary,
and we use them as the basis for our distance computations. A code signal is a distribution of byte
bigrams (pairs of subsequent bytes), extracted directly from a program’s code segment. However,

5

it is not a straightforward bigram distribution. The first difference is that, instead of advancing
a two byte sliding window in increments of one byte, we use a bit-shifting approach in which the
sliding window is advanced in increments of only a single bit. Second, the extracted distribution
is not stored as-is, but sorted in descending order of frequencies. We discuss these steps and their
rationale in more detail below.

One reason for operating directly on the raw bytes of the malware code is speed. No disassembly
nor any other interpretation of the bytes are required. A second reason is that the similarity
measure must be packer-agnostic, meaning that the measure should work directly on the packed
code, which cannot be disassembled. The representation as a distribution of bigrams instead of
a sequence representation offers two advantages. First, the distribution remains a vector of fixed
size, independent of the size of the original code. Second, the distribution is less sensitive to code
location (e.g., the distribution does not change when functions or instructions are reordered).

Of course, it would be possible to use larger n-grams instead of bigrams. However, this implies
a large memory footprint without improving our results. On the other hand, smaller unigrams
(single bytes) are not distinctive enough to clearly differentiate programs.

Extracting code signals. As mentioned previously, code signals are designed to compensate
for “noise” (the transformations) caused by packing. As discussed in Section 2, when two similar
programs are compressed or encrypted by current packers, the resulting binaries share certain
similarities. We exploit these similarities that “shine through” the packing process to perform
our comparison. In particular, we introduce two techniques to address the previously-identified
problems of alignment destruction and distribution permutation, respectively.

1) Bit-shifting window: To recover from the destruction of the byte alignment, a bit-shifting window
is used to extract the bigrams, instead of the traditional byte-shifting window. The bit-shifting
process is shown in Figure 2. The importance of the bit-shift lies in its capacity to resynchronize
with the correct alignment in a compressed stream of data. To illustrate the importance of this
alignment, two similar sequences of bytes are shown in Figure 3, with only a few bits of difference.
These sequences are compressed using LZMA. The figure shows that a byte-shifting window loses
the alignment for the remaining of the extraction step whereas the bit-shifting window recovers as
soon as the modified bits are out of its scope.

Figure 2: Bigram extraction using bit shifting window.

2) Sorted distribution: Once all bigrams are extracted from a malware’s code section (using the
bit-shifting approach outlined above), we can compute the bigram frequencies. Their distribution
is then normalized to obtain a probability distribution.

To address the possible, additional encryption of the code by simple arithmetic operations, the
distribution is sorted in decreasing order. As mentioned in Section 2, for simple block encryption
algorithms (without chaining), the n-gram distribution of the encrypted code is simply a permuta-
tion of the original distribution; in these cases, sorting the bigram distribution can perfectly recover
the similarity between samples that was obscured by encryption.

6

Figure 3: Bit shifting window to recover from LZMA compression re-alignment.

In general, perfect recovery is possible in cases where the size of the encryption blocks is equal to
or smaller than the size of the n-grams used to construct the distribution (two bytes, in our case). If
blocks are of a larger size than n, the quality of the recovery process depends on the extent to which
the single encryption operation on a large block can be approximated as separate (independent)
encryption operations on sub-blocks of length n. This depends on the diffusion between the bits
of different sub-blocks when the encryption operation is applied, and thus, ultimately, on the
arithmetic operation and the key that are used.

Let us consider a bigram distribution of the code; this bigram distribution can be computed
from the 4-gram distribution as follows: for any bigram x, p(x) =

∑
y p(xy) +

∑
z p(zx) where y

and z represent all the possible adjacent bigrams. Let us now take the example of a 32-bit block
encryption function E, which is based on an arithmetic operation op (such as ⊕ or add). E is applied
to the 4-byte values xy and vw, where x, y, v, w are all 2-byte values. This yields x′y′ = E(xy) and
v′w′ = E(vw). The function E fails to achieve proper diffusion if x = v implies that x′ = v′ (and,
similarly, y = w implies that y′ = w′), independently of the adjacent bytes. Figure 4 discusses
different conditions under which certain arithmetic operations do not achieve diffusion. As one
can see, xor never achieves diffusion, and with add, only a single carry bit influences the two high
bytes. In such cases, the sum

∑
y p(xy) from the original distribution is equal to

∑
y′ p(x′y′) in

the encrypted distribution. Consequently, we obtain the following approximation: p(x) ≈ p(x′).
Because of this bias, the sorting operation can successfully recover from the permutation introduced
by the packer (crypter), even when encryption blocks are larger than bigrams.

Let us consider a 4-byte value X = X1X2. X is encrypted by a function E as follows:
X ′ = E(X, K) with K = K1K2 and X ′ = X ′

1X
′
2.

E is xor operation: Relation between encrypted values and inputs:
X ′

1 = X1 ⊕K1

X ′
2 = X2 ⊕K2

No diffusion is achieved between upper bytes of X1 and lower bytes of X2.

E is addition: Relation between encrypted values and inputs:
X ′

1 = X1 + K1 + carry
carry, X ′

2 = X2 + K2

No diffusion is achieved between upper bytes of X1 and lower bytes of X2 when carry = 0.
When carry = 1, only the rightmost bits of X1 are impacted by the result of the encryption of X2.

E is rotation: Rotation achieves diffusion because overflowing bytes are transferred from the side they overflow
to the opposite side. Still, two particular key values do not properly achieve diffusion:

If K = α16 and α is even then: X ′
1 = X1 and X ′

2 = X2

If K = α16 and α is odd then: X ′
1 = X2 and X ′

2 = X1

Figure 4: Diffusion between upper and lower bytes for different, arithmetic encryption operations.

7

Example. The effectiveness of the two aforementioned transformations to produce meaningful
code signals is shown on a concrete example in Figure 5. The figure shows the byte distributions of
two similar programs A and B on the left. First, these two programs were packed with LZMA. The
top right quadrant of the figure shows the byte distributions when extracted with a byte-shifting and
a bit-shifting window, respectively. The similarities between the distributions for the bit-shifting
approach can be clearly seen, while no similarities are present for the byte-shifting approach.

In the bottom right quadrant, one can see the effect of encrypting A and B with different en-
cryption operations and keys. Looking at the unsorted distributions, no similarities are evident.
Once the distributions are sorted, the situation changes. Note that small difference in the distri-
butions for the bit-shifting approach and the sorted permutations are due to the fact that A and
B are not identical. In fact, to produce B, 20% of all bytes in A were overwritten with random
values. Nevertheless, the code signals show clear similarities.

Original sample A LZMA compressed A
(byte-shifting window)

LZMA compressed A
(bit-shifting window)

Original sample B LZMA compressed B
(byte-shifting window)

LZMA compressed B
(bit-shifting window)

XOR encrypted A
(unsorted distribution)

XOR encrypted A
(sorted distribution)

ADD encrypted B
(unsorted distribution)

ADD encrypted B
(sorted distribution)

Figure 5: Reversing alignment destruction and distribution permutation.

8

Comparing code signals. The comparison between code signals (the bigram distributions) is
performed using Pearson’s χ2 test:

χ2 =
216∑
i=0

(oi−ri)
2

r2
i

,

where oi is the distribution extracted from the submitted sample, and ri are the reference distri-
butions from the candidate samples taken from the database.

If the test value remains below a given threshold τ , the samples are considered similar. Whenever
a similarity is found with one of the candidate samples, the comparison process is stopped, and
the reference to the existing sample is returned. If no similarity is found, the comparison process
is continued until the set of candidate samples is exhausted.

The actual value for the threshold τ is selected based on two factors. First, the threshold
provides a mechanism to adjust the sensitivity of the filter, and hence, to control the trade-off
between false negatives and false positives. In our use case, a false negative (failing to recognize
that a similar sample is already in the database) is much less problematic than a false positive
(incorrectly concluding that a similar sample is already in the DB). This is because, in case of a
false negative, a duplicate sample is analyzed, which results in a small waste of resources. In case
of a false positive, a new, and possibly interesting sample, is incorrectly discarded.

The second factor is the output of the packer detector (discussed in the next section). We use
a set of different thresholds that are optimized for the type of program that the χ2 test is applied
to. This is because slightly different thresholds should be used depending on whether a sample is
packed or not (and, if it is packed, whether it is compressed or encrypted).

3.2 Packer detection

As explained in Section 2, packers modify the byte distribution of the code. In particular, packing
often leads to a “flatter” distribution. In case of compression, frequent values are replaced by
references or short bit strings. In case of encryption, the same, frequent byte value might be
mapped to different, encrypted values. Flatter distributions can lead to false positives, because the
similarity values returned by the χ2 test decrease (compared to unpacked samples). To compensate
for this, the similarity threshold should be reduced accordingly when checking packed executables.

To detect packed executables, we leverage the insight that a “flattened” distribution makes
packed code more similar to random data. Thus, the statistical properties used to assess random
generators can be used to detect packed executables, and even identify different types of protection:
compression, encryption, and multi-layer encryption. The similarity threshold is then automati-
cally reduced according to the type of protection detected.

Packer detection and classification. To detect packers and to identify the type of protection,
we make use of four statistical tests T1, T2, T3 and T4, described below in Figure 6.

T1: Uncertainty test: Compute the code entropy.

T2: Uniformity test: Compute χ2 between the code distribution and an equiprobable distribution.

T3: Run test: Compute the longest sequence of identical bytes in the code.

T4: 1st-order dependency test: Compute the autocorrelation coefficient of the code.

Figure 6: Statistical tests for packer detection. These tests are performed over the raw bytes in the actual
code section or the packed code section (depending on whether sample is packed).

The entropy-based test T1 is the traditional test used to detect packed executables. A high
entropy value constitutes a significant sign of randomness. Thus, whenever T1 yields a code entropy

9

above a threshold, the sample is considered packed. For all packed samples, we use three additional
tests T2, T3, and T4 to determine more precisely the type of packing. These tests were originally
designed for assessing random number generators [24]. Here, we apply them in a novel context.

The uniformity-based test T2 and the run-based test T3 are primarily employed to distinguish
between compressed and encrypted code. When an encryption algorithm uses input blocks that
span multiple bytes, one particular (byte) value in the original code is likely mapped to several
different, encrypted values in the packed code, depending on the relative positions of the bytes
in the encrypted block. Thus, encrypted code is more uniform that compressed code, a property
checked by T2. Moreover, some compression algorithms (especially dictionary-based approaches)
can produce sequences (runs) of identical bytes, something that is unlikely for crypters. As a result,
the presence of longer runs of identical bytes is an indication of compression.

Finally, executable code is known to have a first-order dependency [21]. This dependency
between consecutive bytes is partially destroyed by compression and encryption. In the case of
multi-layer crypters, however, the non-overlapping boundaries of different layers introduce addi-
tional discontinuities. These discontinuities are measured by T4. Table 2 explains how our four
tests are combined to identify the generic type of packing. The advantage of our approach is that
it relies only on statistical properties, without requiring any packer-specific knowledge.

Type Test series Detection criterion

Packers T1 : H ≥ t1 packed if T1 = true

Compressors T2 : U < t2, T3 : lgth(run) ≤ t3, T4 : |ACF | < t4a compressed if packed ∧
no more than one of T2,T3,T4 = true

Crypters T2 : U < t2, T3 : lgth(run) ≤ t3, T4 : |ACF | < t4a encrypted if packed ∧
two or more of T2,T3,T4 = true

Multi-layer crypters T4 : |ACF | < t4b multi-layer if encrypted ∧ T4 = true

Table 2: Packer detection and classification.

Locating packed code. The four statistical tests have to be performed on the “normal” text
(code) segment for unprotected executables or on the section that holds the the packed code. Since
packers modify the sections of executables, the risk is to perform the test over the section that
contains the loader. Figure 7 shows our heuristic to find the section that contains the packed data.
We tested this heuristic on 20 packers, and found that it always located the correct section. Once
identified, this section is also used to extract the code signal.

Figure 7: Heuristic used to find the packed section (if present) in a binary.

3.3 Fast prefilter

Computing the similarity of a new malware sample with respect to all those stored already in
the database is potentially costly when the number of samples increases. To reduce the necessary
distance computations, we apply a prefilter to select only a subset of candidate samples for further
consideration. This prefilter step uses fast heuristics to discard samples that are non-similar based

10

on straightforward observations. More precisely, our prefilter uses two heuristics that are applied
sequentially: A first heuristic based on the size of samples, and a second heuristic based on the
structural information contained within the programs’ PE headers. In addition to the performance
gain, these heuristics are also useful to reduce potential false positives due to random collisions
between the code signals of two samples.

Size-based filtering. An immediate criterion of similarity between PE executables is their size.
When malware writers produce variants of their original code, these variants tend to be of similar
size. Of course, the size of samples derived from the same original source code might change be-
cause of compilation parameters, small modifications to the code, and, most importantly, because
of packing. However, taking into account these factors, we can define minimum and maximum
bounds to split executables into bins of different sizes. The prefilter first selects candidate samples
from the bin that contains samples with sizes similar to the new sample.

PE-characteristic-based filtering. Further criteria of similarity between executables are pro-
vided by their structural characteristics. In the PE format, the header contains important infor-
mation about the executable’s layout, both on disk and in memory, and meta-information about
the compilation process. PE features can be obtained by parsing the PE file. However, only a
subset of these features are useful for prefiltering. In particular, we only consider PE features that
provide sufficient differentiation between executables while being robust to packing (that is, PE
header features that are not modified by packers). The 16 features currently considered by our
heuristic are presented in Section 4, Table 7.

The prefilter computes the Hamming distance between the PE features of a new (incoming) sam-
ple and the features of all samples from the database that were selected by the first heuristic. When
the distance is larger than a threshold, the corresponding database sample is no longer considered.
All remaining samples become candidates for the subsequent similarity measure computation.

4 Evaluation

The filter presented in the previous section was implemented and is used to process samples sub-
mitted to an automated, dynamic malware analysis system. More precisely, the filter checks all
incoming malware samples and sends to the analysis tool only those samples for which no similar
instances can be found in the database of previously examined malware.

The evaluation was carried out in two steps. For the first step, presented in Section 4.1, we used
our filter on known samples for which ground truth was available. The goal of this first step was to
establish the similarity thresholds and verify the accuracy of our similarity measure. For the second
step, presented in Section 4.2, we applied the filter to a large collection of malware samples that
were provided to us by the authors of Anubis [1]. The goal of the second step was to verify that
the precision is maintained in real-world conditions, when the filter is exposed to a large number
of diverse malware samples and different packers. We also took advantage of this second step to
study the scalability and the robustness of our approach.

4.1 Experiments on known samples

We started our experiments with two data sets. The first set, S1, contained 384 PE executables,
mostly taken from the system directory of a Windows XP installation. It also contained open-
source software, such as Open Office, and free shareware, such as mIRC. All programs in S1 were
unpacked and served as examples of dissimilar (unrelated) binaries.

11

The second set, S2, contained 65 bots, whose source code and corresponding, compiled exe-
cutables were made available to us. These bots belong to two different malware families; 23 SdBot
and 42 rBot binaries. The SdBot samples were further classified as versions 4 and 5, while the
rBot samples span five versions ranging from 3 to 7. Since the samples in S2 are related to various
degrees, we could leverage this data set as labeled ground truth to study the effectiveness of our
similarity measure.

4.1.1 Packer detection

To assess our packer detection technique, we selected seven packers, based on their popularity with
malware writers. These packers were FSG, UPX, NsPack, WinUPack, Yoda’s Crypter, PolyEnE
and tElock. We also added instances of the Allaple worm as a representative example for polymor-
phic malware. Technically, Allaple is not a packer, but a stand-alone malware program. However,
its polymorphic engine uses techniques similar to packing.

Table 3: Specifications of the tested packers.

An overview of the packers (and Allaple’s polymorphic engine) is provided in Table 3. The tools
implement a wide variety of compression and encryption algorithms, and the table shows that there
are four compressors, two crypters, and two multi-layer crypters. According to [7], the eight packers
cover 35% of the samples from the Anubis data set (see column Prevalence). This corresponds to
72% of all packed samples. Moreover, because our detection technique is not signature-based but
based on information theoretic metrics, the obtained results also extend to many other packers that
use similar algorithms.

For the experiment, we used our packer detection techniques introduced in Section 3.2. To
produce a test set, we packed each of the 384 executables from S1 with all seven packers, respectively,
and then added 120 samples of Allaple. The unpacked versions of the 384 programs were also
included. The necessary thresholds (t1 = 4.73, t2 = 0.0012, t3 = 2, t4a = 0.005, t4b = 0.002) for the
detector were selected empirically based on a small subset of samples taken from the test set.

The detection results are presented as a confusion matrix in Table 4. One can see that the
detector is able to distinguish very well between unpacked and packed executables. More precisely,
the detection rate for unpacked samples is 99.74%, while it is over 90% on average for packed
programs. Furthermore, our statistical tests were able to correctly distinguish, in more than 80%
of the cases, between compressors and crypters. In particular, compressed samples were very well
identified. On the other hand, a certain fraction of crypters was misclassified as compressors. The
lowest detection rate was achieved for multi-layer crypters. The reason is that encrypting the same
executable multiple times does not necessarily result in stronger encryption. In particular, several

12

Name Unpacked Packed Compressed Encrypted Multi-layer Encrypted

Unpacked 99.74% 00.26% 00.26% 00.00% 00.00%

FSG 18.18% 81.82% 81.55% 00.00% 00.27%
UPX 03.04% 96.94% 96.10% 00.56% 00.28%
NsPack 12.11% 87.89% 87.63% 00.26% 00.00%
WinUPack 13.84% 86.16% 83.55% 02.09% 00.52%

Compressors 11.80% 88.20% 87.21% 00.72% 00.27%

Yoda’s Crypter 17.99% 82.01% 06.08% 74.87% 01.06%
PolyEne 06.01% 93.99% 28.98% 62.14% 02.87%

Crypters 12.00% 88.00% 17.53% 68.51% 01.96%

tElock 04.84% 95.16% 00.57% 70.94% 23.65%
Allaple 00.00% 100.0% 00.00% 72.22% 27.78%

Multi-layer crypters 02.42% 97.58% 00.28% 71.58% 25.72%

Table 4: Detection and classification of packers by statistical testing.

layers of xor encryption are basically equivalent to a single layer (especially when identical block
sizes and alignments are used for every layer). Thus, in many cases, our detector actually produces
a correct result by classifying a multi-layer-encrypted sample as the output of a regular crypter.

When putting our detection results into the context of related work, we note that no previous
technique provides fine-grained distinctions between different types of packing without making use
of packer-specific signatures. For example, in [16], the authors present a system that computes
the entropy of fixed-size code blocks and then uses the average and maximal entropy values to
detect packed executables. Applying their technique to our test set yields a detection rate of
around 90%, similar to our results. In [20], a packing detection technique is introduced that
does not rely on statistical properties of the code but on structural properties of the executable
sections. Compared to both previous systems, our technique is more precise because we do not only
distinguish between packed and regular code, but, thanks to our additional tests, we also provide
a more precise classification and recognize compressors, crypters, and multi-layer crypters.

In [9], the authors use entropy to establish profiles that allow the identification of specific packer
tools. This is more precise than our detector. However, the system needs to be trained for each
individual packer that should be recognized, something that our system does not require (and that
is not desirable, given the large number of different packers in the wild).

Discussion. Our filter leverages the results of the packer detector for the automated tuning
of the similarity threshold. For this, the most important distinction is between between packed
and unpacked samples, which works well; the additional classification results are used for further
refinement. It is important to observe that a misclassification only leads to the use of a suboptimal
threshold, but it does not prevent the system from computing correct similarity results.

4.1.2 Filter robustness

The goal of the next experiment was to understand to which extent our filter can recognize similar
executables, even when they are packed. In other words, what amount of changes between two
malware programs can be tolerated before they are deemed different, especially when the variants
are packed. To assess the robustness of our similarity measure to modifications of a program, we
selected ten random binaries from S1. We then generated 10,000 variants for each program. To
this end, we overwrote an increasing number of randomly-selected bytes in (the code sections of)
the binaries, increasing the fraction of modified bytes from 0% to 30%. The original executables
and their modified versions were then packed with the seven packers presented previously. Allaple
was left aside because its polymorphic engine is directly embedded in the binary.

13

Packer Threshold Percentage of modifications
0.00% 0.05% 0.1% 0.5% 1.0% 2.0% 5.0% 10% 20% 30%

None 0.0020 100% 100% 100% 100% 100% 0% 0% 0% 0% 0%

FSG 0.0018 100% 100% 100% 100% 100% 100% 100% 0% 0% 0%
UPX 0.0018 100% 100% 98% 58% 24% 17% 0% 0% 0% 0%
NsPack 0.0018 100% 100% 100% 100% 100% 100% 0% 0% 0% 0%
WinUPack 0.0018 100% 100% 100% 100% 100% 100% 0% 0% 0% 0%

YodaCrypter 0.0015 26% 21% 33% 27% 25% 23% 9% 0% 0% 0%
PolyEne 0.0015 90% 50% 7% 41% 1% 39% 22% 30% 1% 1%

tElock 0.0013 100% 100% 100% 99% 100% 100% 6% 0% 0% 0%

Table 5: Similarity resilience to packers.

Table 5 presents the results for the experiment. More precisely, the table shows, for different
levels of changes to the code, the fraction of variants that our filter considered similar to the original
program. We can see that our measure accurately identifies most variants as similar to the original
program when the amount of overwrites was below 2%. For modifications that exceed this level,
the similarity quickly drops. This is expected (and desirable), and it indicates that the filter can
correctly identify a program as a variant when it shares most bytes with the original. For programs
that are too different, the similarity reflects this and drops rapidly.

As expected, the filter performs worst in the case of crypters. Even for variants that start out
as identical to the original (before packing), our system does not detect all of them as similar. The
reason is that the size of the encryption blocks used by Yoda’s Crypter and PolyEne are 32 bits,
which is larger than the 16-bit bigram size that we use. Moreover, Yoda’s Crypter uses a cycle of
different encryption operations and keys per block, further worsening detection. Nevertheless, a
reasonable number of variants are still identified correctly. The excellent results for the multi-layer
crypter tElock are interesting (and possibly surprising). These results can be explained by the fact
that tElock combines several layers of 8-bit block encryptions using xor, which, for our analysis, is
equivalent to a single encryption layer with a one byte block size.

4.1.3 Tuning the filter granularity

The goal of the next experiment is to demonstrate that our filter offers a satisfactory precision for
its intended application, which is the recognition of similar malware samples, even when they are
packed. For this, we turned our attention to S2, the set of 65 classified bot samples. More precisely,
to build our test set, these 65 bots, together with all benign 384 programs from S1, were packed
and submitted to the filter.

The results of the experiment are shown in Table 6. To measure the precision of our filter, we
use the following metrics: (i) the rate of true hits, TH, which correspond to those cases where
the filter successfully discards similar samples, or forwards new, unique samples to the analysis
tool; (ii) the rate of false hits (or false positives), FH, which correspond to the cases where new
samples are discarded even though they are novel (these cases are the most critical, because they
may result in a loss of interesting information); and (iii) the rate of misses (or false negatives),
M , which correspond to cases where samples are submitted for further analysis even though they
should have been discarded (these errors are much less severe, because a miss only results in an
unnecessary analysis run).

We present the results for two different sets of thresholds. The first set of thresholds, which
was also used for the experiments in previous sections, corresponds to what we refer to as family
granularity. That is, the thresholds are set with the aim of recognizing as similar two samples when
they belong to the same malware family. That is, a sample that belongs to rBot version 5.0 should

14

be considered similar to an rBot version 6.0. In this case, we observe 96% of true hits on average,
with only 3.7% misses and, more importantly, only 0.3% of false hits.

TH = nb similar samples flagged as similar
+ nb unique samples flagged as unique

nb submitted samples

FH = nb dissimilar samples flagged as similar
nb submitted samples

M = nb similar samples flagged as dissimilar
nb submitted samples

Granularity levels:

(f)− two samples are similar if
they belong to the same family

(v)− two samples are similar if
they belong to the same family
and have the same version

Family granularity thresholds Version granularity thresholds

Packer Thrsh. TH(f) FH(f) M(f) TH(v) FH(v) M(v) Thresh. TH(v) FH(v) M(v)

None 0.0020 99.8% 00.2% 00.0% 94.2% 05.8% 00.0% 0.0012 98.0% 00.2% 01.8%

FSG 0.0018 99.6% 00.4% 00.0% 91.5% 08.5% 00.0% 0.0008 94.2% 00.4% 05.4%
UPX 0.0018 91.8% 00.2% 08.0% 89.9% 02.1% 08.0% 0.0008 91.1% 00.4% 08.5%
NsPack 0.0018 99.4% 00.2% 00.4% 93.6% 06.0% 00.4% 0.0008 94.7% 00.2% 05.1%
WinUPack 0.0018 99.2% 00.4% 00.4% 93.6% 06.0% 00.4% 0.0008 94.7% 00.2% 05.1%

YodaCrypter 0.0015 89.3% 00.0% 10.7% 90.4% 00.2% 09.4% 0.0006 90.2% 00.0% 09.8%
PolyEne 0.0015 90.0% 00.4% 09.6% 90.6% 01.2% 08.2% 0.0006 89.8% 00.4% 09.8%

tElock 0.0013 96.1% 00.6% 03.3% 95.1% 02.9% 02.0% 0.0004 91.8% 00.2% 08.0%

Allaple 0.0013 92.2% 00.0% 07.8% 82.2% 10.0% 07.8% 0.0004 76.6% 00.0% 23.4%

Average - -

Table 6: Precision of the similarity measure for various packers.

However, depending on the level of granularity that is desired, it might be preferable to analyze
different versions of the same malware family. In this case, the family granularity thresholds are
likely too loose. This can be seen by looking at the false hit rates for malware versions, denoted as
FH(v), which reach almost 6% when using family granularity thresholds. To be able to differentiate
between different malware versions, we created a second set of tighter thresholds (referred to as
version granularity). It can be seen that, using these thresholds, the false hits drop close to 0%.
However, we also have to accept that the rate of misses increases, which leads to more unnecessary
analyses. This shows that the filter offers a trade-off between accuracy and efficiency that can be
adjusted via the similarity thresholds.

We also examined the precision of our system when analyzing the polymorphic worm Allaple,
which was a major issue in 2007-2008, polluting malware repositories with thousands of mutated
variants. The experiments have been run over two versions of the worm, namely, Allaple.b and
Allaple.e. The results are also given in Table 6. The worm variants are accurately detected in more
than 92% of the cases, with a good distinction between the two versions.

4.1.4 Configuring the prefilter

To increase the speed of our system, we apply a fast prefilter to select candidate samples for further
analysis. In this section, we discuss details about the configuration of this prefilter.

The first heuristic divides samples into bins of different (program code) sizes. These size ranges
must be configured properly so that the variants of a given program fall within the same bin, while
the bins are tight enough to be effective. To measure the impact of current packers on the sizes of
binaries, we used the set of 100K patched (modified) and packed samples from Section 4.1.2. Our
analysis results indicated that similarity is preserved up to 2% of modifications. For this amount of
modifications, the maximum size variation that we observed, over all packers, was 4.4%. Based on
this observation, the lower and upper bounds for the first heuristic were set to 95.6% and 104.4%
of the original size. Outside these boundaries, samples are considered too different.

15

The second heuristic is used to determine those candidate samples that share sufficient structural
similarities with the new input sample. The structural features are extracted from the PE headers
of the binaries. Of course, only a subset of the possible PE features can be used to distinguish
programs. In particular, we require features that distinguish well between different programs, are
preserved by the packing process, and are identical (or similar) for similar samples.

To find useful, structural features, we again examined the patched and packed samples discussed
in Section 4.1.2. This time, we examined their PE headers, computing the entropy, H, and the
absolute number of different values, card, for each feature. While large values for H and card
are a good indicator that a feature might be interesting for our purpose, we had to discard those
that were different for each packed sample (e.g., timestamps or checksums). Moreover, we had to
discard features that are destroyed by the packing process, such as information from the section
table or the import table. Table 7 provides the list of the remaining 16 features that satisfy our
requirements. To select a sample from the database as a candidate for comparison with a new
malware binary, we require that all features of the two programs are identical (the threshold for
the Hamming distance is 0). As our experiments demonstrate, even such a restrictive check yields
good results. We discuss the robustness of the prefiltering step in more detail in Section 4.2.2.

Location Name H card Name H card

DOS Header AddressNewExeHeader 1.87 13

NT Header Characteristics 0.67 7

Optional (min/maj)LinkerVersion 0.68 6 CodeBase 0.93 6
Header ImageBase 0.44 5 (min/maj)OSVersion 0.43 4

(min/maj)ImageVersion 0.46 4 (min/maj)SubsystemVersion 0.45 4
Subsystem 0.22 2 DllCharacteristics 0.75 7
SizeStackReserve 0.31 4 SizeStackCommit 0.44 5

Table 7: PE Header characteristics selected for comparison.

4.2 Large scale experiments

The experiments with known malware (bot) samples allowed us to analyze the accuracy of our
filter, to tune detection thresholds, and to configure the prefilter. In the next step, we performed a
large scale experiment with 794,665 malware samples that were submitted to the Anubis analysis
tool in 2009. We obtained these samples from the authors of [6]. Moreover, we were given be-
havioral information (execution traces) for each sample and a reference clustering. This clustering
partitioned the malware programs into 91,522 different groups, where all samples in a group exhibit
similar runtime activity.

4.2.1 Precision and scalability of the filter

We applied our filter to the entire data set of almost 795 thousand malware samples. To evaluate
the precision of the filter, we use the metrics previously introduced in Section 4.1.3, namely, true
hits (TH), false hits (FH), and misses (M).

A problem for this experiment was the fact that we did not have ground truth available (such
as source code or reliable malware labels). To address this, we introduced a reference classification
based on the behavioral and structural information of executables. More precisely, we leveraged
the behavioral clusters that were provided to us [6]. In a first step, we considered two samples
as similar when they produced similar behaviors (execution traces), and hence, ended up in the
same behavioral cluster. Unfortunately, the execution of malware programs is not deterministic
and can change depending on the environment, time, or the availability of network resources (such
as command and control servers). As a result, similar samples might end up in different behavioral

16

clusters. Thus, to improve the reference clustering, we also considered some simple, structural
characteristics of the malware programs. More precisely, we checked whether the executable sections
of two programs share the same name, size, position in memory, and hash of the sections’ contents.
We used this information in a second step, where we considered two samples as similar when at least
90% of their structural information is identical and they share more than 70% of their behavior.

Precision. Table 8 shows the precision of our filter for three sets of thresholds. The first two
correspond to the thresholds for family and version granularity, respectively, while the third is an
extra set with more conservative thresholds. These three sets represent different points in the trade-
off between reducing unnecessary analysis runs (true hits) and the risk of discarding potentially
interesting samples (false hits).

For the first thresholds, it can be seen that the filter achieves a true hit rate of more than 90%.
That is, more than 90% of similar (irrelevant) samples are correctly discarded. This leads to a
reduction of the amount of overall analysis runs by a factor of almost five – saving a significant
amount of valuable resources. This is paid for by a false hit rate of 0.7%. When the thresholds are
more conservative, the number of incorrectly discarded samples (FH) is reduced to 0.3%. This,
however, also lowers the hit rate, and accordingly, the reduction factor that can be achieved.

Similarity Thresholds Family accuracy Version accuracy Misses Reduction
U C E MLE TH(f) FH(f) TH(u) FH(u) M Factor
0.0020 0.0018 0.0015 0.00130 91.1% 00.7% 89.8% 02.0% 09.2% 4.84
0.0012 0.0008 0.0006 0.00040 84.6% 00.5% 83.8% 01.3% 14.9% 3.79
0.0005 0.0003 0.0002 0.00008 74.4% 00.3% 74.0% 00.7% 25.3% 2.71

Table 8: Accuracy of the comparison according to the selected thresholds. Thresholds legend: U –
Unpacked, C – Compressed, E – Encrypted, MLE – Multi-Layer Encrypted

We then analyzed the false hits produced by our filter in more details. We found that incorrect
similarities can be explained either by the failure of the heuristic to find the section containing the
packed code, or, in most cases, by the misclassification of samples that, although they belong to
different families, are part of the same class of malware. This was mainly true for fake anti-virus
software and IRC bots, probably because they share substantial portions of code. For this analysis,
we used the malware labels produced by more than 40 AV scanners (run by VirusTotal [5]).

With respect to misses, we found that many cases were caused by similar samples that exhibit
similar dynamic behavior but that were protected by different packers. Not surprisingly, for a given
executable, our filter tends to create a new database entry for each different packer (type) used to
protect this binary.

Scalability. To understand the scalability of our approach, we first examined the growth of
the sample database when the number of submitted samples increases. According to Figure 8, the
database size increases sub-linearly with the number of submissions. Figure 9 shows a linear increase
of the computation time with the number of entries. The average computation time for similar
samples is lower because, as soon as a similar sample is found in the database, the computation
stops. Even in the worst case, for a unique sample, the filter takes no more than 300 ms. This would
be 1,200 times faster than the 6 minutes required to execute a sample within Anubis. Moreover,
the slowdown that we observe with the increase of the database size indicates that the system will
scale at least to tens of millions of samples.

The prefilter plays an important role in helping to achieve excellent performance. In Figure 10,
it can be seen that the two heuristics reduce the candidate set to less than 1% of the database

17

Figure 8: Database growth. Figure 9: Time/Submission. Figure 10: prefilter reduction.

samples. Moreover, the figure shows that the prefilter maintains its effectiveness independent of
the size of the database.

4.2.2 Comparison with existing techniques and robustness

To compare our filter with previous work on identifying malware similarity, we selected a subset of
18,645 samples from our real-world data set. These samples were chosen because we were given the
corresponding, unpacked binaries, produced by a dynamic, generic unpacker that is part of Anubis.

For the comparison, we first reimplemented peHash [27]. This tool operates mostly on structural
characteristics of malware samples, and hence, does not require to unpack or disassemble the code
beforehand. We also wanted to understand how much the precision of our filter suffers because it has
to operate on packed code (bytes) instead of disassembled instructions. For this, we implemented a
second version of our filter, where the bigram distribution (code signal) of a binary is not computed
over the raw (and possibly packed) bytes, but over bigrams of disassembled instructions. This
technique is similar to the mechanism used by Vilo [26]. Finally, to compare with an alternative
approach to detect malware similarity, we used an existing tool that operates on the programs’
control flow graphs [15]. Unpacked samples are needed as input for the two latter systems.

Method TH FH M Time Prerequisites
Distance-based (Filter) 80.8% 00.7% 18.5% 6 min None
Hash-based (peHash) 81.1% 00.6% 18.3% 9 min None
Distance-based 84.3% 00.5% 15.2% 239 min∗ Code unpacked and disassembled
Graph-based 83.4% 00.4% 16.2% 847 min∗ Code unpacked and disassembled

Table 9: Comparison to other similarity measures. (∗ Unpacking time not included)

Table 9 compares the results obtained for the four tested tools, both in terms of precision and
runtime. A first observation is that peHash performs quite similar to our approach. However, the
approach followed by peHash comes at the significant expense of robustness, as we will discuss
below. A second observation is that the two systems that operate on unpacked executables do
not achieve a significantly better accuracy; in fact, the overall differences are minimal. This is
encouraging because it shows that our filter, working on packed code, produces almost the same
results as tools that require to unpack and disassemble the malicious code. Moreover, the runtime
of these tools is slower by an order of magnitude. In addition, and more importantly, previously
unpacking the samples with a generic, dynamic unpacker has a computational cost that is similar
to that of the dynamic analysis that our filter is designed to avoid.

18

Robustness. In terms of robustness, it is useful to compare our filter to peHash. peHash does not
require to unpack or disassemble the code; in fact, the system basically ignores the code altogether
(with the exception of computing the Kolmogorov complexity for sections to estimate their degree
of compression/encryption). Instead, the system mostly looks at structural information extracted
from the PE header (which is somewhat similar to our prefilter).

The problem is that it is easy for a packer to change the structural features that peHash is relying
upon. To demonstrate this, we developed a small obfuscation tool that can apply the following,
very simple transformations to a binary: append new data sections of random size and position at
the end of the memory image; increase the size of data sections on disk (without modifying the
virtual memory layout); add access bits (shared, read, write, or execute) to sections; and inject
random data in additional, small data sections. Using this tool, we generated 20K variants from
ten original programs. These variants, submitted to peHash, generated 8,380 different hashes. Our
technique, on the other hand, identified only 163 different samples. This shows that peHash can
be easily fooled.

Of course, we also need to examine the reasons why our filter considered some samples as
different that should have been recognized as similar. The first reason was that the sizes of the
binaries were changed by the obfuscator. This caused the prefilter to put samples into different bins.
The second reason was that our simple heuristic to identify the packed code section (see Figure 7)
made mistakes. Both problems can be addressed: To handle the first one, we can increase the size
of bins. This will result in a small performance loss, which, given the overall speed of our filter, is
acceptable. The second problem would require a more sophisticated heuristic to distinguish packed
code from random data. For this, we could leverage the code signals, which we already extract.

More generally, we also need to consider attacks that malware authors could launch to subvert
our filter. One venue for the attacker is to target the prefilter. This can be achieved by modifying
artificially the size of the executable and/or the selected PE features. However, the configuration
of the prefilter can be easily loosened, either by increasing the range of the size-bins, by increasing
the Hamming distance threshold, or by simply removing some features from the computation. The
reason is that our similarity measure ultimately depends on the actual bytes in the code section.
While loosening the prefilter criteria would lower its effectiveness, our system is currently at least
three orders of magnitude faster than a dynamic analysis run. Thus, even a significantly slower
analysis would still provide substantial benefits.

To tamper with the core of the technique, an attacker needs to modify the code section. One
simple approach would be to append random data to it. To counter this, we could modify our filter
to compute the similarity not for the entire code section, but for fixed-sized blocks. Samples are
similar when a certain fraction or number of code blocks “match.” More complex code modifica-
tions, such as interweaving random data with code, requires correct disassembly of the program.
This is hard for packers that aim to use arbitrary binaries as input. The reason is that robust
disassembly of x86 binaries is theoretically undecidable and difficult in practice [14].

5 Conclusion

In this paper, we introduced an accurate, robust, and efficient technique for detecting similar-
ity between malware samples. We leverage the fact that current malware packers only employ
compression and weak encryption, and, therefore, information about the original program can be
extracted from a packed binary. Unlike previous work [8, 11, 13, 26], our technique is thus able
to directly operate on packed binaries, avoiding the costly unpacking process. This allows our
system to filter submissions to malware repositories or automated dynamic analysis tools. Large
scale experiments with almost 795 thousand malware samples demonstrate that the filter achieves

19

a significant reduction of the samples that need to be analyzed, with only a small amount of false
positives.

References

[1] ANUBIS: Analyzing unknown binaries. http://anubis.iseclab.org, 2010.

[2] CWSandbox :: Behavior-based malware analysis. http://www.mwanalysis.org, 2010.

[3] Norman Sandbox. http://www.norman.com/technology/norman sandbox/, 2010.

[4] ThreatExpert. http://www.threatexpert.com, 2010.

[5] VirusTotal: free online virus and malware scan. http://www.virustotal.com, 2010.

[6] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda. Scalable, behavior-based malware clus-
tering. In Proc. Symp. Network and Distributed System Security (NDSS), 2009.

[7] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel. A view on current malware behaviors. In USENIX
Workshop Large-Scale Exploits and Emergent Threats (LEET), 2009.

[8] E. Carrera and G. Erdelyi. Digital genome mapping. In Virus Bulletin, 2004.

[9] T. Ebringer, L. Sun, and S. Boztas. A fast randomness test that preserves local detail. In Virus Bulletin, 2008.

[10] M. Gheorghescu. An automated virus classification system. In Virus Bulletin, 2005.

[11] X. Hu, T. Chiueh, and K. G. Shin. Large-scale malware indexing using function-call graphs. In Proc. ACM
Conf. Computer and Communications Security (CCS), pages 611–620. ACM, 2009.

[12] M. G. Kang, P. Poosankam, and H. Yin. Renovo: a hidden code extractor for packed executables. In Proc.
ACM Workshop Recurring Malcode (WORM), pages 46–53. ACM, 2007.

[13] A. Karnik, S. Goswami, and R. Guha. Detecting obfuscated viruses using cosine similarity analysis. In Proc.
Asia Int. Conf. Modelling & Simulation (AMS), pages 165–170. IEEE Computer Society, 2007.

[14] N. Krishnamoorthy, S. Debray, and K. Fligg. Static detection of disassembly errors. In Proc. Working Conf.
Reverse Engineering (WCRE), pages 259–268, 2009.

[15] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymorphic worm detection using structural
information of executables. In Proc. Symp. Recent Advances in Intrusion Detection (RAID), 2005.

[16] R. Lyda and J. Hamrock. Using entropy analysis to find encrypted and packed malware. IEEE Security and
Privacy, 5(2):40–45, 2007.

[17] L. Martignoni, M. Christodorescu, and S. Jha. Omniunpack: Fast, generic, and safe unpacking of malware. In
Proc. Annual Computer Security Applications Conf. (ACSAC), pages 431–441. IEEE Computer Society, 2007.

[18] R. Moskovitch, D. Stopel, C. Feher, N. Nissim, N. Japkowicz, and Y. Elovici. Unknown malcode detection and
the imbalance problem. J. Computer Virology, 5(4):295–308, 2009.

[19] PandaLabs. Annual report. Technical report, 2009.

[20] R. Perdisci, A. Lanzi, and W. Lee. Classification of packed executables for accurate computer virus detection.
Pattern Recognition Letters, 29(14):1941–1946, 2008.

[21] K. S. Reddy, S. K. Dash, and A. K. Pujari. New malicious code detection using variable length n-grams. In
Proc. Int. Conf. Information Systems Security, LNCS vol. 4332, pages 276–288, 2006.

[22] R. Rolles. Unpacking virtualization obfuscators. In USENIX Workshop Offensive Technologies (WOOT), 2009.

[23] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee. Polyunpack: Automating the hidden-code extraction
of unpack-executing malware. In Annual Computer Security Applications Conference, 2006.

[24] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert,
J. Dray, and S. Vo. A statistical test suite for random and pseudorandom number generators for cryptographic
applications. Technical Report 800-22, NIST, 2001.

[25] S. M. Tabish, M. Z. Shafiq, and M. Farooq. Malware detection using statistical analysis of byte-level file content.
In Proc. ACM SIGKDD Workshop CyberSecurity and Intelligence Informatics, 2009.

[26] A. Walenstein, M. Venable, M. Hayes, C. Thompson, and A. Lakhotia. Exploiting similarity between variants
to defeat malware. In Proc. BlackHat DC Conf., 2007.

[27] G. Wicherski. peHash: A novel approach to fast malware clustering. In USENIX Workshop Large-Scale Exploits
and Emergent Threats (LEET), 2009.

20

