
AppScale: Open-Source Platform-As-A-Service
UCSB Technical Report #2011-01, January, 2011

Chris Bunch Navraj Chohan Chandra Krintz
Computer Science Department

University of California, Santa Barbara

1 Introduction

AppScale is a scalable, distributed, and fault tolerant cloud runtime system that we have developed at the University of
California, Santa Barbara as part of our research into the next generation of programming systems [5, 3]. In particular,
AppScale is a cloud platform, i.e. a platform-as-a-service(PaaS) cloud fabric, that executes over cluster resources.
The cluster resources underlying AppScale can be managed with or without virtualization (e.g. Xen, KVM) or via
popular cloud infrastructures including Amazon EC2 [6] andEucalyptus [8].

The AppScale platform virtualizes, abstracts, and multiplexes cloud and system services across multiple appli-
cations, enablingwrite-one, run-anywhere (WORA)program development for the cloud. In addition to simplifying
application development and deployment using cloud systems and modern distributed computing technologies, App-
Scale brings popular public cloud fabrics to “on-premise”,or private, clusters. To enable this, we emulate key cloud
layers from the commercial sector – (i) to engender a user community, (ii) to gain access to and to study real ap-
plications, and (iii) to investigate the potential implementations of, and extensions to, public cloud systems using
open-source technologies.

The first API we have chosen to emulate is that of Google App Engine [11]. Google App Engine is a cloud platform
that provides scalable implementations of technologies important for web services (messaging, key-value data storage,
multi-tasking, web server support, elasticity, and resource management, among others). Using Google App Engine
developers debug and test their programs using an open-source software development kit (SDK) provided by Google
that implements non-scalable versions of the APIs. Developers then upload their code and data to Google clusters, and
can then use Google resources and services “pay-per-use”, on a free or low-cost rental basis.

AppScale implements the (open) Google App Engine APIs such that applications that execute on Google App
Engine, also execute on AppScale without modification usingprivate cluster resources or public cloud infrastructures.
Our API and service implementations target scale, distribution, fault tolerance, high-performance, and high availabil-
ity. We leverage mature open-source technologies to the greatest degree possible to enable this. AppScale implements
multiple language runtimes (Java, Python, Ruby) as application frontends and a wide range of open source database
technologies (key-value or relational) as options for its internal system-wide datastore. AppScale is not a replacement
for Google App Engine or any other public cloud technology. Instead, AppScale is a robust and extensive distributed
system that provisions the resources it is allocated scalably across multiple applications.

The AppScale platform exports services and APIs in additionto those provided by Google App Engine. These
technologies are important for application domains beyondthose of web services, e.g. data analytics and data and
computationally intensive applications. AppScale exports these technologies as services, i.e. AppScale “service-izes”
libraries, tools, and software packages, including MapReduce, X10, R, and MPI, and, as it does for the Google App
Engine APIs, AppScale provides automatic configuration, deployment, and distribution for them, as well as support
for their elasticity, load balancing, and fault tolerance.

Since AppScale provides a software layer between applications and the implementations of cloud APIs and ser-
vices, we are also able to employ existing cloud services forthe implementations. As such, AppScale provides ahybrid
cloud platform – a programming system through which an application can access services from different clouds (a mix
of public and private) at different times or concurrently. Such support can be used by developers to move data be-
tween clouds, e.g., for disaster recovery, fault tolerance, data backups, to reduce public cloud costs (to use lower-cost
alternatives), and to “fall out” from a private cloud with limited resources to a public cloud on-demand.

1

1.1 The AppScale Internals

Figure 1 shows the layout of AppScale. At the highest level there is a load balancer, which takes incoming requests
from users and routes them to an application server, copies of which may be on a number of remote hosts. The
application layer is supported by a wide range of services that eases application development by precluding the need
for reimplementation of common tasks. At the lowest level there is a system-wide database service which provides
persistent storage onto the disk.

AppScale automatically provisions services and does so in afault tolerant and scalable manner. A key automated
process is the setting up of a datastore. AppScale supports many databases that are implemented in many differ-
ent languages and have different designs. These databases are: Cassandra [4], HBase [12], Hypertable [13],
MongoDB[15], MemcacheDB[14], Scalaris [17], SimpleDB [18], MySQL Cluster [16], andVoldemort [21].

Figure 1: The multi-tiered approach within AppScale consists of a load balancer, multiple application servers, several
services to support the different APIs, and a datastore for persistent data and state (not all APIs and services are shown
here).

1.2 Google App Engine APIs

Foremost, AppScale provides implementations for the Google App Engine APIs. These APIs provide several scalable
services which can be leveraged by a Google App Engine application. The Google App Engine APIs areBlobstore ,
Channel , Datastore , Images , Memcache, Namespaces , TaskQueue , Users , URL Fetch , andXMPP.
Google App Engine provides an overview of the APIs and their functionality athttp://code.google.com/
appengine/docs/ . We emulate this functionality within AppScale using open source software systems, tools, and
services, as well as new components that we have written. We implement all of the APIs assuming distributed execu-
tion so that we are able to provide isolation, scalability, elasticity, and fault-tolerance for cloud platform applications.
This is in sharp contrast to the Google App Engine SDKs that are provided for testing and debugging using a single
machine [10]. We describe the features of the API that AppScale currently does not support in Section 4.

Blobstore API
The Blobstore API enables users to store large entities of text or binary data. The upload is performed by an

2

application using a form post with a file name. This large file is not constrained by the 1MB limitation of Blobs stored
using the Datastore API.

Channel API
The Channel API allows applications to push messages from the application server to a client’s browser. The

program must register an application token with the service, which in turn is used by a JavaScript library to connect to
a messaging service. The Channel API is useful for creating applications such as online chat or a real time multi-player
game. The implementation in AppScale has the ability to sendmessages to multiple receivers who are registered using
the same application token. Google App Engine imposes the restriction that there may be only one receiver per sending
channel. AppScale uses Ejabberd and Strophejs in its implementation.

Datastore API
The Datastore API allows for the persistence of data. The APIhas many useful function calls that all ultimately

map to either a PUT, GET, DELETE, QUERY. The Google Query Language (GQL) is similar to and is a subset of
SQL; fundamentally, it lacks relational operations such asJOIN and MERGE. AppScale employs in-memory filters
for GQL statements while Google App Engine maps them to rangequeries on the datastore.

AppScale implements transactional semantics (multi-row/key atomic updates) using the same semantics as Google
App Engine. Transactions can only be performed within an entity group [9]. Entity groups are programmatic struc-
tures that describe relationships between datastore elements. Similarly, transactions are expressed within a program
via application functions passed to the Google App Engine ”run as transaction” function. All AppScale datastore
operations within a transaction are ACID-compliant with READ-COMMIT isolation.

AppScale’s implementation of transactions are database agnostic and rely on ZooKeeper [23] for locking entity
groups. ZooKeeper stores information about which entitiesare currently locked and our transactional middleware
employs a garbage collector for locks to make sure that locksare not held for a long periods of time. We store journal
information within the database and implement rollback of failed transactions.

Developers use entity groups and transactions for applications that require atomic updates across multiple keys (in
an entity group). Yet, transaction semantics introduce overhead, stress the underlying database implementation, and
limit scalability (relative to non-transactional operations). To reduce this overhead, we encourage program developers
to avoid creating large entity groups and to shard (and spread out) global state across many entity groups.

Images API
The Images API facilitates programmatic manipulation of images. Popular functions in this API include the ability

to generate thumbnails, rotation, composition, convert formats, and cropping images. The API in AppScale uses the
Google App Engine SDK implementation.

Memcache API
The Memcache API permits applications to store their frequently used data in a distributed memory grid. This can

serve as a cache to prevent relatively expensive re-computations or database accesses. Developers must be aware that
it is possible that entries may be evacuated to create space for new updates.

Namespace API
The Namespace API implements the ability to segregate data into different namespaces. For example, developers

can test their application in production without tamperingwith live production data. The Namespace API can also be
used with the Memcache and Task Queue APIs.

Task Queue API
The Google App Engine platform lacks the ability to do threading or computations within a request greater than 30

seconds. The TaskQueue API facilitates computation (tasks) in the background by enqueuing tasks via a web request.
Task durations are restricted in Google App Engine to 30 seconds (as of GAE 1.4.0). AppScale implements the same
restriction but this value can be increased with minor code modification. A potential workaround is to chain multiple
task queues, where each task does up to 30 seconds of work and then enqueues another task to pick up where the
current one left off.

3

Users API
The Users API provides authentication for web applicationsthrough the use of cookies. While GAE provides access

to users who have accounts with Google, AppScale requires users to sign up an account through the AppScale portal
URL. In addition, the API distinguishes between regular andadministrator users.

URL Fetch API
The URL Fetch API enables an application the ability to do POST and GET requests on remote resources. REST

APIs from third parties can be accessed using this API. The implementation in AppScale is identical to what is provided
by the Google App Engine SDK.

XMPP API
The XMPP API presents the ability to receive and send messages to users with a valid XMPP account. Google

App Engine leverages the Google Talk infrastructure while AppScale is able to use a scalable implementation in
Ejabberd [7].

1.3 Other AppScale APIs

In addition to the Google App Engine APIs, AppScale implements other APIs which are not supported by Google App
Engine. These APIs are of use to cloud platform applicationsdevelopers for emerging application domains such as
data analytics and high-performance computing.

MapReduce Streaming API

. Within Google App Engine itself, there currently is no method by which long running, arbitrary computation can be
performed by applications. AppScale supports such computation via Hadoop Streaming (http://wiki.apache.
org/hadoop/HadoopStreaming). Through Hadoop Streaming, users can specify a Mapper and Reducer pro-
gram that can run under the MapReduce programming paradigm.Fault-tolerance and data replication is automatically
handled by the Hadoop Streaming framework, and AppScale exposes a simple API that interfaces to Hadoop Stream-
ing. This API is:

• putMRInput(data, inputLoc): Given a string ”data” and a Hadoop file system location “inputLoc”, creates a file
on the Hadoop file system named “inputLoc”

• runMRJob(mapper, reducer, inputLoc, outputLoc, config): Given the relative paths to a mapper and reducer file
(relative to the main Python file being run), run a Hadoop MapReduce Streaming job. Input is fed to the program
via the HDFS file named “inputLoc”, and output is fed to the HDFS file named “outputLoc”. If a hash is passed
as ”config”, the key / value pairs are passed as configuration options to Hadoop Streaming.

• getMROutput(outputLoc): Given a Hadoop file system location “outputLoc”, returns a string with the contents
of the named file.

• writeTempFile(suffix, data): Writes a file to /tmp on the local machine with the contents data. Is useful for
passing a file with nodes to exclude from MapReduce jobs.

• getAllIPs(): Returns an array of all the IPs in the AppScale cloud. Is useful for excluding or including nodes
based on some user-defined application logic.

• getNumOfNodes(): Returns an integer with the number of nodes in the AppScale cloud. Is useful for deter-
mining at MapReduce run time, how many Map tasks and Reduce tasks should be run for optimal performance
(recommended value is 1 Map task per node).

• getMRLogs(outputLoc): Returns a string with the MapReduce job log for the job whoseoutput is located at
outputLoc. Data is returned as a combination of XML and key / value pairs, in the standard Hadoop format.

4

Currently, Mappers and Reducers can be written by developers in Python, Ruby, or Perl. In addition, we and others
can easily extend AppScale with support for other programming languages.

To use this API, the cloud administrator must select HBase orHypertable as the platform datastore so that the
Hadoop Distributed File System (HDFS) is automatically deployed (both of these datastores use HDFS for their im-
plementations). A complete sample application that uses the MapReduce Streaming API is bundled with the AppScale
Tools and is calledmapreduce.

EC2 API

Google App Engine does not provide any mechanisms by which users can interact with Amazon Web Services natively,
so to fill this void, AppScale provides an Amazon EC2 API. Users can use this API to spawn virtual machines and
manage them entirely through an AppScale web service. The main functions this API provides mirror those of the
EC2 command line tools:

• ec2run instances(options): Spawns virtual machines with the specified options (interpreted as command-line
arguments).

• ec2describeinstances(): Returns the status of all machines owned by the current user.

• ec2 terminateinstances(options): Terminates virtual machines with the specified options (interpreted as command-
line arguments).

• ec2add keypair(options): Creates a new SSH key-pair that can be used to log in to virtual machines that are
spawned with this key-pair’s name.

• ec2deletekeypair(options): Deletes the named SSH key-pair from the underlying cloud infrastructure.

• ec2describeavailability zones(options): In Eucalyptus, this returns information relating to the number of vir-
tual machines available to be spawned by users.

• ec2describeimages(): Returns information about the virtual machine images, ramdisks, and kernels that are
available for use in the system.

• ec2reboot instances(options): Reboots virtual machines with the specified options (interpreted as command-
line arguments).

Other functions are available to handle the storage and retrieval of EC2 credentials: their usage can be found in the
ec2demoapplication that is bundled with the AppScale Tools. Alternatively, the KOALA Cloud Manager project
provides a Google App Engine application that implements several AWS APIs (as of writing, EC2, EBS, S3, and
ELB are supported), and can run over Google App Engine as wellas over AppScale. It can be found at:http:
//code.google.com/p/koalacloud/ .

2 Installation and Deployment

The typical use of AppScale and the one we recommend is to install AppScale within a virtual machine image. The use
of virtual machines for AppScale installation facilitateselasticity (growing and shrinking of services and applications,
and load balancing). We currently support the use of Xen and KVM as the virtualization infrastructure, however, any
technology should suffice. Deploying AppScale over a virtualized private cluster entails copying the virtual machine
image and instantiating it manually. Thus, a cloud administrator is able to use any virtualization system with which
she is able to instantiate guest virtual machines (VMs). We recommend the use of vmbuilder [20] for creating Xen
guest VMs and virt-install [19] for creating KVM guest VMs. We currently support only the Ubuntu 10.04 (Lucid
Lynx) Linux server system and distribution and so guest VMs should implement these technologies. Once a guest VM
image is running Ubuntu 10.04 Server Edition ensure that theinstance is able to obtain an accessible IP address (e.g.,
the networking operates correctly).

An alternative AppScale deployment is over a cloud infrastructure. We currently support both the Amazon Web
Services (AWS) Elastic Compute Cloud (EC2) public cloud offering and the open source implementation of AWS,

5

Eucalyptus, which runs on virtualized private clusters. Wehave made an Amazon AMI image available to users that
is installed with AppScale. The cloud administrator must obtains account credentials and should test that a single VM
can be deployed without any issues. The instance should be able to access an IP address. Troubleshoot these issues
with the cloud provider if there is failure either start a VM or obtain an IP address. Terminate the instance upon success
and proceed to the next section.

2.1 Deploying AppScale

As described above, AppScale can be deployed by users over a virtualized private cluster or over a cloud infrastructure.
AppScale automates the deployment process via a set of toolscalled the AppScale tools that implement a cloud
platform administration interface [1].

The tools configure the platform components and start each inthe correct order. In addition, the tools synchronize
SSH keys and credentials across the AppScale VM instances. These tools can be run by the cloud administrator on
any machine with network access to the instances that make upthe platform. Note that the machine on which the
tools are executed must be able to resolve the IP addresses ofthe AppScale virtual machine instances. Likewise, the
VM instances that make up the platform must be able to resolvethe IP addresses of and communicate with the other
instances in the AppScale platform.

The size of the AppScale cloud is specified by the cloud platform administrator. The size can be one or more
nodes; a node is an instance of the AppScale VM.

There is one key difference between the deployment of AppScale over a virtualized private cluster versus a cloud
infrastructure. For private virtualized cluster deployment, the user (cloud administrator) must manually start (instanti-
ate) the nodes. To do this, the user must make X copies of the AppScale image for a deployment of X nodes. These
nodes (AppScale VMs) can be instantiated on any number of physical machines, depending upon the resources avail-
able. We recommend at least 1GB of memory and 2 virtual CPUs per AppScale instance. The administrator should
log into each of the AppScale instances once started and collect each of the instance IP addresses.

AppScale automates VM instantiation when it is deployed over a cloud infrastructure, e.g. via AWS or Eucalyptus.
That is, AppScale instantiates the VM instances automatically for the administrator as part of the cloud deployment
process. In either case, the cloud administrator specifies the size (and optionally the roles) of the cloud platform using
a configuration file located on the same machine from which theAppScale tools will be run.

The configuration file is written in YAML [22], a popular, easy-to-use, human-readable data serialization standard
format. This file specifies the number of nodes in the cloud platform and their roles. For deployment over a private
virtualized cluster resources, the administrator specifies the IP addresses of the AppScale VM instances that were
started:

:controller: 192.168.1.2
:servers:
- 192.168.1.3
- 192.168.1.4
- 192.168.1.5

Note again that the IP addresses specified must be resolvablefrom the machine from which the AppScale tools are
run.

For deployment over a cloud infrastructure, the administrator specifies a unique identifier of the formnode-X for
increasing integers starting with 1, for each of the VMs thatwill be part of the AppScale cloud:

:controller: node-1
:servers:
- node-2
- node-3
- node-4

The cloud configuration file identifies the first machine (192.168.1.2) as the master node (controller) in the sys-
tem: on this node, AppScale will automatically deploy a Database Master service and load balancer. AppScale will
deploy Database Slave services and Application servers on the other nodes (servers) specified in the configuration.

6

Application servers host the App Engine applications. AppScale can be run using a single VM instance by specify-
ing only the controller (seehttp://code.google.com/p/appscale/wiki/Single Node AppScale
Deployment : :controller: 192.168.1.2 or :controller: node-1 , following the--- first line.
In this case, all of the components are invoked by the AppScale deployment process within the single VM specified.

There is one additional step that must be performed next for users that deploy AppScale over a virtualized private
cluster. Note that for cloud infrastructure deployment, the tools perform this step automatically so this step is not
necessary. This step sets up an SSH keypair for use across theAppScale VMs instances that the user has started. The
AppScale tool ‘appscale-add-keypair –ips ips.yaml” performs this function.ips.yaml is the name of the platform
configuration file which contains lines similar to those specified above (with IP addresses to denote the use of private
cluster). This tool prompts the user for the root password oneach VMs listed in the configuration file. The output
resembles the following:

user@mylaptop:˜/appscale-tools/ips$ appscale-add-key pair --ips ips.yaml
root@192.168.1.3’s password:
Now try logging into the machine, with "ssh ’root@192.168.1 .3’", and check in:

.ssh/authorized_keys

to make sure we haven’t added extra keys that you weren’t expe cting.

The authenticity of host ’192.168.1.4 (192.168.1.4)’ can’ t be established.
RSA key fingerprint is e8:f5:6f:83:3a:06:84:38:b8:94:6d :59:d0:7d:fc:d0.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ’192.168.1.4’ (RSA) to the list of known hosts.
root@192.168.1.4’s password:
Now try logging into the machine, with "ssh ’root@192.168.1 .4’", and check in:

.ssh/authorized_keys

to make sure we haven’t added extra keys that you weren’t expe cting.

The authenticity of host ’192.168.1.5 (192.168.1.5)’ can’ t be established.
RSA key fingerprint is e8:f5:6f:83:3a:06:84:38:b8:94:6d :59:d0:7d:fc:d0.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ’192.168.1.5’ (RSA) to the list of known hosts.
root@192.168.1.5’s password:
Now try logging into the machine, with "ssh ’root@192.168.1 .5’", and check in:

.ssh/authorized_keys

to make sure we haven’t added extra keys that you weren’t expe cting.

root@192.168.1.2’s password:
Now try logging into the machine, with "ssh ’root@192.168.1 .2’", and check in:

.ssh/authorized_keys

to make sure we haven’t added extra keys that you weren’t expe cting.

A new ssh key has been generated for you and placed at
/home/user/.appscale/appscale.
You can now use this key to log into any of the machines you spec ified without
providing a password via the following command:

ssh root@XXX.XXX.XXX.XXX -i /home/user/.appscale/appsc ale

7

From this point forward, the steps are the same for both a virtualized private cluster deployment and a cloud
infrastructure deployment of AppScale. The next step is to initiate the automatic configuration and creation of the
different AppScale components that make up the platform. This step is achieved using the AppScale tool “appscale-
run-instances”. The cloud administrator specifies that database to use within the platform and (optionally) the first
application that the administrator wishes to deploy over the cloud platform. The administrator can use the tool
“appscale-upload-app” later to upload one or more applications to a running AppScale cloud platform. The output
from this tool is similar to the following. In this example, we are deploying AppScale over a virtualized private
cluster; the ips.yaml file specifies the roles and IP addresses in this case as described above. To deploy over a cloud
infrastructure, the user adds the flag--infrastructure euca for Eucalyptus or--infrastructure ec2
for Amazon EC2, and replaces the IP addresses with node identifiers in the ips.yaml file, as described above.

user@mylaptop:˜/appscale-tools/ips$ appscale-run-ins tances --ips ips.yaml
--file ../sample_apps/guestbook/ --table cassandra

About to start AppScale over a non-cloud environment.
Head node successfully created at 192.168.1.2. It is now sta rting up cassandra
via the command line arguments given.
Generating certificate and private key
Starting server at 192.168.1.2
Please wait for the controller to finish pre-processing tas ks.

This AppScale instance is linked to an e-mail address giving it administrator
privileges.
Enter your desired administrator e-mail address: user@exa mple.com

The new administrator password must be at least six characte rs long and
can include non-alphanumeric characters.
Enter your new password:
Enter again to verify:
Please wait for AppScale to prepare your machines for use.
Copying over needed files and starting the AppController on the other VMs
Starting up Cassandra on the head node

Your user account has been created successfully.
Uploading guestbook...
We have reserved the name guestbook for your application.
guestbook was uploaded successfully.
Please wait for your app to start up.

Your app can be reached at the following URL:
http://192.168.1.2/apps/guestbook
The status of your AppScale instance is at the following URL:
http://192.168.1.2/status

AppScale begins by initializing the first node (master node)in the system. It then asynchronously starts up the
other nodes in the system. While this is happening, the administrator enters an e-mail address and password for
platform administrator access. The platform administrator is a special user that is able to administrator and control
all applications that execute in this AppScale deployment as well as the cloud platform itself. Next in the process,
the system starts Cassandra, the datastore selected by the cloud administrator as the platform storage system. The
system then creates the administrator account, uploads theguestbook application, and return a URL to the user that
implements the AppScale cloud status interface. AppScale implements load-balancer in front of this URL to direct
traffic across the available server instances in the platform. The status page lists the services running on each node in
the platform, the CPU and memory used by each, and the applications that are currently running.

In a cloud infrastructure deployment, the output is similar. However, the process begins with the spawning (instan-
tiating) of virtual machine instances using the infrastructure. Depending on the infrastructure, VM spawning can take

8

a significant amount of time (minutes to hours) depending on the number of nodes and the size of the VM images.
The administrator can use the tool “appscale-describe-instances” to see the status of a cloud platform deployment.

The output of this tool is similar to that which AppScale displays on its platform status page:

user@mylaptop:˜/appscale-tools/ips$ appscale-describ e-instances
Status of node at 192.168.1.2:

Currently using 1.0 Percent CPU and 96.94 Percent Memory
Hard disk is 99 Percent full
Is currently: load_balancer, shadow, db_master, zookeepe r, login
Database is at 192.168.1.2
Current State: Preparing to run AppEngine apps if needed

Status of node at 192.168.1.3:
Currently using 0.3 Percent CPU and 95.00 Percent Memory
Hard disk is 98 Percent full
Is currently: load_balancer, db_slave, appengine
Database is at 192.168.1.3
Current State: Preparing to run AppEngine apps if needed
Hosting the following apps: guestbook

Status of node at 192.168.1.4:
Currently using 0.3 Percent CPU and 96.45 Percent Memory
Hard disk is 98 Percent full
Is currently: load_balancer, db_slave, appengine
Database is at 192.168.1.4
Current State: Preparing to run AppEngine apps if needed
Hosting the following apps: guestbook

Status of node at 192.168.1.5:
Currently using 0.3 Percent CPU and 95.65 Percent Memory
Hard disk is 98 Percent full
Is currently: load_balancer, db_slave, appengine
Database is at 192.168.1.5
Current State: Preparing to run AppEngine apps if needed
Hosting the following apps: guestbook

The tools“appscale-upload-app” and “appscale-remove-app” are used by cloud platform users to add and remove
applications, respectively, from a running AppScale deployment. In this example, we first add an application called
“shell”:

user@mylaptop:˜/appscale-tools/ips$ appscale-upload- app --file \
../sample_apps/shell/

This AppScale instance is linked to an e-mail address giving it administrator
privileges.
Enter your desired administrator e-mail address: user@exa mple.com
Preparing to run AppEngine apps if needed

Uploading shell...
We have reserved the name shell for your application.
shell was uploaded successfully.
Please wait for your app to start up.

Your app can be reached at the following URL:
http://192.168.1.2/apps/shell

As part of this process, we specify the path to the directory containing our application as well as the e-mail address
of the administrator for this application (note this might not necessarily be the cloud administrator). We are not

9

prompted for a password in this example because the user we specify already exists. In this example, we remove the
“shell” application:

user@mylaptop:˜/appscale-tools/ips$ appscale-remove- app \
--appname shell

We are about to attempt to remove your application, shell.
Are you sure you want to remove this application (Y/N)? Y
Your application was successfully removed.

The output here is fairly straightforward: we provide “appscale-remove-app” with the name of the application to
remove, and after confirming our selection, it contacts the master node in the system and stops the “shell” application.
Note that if the application actually isn’t running in the system (e.g., because we misspelled the name of the application
to remove or we already stopped it earlier), then the output informs us that this is the case:

user@mylaptop:˜/appscale-tools/ips$ appscale-remove- app --appname shell2
We are about to attempt to remove your application, shell2.
Are you sure you want to remove this application (Y/N)? Y
We could not stop your application because it was not running .

Cloud administrators can terminate an AppScale deploymentusing the tool “appscale-terminate-instances”. For
virtualized private clusters, this step shuts down all the AppScale services across the running VMs without shutting
down the VM instances. cloud deployments, this step does both. For example, the shutdown of an AppScale cloud
that we have deployed over virtualized private cluster, looks similar to the following:

user@mylaptop:˜/appscale-tools/ips$ appscale-termina te-instances --ips ips.yaml
Not backing up data.

About to terminate instances spawned via Xen/KVM with keyna me ’appscale’...
Shutting down AppScale components at 192.168.1.2........
Shutting down AppScale components at 192.168.1.3.....
Shutting down AppScale components at 192.168.1.4
Shutting down AppScale components at 192.168.1.5
Terminated AppScale across 4 boxes.

Terminating in cloud deployments is similar. However, we specify the cloud infrastructure type over which we are
deploying.

user@mylaptop:˜/appscale-tools/ips$ appscale-termina te-instances \
--infrastructure euca
Not backing up data.

About to terminate instances spawned via euca with keyname ’ appscale’...
Terminated AppScale in cloud deployment.

2.2 Advanced Deployment Strategies

AppScale is also capable of performing more advanced placement of components and services. This is controlled
through the YAML cloud platform configuration file that we described in the previous subsection. In that previous
example, the “ips.yaml” file identifies one node as the “controller”. This role consists of a load balancer and Database
Master service. The roles of the other nodes, called “servers”, consist of Database Slaves and application servers. This
is the default AppScale placement strategy and we illustrate it in Figure 2.

Users can define their own placement strategies instead of using the default. The possible roles are:

• Load balancer: The service that routes users to their GoogleApp Engine applications. It also hosts a status page
that reports on the state of all machines in the currently running AppScale deployment.

10

Figure 2: The default placement strategy within AppScale. Here, one node (the controller) handles load balancing and
a single database server, while the other nodes (the servers) deploy application servers as well as database servers.

• App Engine: Our modified version of the non-scalable Google App Engine SDKs that adds in the ability to store
data to and retrieve data from databases that support the Google Datastore API, as well as our implementations
of the various other APIs that App Engine offers.

• Database: Runs all the services needed to host the chosen database.

• Login: The primary machine that is used to route users to their Google App Engine applications. Note that this
differs from the load balancer - many machines can run load balancers and route users to their applications, but
only one machine is reported to the cloud administrator whenrunning “appscale-run-instances” and “appscale-
upload-app”.

• ZooKeeper: Hosts metadata needed to implement database-agnostic transaction support.

• Shadow: Queries the other nodes in the system to record theirstate and ensure that they are still running all the
services they are supposed to be running.

• Open: The machine runs nothing by default, but the Shadow machine can dynamically take over this node to
use it as needed.

We show how to implement a placement strategy via example. Inthis example, we wish to have a single machine
for load balancing, for execution of the database metadata server via ZooKeeper, and for routing users to their applica-
tions. These functions are commonly used together, so the role “master” can be used to signify all of them in a single
line of configuration. On two other nodes, we wish to host applications, while on the final node, we wish to host our
database. The configuration file for this deployment strategy using a virtualized private cluster (because we specify IP
addresses) looks like the following:

:master: 192.168.1.2
:appengine:
- 192.168.1.3
- 192.168.1.4
:database:
- 192.168.1.5

In another example deployment, we use a cloud infrastructure with one node hosting the “master” role, two nodes
hosting web applications and database instances, and a finalnode routing users to their applications. The configuration
file for this looks like the following:

11

:master: node-1
:appengine:
- node-2
- node-3
:database:
- node-2
- node-3
:login:
- node-4

Figure 3 illustrates this placement strategy, where the machines have been assigned IP addresses beginning with
192.168.1.2.

Figure 3: A more complicated placement strategy, in which a single node handles load balancing, two nodes handle
application servers and database nodes, and a final node handles transaction management and system monitoring.

For databases that employ a master / slave relationship, thefirst machine specified in the “database” section is the
master, while the others are slaves. For peer-to-peer databases, all nodes are peers, but the machine specified first in
the “database” section is the first peer to be started.

2.3 Common Errors

While AppScale aims to simplify application deployment, there are many layers of abstraction on which it relies to
do so. If any one of these layers fail, AppScale can fail as well. To make troubleshooting easier, the “appscale-run-
instances” tool can be with the “-v” flag to produce verbose output, which oftentimes is verbose enough to capture
information about errors in the system. When this flag is used, a log file is placed on the “master” node (or “controller”
node in default deployments) in the /tmp directory, named ¡ip of master¿.log. When reporting errors or troubleshooting
problems with AppScale, this file is often the key to a speedy resolution of problems. Similarly, the master node places
log files on each other machine at the same location in case those machines encounter errors.

It is important to note that not all error messages within theverbose log are fatal: SSL-related exception messages
within this log can be safely ignored, as well as nginx related messages. Other exceptions, however, may be indicative
of actual problems occurring with an AppScale deployment.

One common way that AppScale can fail is if, in the virtualized deployment strategy, AppScale is installed on
one virtual machine but not the others. As the components needed are not on all machines, AppScale does not have
the necessary components to run and will fail. Users can easily verify if this is the problem they are running into by

12

checking the logs AppScale produces - it will contain an error message saying this is the problem and how to remedy
it. Alternatively, users can check to see if each virtual machine has AppScale installed on it.

A similar type of problem can occur if users install support for a subset of supported databases in AppScale and
then try to run a non-installed database. For example, if users only install Cassandra support for AppScale and then
try to run HBase, AppScale will fail to start, as it does not have the necessary files to start HBase. Once again, the
verbose logs contain an error message that indicate that this is the problem and how to remedy it.

Typically, more difficult problems tend to arise when non-standard networking setups are employed. If an “/etc/hosts”
file is used that is not the default provided with the AppScaleimage, it is extremely likely to break components within
AppScale. This is because various components in AppScale rely on network lookup operations occurring in a certain
fashion, and if these assumptions are violated, the underlying software may not work as effectively or at all. Diag-
nosing these problems tends to be much more difficult: the verbose logs should contain error messages indicating
that network-related problems are occurring, and if these are seen, reverting to the standard “/etc/hosts” file may be
beneficial.

Another difficult class of problems arise when other types ofsoftware that AppScale relies on are not installed or
configured correctly. For example, if deploying AppScale over Eucalyptus, it is critical to ensure that Eucalyptus can
deploy other images without error before trying to deploy the AppScale image to it. Here, it is vital to ensure that
images can acquire both public and private IP addresses correctly, and that these IP addresses resolve in a sensible
manner (e.g., that the public IP addresses actually resolveto the machine running the AppScale Tools). We have
encountered many problems where users have had DHCP misconfigured for Eucalyptus or a failure to allocate enough
disk space for Eucalyptus images: it is thus crucial to ensure that Eucalyptus is working correctly before attempting to
run AppScale over it.

2.4 Community Support

To this point, we have described only the surface of AppScale: there is much more beneath the surface. We maintain
a Google Code site athttp://code.google.com/p/appscale that contains a comprehensive and up-to-date
listing of each of the commands that users can employ to deploy and manage their AppScale deployments as well as
the state of supported APIs. This site also contains information about published papers that use AppScale for research
as well as add-ons to the AppScale platform.

On this Google Code site, users can also find a link to the most recent pre-built AppScale Xen image. Due to the
large image size, we are not able to host the image on Google Code itself, but the link does provide a BitTorrent [2]
file that allows for a quick download of the image itself as well as other necessary files.

We also support an active mailing list hosted by Google Groups for the AppScale Community, which can be
found athttp://groups.google.com/group/appscale \ community . Users that have problems deploy-
ing AppScale are advised to search this mailing list for answers to their problems and ask their own if others have not
reported the problem thus far. Users wishing to do so are advised to attach the output of the problematic command as
well as the verbose log, found on their master node.

Links to all these sites, as well as others, can be found on ourmain site,http://appscale.cs.ucsb.edu .
This site also hosts our “apt” repository, where the most recent version of the AppScale installation packages is
available.

3 Using AppScale

In this section, we discuss the critical services that make up an AppScale deployment and how they serve the applica-
tions that execute over the platform and employ the AppScaleAPIs.

3.1 Database Services

An AppScale deployment ensures that a database is started automatically and done so for a variable number of ma-
chines. Each database can be started and stopped by the AppController in a repeatable fashion, and can do so for
a variety of database technologies. Each database has an implementation of the AppScale DB API of PUT, GET,
DELETE, and QUERY. There are three services which use this interface.

13

First is a Protocol Buffer Server (PBServer), which receives Protocol Buffers from an App Engine application’s
database calls (Protocol Buffers are Google’s internal data serialization method). The PBServer handles requests from
different applications and implements the transactional middleware used to provide database agnostic transactions.

Second, is the User/App Server (UAServer). The UAServer uses the AppScale DB API to access a users and
applications table and provides SOAP functions for simple RPC calls. All persistent data for the Users API is stored
here. Data about an application, its ips, ports, admins, etcare stored here. Moreover, XMPP accounts and Channel
API session information is both retrieved and committed to the UAServer (all considered application data).

Lastly, blobs which are uploaded using the blobstore service are stored in the database in 1MB chunks. A Blobstore
Server is running on all nodes which are hosting applications. POST of blob files are forwarded to this service and
once the file has completed uploading, the service redirectsthe user back to the application’s blobstore upload success
handler.

3.2 Monitoring Services

AppScale employs a piece of monitoring software called Monitr. It uses collectd to get standard metric information
such as CPU, disk utilization, memory usage, and network access for all nodes in the deployment. A link to Monitr is
present on the status page hosted by the load balancer. Furthermore, AppScale employs heartbeat checks to verify that
critical components are functional. If a component is not responsive, or the process has died, AppScale will revive the
component.

3.3 Neptune

Neptune is a domain specific language supported by AppScale.With Neptune, users can dictate workflows for certain
languages, platforms, and scientific applications. These include but are not limited to X10, R, MPI, and Hadoop
MapReduce. Users of Neptune also have the capability to control execution of jobs between different clouds (hybrid
cloud execution).

4 Limitations and Future Work

There are several current limitations in AppScale that developers should be aware of before deploying AppScale and
their applications. The list of limitations is as follows; for each, we provide possible work-arounds and/or our plan for
addressing them.

• Persistence: If AppScale is on a virtualized platform, terminating instances can cause a loss of data. To address
this issue we are implementing a bulk uploader and downloader similar to the one included with Google App
Engine.

• Blobstore Max File Size: 100MB. This value is configurable within the code and we will allow for the setting
of this value in a configuration file.

• Datastore: AppScale does not index data but rather does filtering of queries in-memory. As the size of the
database gets larger, users may see a decrease in performance for queries. We are working on an indexing
system which can create indexes yet stay compliant with the ACID semantics needed for transactions.

• Task Queue: Tasks which are enqueued are not fault tolerant,nor does AppScale handle delayed workers. The
Task Queue will be reimplemented using an open source distributed queue technology.

• Mail: Only the administrator is allowed to send mail, and reception of mail is not implemented. Extensions to
this API are on our road map.

• OAuth API is not implemented in AppScale. We have this API on our road map.

• AppServers currently follow a ”deploy on all nodes” method and do not scale up or down as needed. We will
allow for pluggable scheduling modules which will dictate dynamic placement in the future.

• Ubuntu is the only distribution supported. This is to limit testing allowing for faster release cycles. AppScale is
portable to other distributions and in the past has successfully run on Red Hat.

14

• The Java AppServer does not have support for the Blobstore orChannel APIs. Google has not released the
source code of the Java App Engine server, making it difficultto add new services. For each new feature we
must decompile, add the feature, and recompile. We are working with Google to have this source code released.

• Some datastores do no have a method of retrieving the entire table to run a query. They must use a set of special
keys which track all keys in the table. These datastores therefore have the added overhead of always accessing
the special keys. These datastores are: MemcacheDB, Voldemort, SimpleDB, and Scalaris. We recommend
using either Cassandra, HBase, Hypertable, or MySQL Cluster because they do not suffer from this limitation.

4.1 Future Directions

We began investigating AppScale as a web platform for executing Google App Engine applications without modifi-
cation, in a scalable, efficient manner. We are continuouslyworking to improve the design and implementation of
AppScale to address the limitations above and to increase transparency, performance and scale. In addition, we have
been focused on the automation and control of, as well as morecoordinated interaction (for scheduling, automatic
service-level agreement negotiation, elasticity, etc.) with cloud infrastructures (e.g. Amazon EC2 and Eucalyptus).

As part of future work, we are extending AppScale with new services for large-scale data analytics as well as
data and computation intensive tasks. In addition, we are investigating a wide range of hybrid cloud technologies to
facilitate application development and deployment that iscloud-agnostic. This entails new services, APIs, scheduling,
placement, and optimization techniques. Finally, we are investigating new language support, performance profiling,
and debugging support for cloud applications as well as the integration of mobile device use within the platform.

In summary, we have presented AppScale, its design, implementation, and use. We have detailed the APIs that
AppScale supports and how they relate to Google App Engine. Moreover, we have described extensions which are
specific to AppScale that expand the applicability of the platform, while retaining the simplicity and automation tht
clouds offer. We encourage readers to try AppScale either using the readily available AMI image or the Xen Image
on our hosting sitehttp://code.google.com/p/appscale/ . We appreciate all feedback and suggestions
that users can provide through our community mailing listhttp://groups.google.com/group/appscale
community .

5 Acknowledgements

This work was funded in part by Google, IBM, and the National Science Foundation (CNS/CAREER-0546737, CSR-
0905273, and CNS-0627183).

References

[1] Appscale tools wiki page. http://http://code.google.com/p/appscale/wiki/AppSc ale
Tools Usage .

[2] Bittorrent web site.http://www.bittorrent.com .

[3] C. Bunch, N. Chohan, C. Krintz, J. Chohan, J. Kupferman, P. Lakhina, Y. Li, and Y. Nomura. An Evaluation
of Distributed Datastores Using the AppScale Cloud Platform. In IEEE International Conference on Cloud
Computing, Jul. 2010.

[4] Cassandra.http://incubator.apache.org/cassandra/ .

[5] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soman, and R. Wolski. AppScale: Scalable and Open
AppEngine Application Development and Deployment. InICST International Conference on Cloud Computing,
Oct. 2009.

[6] Amazon elastic compute cloud –http://aws.amazon.com/ec2/ .

[7] ejabberd.http://www.ejabberd.im/ .

[8] Eucalyptus home page.http://eucalyptus.cs.ucsb.edu/ .

15

[9] Transactions. http://code.google.com/appengine/docs/python/datast ore/
transactions.html .

[10] GAE Downloads.http://code.google.com/appengine/downloads.html .

[11] Google AppEngine.http://code.google.com/appengine/ .

[12] HBase.http://hadoop.apache.org/hbase/ .

[13] Hypertable.http://hypertable.org .

[14] MemcacheDB.http://memcachedb.org/ .

[15] MongoDB. http://mongodb.org/ .

[16] MySQL. http://www.mysql.com .

[17] Scalaris.http://code.google.com/p/scalaris/ .

[18] SimpleDB.http://http://aws.amazon.com/simpledb/ .

[19] Virt-Install. http://manpages.ubuntu.com/manpages/lucid/man1/virt -install.1.html .

[20] VMBuilder. http://manpages.ubuntu.com/manpages/lucid/en/man1/v mbuilder.1.
html .

[21] Voldemort.http://project-voldemort.com/ .

[22] YAML. http://www.yaml.org .

[23] Zookeeper.http://http://hadoop.apache.org/zookeeper/ .

16

