AppScale: Open-Source Platform-As-A-Service

UCSB Technical Report #2011-01, January, 2011

Chris Bunch  Navraj Chohan  Chandra Krintz
Computer Science Department
University of California, Santa Barbara

1 Introduction

AppScale is a scalable, distributed, and fault tolerani¢iuntime system that we have developed at the University of
California, Santa Barbara as part of our research into tRegemeration of programming systems [5, 3]. In particular,
AppScale is a cloud platform, i.e. a platform-as-a-ser{iR@aS) cloud fabric, that executes over cluster resources.
The cluster resources underlying AppScale can be managhdwwithout virtualization (e.g. Xen, KVM) or via
popular cloud infrastructures including Amazon EC2 [6] &dtalyptus [8].

The AppScale platform virtualizes, abstracts, and mipt cloud and system services across multiple appli-
cations, enablingvrite-one, run-anywhere (WORAyogram development for the cloud. In addition to simpfifyi
application development and deployment using cloud syst&md modern distributed computing technologies, App-
Scale brings popular public cloud fabrics to “on-premis®”private, clusters. To enable this, we emulate key cloud
layers from the commercial sector — (i) to engender a usemuamity, (ii) to gain access to and to study real ap-
plications, and (iii) to investigate the potential implemtetions of, and extensions to, public cloud systems using
open-source technologies.

The first APl we have chosen to emulate is that of Google Appriend 1]. Google App Engine is a cloud platform
that provides scalable implementations of technologigmittant for web services (messaging, key-value data storag
multi-tasking, web server support, elasticity, and reseunanagement, among others). Using Google App Engine
developers debug and test their programs using an openessoftware development kit (SDK) provided by Google
that implements non-scalable versions of the APIs. Dewskothen upload their code and data to Google clusters, and
can then use Google resources and services “pay-per-usa’free or low-cost rental basis.

AppScale implements the (open) Google App Engine APIs shiahdpplications that execute on Google App
Engine, also execute on AppScale without modification upimgate cluster resources or public cloud infrastructures
Our API and service implementations target scale, didiobyfault tolerance, high-performance, and high avéiab
ity. We leverage mature open-source technologies to tretegedegree possible to enable this. AppScale implements
multiple language runtimes (Java, Python, Ruby) as apgpitdrontends and a wide range of open source database
technologies (key-value or relational) as options fornteinal system-wide datastore. AppScale is not a replaceme
for Google App Engine or any other public cloud technologystéad, AppScale is a robust and extensive distributed
system that provisions the resources it is allocated slyadetdboss multiple applications.

The AppScale platform exports services and APIs in additiothose provided by Google App Engine. These
technologies are important for application domains beythiode of web services, e.g. data analytics and data and
computationally intensive applications. AppScale exptrese technologies as services, i.e. AppScale “serzgs-i
libraries, tools, and software packages, including MapRedX10, R, and MPI, and, as it does for the Google App
Engine APls, AppScale provides automatic configuratiop)aanent, and distribution for them, as well as support
for their elasticity, load balancing, and fault tolerance.

Since AppScale provides a software layer between apgitsitind the implementations of cloud APIs and ser-
vices, we are also able to employ existing cloud servicethiimplementations. As such, AppScale providbglarid
cloud platform — a programming system through which an apfibn can access services from different clouds (a mix
of public and private) at different times or concurrentlyuc8 support can be used by developers to move data be-
tween clouds, e.g., for disaster recovery, fault toleradata backups, to reduce public cloud costs (to use lowsr-co
alternatives), and to “fall out” from a private cloud withmlited resources to a public cloud on-demand.



1.1 TheAppScalelnternals

Figure 1 shows the layout of AppScale. At the highest levetdtis a load balancer, which takes incoming requests
from users and routes them to an application server, copiegich may be on a number of remote hosts. The
application layer is supported by a wide range of servicasehses application development by precluding the need
for reimplementation of common tasks. At the lowest leveréhis a system-wide database service which provides
persistent storage onto the disk.

AppScale automatically provisions services and does sdanlatolerant and scalable manner. A key automated
process is the setting up of a datastore. AppScale suppanty thatabases that are implemented in many differ-
ent languages and have different designs. These datalras€xaasandra [4], HBase [12], Hypertable  [13],
MongoDB[15], MemcacheDB[14], Scalaris  [17], SimpleDB [18], MySQL Cluster [16], andVoldemort [21].

AppScale

Load Balancer

Applications

|
[ Users J [ Mail ][ Cron ][ Image ]
BlobStore Chnnel I Fetch J

Figure 1: The multi-tiered approach within AppScale coissié a load balancer, multiple application servers, sévera
services to support the different APIs, and a datastoredmsigtent data and state (not all APIs and services are shown
here).

1.2 Google App Engine APIs

Foremost, AppScale provides implementations for the Goéglb Engine APIs. These APIs provide several scalable
services which can be leveraged by a Google App Engine atigiic The Google App Engine APIs d@bstore
Channel , Datastore , Images , Memcache, Namespaces, TaskQueue , Users , URL Fetch , andXMPP
Google App Engine provides an overview of the APIs and thercfionality athttp://code.google.com/
appengine/docs/ . We emulate this functionality within AppScale using openree software systems, tools, and
services, as well as new components that we have writtenmfgtlement all of the APIs assuming distributed execu-
tion so that we are able to provide isolation, scalabilitgsgcity, and fault-tolerance for cloud platform appticas.
This is in sharp contrast to the Google App Engine SDKs thatpaovided for testing and debugging using a single
machine [10]. We describe the features of the API that Ap[eSaarently does not support in Section 4.

Blobstore API
The Blobstore API enables users to store large entitiesxéfdebinary data. The upload is performed by an



application using a form post with a file name. This large 8ladt constrained by the 1MB limitation of Blobs stored
using the Datastore API.

Channel API

The Channel API allows applications to push messages franafgiplication server to a client's browser. The
program must register an application token with the servidech in turn is used by a JavaScript library to connect to
a messaging service. The Channel APl is useful for creapptiGations such as online chat or a real time multi-player
game. The implementation in AppScale has the ability to seessages to multiple receivers who are registered using
the same application token. Google App Engine imposes gteaton that there may be only one receiver per sending
channel. AppScale uses Ejabberd and Strophejs in its ingaitation.

Datastore API

The Datastore API allows for the persistence of data. TheheRlmany useful function calls that all ultimately
map to either a PUT, GET, DELETE, QUERY. The Google Query legg (GQL) is similar to and is a subset of
SQL; fundamentally, it lacks relational operations suci@iN and MERGE. AppScale employs in-memory filters
for GQL statements while Google App Engine maps them to raungeies on the datastore.

AppScale implements transactional semantics (multi-;kewAtomic updates) using the same semantics as Google
App Engine. Transactions can only be performed within aityegtoup [9]. Entity groups are programmatic struc-
tures that describe relationships between datastore stem8imilarly, transactions are expressed within a progra
via application functions passed to the Google App Engine astransaction” function. All AppScale datastore
operations within a transaction are ACID-compliant withAAECOMMIT isolation.

AppScale’s implementation of transactions are databasestig and rely on ZooKeeper [23] for locking entity
groups. ZooKeeper stores information about which entéiescurrently locked and our transactional middleware
employs a garbage collector for locks to make sure that laoksiot held for a long periods of time. We store journal
information within the database and implement rollbackadietl transactions.

Developers use entity groups and transactions for apjgitsithat require atomic updates across multiple keys (in
an entity group). Yet, transaction semantics introducelmead, stress the underlying database implementation, and
limit scalability (relative to non-transactional opeaats). To reduce this overhead, we encourage program derslop
to avoid creating large entity groups and to shard (and spvag global state across many entity groups.

Images API

The Images API facilitates programmatic manipulation ohges. Popular functions in this API include the ability
to generate thumbnails, rotation, composition, converhfiis, and cropping images. The API in AppScale uses the
Google App Engine SDK implementation.

Memcache API

The Memcache API permits applications to store their fretjyeised data in a distributed memory grid. This can
serve as a cache to prevent relatively expensive re-cotipngar database accesses. Developers must be aware that
it is possible that entries may be evacuated to create spaocew updates.

Namespace API

The Namespace API implements the ability to segregate daialifferent namespaces. For example, developers
can test their application in production without tamperivith live production data. The Namespace API can also be
used with the Memcache and Task Queue APIs.

Task Queue API

The Google App Engine platform lacks the ability to do thiegdr computations within a request greater than 30
seconds. The TaskQueue API facilitates computation (faskbe background by enqueuing tasks via a web request.
Task durations are restricted in Google App Engine to 30rs#x¢as of GAE 1.4.0). AppScale implements the same
restriction but this value can be increased with minor coddification. A potential workaround is to chain multiple
task queues, where each task does up to 30 seconds of workem@rnqueues another task to pick up where the
current one left off.



UsersAPI

The Users API provides authentication for web applicattbnsugh the use of cookies. While GAE provides access
to users who have accounts with Google, AppScale requiesrs i3 sign up an account through the AppScale portal
URL. In addition, the API distinguishes between regular addhinistrator users.

URL Fetch API

The URL Fetch API enables an application the ability to do P@8d GET requests on remote resources. REST
APIs from third parties can be accessed using this API. Tipdementation in AppScale is identical to what is provided
by the Google App Engine SDK.

XMPP API

The XMPP API presents the ability to receive and send messagesers with a valid XMPP account. Google
App Engine leverages the Google Talk infrastructure whifgpBcale is able to use a scalable implementation in
Ejabberd [7].

1.3 Other AppScale APIs

In addition to the Google App Engine APIs, AppScale impleta@ther APIs which are not supported by Google App
Engine. These APIs are of use to cloud platform applicatamselopers for emerging application domains such as
data analytics and high-performance computing.

MapReduce Streaming API

. Within Google App Engine itself, there currently is no madtby which long running, arbitrary computation can be
performed by applications. AppScale supports such contipnteia Hadoop Streamindn{tp://wiki.apache.
org/hadoop/HadoopStreaming ). Through Hadoop Streaming, users can specify a Mapper addder pro-
gram that can run under the MapReduce programming paradhgutt-tolerance and data replication is automatically
handled by the Hadoop Streaming framework, and AppScalesegna simple API that interfaces to Hadoop Stream-
ing. This APl is:

e putMRInput(data, inputLoc)Given a string "data” and a Hadoop file system location “ithjme”, creates a file
on the Hadoop file system named “inputLoc”

e runMRJob(mapper, reducer, inputLoc, outputLoc, confi@gjyen the relative paths to a mapper and reducer file
(relative to the main Python file being run), run a Hadoop MeghiRe Streaming job. Inputis fed to the program
via the HDFS file named “inputLoc”, and output is fed to the HbiHe named “outputLoc”. If a hash is passed
as "config”, the key / value pairs are passed as configuraptiores to Hadoop Streaming.

e getMROutput(outputLoc)Given a Hadoop file system location “outputLoc”, returngrang with the contents
of the named file.

o writeTempFile(suffix, data)Writes a file to /tmp on the local machine with the contentsadds useful for
passing a file with nodes to exclude from MapReduce jobs.

e getAllIPs() Returns an array of all the IPs in the AppScale cloud. Isuidef excluding or including nodes
based on some user-defined application logic.

e getNumOfNodes()Returns an integer with the number of nodes in the AppSdaledc Is useful for deter-
mining at MapReduce run time, how many Map tasks and Redsks &hould be run for optimal performance
(recommended value is 1 Map task per node).

e getMRLogs(outputLoc)Returns a string with the MapReduce job log for the job whoggput is located at
outputLoc. Data is returned as a combination of XML and kegllg pairs, in the standard Hadoop format.



Currently, Mappers and Reducers can be written by devedap&tython, Ruby, or Perl. In addition, we and others
can easily extend AppScale with support for other programgrtanguages.

To use this API, the cloud administrator must select HBasH\yqrertable as the platform datastore so that the
Hadoop Distributed File System (HDFS) is automaticallyldged (both of these datastores use HDFS for their im-
plementations). A complete sample application that useMgmpReduce Streaming APl is bundled with the AppScale
Tools and is callednapreduce

EC2 API

Google App Engine does not provide any mechanisms by whigtsusin interact with Amazon Web Services natively,
so to fill this void, AppScale provides an Amazon EC2 API. Wdsean use this API to spawn virtual machines and
manage them entirely through an AppScale web service. Thie fuactions this API provides mirror those of the
EC2 command line tools:

e ec2run.instances(options)Spawns virtual machines with the specified options (imetg@l as command-line
arguments).

e ec2describeinstances()Returns the status of all machines owned by the current user

e ec2terminateinstances(options)lerminates virtual machines with the specified option®(preted as command-
line arguments).

e ec2addkeypair(options) Creates a new SSH key-pair that can be used to log in to Vimaahines that are
spawned with this key-pair's name.

e ec2deletekeypair(options)Deletes the named SSH key-pair from the underlying clord@tructure.

e ec2describeavailability_zones(options)in Eucalyptus, this returns information relating to themher of vir-
tual machines available to be spawned by users.

e ec2describeimages() Returns information about the virtual machine images,diaks, and kernels that are
available for use in the system.

e ec2rebootinstances(options)Reboots virtual machines with the specified options (prieted as command-
line arguments).

Other functions are available to handle the storage anigtvatrof EC2 credentials: their usage can be found in the
ec2demapplication that is bundled with the AppScale Tools. Alugively, the KOALA Cloud Manager project
provides a Google App Engine application that implementeisé AWS APIs (as of writing, EC2, EBS, S3, and
ELB are supported), and can run over Google App Engine asasetiver AppScale. It can be found dtttp:
/lcode.google.com/p/koalacloud/

2 Installation and Deployment

The typical use of AppScale and the one we recommend is @llidgipScale within a virtual machine image. The use
of virtual machines for AppScale installation facilitatdasticity (growing and shrinking of services and applad,
and load balancing). We currently support the use of Xen avillllas the virtualization infrastructure, however, any
technology should suffice. Deploying AppScale over a virgaal private cluster entails copying the virtual machine
image and instantiating it manually. Thus, a cloud admiatst is able to use any virtualization system with which
she is able to instantiate guest virtual machines (VMs). ¥¢g@mmend the use of vmbuilder [20] for creating Xen
guest VMs and virt-install [19] for creating KVM guest VMs. aMurrently support only the Ubuntu 10.04 (Lucid
Lynx) Linux server system and distribution and so guest Vh®8d implement these technologies. Once a guest VM
image is running Ubuntu 10.04 Server Edition ensure thairngtance is able to obtain an accessible IP address (e.g.,
the networking operates correctly).

An alternative AppScale deployment is over a cloud infrattire. We currently support both the Amazon Web
Services (AWS) Elastic Compute Cloud (EC2) public cloucedffg and the open source implementation of AWS,



Eucalyptus, which runs on virtualized private clusters. hage made an Amazon AMI image available to users that
is installed with AppScale. The cloud administrator mugtgis account credentials and should test that a single VM
can be deployed without any issues. The instance shouldlbdéabccess an IP address. Troubleshoot these issues
with the cloud provider if there is failure either start a VMabtain an IP address. Terminate the instance upon success
and proceed to the next section.

2.1 Deploying AppScale

As described above, AppScale can be deployed by users oiréuaized private cluster or over a cloud infrastructure.
AppScale automates the deployment process via a set of ¢catiexd the AppScale tools that implement a cloud
platform administration interface [1].

The tools configure the platform components and start eattteinorrect order. In addition, the tools synchronize
SSH keys and credentials across the AppScale VM instandesseTtools can be run by the cloud administrator on
any machine with network access to the instances that makieeuplatform. Note that the machine on which the
tools are executed must be able to resolve the IP addresses AppScale virtual machine instances. Likewise, the
VM instances that make up the platform must be able to resblvéP addresses of and communicate with the other
instances in the AppScale platform.

The size of the AppScale cloud is specified by the cloud platfadministrator. The size can be one or more
nodes; a node is an instance of the AppScale VM.

There is one key difference between the deployment of ApleSneer a virtualized private cluster versus a cloud
infrastructure. For private virtualized cluster deployméhe user (cloud administrator) must manually startéins-
ate) the nodes. To do this, the user must make X copies of tipSégle image for a deployment of X nodes. These
nodes (AppScale VMs) can be instantiated on any number cfiphlynachines, depending upon the resources avail-
able. We recommend at least 1GB of memory and 2 virtual CPU&ppScale instance. The administrator should
log into each of the AppScale instances once started angctelhch of the instance IP addresses.

AppScale automates VM instantiation when it is deployed evaoud infrastructure, e.g. via AWS or Eucalyptus.
That is, AppScale instantiates the VM instances autombtifax the administrator as part of the cloud deployment
process. In either case, the cloud administrator spedfeesize (and optionally the roles) of the cloud platform gsin
a configuration file located on the same machine from whicttheScale tools will be run.

The configuration file is written in YAML [22], a popular, eaty-use, human-readable data serialization standard
format. This file specifies the number of nodes in the cloutfgan and their roles. For deployment over a private
virtualized cluster resources, the administrator specifie IP addresses of the AppScale VM instances that were
started:

:controller;: 192.168.1.2
.servers:

- 192.168.1.3

- 192.168.1.4

- 192.168.1.5

Note again that the IP addresses specified must be resolvatsidhe machine from which the AppScale tools are
run.

For deployment over a cloud infrastructure, the administrspecifies a unique identifier of the formode-X for
increasing integers starting with 1, for each of the VMs thiditbe part of the AppScale cloud:

.controller: node-1
.servers:
- node-2
- node-3
- node-4

The cloud configuration file identifies the first machine (193.1.2) as the master node (controller) in the sys-
tem: on this node, AppScale will automatically deploy a batse Master service and load balancer. AppScale will
deploy Database Slave services and Application serverh@wother nodes (servers) specified in the configuration.



Application servers host the App Engine applications. Agg& can be run using a single VM instance by specify-
ing only the controller (seéttp://code.google.com/p/appscale/wiki/Single Node_AppScale
Deployment : :controller: 192.168.1.2 or :controller: node-1 , following the--- first line.
In this case, all of the components are invoked by the ApgStaployment process within the single VM specified.
There is one additional step that must be performed nextdersuthat deploy AppScale over a virtualized private
cluster. Note that for cloud infrastructure deploymeng thols perform this step automatically so this step is not
necessary. This step sets up an SSH keypair for use acroappiszale VMs instances that the user has started. The
AppScale tool ‘appscale-add-keypair —ips ips.yaml” perfe this function.ips.yaml is the name of the platform
configuration file which contains lines similar to those sfyed above (with IP addresses to denote the use of private
cluster). This tool prompts the user for the root passwor@ach VMs listed in the configuration file. The output
resembles the following:

user@mylaptop:~/appscale-tools/ips$ appscale-add-key pair --ips ips.yaml
root@192.168.1.3's password:
Now try logging into the machine, with "ssh 'root@192.168.1 3™, and check in:

.ssh/authorized_keys

to make sure we haven't added extra keys that you weren't expe cting.

The authenticity of host '192.168.1.4 (192.168.1.4)' can’ t be established.
RSA key fingerprint is e8:f5:6f:83:3a:06:84:38:b8:94:6d :59:d0:7d:fc:d0.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.1.4° (RSA) to the list of known hosts.
root@192.168.1.4's password:

Now try logging into the machine, with "ssh 'root@192.168.1 4™, and check in:

.ssh/authorized_keys

to make sure we haven't added extra keys that you weren't expe cting.

The authenticity of host '192.168.1.5 (192.168.1.5)' can’ t be established.
RSA key fingerprint is e8:f5:6f:83:3a:06:84:38:b8:94:6d :59:d0:7d:fc:d0.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.1.5° (RSA) to the list of known hosts.
root@192.168.1.5's password:

Now try logging into the machine, with "ssh 'root@192.168.1 .5™, and check in:

.ssh/authorized_keys
to make sure we haven't added extra keys that you weren't expe cting.

root@192.168.1.2's password:
Now try logging into the machine, with "ssh 'root@192.168.1 2™, and check in:

.ssh/authorized_keys
to make sure we haven't added extra keys that you weren't expe cting.

A new ssh key has been generated for you and placed at
/home/user/.appscale/appscale.
You can now use this key to log into any of the machines you spec ified without
providing a password via the following command:
ssh root@ XXX XXX.XXX. XXX -i /home/user/.appscale/appsc ale



From this point forward, the steps are the same for both aalited private cluster deployment and a cloud
infrastructure deployment of AppScale. The next step isiitiaie the automatic configuration and creation of the
different AppScale components that make up the platfornis $tep is achieved using the AppScale tool “appscale-
run-instances”. The cloud administrator specifies thaaltde to use within the platform and (optionally) the first
application that the administrator wishes to deploy over ¢toud platform. The administrator can use the tool
“appscale-upload-app” later to upload one or more apjtinatto a running AppScale cloud platform. The output
from this tool is similar to the following. In this example,eware deploying AppScale over a virtualized private
cluster; the ips.yaml file specifies the roles and IP addsdssthis case as described above. To deploy over a cloud
infrastructure, the user adds the flamfrastructure euca for Eucalyptus or-infrastructure ec2
for Amazon EC2, and replaces the IP addresses with nodéfidein the ips.yaml file, as described above.

user@mylaptop:~/appscale-tools/ips$ appscale-run-ins tances --ips ips.yaml
--file ../sample_apps/guestbook/ --table cassandra

About to start AppScale over a non-cloud environment.

Head node successfully created at 192.168.1.2. It is now sta rting up cassandra
via the command line arguments given.

Generating certificate and private key

Starting server at 192.168.1.2

Please wait for the controller to finish pre-processing tas ks.

This AppScale instance is linked to an e-mail address giving it administrator
privileges.

Enter your desired administrator e-mail address: user@exa mple.com

The new administrator password must be at least six characte rs long and

can include non-alphanumeric characters.

Enter your new password:

Enter again to verify:

Please wait for AppScale to prepare your machines for use.

Copying over needed files and starting the AppController on the other VMs
Starting up Cassandra on the head node

Your user account has been created successfully.
Uploading guestbook...

We have reserved the name guestbook for your application.
guestbook was uploaded successfully.

Please wait for your app to start up.

Your app can be reached at the following URL:
http://192.168.1.2/apps/guestbook

The status of your AppScale instance is at the following URL:
http://192.168.1.2/status

AppScale begins by initializing the first node (master nadehe system. It then asynchronously starts up the
other nodes in the system. While this is happening, the adtrator enters an e-mail address and password for
platform administrator access. The platform administreg@ special user that is able to administrator and control
all applications that execute in this AppScale deploymeniall as the cloud platform itself. Next in the process,
the system starts Cassandra, the datastore selected blptigeaciministrator as the platform storage system. The
system then creates the administrator account, uploadgusstbook application, and return a URL to the user that
implements the AppScale cloud status interface. AppScafdeiments load-balancer in front of this URL to direct
traffic across the available server instances in the platfdie status page lists the services running on each node in
the platform, the CPU and memory used by each, and the afiptisghat are currently running.

In a cloud infrastructure deployment, the output is simitdowever, the process begins with the spawning (instan-
tiating) of virtual machine instances using the infrastiwe. Depending on the infrastructure, VM spawning can take



a significant amount of time (minutes to hours) dependindiemumber of nodes and the size of the VM images.
The administrator can use the tool “appscale-describtasices” to see the status of a cloud platform deployment.
The output of this tool is similar to that which AppScale diésgs on its platform status page:

user@mylaptop:~/appscale-tools/ips$ appscale-describ e-instances
Status of node at 192.168.1.2:
Currently using 1.0 Percent CPU and 96.94 Percent Memory
Hard disk is 99 Percent full
Is currently: load_balancer, shadow, db_master, zookeepe r, login
Database is at 192.168.1.2
Current State: Preparing to run AppEngine apps if needed
Status of node at 192.168.1.3:
Currently using 0.3 Percent CPU and 95.00 Percent Memory
Hard disk is 98 Percent full
Is currently: load_balancer, db_slave, appengine
Database is at 192.168.1.3
Current State: Preparing to run AppEngine apps if needed
Hosting the following apps: guestbook
Status of node at 192.168.1.4:
Currently using 0.3 Percent CPU and 96.45 Percent Memory
Hard disk is 98 Percent full
Is currently: load_balancer, db_slave, appengine
Database is at 192.168.1.4
Current State: Preparing to run AppEngine apps if needed
Hosting the following apps: guestbook
Status of node at 192.168.1.5:
Currently using 0.3 Percent CPU and 95.65 Percent Memory
Hard disk is 98 Percent full
Is currently: load_balancer, db_slave, appengine
Database is at 192.168.1.5
Current State: Preparing to run AppEngine apps if needed
Hosting the following apps: guestbook

The tools“appscale-upload-app” and “appscale-remoye-ae used by cloud platform users to add and remove
applications, respectively, from a running AppScale dgplent. In this example, we first add an application called
“shell”:

user@mylaptop:~/appscale-tools/ips$ appscale-upload- app --file \
..[sample_apps/shell/

This AppScale instance is linked to an e-mail address giving it administrator
privileges.
Enter your desired administrator e-mail address: user@exa mple.com

Preparing to run AppEngine apps if needed

Uploading shell...

We have reserved the name shell for your application.
shell was uploaded successfully.

Please wait for your app to start up.

Your app can be reached at the following URL:
http://192.168.1.2/apps/shell

As part of this process, we specify the path to the directontaining our application as well as the e-mail address
of the administrator for this application (note this mighit mecessarily be the cloud administrator). We are not



prompted for a password in this example because the usereedsplready exists. In this example, we remove the
“shell” application:

user@mylaptop:~/appscale-tools/ips$ appscale-remove- app \
--appname shell

We are about to attempt to remove your application, shell.
Are you sure you want to remove this application (Y/N)? Y
Your application was successfully removed.

The output here is fairly straightforward: we provide “appie-remove-app” with the name of the application to
remove, and after confirming our selection, it contacts theter node in the system and stops the “shell” application.
Note that if the application actually isn’t running in thestgm (e.g., because we misspelled the name of the appticatio
to remove or we already stopped it earlier), then the outgfotins us that this is the case:

user@mylaptop:~/appscale-tools/ips$ appscale-remove- app --appname shell2
We are about to attempt to remove your application, shell2.

Are you sure you want to remove this application (Y/N)? Y

We could not stop your application because it was not running

Cloud administrators can terminate an AppScale deploym&ng the tool “appscale-terminate-instances”. For
virtualized private clusters, this step shuts down all thip8cale services across the running VMs without shutting
down the VM instances. cloud deployments, this step dods bedr example, the shutdown of an AppScale cloud
that we have deployed over virtualized private clusterkosimilar to the following:

user@mylaptop:~/appscale-tools/ips$ appscale-termina te-instances --ips ips.yaml
Not backing up data.

About to terminate instances spawned via Xen/KVM with keyna me ’'appscale’...
Shutting down AppScale components at 192.168.1.2....... ...

Shutting down AppScale components at 192.168.1.3.....

Shutting down AppScale components at 192.168.1.4

Shutting down AppScale components at 192.168.1.5

Terminated AppScale across 4 boxes.

Terminating in cloud deployments is similar. However, wedfy the cloud infrastructure type over which we are
deploying.

user@mylaptop:~/appscale-tools/ips$ appscale-termina te-instances \
--infrastructure euca

Not backing up data.

About to terminate instances spawned via euca with keyname '’
Terminated AppScale in cloud deployment.

appscale’...

2.2 Advanced Deployment Strategies

AppScale is also capable of performing more advanced planeof components and services. This is controlled
through the YAML cloud platform configuration file that we debed in the previous subsection. In that previous
example, the “ips.yaml” file identifies one node as the “coltgr”. This role consists of a load balancer and Database
Master service. The roles of the other nodes, called “sefyeonsist of Database Slaves and application servers. Thi
is the default AppScale placement strategy and we illusitan Figure 2.

Users can define their own placement strategies insteadngf tiee default. The possible roles are:

e Load balancer: The service that routes users to their GagqgpeEngine applications. It also hosts a status page
that reports on the state of all machines in the currentipingpnAppScale deployment.

10



Placement Support - Example 1

192.168.1.2

AppLoadBalancer
ZooKeeper

Shadow

192.168.1.4
AppServer

192.168.1.5
AppServer

192.168.1.3
AppServer

Database Peer

Database Peer \  Database Peer

Figure 2: The default placement strategy within AppScalere;ione node (the controller) handles load balancing and
a single database server, while the other nodes (the spdepty application servers as well as database servers.

e App Engine: Our modified version of the non-scalable Googip Engine SDKs that adds in the ability to store
data to and retrieve data from databases that support thgl&batastore API, as well as our implementations
of the various other APIs that App Engine offers.

e Database: Runs all the services needed to host the chosdradat

e Login: The primary machine that is used to route users ta thebgle App Engine applications. Note that this
differs from the load balancer - many machines can run lodahisars and route users to their applications, but
only one machine is reported to the cloud administrator winening “appscale-run-instances” and “appscale-
upload-app”.

e ZooKeeper: Hosts metadata needed to implement databasstigransaction support.

e Shadow: Queries the other nodes in the system to recordsta¢ér and ensure that they are still running all the
services they are supposed to be running.

e Open: The machine runs nothing by default, but the Shadovhimacan dynamically take over this node to
use it as needed.

We show how to implement a placement strategy via exampliidgrexample, we wish to have a single machine
for load balancing, for execution of the database metadat@svia ZooKeeper, and for routing users to their applica-
tions. These functions are commonly used together, so teéntaster” can be used to signify all of them in a single
line of configuration. On two other nodes, we wish to host iagibns, while on the final node, we wish to host our
database. The configuration file for this deployment stsatesing a virtualized private cluster (because we specify IP
addresses) looks like the following:

:master: 192.168.1.2
.:appengine:

- 192.168.1.3

- 192.168.1.4
.database:

- 192.168.1.5

In another example deployment, we use a cloud infrastraetith one node hosting the “master” role, two nodes
hosting web applications and database instances, and adidalrouting users to their applications. The configuration
file for this looks like the following:

11



:master: node-1
.:appengine:

- node-2

- node-3
.database:

- node-2

- node-3
:login:

- node-4

Figure 3 illustrates this placement strategy, where thehinas have been assigned IP addresses beginning with
192.168.1.2.

Placement Support - Example 3

192.168.1.2
ZooKeeper

192.168.1.5
ApplLoadBalancer

Shadow

192.168.1.3
AppServer

192.168.1.4
AppServer

Database Peer . Database Peer

Figure 3: A more complicated placement strategy, in whicingle node handles load balancing, two nodes handle
application servers and database nodes, and a final nodeeh#&rsthsaction management and system monitoring.

For databases that employ a master / slave relationshifirshenachine specified in the “database” section is the
master, while the others are slaves. For peer-to-peer akdaball nodes are peers, but the machine specified first in
the “database” section is the first peer to be started.

2.3 Common Errors

While AppScale aims to simplify application deploymengith are many layers of abstraction on which it relies to
do so. If any one of these layers fail, AppScale can fail ag.vil@ make troubleshooting easier, the “appscale-run-
instances” tool can be with the “-v” flag to produce verbosgat) which oftentimes is verbose enough to capture
information about errors in the system. When this flag is uadag file is placed on the “master” node (or “controller”
node in default deployments) in the /tmp directory, nampafimaster¢,.log. When reporting errors or troubleshooting
problems with AppScale, this file is often the key to a speedplution of problems. Similarly, the master node places
log files on each other machine at the same location in case thachines encounter errors.

It is important to note that not all error messages withintboose log are fatal: SSL-related exception messages
within this log can be safely ignored, as well as nginx ralatessages. Other exceptions, however, may be indicative
of actual problems occurring with an AppScale deployment.

One common way that AppScale can fail is if, in the virtuatizkeployment strategy, AppScale is installed on
one virtual machine but not the others. As the componentdateare not on all machines, AppScale does not have
the necessary components to run and will fail. Users catyeasiify if this is the problem they are running into by

12



checking the logs AppScale produces - it will contain anremessage saying this is the problem and how to remedy
it. Alternatively, users can check to see if each virtual hiae has AppScale installed on it.

A similar type of problem can occur if users install supportd subset of supported databases in AppScale and
then try to run a non-installed database. For example, ifsusely install Cassandra support for AppScale and then
try to run HBase, AppScale will fail to start, as it does notd¢he necessary files to start HBase. Once again, the
verbose logs contain an error message that indicate tlsaisttiie problem and how to remedy it.

Typically, more difficult problems tend to arise when noarstard networking setups are employed. If an “/etc/hosts”
file is used that is not the default provided with the AppSdaalage, it is extremely likely to break components within
AppScale. This is because various components in AppSdglemenetwork lookup operations occurring in a certain
fashion, and if these assumptions are violated, the undgrgoftware may not work as effectively or at all. Diag-
nosing these problems tends to be much more difficult: thboss logs should contain error messages indicating
that network-related problems are occurring, and if thesesaen, reverting to the standard “/etc/hosts” file may be
beneficial.

Another difficult class of problems arise when other typesaftware that AppScale relies on are not installed or
configured correctly. For example, if deploying AppScalemiucalyptus, it is critical to ensure that Eucalyptus can
deploy other images without error before trying to deploy AppScale image to it. Here, it is vital to ensure that
images can acquire both public and private IP addressesatiytrand that these IP addresses resolve in a sensible
manner (e.g., that the public IP addresses actually regoltlee machine running the AppScale Tools). We have
encountered many problems where users have had DHCP mgaadifor Eucalyptus or a failure to allocate enough
disk space for Eucalyptus images: it is thus crucial to enthat Eucalyptus is working correctly before attempting to
run AppScale over it.

24 Community Support

To this point, we have described only the surface of AppSdhkre is much more beneath the surface. We maintain
a Google Code site &ttp://code.google.com/p/appscale that contains a comprehensive and up-to-date
listing of each of the commands that users can employ to gepld manage their AppScale deployments as well as
the state of supported APIs. This site also contains inftiomabout published papers that use AppScale for research
as well as add-ons to the AppScale platform.

On this Google Code site, users can also find a link to the nessint pre-built AppScale Xen image. Due to the
large image size, we are not able to host the image on Google {Tself, but the link does provide a BitTorrent [2]
file that allows for a quick download of the image itself ashaslother necessary files.

We also support an active mailing list hosted by Google Gsdigp the AppScale Community, which can be
found athttp://groups.google.com/group/appscale \-community . Users that have problems deploy-
ing AppScale are advised to search this mailing list for arswio their problems and ask their own if others have not
reported the problem thus far. Users wishing to do so aresadub attach the output of the problematic command as
well as the verbose log, found on their master node.

Links to all these sites, as well as others, can be found omaim site http://appscale.cs.ucsb.edu
This site also hosts our “apt” repository, where the moseméwersion of the AppScale installation packages is
available.

3 Using AppScale
In this section, we discuss the critical services that mgkaruAppScale deployment and how they serve the applica-
tions that execute over the platform and employ the AppS&Bls.

3.1 Database Services

An AppScale deployment ensures that a database is statiethatically and done so for a variable number of ma-
chines. Each database can be started and stopped by the wppi®o in a repeatable fashion, and can do so for
a variety of database technologies. Each database has #&mniergation of the AppScale DB API of PUT, GET,
DELETE, and QUERY. There are three services which use thsface.

13



First is a Protocol Buffer Server (PBServer), which receil?eotocol Buffers from an App Engine application’s
database calls (Protocol Buffers are Google’s internal datialization method). The PBServer handles requests fro
different applications and implements the transactioridbheware used to provide database agnostic transactions.

Second, is the User/App Server (UAServer). The UAServes tise AppScale DB API to access a users and
applications table and provides SOAP functions for simgRCRealls. All persistent data for the Users APl is stored
here. Data about an application, its ips, ports, adminsaegstored here. Moreover, XMPP accounts and Channel
API session information is both retrieved and committechtoWAServer (all considered application data).

Lastly, blobs which are uploaded using the blobstore seraie stored in the database in 1MB chunks. A Blobstore
Server is running on all nodes which are hosting applicatid?OST of blob files are forwarded to this service and
once the file has completed uploading, the service reditieetsser back to the application’s blobstore upload success
handler.

3.2 Monitoring Services

AppScale employs a piece of monitoring software called Mot uses collectd to get standard metric information
such as CPU, disk utilization, memory usage, and networksacfor all nodes in the deployment. A link to Monitr is
present on the status page hosted by the load balancereFRudte, AppScale employs heartbeat checks to verify that
critical components are functional. If a component is nepomsive, or the process has died, AppScale will revive the
component.

3.3 Neptune

Neptune is a domain specific language supported by AppSaétle Neptune, users can dictate workflows for certain
languages, platforms, and scientific applications. Theskidle but are not limited to X10, R, MPI, and Hadoop
MapReduce. Users of Neptune also have the capability ta@amecution of jobs between different clouds (hybrid
cloud execution).

4 Limitationsand Future Work

There are several current limitations in AppScale that igers should be aware of before deploying AppScale and
their applications. The list of limitations is as followsyrfeach, we provide possible work-arounds and/or our plan fo
addressing them.

e Persistence: If AppScale is on a virtualized platform, f@eating instances can cause a loss of data. To address
this issue we are implementing a bulk uploader and downlosidglar to the one included with Google App
Engine.

¢ Blobstore Max File Size: 100MB. This value is configurabléhivi the code and we will allow for the setting
of this value in a configuration file.

e Datastore: AppScale does not index data but rather doesnijtef queries in-memory. As the size of the
database gets larger, users may see a decrease in perferfoamgeries. We are working on an indexing
system which can create indexes yet stay compliant with tBEbAsemantics needed for transactions.

e Task Queue: Tasks which are enqueued are not fault tolerantioes AppScale handle delayed workers. The
Task Queue will be reimplemented using an open sourceltlistid queue technology.

e Mail: Only the administrator is allowed to send mail, andagtion of mail is not implemented. Extensions to
this API are on our road map.

e OAuth API is not implemented in AppScale. We have this APl anrwad map.

e AppServers currently follow a "deploy on all nodes” methauiao not scale up or down as needed. We will
allow for pluggable scheduling modules which will dictaggxdmic placement in the future.

e Ubuntu is the only distribution supported. This is to lingsting allowing for faster release cycles. AppScale is
portable to other distributions and in the past has sucekygsfin on Red Hat.

14



e The Java AppServer does not have support for the Blobsto@hannel APIs. Google has not released the
source code of the Java App Engine server, making it difficutidd new services. For each new feature we
must decompile, add the feature, and recompile. We are ngkith Google to have this source code released.

e Some datastores do no have a method of retrieving the ealbileto run a query. They must use a set of special
keys which track all keys in the table. These datastoregtber have the added overhead of always accessing
the special keys. These datastores are: MemcacheDB, VoltleBimpleDB, and Scalaris. We recommend
using either Cassandra, HBase, Hypertable, or MySQL Glbsteause they do not suffer from this limitation.

4.1 FutureDirections

We began investigating AppScale as a web platform for exeg@oogle App Engine applications without modifi-
cation, in a scalable, efficient manner. We are continuowsisking to improve the design and implementation of
AppScale to address the limitations above and to increassparency, performance and scale. In addition, we have
been focused on the automation and control of, as well as omainated interaction (for scheduling, automatic
service-level agreement negotiation, elasticity, etéth wloud infrastructures (e.g. Amazon EC2 and Eucalyptus)

As part of future work, we are extending AppScale with newisess for large-scale data analytics as well as
data and computation intensive tasks. In addition, we amesiigating a wide range of hybrid cloud technologies to
facilitate application development and deployment thatasid-agnostic. This entails new services, APIs, schaduli
placement, and optimization techniques. Finally, we avestigating new language support, performance profiling,
and debugging support for cloud applications as well asrttegyration of mobile device use within the platform.

In summary, we have presented AppScale, its design, impigatien, and use. We have detailed the APIs that
AppScale supports and how they relate to Google App EnginerebVer, we have described extensions which are
specific to AppScale that expand the applicability of thefptan, while retaining the simplicity and automation tht
clouds offer. We encourage readers to try AppScale eithaguke readily available AMI image or the Xen Image
on our hosting sitéttp://code.google.com/p/appscale/ . We appreciate all feedback and suggestions
that users can provide through our community mailinghts://groups.google.com/group/appscale
community .

5 Acknowledgements

This work was funded in part by Google, IBM, and the NationgikSce Foundation (CNS/CAREER-0546737, CSR-
0905273, and CNS-0627183).

References

[1] Appscale tools wiki page. http://http://code.google.com/p/appscale/wiki/AppSc ale _
Tools _Usage.

[2] Bittorrent web site http://www.bittorrent.com

[3] C. Bunch, N. Chohan, C. Krintz, J. Chohan, J. Kupferman,dRhina, Y. Li, and Y. Nomura. An Evaluation
of Distributed Datastores Using the AppScale Cloud Platforin IEEE International Conference on Cloud
Computing Jul. 2010.

[4] Cassandrahttp://incubator.apache.org/cassandra/

[5] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. 8opand R. Wolski. AppScale: Scalable and Open
AppEngine Application Development and Deploymentl@$T International Conference on Cloud Computing
Oct. 2009.

[6] Amazon elastic compute cloudhttp://aws.amazon.com/ec2/
[7] ejabberd.http://www.ejabberd.im/

[8] Eucalyptus home pagttp://eucalyptus.cs.ucsb.edu/

15



[9] Transactions. http://code.google.com/appengine/docs/python/datast

transactions.html
[10] GAE Downloads http://code.google.com/appengine/downloads.html
[11] Google AppEnginehttp://code.google.com/appengine/
[12] HBase.http://hadoop.apache.org/hbase/
[13] Hypertable.http://hypertable.org
[14] MemcacheDBhttp://memcachedb.org/
[15] MongoDB. http://mongodb.org/
[16] MySQL. http://www.mysgl.com
[17] Scalaris.http://code.google.com/p/scalaris/
[18] SimpleDB.http://http://aws.amazon.com/simpledb/
[19] Virt-Install. http://manpages.ubuntu.com/manpages/lucid/manl/virt

[20] VMBuilder. http://manpages.ubuntu.com/manpages/lucid/en/man1/v
html .

[21] Voldemort. http://project-voldemort.com/
[22] YAML. http://lwww.yaml.org

[23] Zookeeperhttp://http://hadoop.apache.org/zookeeper/

16

ore/

-install.1.html

mbuilder.1.



