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ABSTRACT
In this paper, we present the design and implementation of
Neptune, a domain specific language (DSL) that automates
configuration and deployment of existing HPC software via
cloud computing platforms. We integrate Neptune into a
popular, open-source cloud platform, and extend the plat-
form with support for user-level and automated placement
of cloud services and HPC components. Such platform inte-
gration of Neptune facilitates hybrid-cloud application exe-
cution as well as portability across disparate cloud fabrics.

We evaluate Neptune using different applications that em-
ploy a wide range of popular HPC packages for their im-
plementation including MPI, X10, MapReduce, DFSP, and
dwSSA. In addition, we show how Neptune can be extended
to support other HPC software and application domains.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Software Engineering
- Language Classifications (Extensible Languages); C.2.4 [
Computer Systems Organization]: Computer-Commun-
ication Networks - Distributed Systems (Distributed Appli-
cations)

General Terms
Design, Languages, Performance

Keywords
Cloud Platform, Service Placement, Domain Specific Lan-
guage

1. INTRODUCTION
Cloud computing is a service-oriented methodology that sim-
plifies distributed computing through transparent and adap-
tive resource (compute, networking, storage) acquisition and

management. With traditional systems, developers typi-
cally assume a static number of nodes and a fixed deploy-
ment style. Cloud computing enables developers to chal-
lenge these assumptions and to do so to build applications
that can quickly acquire and release resources on-demand.

To date, public cloud providers largely have focused on deliv-
ering very low-cost, scalable web service support – at vary-
ing levels of abstraction. Amazon Web Services provides
a scalable infrastructure from which users acquire access
to individual and configurable virtual machines (VM) in-
stances and to application-level services (e.g., persistent and
block storage, key-value and relational databases, and queu-
ing). As an alternative to fully customer self-service VM use,
Amazon, Google, Microsoft, and others, offer complete run-
time stacks (cloud platforms) that facilitate access to sim-
ilar scalable services (storage, data management, queuing,
messaging, etc.) through well-defined APIs. With platform
cloud computing, developers implement and test their code
locally against a non-scalable version of the platform and
then upload their application to a proprietary implementa-
tion of platform (typically executing on the provider’s re-
sources) that implements scalable versions of the APIs, and
that provides automatic scaling of the application front-end
(web servers). Other cloud vendors, such as SalesForce, pro-
vide remote access to scalable implementations of complete
applications, which can be customized by users.

Despite the abundance of offerings, there remain barriers
to entry to the use of cloud systems for execution of HPC
applications. Most significant is the challenge of configura-
tion and deployment of libraries, services, and technologies
that HPC applications employ for execution. Although not
specific to cloud computing, this challenge is exacerbated by
the cloud execution model since cloud fabrics are either fully
customer self-service, or provide support that targets and is
optimized for the web services domain. The former pre-
cludes the reuse of HPC application infrastructure (tools,
services, packages, libraries, etc.) and requires non-trivial
installation, configuration, and deployment effort to be re-
peated. This is in sharp contrast to the computational grid
model in which the software infrastructure is configured and
maintained by experts and used by developers.

Modern virtualization technology alleviates this problem to
some degree: an expert developer can customize a single VM



and distribute it to others to automate and share the soft-
ware configuration. However, three key challenges remain.
First, most applications require services to be customized
for a particular use or instance (e.g. via writing configura-
tion files) and for service components to be started in the
proper order. Incorrect configuration and startup ordering
can lead to the inability to use the software at all or to
poorly performing programs. The cloud-based configura-
tion and deployment process for a wide variety of popular
HPC software imposes a severe learning curve on scientists
and tends to make HPC application execution using cloud
fabrics inaccessible to all but expert users [14]. Moreover,
complex configuration and deployment of HPC applications
can prevent scientists from reproducing results, as well as
from comparing to, reusing, and extending the work of oth-
ers, slowing or stifling scientific advance.

The other two primary challenges to HPC application de-
ployment using cloud resources are specific to the cloud com-
puting model: (i) clouds are, by definition, opaque, and (ii)
extant cloud systems implement a wide range of APIs (even
for access to similar services) that differ across systems and
that evolve as their implementers identify new ways of im-
proving their offerings for users. Both of these character-
istics add an additional level of complexity to the software
stack that developers must master to deploy software effi-
ciently and in a repeatable fashion. Differing APIs poses
a greater threat to application developers since targeting a
single API (cloud system) leads to lock-in – the inability to
easily move from one cloud system to another.

The goal of our work is to address these challenges to enable
users to develop HPC applications for execution over cloud
systems in a more flexible and portable fashion. To enable
this, we present Neptune, a domain-specific language that
facilitates configuration and deployment of disparate cloud-
based services for use by applications. Neptune provides
a single interface and language through which developers
configure the cloud resources and services for the execution
of an HPC application.

We implement the Neptune language and runtime within the
AppScale cloud platform – an open-source implementation
of Google App Engine. We extend AppScale with new ser-
vices that implement and export popular, general-purpose,
HPC packages, including MPI, X10, MapReduce, and bio-
logical simulations via the Diffusive Finite State Projection
algorithm (DFSP) [10] and doubly-weighted Stochastic Sim-
ulation Algorithm (dwSSA) [8]. Neptune is extensible in
that user can add support for other HPC software packages
in a straightforward manner. The Neptune runtime manages
and controls these services.

In addition, we extend AppScale with support for dynamic
placement of application components and platform services.
This support can be employed manually by cloud adminis-
trators or automatically by the platform. The latter pro-
vides elasticity – the platform spawns only those nodes re-
quired by the cloud application and dynamically grow and
shrink the resources according to program behavior (and/or
other factors, e.g. cost). The platform also reuses virtual
machines between computations to amortize their cost over
multiple runs. This support enables developers to experi-

ment with their own placement strategies. This ability to
experiment is vital - many platforms assume a fully sepa-
rated system, where each component is run on a dedicated
machine, is the optimal system layout, while others assume
that colocating components will improve performance. Nep-
tune allows developers to measure and quantify the differ-
ences between layouts. Also unique to our work, we target
placement within virtual machines, allowing developers to
specify which machines run which services without requiring
the specific knowledge of how to do so. Finally, since Nep-
tune is integrated at the platform-level and we have ported
the platform to different cloud infrastructures, our system
facilitates application portability across cloud fabrics. We
use this support to investigate placement of HPC applica-
tions across private-public and public-public cloud hybrids
using popular cloud infrastructures (Eucalyptus and Ama-
zon EC2).

In summary, we contribute:
• The design of a domain specific language that auto-

mates configuration and deployment of cloud services
for HPC applications.

• An implementation of the language that integrates with
an open-source cloud platform to provide support for
MPI, X10, and MapReduce for general-purpose com-
putation, and DFSP and dwSSA for computational sci-
ence.

• Platform-agnostic techniques for user-specified place-
ment of platform services while retaining flexibility
for the platform to intelligently schedule placement of
other services, including the ability for the cloud plat-
form to reuse virtual machines between computation
jobs.

• Hybrid cloud placement techniques that facilitate de-
veloper deployment of applications within homogeneous
clouds (multi-clouds) (e.g., multi-availability zones within
Amazon EC2) and heterogeneous (hybrid) clouds (e.g.,
a Eucalyptus cloud and an Amazon EC2 cloud).

• An experimental evaluation of the HPC software pack-
ages supported by Neptune as well as a cost analysis
that harnesses the cloud platform’s ability to reuse vir-
tual machines between computation jobs.

• An investigation into what is required to make arbi-
trary cloud software scale within their respective plat-
forms, including what aids and hampers scaling for
cloud applications and a discussion of how to extend
Neptune with support for other services and applica-
tion domains.

In the sections that follow, we describe the design and imple-
mentation of Neptune and our extensions to the AppScale
cloud platform. We then empirically evaluate our system
using HPC applications and different placement strategies.
We then present related work and conclude.

2. DESIGN
Neptune is a domain-specific language that gives cloud appli-
cation developers the ability to easily configure and deploy
various HPC software over cloud fabrics. Neptune operates
at the cloud platform layer (runtime system level) so that
it can control infrastructure-level entities (virtual machines)
as well as application components and cloud services.



2.1 Syntax and Semantics
The Neptune language is a metaprogramming extension of
the Ruby programming language. As such, it is high-level
and familiar, and enables the Neptune runtime to leverage
the large set of Ruby libraries with which it can interact
with cloud infrastructures and platforms. Moreover, any
legal Ruby code is also legal within Neptune programs, en-
abling users to use Ruby’s scripting capabilities to quickly
construct functioning programs. The reverse is also true:
Neptune can be used within Ruby programs: to which it
appears in the way that a library or API would appear to
users of a particular programming language.

Neptune uses block objects (denoted throughout this work
via the do and end keywords) to identify and communicate
with services within a cloud platform. Legal Neptune code
follows the syntax:

job ‘ ‘ s e r v i c e−name ’ ’ do
@option−1 = ‘ ‘ s e t t i n g −1 ’ ’
@option−2 = ‘ ‘ s e t t i n g −2 ’ ’

end

The semantics of the Neptune language are as follows: each
valid Neptune program consists of one or more blocks, each
of which indicate a job to run in a given cloud. The service−
name marker indicates the name of the job to run (e.g.,
MPI, X10) and thus which parameters (prefixed by the @

symbol) are necessary for the given block. This point is im-
portant to emphasize: Neptune jobs are extensible enough
to enable each job to require a certain set of keywords be
used. This design choice is intentional: not all jobs are cre-
ated equal, and while some jobs require little information
be passed to the runtime, other runtimes can benefit greatly
from this added information. As a further step, we leverage
Ruby’s dynamic typing to enable the types of parameters
to be constrained by the user: thus Neptune can dictate
exactly what parameters are needed to optimize a job and
what data types are required for each. If the user specifies a
Neptune job but fails to provide the necessary parameters,
the runtime informs them which parameters are required
and aborts execution.

The value that the block returns is also extensible: in the
cases where a HPC job is being initiated, a common pattern
is used: the Ruby symbol (similar to that of a constant string
in other programming languages) :success is returned when
the job is successfully started, and the symbol :failure

is returned in all other conditions. In the scenario where
the block asks for the data access policy for a particular
piece of data stored in the underlying cloud platform, the
return value for the block is the data access policy itself (and
:failure in scenarios where the ACL cannot be retrieved).

Finally, when the user wishes to retrieve data via a Neptune
job, the block returns the location on the user’s filesystem
where the output can be found, and :failure if the out-
put could not be retrieved. Work is in progress to expand
the number of failure symbols to give users more information
about why particular operations failed (e.g., if the data stor-
age mechanism was unavailable or had failed, or if the cloud
platform itself was unreachable in a reasonable amount of
time), to enable Neptune programs written by users to be-

come more robust and more adequately deal with failures at
the cloud level. The typical format of a user’s Neptune code
is thus of the following form:

r e tu rn va lue = job ‘ ‘mpi ’ ’ do
@code = ‘ ‘ powermethod ’ ’
@nodes to use = 4

end

i f r e t u rn va lue == : su c c e s s
puts ‘ ‘ Your MPI job i s now in progre s s . ’ ’

e l s e
puts ‘ ‘ Your MPI job f a i l e d to s t a r t . ’ ’

end

2.2 Design Choices
It is important to contrast the decision to design Neptune
as a domain specific language with other configuration op-
tions that use XML or other markup languages [15]. These
languages work well for configuration but, since they are
not fully functional programming languages, they are bound
to their particular execution model. In contrast, Neptune’s
strong binding to the Ruby programming language enables
users to leverage Neptune and its HPC capabilities to easily
incorporate it into their own codes. For example, Ruby is
well known for its Rails web programming framework [22],
and Neptune’s interoperability enables Rails users to easily
spawn HPC applications without explicit knowledge of how
Neptune or the HPC application operates.

Markup and workflow languages are powerful in the types
of computation that they enable. Neptune similarly allows
arbitrary computation to be connected and chained to one
another. The following example shows how the output of a
MapReduce job can be used as the input to a X10 job. Here,
the MapReduce job produces a graph representing links be-
tween web pages, while the X10 code takes this graph and
performs a shortest-path algorithm from all nodes to one
another:

job ‘ ‘ mapreduce ’ ’ do
@input = ‘ ‘/ rawdata /webdata ’ ’
@output = ‘ ‘/ output /mrgraph ’ ’

@mapreducejar = ‘ ‘ graph−generator . jar ’ ’
@main = ‘ ‘ main ’ ’

@nodes to use = 64
end

job ‘ ‘mpi ’ ’ do
@input = ‘ ‘/ output /mrgraph ’ ’
@output = ‘ ‘/ output / shor t e s tpath ’ ’

@code = ‘ ‘ ShortestPath ’ ’
@nodes to use = 64

end

To enable code reuse, we allow certain primitive operations
to be used across HPC applications. In particular, setting
access control policies (ACLs) for data produced by jobs and
the ability to retrieve output from a job are two operations



that occur throughout all the HPC software Neptune sup-
ports. Thus, the Neptune runtime enables these operations
to share a single code base for the implementation of these
functions. This feature is optional: not all software packages
may support ACLs and a unified model for data output, so
Neptune gives developers the option to implement support
for only the features they require, but with the ability to
leverage existing support as well.

3. IMPLEMENTATION
To enable deployment of Neptune jobs, the cloud platform
must support a number of primitive operations. These oper-
ations are similar to those found in computational grid and
cluster utilities such as the Portable Batch System [19]. The
cloud platform must be able to receive Neptune jobs, acquire
computational resources to execute jobs on, run these jobs,
and place the output of these jobs in a way that enables
users to retrieve them later or share them with other users.
Additionally, there must be mechanisms from the user’s per-
spective that enable them to deploy jobs and modify the
access permissions on data that has been uploaded to the
cloud platform. For this work, we employ the AppScale
cloud platform to add these capabilities.

AppScale is an open-source cloud platform that implements
the Google App Engine APIs. Users deploy applications
using AppScale via either a set of command-line tools or
web interface, which then deploys and hosts the applica-
tion. An AppScale cloud consists of one or more distributed
database components, one or more web servers, a monitor-
ing daemon (the AppController) that coordinates services
on a single node as well as across nodes in the cloud, and
a set of tools to configure, deploy, and manage a cloud.
AppScale implements a wide range of distributed/replicated
datastore technologies for its database interface (the Google
Datastore API) via popular open source technologies, in-
cluding Cassandra, Voldemort, HBase, Hypertable, Mon-
goDB, MemcacheDB, and others. AppScale runs over vir-
tualized and un-virtualized cluster resources as well as over
Amazon EC2 and Eucalyptus [17] cloud infrastructures au-
tomatically. The full details of AppScale are described in [6,
3]. In this section, we overview the AppScale components
(the AppScale Tools and AppController) that are impacted
by our extensions and contributions that enable customized
placement, automatic scaling, and Neptune support within
AppScale.

3.1 Cloud Support
Our extensions to AppScale facilitate the interoperation of
Neptune and AppScale. In particular, we modified AppScale
to acquire and release machines used for computation and to
enable service placement (statically or automatically). To do
so, we modify two components within AppScale: the App-
Scale Tools and the AppController.

3.1.1 AppScale Tools
The AppScale Tools are a set of command line tools that
developers and administrators can use to manage AppScale
deployments and applications. In a typical deployment, the
user writes a configuration file specifying which node in
the system is the “master” node and which nodes are the
“slave” nodes. Prior to this work, this meant that the mas-
ter node always deployed a Database Master (or Database

Peer for Peer-to-Peer databases) and AppLoadBalancer to
handle and route incoming user requests, while slave nodes
always deployed a Database Slave (or Database Peer) and
AppServer hosting the user’s application.

We extend this configuration model to enable users to spec-
ify a new configuration file that identifies which nodes in the
system should run which components. For example, users
can specify that they want to run each component on a ded-
icated machine by itself, or alternatively users could specify
that they want their database nodes running on the same
machines as their AppServers and have all other components
running on another machine. Critically, we also allow users
to designate certain nodes in the system as “open”, which
tells the AppController that no services are to run on this
node and that it can be utilized for running Neptune jobs.

We extend this support to enable hybrid cloud deployment
of AppScale – in which different nodes are managed by dif-
ferent cloud infrastructure over which AppScale runs. Here,
users specify which nodes belong to each cloud, and then
export a set of environment variables that correspond to the
credentials needed for each cloud. This is done by design,
to mirror the styles used by Amazon EC2 and Eucalyptus.
One potential use case of this hybrid cloud support is for
users who have a small, dedicated Eucalyptus deployment
and access to Amazon EC2: these users could indicate to
use their smaller Eucalyptus deployment to test and opti-
mize the performance of their HPC codes and then deploy
to Amazon EC2 when a larger number of nodes are needed.
Similarly, Neptune users can use this hybrid cloud support
to run jobs in multiple availability-zones simultaneously, en-
abling them to always run HPC jobs in the availability zone
that is physically closest (and thus with the lowest latency)
to their data. Furthermore, for scenarios when the applica-
tion to be deployed is not an HPC application (e.g., in the
case of web applications), it may be beneficial to ensure that
instances of the application are served in as many availabil-
ity zones as possible to ensure that the user has access to a
nearby instance whenever possible. This deployment strat-
egy enables web users much lower latencies to their appli-
cations and some degree of fault-tolerance in the rare cases
when an entire availability zone is temporarily inaccessible.

3.1.2 AppController
The AppController is the AppScale monitoring service that
runs on every node in the cloud. On each node, the App-
Controller configures and instantiates all necessary services.
This typically involves the starting of databases and run-
ning Google App Engine applications. AppControllers also
monitor the status of the services they run, and periodically
sends heartbeat messages to other AppControllers to learn
the status of the components running there. Specifically, it
queries each node to learn the CPU, memory, and hard drive
usage, although it is extensible to other metrics as well.

We extend the AppController component to receive Nep-
tune jobs from users. Our extensions enable the AppCon-
troller to receive and understand RPC (via SOAP) messages
from the Neptune runtime and to coordinate Neptune activ-
ities across other AppControllers (and thus other nodes) in
the AppScale deployment. Furthermore, upon receiving a
configuration file from the AppScale Tools designating that



certain machines are to be allocated for Neptune jobs, the
AppController ensures that no other services run on those
machines.

If running in hybrid cloud deployments, this also entails
spawning machines in each cloud that the user has requested
machines in, with the credentials that the user has provided.
Additionally, as cloud infrastructures currently meter on a
per-hour basis, we have modified the AppController to be
cognizant of this and reuse virtual machines between Nep-
tune jobs. Currently, any virtual machine that is not run-
ning a Neptune job at the 55-minute mark is terminated; all
other machines are renewed for another hour.

Administrators can query the system via either the App-
Scale Tools and users via the web interface provided by the
AppLoadBalancer. These interfaces inform users about the
jobs in progress and in hybrid cloud deployments, which
clouds are running which jobs.

3.2 Job Data
Clouds that run Neptune jobs must allow for data to be
used as input to other Neptune jobs and thus we must store
this data and make it available for later use. In Neptune,
the output of a job is stored as a three-tuple: a string con-
taining the job’s identification number, a string containing
the output of the job, and a composite type indicating the
access policy of the given data. The access policy used for
Neptune is similar to that of the access policy used by Ama-
zon’s Simple Storage Service [1]: a particular piece of data
can be tagged as either private (only visible to the user that
uploaded it) or public (visible to anyone). Data is by default
private but can be changed by the user by running a Nep-
tune job. Similarly, data is referenced as though it were on
a file-system: paths must begin with a forward-slash (‘/’)
and can be compartmentalized into folders in the familiar
manner. Specifically, the Neptune program to set the ACL
of a particular piece of data to be public is:

job ‘ ‘ set−ac l ’ ’ do
@output = ‘ ‘/mydata/nqueens−output ’ ’
@acl = ‘ ‘ pub l ic ’ ’

end

Just as a Neptune job can be used to set the ACL for a piece
of data, a Neptune job is also used to retrieve the current
ACL:

c u r r e n t a c l = job ‘ ‘ get−ac l ’ ’ do
@output = ‘ ‘/mydata/nqueens−output ’ ’

end

puts ‘ ‘The cur ren t ACL i s : ’ ’ + cu r r e n t a c l

Retrieving the output of a given job works in the same fash-
ion as it does for access policies: a Neptune job suffices. By
default, it returns a string containing the results of the job,
but as many jobs return data that is far too large to effi-
ciently be used in this manner, a special parameter can be
used to instead indicate that it should be copied to a file on
the local machine. The following Neptune code illustrates
both use cases (note that the # character is Ruby’s comment
character):

# f o r a job with smal l output
r e s u l t = job ‘ ‘ get−output ’ ’ do
@output = ‘ ‘/mydata/boo ’ ’

end

puts ‘ ‘ Output i s : ’ ’ + r e s u l t

# f o r a job with much l a r g e r output
r e s u l t = job ‘ ‘ get−output ’ ’ do
@output = ‘ ‘/mydata/boo−l a rge ’ ’
@ sav e t o l o c a l = ‘ ‘/ shared /boo−l a r g e . txt ’ ’

end

i f r e s u l t == : su c c e s s
puts ‘ ‘ Output cop ied s u c c e s s f u l l y . ’ ’

end

3.3 Employing Neptune for HPC Frameworks
To expand the set of cloud services available from extant fab-
rics in support of HPC applications, we service-ize a num-
ber of key HPC packages within the platform for use via
Neptune. Specifically, we provide support for MPI, X10,
and MapReduce, to enable users to run arbitrary codes for
different computational models within cloud systems. We
also provide two popular stochastic simulation algorithms
(the diffusive finite state projection algorithm and the dou-
bly weighted SSA coupled with the cross-entropy method)
which are used by a wide range of computational science
applications.

3.3.1 MPI
The Message Passing Interface (MPI) is a popular, general-
purpose computational framework for distributed scientific
computing. The most popular implementation is written
in a combination of C, C++, and assembly, however many
other implementations exist for other programming languages,
such as Java and Python. AppScale employs the C/C++
version, enabling developers to write code in either of these
languages to access MPI bindings within an AppScale cloud.
The developer uses Neptune to specify the location of the
compiled application binary and output data. This informa-
tion is communicated via Neptune to the AppScale Shadow.
The Shadow then starts up NFS (or any distributed file sys-
tem) on all the nodes in the system, if it has not yet been
started. is required by MPI. The job is then run, and once
it is completed, Neptune returns the standard output and
standard error of the job (the results) to the developer. An
example of such a specification is as follows:

job ‘ ‘mpi ’ ’ do
@code = ‘ ‘ powermethod ’ ’
@nodes to use = 4
@output = ‘ ‘/ mpioutput ’ ’

end

In this example, we designate the name of the output file to
create from whatever is printed to standard output and the
location of the compiled code. Note that this program does
not use any input parameters nor need to write to any files on
disk as part of its output, however, we can extend Neptune
to do so if necessary. We also can designate which shared
file system to use when running MPI. Currently, we support



NFS and are working on support for the Lustre Distributed
File System [16]. The second code fragment blocks until the
MPI job has finished running and copies the output of the
job back to the user’s machine.

3.3.2 X10
While MPI is suitable for many types of application do-
mains, one recent demand in computing has been to enable
programmers to write fast, scalable code using a high-level
programming language. In addition, as many years of re-
search have gone into optimizing virtual machine technolo-
gies, it was also desirable for a new technology to be able
to leverage this work. In this spirit, IBM introduced the
X10 programming language [5], which uses a Java-like syn-
tax and executes transparently over a non-distributed Java
backend and a distributed MPI backend.

As X10 code can compile to executables for use by MPI, X10
jobs are reducible to MPI jobs. Thus, the following Neptune
code deploys an X10 executable that has been compiled for
use with MPI:

job ‘ ‘mpi ’ ’ do
@code = ‘ ‘ NQueensDist ’ ’
@nodes to use = 2
@output = ‘ ‘/ x10output ’ ’

end

With the combination of MPI and X10 within Neptune,
users can trivially write algorithms in all both frameworks
and (provided a common output format exists) compare the
results of a particular algorithm to ensure correctness across
implementations. One example used in this paper is the
n−queens algorithm: the following Neptune code illustrates
how to verify the results across these implementations:

# run mpi v e r s i on
job ‘ ‘mpi ’ ’ do
@code = ‘ ‘MpiQueen ’ ’
@nodes to use = 4
@output = ‘ ‘/mpi/nqueens ’ ’

end

# run x10 v e r s i on
job ‘ ‘mpi ’ ’ do
@code = ‘ ‘ NQueensDist ’ ’
@nodes to use = 4
@output = ‘ ‘/ x10/nqueens ’ ’

end

mpi output = job ‘ ‘ output ’ ’ do
@output = ‘ ‘/mpi/nqueens ’ ’

end

x10 output = job ‘ ‘ output ’ ’ do
@output = ‘ ‘/ x10/nqueens ’ ’

end

i f mpi output == x10 output
puts ‘ ‘ Output matched ! ’ ’

e l s e
puts ‘ ‘ Output did not match . ’ ’

end

3.3.3 MapReduce
Popularized by Google in 2004 for its internal data process-
ing [9], the map-reduce programming paradigm (MapRe-
duce) has experienced a resurgence and renewed interest re-
cently. In contrast to the general-purpose message passing
embodied in MPI, MapReduce targets embarrassingly par-
allel problems. Users provide input, which is split to a user-
defined Map function. The output of this function is then
sorted based on a key provided by the Map function and all
the outputs with the same key are given to a user-defined
Reduce function, which typically aggregates the data. As
no communication can be done by the user in the Map and
Reduce phases, these programs are highly amenable to par-
allelization.

Hadoop provides an open-source implementation that runs
over the Hadoop Distributed File System (HDFS) [13]. The
standard implementation requires users to write their code
in the Java programming language, while the Hadoop Stream-
ing implementation faciliates writing code in any program-
ming language. Neptune has support for both implementa-
tions - users specify a Java archive file (JAR) for the stan-
dard implementation, or name where the Map and Reduce
files are located on their computer.

Neptune copies the required files to AppScale. AppScale
runs the job on the Neptune-specified nodes in the system.
In particular, the AppScale Shadow contacts the Hadoop
JobTracker node with this information, and polls for job
completion (indicated by the output location having data).
When this occurs, Neptune copies the data back to a user-
specified location. From the user’s perspective, the neces-
sary Neptune code is:

job ‘ ‘ mapreduce ’ ’ do
@input = ‘ ‘/ input−t ex t . txt ’ ’
@output = ‘ ‘/ mroutput . txt ’ ’

@mapreducejar = ‘ ‘ hadoop−examples . jar ’ ’
@main = ‘ ‘ wordcount ’ ’

@nodes to use = 4
end

Neptune exposes a number of interesting options specific to
MapReduce to the user. As was the case with the MPI
code, the user specifies where the input is located, where
to write the output to (here this is an HDFS location), as
well as the location of the code on their local machine. Users
specify either a relative path or full path to their code. Since
MapReduce inputs can be extremely large, we allow the user
to specify an HDFS input location for the input file instead
of copying it over the network on every run. This is useful
if a previous Neptune run has already copied the input or if
it was already placed there by another service. Similarly to
the MPI implementation in Neptune, the second code block
waits for the MapReduce job to finish and copies the results
back to the user’s machine.

3.3.4 SSA



One type of algorithm that computational biologists em-
ploy in their research is the Stochastic Simulation Algorithm
(SSA), popularized by Gillespie [12]. At the highest level
of abstraction, SSA is a Monte Carlo algorithm that simu-
lates chemical or biochemical systems of reactions efficiently
and accurately. As these simulations are non-deterministic,
a large number of these simulations must be performed to
achieve acceptable estimation accuracy. Statistical analy-
sis (such as mean and variance) is then performed on the
results of these simulations. Such computations are embar-
rassingly parallel and like MapReduce, can be characterized
as Single Program Multiple Data. Two implementations of
the SSA are the Diffusive Finite State Projection algorithm
(DFSP) [10] and the doubly weighed SSA coupled with the
cross-entropy method (which we hereafter refer to as simply
dwSSA) [8], which offer both accurate and efficient simula-
tion compared to other methods.

Currently, scientists at UCSB and elsewhere execute sim-
ulations in an ad-hoc manner. Scientists reserve a set of
compute nodes and run a large number of simulations over
these nodes, with at least 10,000 simulations needed to min-
imize error to acceptable levels for DFSP and 1,000,000 sim-
ulations for dwSSA. To simplify these processes, we imple-
ment cloud service support for both DFSP and dwSSA in
AppScale and export Neptune support to end-users. With
Neptune, scientists only need to specify the number of sim-
ulations they wish to run. Neptune then contacts the App-
Scale Shadow, which splits the work across it and the other
nodes in the system. Neptune then merges the results and
returns them to the user when completed. From the user’s
perspective, the code is:

job ‘ ‘ dfsp ’ ’ do
@nodes to use = 4
@simulat ions = 100 000
@output = ‘ ‘/ dfspoutput ’ ’

end

job ‘ ‘ dwssa ’ ’ do
@nodes to use = 4
@simulat ions = 1 000 000
@output = ‘ ‘/ dwssaoutput ’ ’

end

As our implementation uses the same input and code for all
runs, the user need not specify such information. They only
specify how many simulations to run and the name of the
output. The second code block indicates where to copy the
results to and blocks until the job finishes.

We have also seen use cases where scientists are interested
in running a certain number of simulations and then, if the
requested confidence level in their experiment level is not
achieved, running more simulations. The Neptune code re-
quired to do this is trivial:

con f id ence needed = 0.95
i = 0
loop {
job ‘ ‘ dfsp ’ ’ do
@nodes to use = 4
@simulat ions = 100 000

@output = ‘ ‘/mydata/run−#{ i } ’ ’
end

con f id ence ach i eved = job ‘ ‘ get−output ’ ’ do
@output = ‘ ‘/mydata/run−#{ i } ’ ’

end

i f con f id ence ach i eved > con f id ence needed
break

e l s e
puts ‘ ‘ S u f f i c i e n t con f id ence not reached . ’ ’

end

i += 1
}

3.4 Employing Neptune for Cloud Scaling and
Enabling Hybrid Clouds

Our goal with Neptune is to simplify configuration and de-
ployment of HPC applications. However, Neptune is flexible
enough to be used with other application domains. Specifi-
cally, Neptune can be used to control the scaling and place-
ment of services within the underlying cloud platform. Fur-
thermore, if the platform supports hybrid cloud placement
strategies, Neptune can also be used to control how services
are placed across cloud infrastructures.

To demonstrate this, we use Neptune to enable users to man-
ually scale up a running AppScale deployment. Users need
only specify which component they wish to scale up (e.g.,
the load balancer, application server, or database server)
and how many of them they required. This reduces the typ-
ically difficult problem of scaling up a cloud to the following
code:

job ‘ ‘ appscale ’ ’ do
@nodes to use = { : c loud1 => 3 , : c loud2 => 6}
@add component = ‘ ‘ appengine ’ ’
@t ime needed for = 3600

end

In this example, the user has specified that they wish to
add six application servers to their AppScale deployment,
and that these machines are needed for one hour. Further-
more, three of the servers should be placed in the first cloud
that the platform is running over, while six servers should
be placed in the second cloud that the platform is running
over. This type of scaling is useful for instances where the
amount of load in both clouds is known: here, this is useful
if both clouds are over-provisioned but the second is either
expecting greater traffic in the near future or is sustaining
more load than the first cloud.

As was the case with other Neptune-enabled services, scal-
ing and automation is only amenable to the same degree
as the underlying services allow for. For example, while
the Cassandra database does allow new nodes to be added
to the system dynamically, users cannot add more nodes
to the system than already exist (e.g., in a system with
N nodes, no more than N − 1 nodes can be added at a
time) [4]. Therefore, if more than the allowed for number
of nodes are needed, either multiple Neptune jobs must be



submitted or the cloud platform must absorb this complex-
ity into its scaling mechanisms. Similarly, the underlying
cloud platform must have the capability to manually add
user-specified components: Neptune only directs these ca-
pabilities and does not implement them.

3.5 Limitations with Employing Neptune
As previously stated, Neptune enables automatic configura-
tion and deployment of software by a supported cloud plat-
form to the extent that the underlying software allows. It
is thus important to make explicit scenarios in which Nep-
tune encounters difficulties, as they are the same scenarios
in which the supported software packages are not amenable
to being placed in a cloud platform. From the end-users we
have designed Neptune to aid, we have experienced three
common problems that are not specific to Neptune or to
distributed systems (e.g., clouds, grids) in general:

• Programs that require a unique identifier, whether it
be an IP address or process name to be used to locate
each machine in the computation (e.g. as is required
by Erlang systems).

• Programs that are run on machines of a different ar-
chitecture than the cloud supports, requiring either re-
mote compilation or cross-compilation.

• Programs that have highly specialized libraries for end-
users but are not free / open-source, and thus are cur-
rently difficult to dynamically acquire and release li-
censes for (e.g. Matlab).

We are investigating how to mitigate these limitations as
part of future work. In particular, since Neptune is exten-
sible in the parameters it supports, we can extend it to en-
able remote-compilation as-a-service. For unique identifiers,
it is possible to have Neptune take a parameter containing
a list of process identifiers to use within computation. For
licensing issues, we can have the cloud fabric make licenses
available on per-use basis. Our platform then can guide de-
velopers to cloud fabrics have the appropriate licenses for
execution of their application.

4. EVALUATION
We next use Neptune to empirically evaluate how effectively
the supported services execute within the AppScale cloud
platform. We begin by presenting our experimental method-
ology and then discuss our results.

4.1 Methodology
To evaluate the software packages supported by Neptune,
we use benchmark and example applications provided by
each. We measure the cost of running Neptune jobs with
and without VM reuse.

To evaluate MPI, we use a Power Method implementation
that at its core multiplies a matrix by a vector (the stan-
dard MatVec operation) to find the absolute value of the
largest eigenvalue of the matrix. We choose this code over
more standard codes such as the Intel MPI Benchmarks as
this code tests a number of the MPI primitives working in

tandem, producing a code that should scale with respect to
the number of nodes in the system. By contrast, the Intel
MPI Benchmarks largely measure interprocess communica-
tion time or the time taken for a single primitive operation,
which is likely to scale negatively as the number of nodes in-
crease (e.g., barrier operations are likely to take longer when
more nodes participate). We use a 6400x6400 matrix and
6400x1 vector to ensure that the size of the matrices evenly
divides the number of nodes in the computation.

For X10, we use an NQueens implementation publicly avail-
able from the X10 team, that is optimized to run over mul-
tiple machines. It is designed to solve the n-queens problem,
and to ensure a sufficient amount of computation is avail-
able, we set n = 16, thus creating a 16x16 chessboard and
placing 16 queens on the board. For comparison purposes
with MPI, we also include an optimized MPI version pub-
licly made available be the authors of [21]. It is also set to
use a 16x16 chessboard, using a single node to distribute
work across machines and the others to perform the actual
work involved.

To evaluate MapReduce, we use Java WordCount, which
takes an input data set and finds the number of occurrences
of each word in that set. Each Map task is assigned a line
of the input text, and for every word it finds, it reports this
with an associated count of one. Each Reduce task then
sums the counts for each word and saves the result to the
output file. Our input file consists of the works of William
Shakespeare appended to itself 500 times, producing an in-
put file roughly 2.5GB in size.

For our SSA codes, DFSP and dwSSA, we run 10,000 and
1,000,000 simulations, respectively, and measure the total
execution time. As mentioned earlier, previous work in each
of these papers indicate that these numbers of simulations
are the minimum numbers of simulations that scientists typ-
ically must run to achieve a reasonable accuracy.

We execute these tests over different dynamic AppScale cloud
deployments of 1, 4, 8, 16, 32, and 64 nodes. In all cases,
each node is a Xen guestVM that executes with 1 virtual
processor, 10GB of disk (maximum), and 1GB of memory.
We also employ a placement strategy provided by AppScale
where one node deploys an AppLoadBalancer (ALB) and
Database Peer (DBP), while the other nodes are designated
as “open” (that is, they can be claimed for any role by the
AppController as needed). Since no Google App Engine ap-
plications are deployed, no AppServers run in the system.
All values reported here represent the average of five runs.

For these experiments, Neptune employs AppScale 1.5-Beta,
MPICH2 1.2.1p1, X10 2.1.0, Hadoop MapReduce 0.20.0, the
DFSP implementation graciously made available by the au-
thors of the DFSP paper [10], and the dwSSA implementa-
tion graciously made available by the authors of the dwSSA
paper [8].

4.2 Experimental Results
We begin by discussing the performance of the MPI and X10
Power Method codes within Neptune. We time the compu-
tation (including any necessary communication required for
the computation); we exclude the time to start NFS, to write



Table 1: Parallel efficiency for the Power Method

code utilizing MPI over varying numbers of nodes.

# of Nodes MPI Parallel Efficiency
4 0.9285
8 0.4776
16 0.3358
32 0.0488
64 0.0176

MPI configuration files, and to start prerequisite MPI ser-
vices. Figure 1 presents these results. Table 1 presents the
parallel efficiency, given by the standard formula:

E =
T1

pTp

(1)

where E denotes the parallel efficiency, T1 denotes the run-
ning time of the algorithm running on a single node, p de-
notes the number of processors used in the computation, and
Tp denotes the running time of the algorithm running on p

processors.
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Figure 1: Average running time for the Power

Method code utilizing MPI and X10 over varying

numbers of nodes. These timings include running

time as reported by MPI Wtime and do not include

NFS and MPI startup and shutdown times.

Both Figure 1 and Table 1 show clear trends: speedups are
initially achieved as nodes are increased to the system, but
the decreasing parallel efficiencies show that this scalability
does not extend up through 64 nodes. Furthermore, the run-
ning time of the Power Method code increases after the 16
node point. Analysis using VAMPIR [23], a standard tool for
MPI program visualization, shows that the collective broad-
cast calls used are the bottleneck, becoming increasingly so
as the number of nodes increase in the system. This is an
important point to reiterate: since Neptune simply runs sup-
ported codes of varying numbers of nodes, the original code’s
bottlenecks remain present and are not optimized away in
any fashion.

The MPI and X10 n-queens codes encounter a different type
of scaling compared to our Power Method code. Figure 2
shows these trends: the MPI code’s performance is optimal
at 4 nodes, while the X10’s code performance is optimal at
16 nodes. The X10’s n-queens code suffers substantially at
the lower numbers of nodes compared to its MPI counter-
part; this is likely due to its relatively new work-stealing

algorithm, and is believed to be improved in subsequent
versions of X10. This is also the rationale for the larger
standard deviation encountered in the X10 code. We omit
the discussion of parallel efficiency for this code: this is be-
cause the MPI code dedicates the first node to coordinate
computation, and thus we cannot compute the time needed
to run this code on a single node (required for computing
parallel efficiencies).
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Figure 2: Average running time for the n-queens

code utilizing MPI and X10 over varying numbers

of nodes. These timings include running time as

reported by MPI Wtime and do not include NFS

and MPI startup and shutdown times.

MapReduce WordCount experiences a superior scale-up com-
pared to our MPI and X10 codes. This is largely because
this MapReduce code is highly optimized by Hadoop and
does not use any communication between nodes aside from
that required for communication between the Map and Re-
duce phases. Figure 3 and Table 2 show the running times
of WordCount via Neptune. Like with MPI, we measure
computation time and not the time incurred starting and
stopping Hadoop on the nodes involved.
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Figure 3: Average running time for WordCount uti-

lizing MapReduce over varying numbers of nodes.

These timings include Hadoop MapReduce runtimes

and do not include Hadoop startup or shutdown

times.

Figure 3 and Table 2 show opposing trends compared to the
MPI results. With our MapReduce code, we see consistent
speedups as more nodes are added to the system, although



Table 2: Parallel efficiency for WordCount using

MapReduce over varying numbers of nodes.

# of Nodes Parallel Efficiency
4 0.8455
8 0.5978
16 0.5313
32 0.3591
64 0.3000

the impact of this is diminished as we add more nodes to
the system. This is clear from the decreasing parallel effi-
ciencies, and as stated before, these speedups are not related
to MapReduce or MPI specifically but are due to the pro-
grams evaluated here. WordCount sees a superior speedup
compared to the Power Method code due to the reduced
amount of communication and larger amounts of computa-
tion. We also see a much smaller set of standard deviations
when compared with the Power Method MPI code, as now
the communication is strictly handled by the runtime itself
and optimized by the framework.

DFSP also benefits from parallelization and support via Nep-
tune and a cloud platform. This is because the DFSP im-
plementation used has no internode communication during
its computation and is embarrassingly parallel. This is in
contrast to the MapReduce framework, where communica-
tion occurs between the Map and Reduce phases. In the
DFSP code, once each node knows how many simulations
to run, they work with no communication with other nodes.
Figure 4 and Table 3 show the running times for 10,000 sim-
ulations via Neptune. Unlike MapReduce and MPI, which
provide distributed runtimes, our DFSP code does not, so
we time all interactions once AppScale receives the message
to begin computation from Neptune until the results have
been merged on the master node.
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Figure 4: Average running time for the DFSP code

over varying numbers of nodes. As the code used

here does not have a distributed runtime, timings

here include the time that AppScale takes to dis-

tribute work to each node and merge the final data.

Figure 4 and Table 3 show similar trends for the DFSP code
as seen in MapReduce WordCount. This code also sees a
consistent reduction in runtime as the number of nodes in-
crease, but retains a much higher parallel efficiency com-
pared to the MapReduce code. This is due to the lack of

Table 3: Parallel efficiency for the DFSP code over

varying numbers of nodes.

# of Nodes Parallel Efficiency
4 0.9929
8 0.9834
16 0.9650
32 0.9216
64 0.8325

Table 4: Parallel efficiency for the dwSSA code over

varying numbers of nodes.

# of Nodes Parallel Efficiency
4 0.7906
8 0.4739
16 0.3946
32 0.2951
64 0.1468

communication within computation, as now the framework
needs only to collect results once the computation is com-
plete, and does not need to sort or shuffle data as is needed in
the MapReduce framework. As even less communication is
used here compared to WordCount and Power Method MPI
codes, the DFSP code exhibits a smaller standard deviation,
and a standard deviation that tends to decrease with respect
to the number of nodes in the system.
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Figure 5: Average running time for the dwSSA code

over varying numbers of nodes. As the code used

here does not have a distributed runtime, timings

here include the time that AppScale takes to dis-

tribute work to each node and merge the final data.

One final example that follows similar trends to the DFSP
code is the other Stochastic State Algorithm, dwSSA, shown
in Figure 5 and Table 4. This code achieves a reduction in
runtime with respect to the number of nodes in the system,
but does not do so at the same rate as the DFSP code, as
can be seen through the lower parallel efficiencies.

4.3 VM Reuse Analysis
Next, we perform a brief examination of the costs of the
experiments in the previous section if run over Amazon EC2,
with and without the VM reuse. The VMs are configured
with 1 virtual CPU, 1 GB of memory, and a 64-bit platform.
This is similar to the Amazon EC2 “Small” machine type



Table 5: Cost to run all experiments for each type

of Neptune job, with and without reusing virtual

machines.
# Type Cost with Cost without
of Job VM Reuse VM Reuse

PowerMethod $12.84 $64.18
NQueens(MPI) $12.92 $64.60
NQueens(X10) $13.01 $64.60
MapReduce $13.01 $64.18

DFSP $35.70 $78.63
dwSSA $12.84 $64.18

Total $100.32 $400.37

(1 virtual CPU, 1.7 GB of memory, and a 32-bit platform)
which costs $0.085 per hour.

Each PowerMethod, MapReduce, DFSP, and dwSSA exper-
iment is run five times at 1, 4, 8, 16, 32, and 64 nodes to
produce the data shown earlier, while each NQueens exper-
iment is run five times at 2, 4, 8, 16, 32, and 64 nodes. We
compute the cost of running these experiments without VM
reuse (that is, by acquiring the needed number of machines,
running the experiments, and then powering them off) com-
pared to the cost with VM reuse (that is, by acquiring the
needed number of machines, performing the experiment for
all numbers of nodes, and not powering them off until all
runs complete). Note that in the reuse case, we do not per-
form reuse between experiments. For example, the Neptune
code used to run the experiments for the X10 NQueens code
is:

[ 2 , 4 , 8 , 16 , 32 , 6 4 ] . each { | i |
5 . t imes { | j |
job ‘ ‘ x10 ’ ’ do

@code = ‘ ‘ NQueensDist ’ ’
@nodes to use = i
@output = ‘ ‘/ nqueensx10/nodes#{ i }/ run#{j } ’ ’

end
}

}

Table 5 shows the expected cost of running these experi-
ments with and without VM reuse. In all experiments, em-
ploying VM reuse greatly reduces the cost. This is largely
due to inefficient use of nodes without reuse: many scenarios
employ large numbers of nodes to run experiments that use
only a subset of an hour (VMs are charged for by AWS by
the hour).

5. RELATED WORK
The research most related to Neptune from a conceptual
point-of-view are the RightScale Gems [20] and boto [2],
sets of Ruby and Python libraries, respectively, that inter-
act with cloud infrastructures. These libraries allow users
to easily access Amazon services such as EC2, S3, and SQS
in their Ruby and Python codes. Two major differences
between these libraries and Neptune are the scope and ex-
tensibility: with the RightScale Gems and boto, users can
perform the same functions they could with the Amazon-
provided Java libraries in Ruby or Python instead. With
Neptune, new types of computation are enabled through the
included packages, and users can easily add support for their

own as needed. This largely leverages the fact that the un-
derlying platform is open-source; the RightScale Gems and
boto are largely limited since the primary infrastructures
they run over are closed-source (although in theory nothing
prevents them from being extended with open-source cloud
infrastructures such as Eucalyptus).

As MPI and MapReduce are frameworks that have seen
widespread popularity in the distributed systems commu-
nity, many have migrated them into cloud systems. Prior
work [11, 18] explores the performance implications of run-
ning MPI and MapReduce at the infrastructure level. By
doing so at the infrastructure level, this requires the user to
bundle the software themselves and configure it for optimal
use, which is a task that requires much more knowledge of
the underlying system than the average user possesses. By
doing so at the platform level, we eliminate these require-
ments - users simply specify the MPI or MapReduce code to
run and the platform sets up the environment and optimizes
it for them.

Other work, e.g. [7, 15] explore the use of specialized soft-
ware packages in cloud systems. However, these works only
support a single software package, while Neptune supports a
variety of software packages and is extensible to support the
addition of arbitrary software packages as administrators re-
quire. Neptune supports both software that is distributed by
nature as well as those that are not–although scalability is
limited to that intrinsically supported by the given software.

6. CONCLUSIONS
We contribute Neptune, a Domain Specific Language (DSL)
that abstracts away the complexities of deploying and us-
ing high performance computing services within cloud plat-
forms. We integrate support for Neptune into AppScale,
an open-source cloud platform and add cloud software sup-
port for five disparate HPC software packages: MPI, X10,
MapReduce, and the SSA packages DFSP and dwSSA. Nep-
tune allows users to deploy supported software packages over
varying numbers of nodes with minimal effort, simply, uni-
formly, and scalably.

We also contribute techniques for placement support of crit-
ical components within cloud platforms in a way that en-
sure that running cloud software does not negatively impact
existing services. This also entails hybrid cloud placement
techniques, facilitating deployment of applications by devel-
opers across cloud infrastructures without application mod-
ification. We implement these techniques within AppScale
and provide sharing support that allows users to share the
results of Neptune jobs between one another and to pub-
lish data to the scientific community via a data tagging
system. The system is also flexible enough to allow users
to reuse Neptune job outputs as inputs to other Neptune
jobs. Neptune is open-source and can be downloaded from
http://neptune-lang.org. Users with Ruby installed can
also install Neptune directly via Ruby’s integrated software
repository by running gem install neptune.
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