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Abstract—Data privacy is a major concern when users query
public online data services. The privacy of millions of people
has been jeopardized in numerous user data leakage incidents
in many popular online applications. To address the critical
problem of personal data leakage through queries, we enable
private querying on public data services so that the contents
of user queries and any user data are hidden and therefore
not revealed to the online service provider. We propose two
protocols for processing private database queries, namelyBHE
and HHE. BHE provides complete query privacy by using
Paillier’s homomorphic encryption along with the bucketization
of public data. In contrast to traditional Private Informat ion
Retrieval (PIR) proposals, BHE only incurs one round of client
server interaction for processing one query. Built upon BHE,
HHE is a hybrid protocol that applies BHE computation and
communication on a subset of the data buckets, such that this
subset covers the actual requested data but also mimics frequent
query patterns of common users, thus achieving practical query
performance while providing proper privacy protection. Because
of the use of frequent query patterns and data specific privacy
protection, HHE is not vulnerable to traditional attacks on k-
Anonymity that explore data similarity and skewness. Moreover,
HHE consistently protects user query privacy for a sequenceof
queries in a query session.

I. I NTRODUCTION

Public online data services have become important informa-
tion sources. Billions of people query search engines, social
network sites, news portals, and different kinds of specialized
information services every day. Research organizations and
companies also often need to access public data sources in
their work. For example, biomedical researchers who need
to verify properties derived from a local gene database, may
join a publicly released gene bank with their local gene data
table. As another example, a company may search on an online
patent database for patents in the same area as its forthcoming
inventions.

Privacy, however, has been a big concern when querying
these public online data services. User queries can be leaked
intentionally to advertisers such as in some of the Google and
Facebook applications [2] or even to the general public suchas
in the AOL log release incident in 2006 [5]. User queries can
also be leaked unintentionally, such as to the attackers who
hacked the back-end database of Twitter in 2008 [3]. Some of
the leaked query traces contain sensitive and even confidential

data, such as personal addresses, incomes, medical conditions,
and other sensitive information such as credit card numbers
and social security numbers [5].

Existing solutions for protecting user query privacy in
online data services are not yet satisfactory. Pulling the entire
public data to the client side to process user queries on the
client is infeasible in many cases. Anonymizing networks
such as Tor [8] hide user identities, but require users to
trust peers in a third-party infrastructure, and do not protect
sensitive contents in the queries from being leaked.Private
Information Retrieval(PIR) [7], [19] provides users complete
privacy and confidentiality by using cryptographic protocols,
but traditional single-server PIR protocols [12], [19] aretoo
computationally expensive to be practical [33], while multi-
server PIR protocols [7] do not allow communication among
all servers. Recent single-server PIR protocol [22] significantly
improves server computational performance, but incurs expen-
sive communication costs. Query anonymization, i.e. using
k-Anonymity [32], [34], on the other hand, is a low cost
solution but does not provide strong privacy, ask-Anonymity
and its variants are vulnerable to a number of attacks [10],
[20]. Such attacks also apply to hybrid solutions that run PIR
on k-anonymous data subset [26], [35].

The aim of this paper is to design techniques towards a
practical private database query processing mechanism, such
that computation and communication costs are affordable, and
proper privacy protection for users’ private data and queries are
in place. We model a public online data service as a database
on a remote server, and consider any user data involved in
a query and the plaintext query contents as private data. We
focus on the private processing of range queries over public
data and joins of private and public data, as range queries and
joins are the basis for supporting a lot more database queries.

To conquer the challenge of obfuscated query formulation
on the client, i.e. especially for range queries, we proposedata
bucketization on the server and synchronizing bucket summary
with clients. As the basic framework for private database query
processing, we fist propose a protocol called BHE based on
homomorphic encryption[28]. Like PIR, BHE provides users
complete privacy and confidentiality. In contrast to PIR, BHE
only incurs a single round of client server interaction for
processing a query.
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To make private query processing practical while avoiding
the vulnerabilities ofk-Anonymity related query anonymiza-
tion solutions and hybrid approaches, we then propose a new
hybrid protocol called HHE based on BHE. HHE reduces
computation and communication costs by allowing the server
to know that a client is interested in a subset of all data
buckets, such that the computation and communication are
only consumed for that subset instead of on the entire data
in BHE. This subset covers a client’s actual query buckets,
and also includes the relevant frequently co-accessed setsof
buckets of other clients, such that this subset is not likelyto
be linked a specific individual and the client’s actual query
buckets are not likely to be filtered out. In contrast tok-
Anonymity based hybrid approaches [26], [35] which only
provide a coarse privacy guarantee of1/k regardless of the
data and query semantics, HHE provides aprivacy risk mea-
sure that is specific to which buckets and frequent patterns are
included in the subset. Moreover, HHE consistentlyprotects
user query privacy in a sequence of queries of a query session
by generating cover buckets at the beginning of the session
and generating decoy buckets based on cover buckets for each
subsequent query. Both cover and decoy buckets are generated
to minimize privacy risk under a user given constraint.

Our contributions are summarized as follows.

• We propose two protocols using homomorphic encryp-
tion, namely BHE and HHE, to solve the private process-
ing of two important database queries, joins and range
queries, which can be the basis for private processing of
other database queries.

• The basic protocol BHE only incurs a single round of
client server interaction for processing a query.

• The hybrid, lower costs protocol HHE is better than previ-
ous hybrid solutions in that it protects user query privacy
for a sequence of queries in a query session, and it is not
subject to traditional attacks onk-Anonymity, because its
generated decoy buckets are frequently associated with
the private query buckets in the global query history.

• Our privacy measure is defined for a query session, and
is specific to the actual data requested and decoy buckets
used.

Road map: Section II reviews the related work. Section III
reviews homomorphic encryption and presents our model. Sec-
tion IV and Section V describe the BHE and HHE protocols
respectively. Section VI experimentally evaluates the proposed
protocols, while Section VII concludes the paper.

II. RELATED WORK

We categorize the previous work for solving the problem
of private query processing as follows: Private Information
Retrieval, query anonymization using noisy queries, Plausibly
Deniable Search, and hybrid approaches.

Private Information Retrieval (PIR) models the private
retrieval of public data as a theoretical problem: Given a
server which stores a binary stringx = x1...xn of length
n, a client wants to retrievexi privately such that the server
doesnot learn i at all. Chor et al. [7] introduced the PIR
problem and gave solutions on multiple servers. Kushilevitz

and Ostrovsky proposed a single server, computational PIR
solution [19] which is usually referred to ascPIR. cPIR
and its follow-up single-server PIR proposals, however, are
criticized as impractical for their expensive computationcost-
s [33], although communication costs have been reduced in
the follow-up single-servercPIR proposals [12]. Multi-server
PIR solutions have been shown to be more efficient than
single-server PIR solutions [25], however, multi-server PIR
does not allow communication among all the servers, thus
leaving only single-server PIR suitable to use in public online
data services. Two approaches were later proposed to make
single-server PIR practical. One uses oblivious RAM, but it
only applies to a specific setting where a client retrieves its
own data outsourced on the server [37]. The other bases the
foundation of its PIR protocol on linear algebra [22] instead of
the number theory which previous single-server PIR solutions
base on. Unfortunately, the latter lattice based PIR scheme
cannot guarantee that its security is as strong as previous PIR
solutions, and it incurs a lot more communication costs.

Instead of hiding a user’s query completely and providing
strong privacy and confidentiality in PIR, query anonymization
usually usesk-Anonymity [32], [34] and its variants to mix
the user’s query with other noisy query data. For example in
privacy-preserving location based services [23], a user’squery
point is anonymized with an enclosing region containingk−1
points of other users. Such anonymization is computationally
efficient compared to PIR, but it does not provide strong
privacy, e.g. query anonymization based onk-Anonymity
is subject to attacks onk-Anonymity and its variants such
as similarity attacks [20] and composition attacks [10]. A
similar anonymization technique which generates additional
noisy queries is employed in a private web search tool called
TrackMeNot [15]. The privacy in TrackMeNot, however, is
broken by query classification [30], which suggests that ran-
domly extracted noise alone does not protect a query from
identification.

To avoid the vulnerabilities of randomk-anonymous noises
and to generate meaningful and disguising noises,Plausibly
Deniable Search(PDS) is proposed in [24], [29] for private
text search. PDS employs a topic model or an existing taxono-
my to build a static clustering of cover word sets. The words in
each cluster are of different topics but with similar specificity
to their respective topics, thus are used to cover each other
in a query. PDS protects privacy for one query, but not for a
sequence of queries. Our HHE protocol is similar to PDS in
that we generate meaningful but not similar buckets to cover
the buckets containing the requested data. In contrast to PDS,
HHE generates these cover / decoy buckets dynamically, and
protects privacy for a sequence of queries in a query session.

Recently, hybrid approaches have been proposed to use
query anonymization in global and apply PIR protocols in
an anonymized data subset [26], [35], thus gaining a good
trade-off between processing efficiency and query privacy.
However, there are two problems with these hybrid proposals:
First, their selection of an anonymized subset just follows
the simplek-Anonymity model, and does not have a detailed
privacy measure to justify the selection; Second, they are only
focused on specific queries such as simple selections [35]
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and location queries [26]. Our HHE protocol is also a hybrid
approach in that it combines cover bucket selection with a
homomorphic encryption based protocol, BHE. HHE solves
the above mentioned two problems: First, instead of following
k-Anonymity or its variants, HHE defines a privacy risk metric
based on query semantic and minimizes the privacy risk in
selecting cover buckets; Second, HHE supports both joins and
range queries, and can be extended to support other database
queries.

Other techniques have been proposed for solving private
processing of specific queries. For example, private join ofa
private data column and a public data column is implemented
by hashing in [31], but join by hashing is not able to re-
trieve other relevant data columns. A recent paper proposes
processing private remote kNN queries using homomorphic
encryption [16]. Theoretical protocols using homomorphic
encryption have been proposed to process private document
search by keywords in a stream of documents [6], [27].
These protocols are still too expensive to be practical, and
they can only perform approximate search. Finally, we are
not concerned with private query processing on outsourced
encrypted data, although our data bucketization is inspired by
the data bucketization idea in a work from that area [13].
Our approaches can also apply to protecting query privacy in
outsourced scenarios.

III. PRELIMINARIES

A. Homomorphic Encryption

We rely onhomomorphic encryption[11], [28] to provide
strong privacy protection. Homomorphic encryption allows
addition and multiplication to be performed directly on cipher-
texts without the need for decryption. Without loss of generali-
ty, we use the popular Paillier’s homomorphic encryption [28].

Paillier’s homomorphic encryption is a public key cryp-
tosystem. Letn = pq where p and q are large primes. Let
the public keyKpub = n, and the private keyKpriv be the
factorization ofn, (p, q). In a finite field,Zn × Z∗

n 7→ Z∗
n2 ,

in which Zn and Z∗
n are groups of integers modulon. In

Paillier’s cryptosystem, plaintextsm ∈ Zn and ciphertexts
c ∈ Z∗

n2 . The encryption and decryption functions are defined
asE : Zn → Z∗

n2 andD : Z∗
n2 → Zn respectively. Then the

following properties hold:

∀m1,m2 ∈ Zn

D(E(m1)E(m2) mod n2) = m1 +m2 mod n(1)

D(E(m1)
m2 mod n2) = m1m2 mod n (2)

These properties enable one party (e.g. server) to perform
blind calculation on the ciphertext provided by another party
(e.g. client), while only the party holding the private key (e.g.
client) can decrypt and obtain the result. For example, a client
sendsE(0) to a server, the server performsE(0)E(100) =
E(0 + 100) = E(100), and the client decrypts to obtain100.
Similarly, if the client sendsE(1) to the server, the server
performsE(1)100 = E(1 · 100) = E(100), and the client
still decrypts to obtain100. Pailier’s cryptosystem has proven
to be semantically secure based on the decisional composite
residuosity assumption (DCRA) [28].

B. System Model

We refer to private data owners and query initiators as
clients, and refer to public data service providers asservers.
We consider interactions between one client and one server.
We abstract the private data on the client and the public dataon
the server as relational databasesRpriv andRpub respectively.
Furthermore, we denote a tuple inRpriv as t(Rpriv) and a
tuple in Rpub as t(Rpub). let Rpriv.A and Rpub.B be the
attributes inRpriv andRpub respectively for evaluating query
conditions. We assume that these attributes are ordered, and
have matching schemas and data domains.

We focus on range queries and joins. A range query
specifies a range[r1, r2] based on the values ofRpriv.A
and asks for matchingRpub tuples whoseRpub.B values
fall in [r1, r2] (half closed range queries are also supported),
t(Rpub)Rpub.B∈[r1,r2]. A join query joinsRpriv tuples with
Rpub tuples whoseRpriv.A and Rpub.B values are equal,
t(Rpriv) ⊲⊳Rpriv.A=Rpub.B t(Rpub). Similar queries such as a
join query with a range constraint can be easily processed once
we have the basic foundation to process range and join queries.
Without loss of generality, assume that the query results do
not just include qualifiedRpub.B values but include the entire
correspondingRpub tuples.

Our goal is to preserve the privacy of a user’s private data
for a sequence of queries in a session. We assume a public data
server has interactions with a large number of such user query
sessions. A session usually has a small number of queries. We
assume that users do not create profiles on the server nor do
they have cookies enabled, and users do not disclose their IP
addresses to the server (e.g. via the use of a proxy).

C. Adversary Model

We consider the server and any other attackers who can
view the data retrieved from the server and monitor activities
on the server as adversaries. We assume that the adversaries
are honest but curious: they perform computations correctly
and completely as required by the query processing protocol
(i.e. they are not malicious), but they are free to infer clients’
queries and clients’ private data. We assume that data stored
on clients are secure, and one client does not collude with
adversaries to compromise another client’s privacy.

IV. BASIC PRIVATE QUERY PROCESSING

One of the main challenges for private query processing is
to privately represent a given user query, and find and retrieve
the qualified values fromRpub.B for the query. In our basic
framework, we propose to use a novel approach of data bucke-
tization with homomorphic encryption to solve this challenge,
and we provide perfect privacy ofquery indistinguishabilityfor
clients, meaning that the adversaries who may have control of
serversshould not be able to differentiate accesses of different
queries onRpub.B. One advantage of our framework over any
other PIR protocols is that our framework can answer a query
in only one roundof client server interaction, thus saving the
bandwidth for the server.
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Fig. 1. BHE. In this protocol, before processing any queries, 0.1) Server
sends the bucket summaryS of its database to the client; 0.2) Client sends
her public keyKpub to the server. Then to process a queryq, 1) Client
formulates an encrypted query vectorQ′ based onS andq, and sendsQ′ to
the server; 2) Server performs blind processing onQ′ and public database,
sends the answer vectorV back to the client; 3) Finally, the client decrypts
V and reconstructs the answer to the queryq.

A. Public Data Bucketization

We first describe data bucketization. Assume that the
ordered values ofRpub.B are divided into b bucket-
s, BK1, BK2, ..., BKb, in which the values in buck-
et BKi are no larger than the values in the bucket
BKi+1. The Rpub tuples corresponding to theRpub.B val-
ues in a bucketBKi, t(Rpub)Rpub.B∈BKi

, can be locat-
ed in constant time. The boundary values of the buckets,
{BKi : [vi1, vi2)}, are publicly accessible. Let this sum-
mary information of the buckets beS. For example, Giv-
en Rpub.B ∈ [0, 100), a bucketization summaryS1 =
{BK1 : [0, 20), BK2 : [20, 50), BK3 : [50, 60), BK4 :
[60, 70), BK5 : [70, 85), BK6 : [85, 95), BK7 : [95, 100)}.
S should be small enough to be downloadable to the client,
since S will be used by the client to formulate obfuscated
queries for private query processing on the server. We assume
that the server decides the data bucketization. In our technical
report [36], we discuss the trade-offs of different bucketiza-
tions. In Section VI, we experimentally evaluate the effectof
different bucketizations on query performance.

B. Basic Query Processing Protocol

Before a client issues her first query onRpub, the client ob-
tains the bucket summaryS aboutRpub.B, generates a privacy,
public key pair(Kpriv,Kpub) as defined in Section III-A, and
then sends to the server her public keyKpub. The server uses
Kpub to initialize ciphertexts to be calculated for processing
all subsequent queries of the client.

After these preliminary steps, processing a query takes the
following three steps (also shown in Fig. 1). We call our Basic
private query processing protocol based on Homomorphic
Encryption as BHE.

Query Formulation. A client uses the bucket summaryS
to determine the buckets which may have matches to her
query, denoted aspotentially matching buckets. For a range
query, the potentially matching buckets are consecutive buck-
ets BKi, ..., BKj, the concatenation of whose value ranges
[vi1, vj2) minimally covers the query range[r1, r2]. For a
join, the potentially matching buckets are the buckets whose
range theRpriv.A values fall in,[vi1, vi2). For example, given
S1 = {BK1 : [0, 20), BK2 : [20, 50), BK3 : [50, 60), BK4 :
[60, 70), BK5 : [70, 85), BK6 : [85, 95), BK7 : [95, 100)},

the potential matching buckets for a range query[45, 65) are
BK2, BK3 and BK4; the potentially matching buckets for
joining with Rpriv.A = {10, 30, 50, 55, 90} areBK1, BK2,
BK3 andBK6. Note that there is only a slight variation in
query formulation and result post filtering between processing
a range query and processing a join. The rest of the processing
is the same for both types of queries.

After finding the potentially matching buckets, the client
creates a binary vector of sizeb, denoted asQ, sets the entries
whose indexes correspond to the positions of potentially
matching buckets as 1, and the other entries as 0. Then the
client encrypts each entry ofQ using her public keyKpub

with re-randomization by multiplying each time by a new
encryption of 0 (re-randomization does not change the entry
values according to Equation (1)), resulting in an encrypted
query vectorQ′. The client sendsQ′ to the server. In the
above example,Q′ = (E(0), E(1), E(1), E(1), E(0), E(0),
E(0)) for the range query, whereasQ′ = (E(1), E(1), E(1),
E(0), E(0), E(1), E(0)) for the join.

Query Processing on Server. Upon receivingQ′, the
server creates a vectorV of the same size as the size of
Q′, b, and initializes all the entries inV as E(0) using
the client’s public keyKpub. For each entryi in V , the
server retrievest(Rpub)Rpub.B∈BKi

, transforms them to byte
sequenceToBytes(t(Rpub)Rpub.B∈BKi

), and then performs a
modular exponentiationV [i] = Q′[i]V BKi , whereV BKi =
ToBytes(t(Rpub)Rpub.B∈BKi

) is a big integer transformed
from the byte sequence. The transformation is a one-to-one
mapping so that the client can derive the originalRpub.B
values inBKi when she getsV BKi. In practice when the size
of BKi is too big for all the tuple values ofBKi to fit in a
single ciphertext of modulon1, we breakt(Rpub)Rpub.B∈BKi

into a group of big integersV BKis, resulting inV [i] being
a group of ciphertexts that have the potentially obfuscated
matching values. To simplify the following discussion, we
can think of V [i] consisting of only one ciphertext value.
The server performs the above modular exponentiation on all
buckets. After that the server sends vectorV to the client.

Query Processing on Client. Upon receivingV , the client
only needs to process the entries ofQ[i] = 1 (the previous po-
tentially matching buckets). For such an entry with indexi, the
client decryptsV [i] using her private keyKpriv. According to
Equation (2),D(V [i]) = D(Q′[i]V BKi) = D(Q′[i]) · V BKi.
Since BKi is a potentially matching bucket,D(Q′[i]) =
Q[i] = 1, the decryption resultD(V [i]) = V BKi, from which
the client reconstructs the original values oft(Rpub) in BKi.
Then the client performs post filtering on these potentially
matching values to pick the actual matching answers to her
query.

The correctness of the BHE protocol can be easily seen
based on Equation (2). In the last processing step,D(V [i]) =
D(Q′[i]V BKi) = D(Q′[i]) · V BKi = Q[i] · V BKi. For the
potentially matching bucketsBKi which the client specifies
in the query formulation,Q[i] = 1, D(V [i]) = Q[i] ·
V BKi = V BKi = ToBytes(t(Rpub)Rpub.B∈BKi

), where

1The number of bits inn is the number of bits of information that can be
stored in one ciphertext.
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t(Rpub)Rpub.B∈BKi
is a superset of the query answers. For

non-matching bucketsBKj , Q[j] = 0, D(V [j]) = Q[j] ·
V BKj = 0, because these data are not requested by the client.

C. Security Analysis

Given that Paillier’s homomorphic encryption is semantical-
ly secure, we claim that for all probabilistic, polynomial time
(PPT) adversaries, the above basic query processing protocol
BHE is semantically secure, i.e., the advantage of the adver-
saries in breaking the security of BHE (by interpreting the
content of a query and its answers) is negligible. Basicallythe
adversaries cannot tell which entries inQ′ areE(1) and which
are E(0). Hence by examining the modular exponentiation
resultV [i] = Q′[i]V BKi for each bucket, the adversaries have
no idea as to which bucket has potential answers to the client’s
query. We provide a formal proof as follows. It follows the
similar rationale of the proofs in [6], [27].

Theorem 4.1:Given that Paillier’s homomorphic encryp-
tion is semantically secure, the proposed BHE protocol is
semantically secure.

Proof: Suppose that there is an adversaryA that can gain
a non-negligible advantageǫ in playing the game of breaking
the security of BHE protocol. ThenA can be used to gain
an advantage in breaking the semantic security of Paillier’s
homomorphic encryption.

First we initiate a game with a challenger on behalf of
Paillier’s homomorphic encryption, simply called as Paillier
challenger. The Paillier challenger sends us an integern. We
choose plaintextsm0,m1 ∈ Zn to bem0 = 0 andm1 = 1.
After sendingm0,m1 to the Paillier challenger, we receive
E(mβ1

), in which β1 is randomly generated by the Paillier
challenger and not known to us.

Next we initiate the game of breaking the security of BHE
protocol with A, in which we become the challenger. We
send modulusn to A. A chooses two queriesQ0 and Q1

and sends them to us. We flip a coinβ2 and construct the
encrypted query vectorQ′

β2
following the query formulation

step in BHE. Then we replace all the entries ofE(1) with
E(mβ1

) with re-randomization by multiplying each time by
a new encryption of 0. With probability12 , β1 = 0, Q′

β2
is

independent ofβ2 and does not search for anything. With
probability 1

2 , β1 = 1 andQ′
β2

represents the queryQβ2
. After

we giveQ′
beta2

to A, A returns its guessβ′
2. If β′

2 = β2, we
let our guess for the Paillier challenge beβ′

1 = 1, otherwise
we let β′

1 = 0.
SinceA hasǫ advantage in breaking the security of BHE.

If β1 = 1, the probability ofβ′
2 = β2 is p(β′

2 = β2) =
1
2 + ǫ.

If β1 = 0, p(β′
2 = β2) = 1

2 , sinceβ2 is randomly chosen
and it is completely independent of the choice ofβ′

2. Then
the probability of our advantage in the Paillier challenge is as
follows.

p(β′
1 = β1) = p(β′

1|β1) ·
1

2
+ p(β′

0|β0) ·
1

2

= (
1

2
+ ǫ) ·

1

2
+

1

2
·
1

2

=
1

2
+

ǫ

2

It contradicts the assumption that Paillier’s homomorphic
encryption is semantically secure. Therefore, the proposed
BHE protocol is semantically secure and the advantage ofA,
ǫ, is negligible.

D. Discussion on Bucketization Trade-offs

Similar to the above analysis on costs, we consider equal
size bucketization. Note that the data calculation with ci-
phertexts on the server in the second step of BHE and the
data decryption on the client in the third step of BHE are
computationally intensive, whereas the encryption of 0 and
1 of size b on the client in the first step of BHE is less
computationally intensive. In the case of larger number of
bucketsb, the size of one buckets is smaller, the chance for
one bucket to be selected as a potentially matching bucket for
a query is less, thus the amount of data decryption on the
client is less. In contrast, whenb is small ands is large, if a
bucket is selected as a potentially matching bucket, all thedata
in the bucket have to be decrypted on the client. In addition,
all the public data in the potentially matching buckets can be
obtained by the client. However for large size of public data
in practice, the server cannot use too fine bucketization, sob
cannot be arbitrarily large. The advantage of smallb though
is to have small query vectorsQ′.

V. HYBRID PRIVATE QUERY PROCESSING

Although the basic private query processing protocol BHE
achieves perfect privacy, its computation and communication
costs are proportional to the size of the entire public data
Rpub, making it still unsuitable in practice. We hence look for
practical yet privacy-preserving alternatives. We note that in
most cases, strong privacy rather than perfect privacy would
suffice for most users, and trading off partial privacy could
potentially reduce costs and improve performance. However,
partial privacy must be defined and measured carefully, i.e.the
simple model ofk-Anonymity has been shown vulnerable to
a number of attacks [10], [20].

In this section, we propose a new way ofhybrid private
query processing such that the client selects a subset of the
public data buckets that cover the query buckets but also
mimic the frequently co-accessed sets of buckets of other
users, and then server computation and communication are
only consumed on this subset of data buckets. Different from
preious work, our selection of the subsets of the buckets
minimizes privacy risk under constraints, is dynamicand can
protect query privacy for a sequence of queries in a session.

A. Design Overview

Let private bucketbe a user requested bucket in a query
(private query bucket), or a bucket containing the user’s private
data (private data bucket); decoy bucketbe a bucket other
than private bucket in the subset of buckets that the client
selects to reveal to the server. During our design of a hybrid
private query processing solution, we reviewed and rejected
three approaches of decoy bucket generation. The first one we
rejected is usingk random buckets ork continuous bucket-
s [35]. As we discussed before,k-Anonymity is vulnerable,
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and moreover, thesek-anonymous decoy buckets are likely to
be inconsistent in a sequence of queries. The second approach
we rejected is generating decoy buckets corresponding to the
positive Laplace noise generated by differential privacy [9].
This approach incurs a large cost, which is proportional to
the number of public data buckets. The third approach we
chose not to use is plausibly deniable search (PDS) [24],
[29], because we would like our solution to work for various
data types instead of only texts, and we target to generate
decoy buckets dynamically and to protect query privacy for a
sequence of queries in a session.

To protect a user’s privacy in a query sequence, we need
consistentdecoy buckets which appear in the user’s queries
as likely as private buckets. Our solution is therefore topre-
generate super decoy buckets called cover buckets based on
the user’s private data before a query session starts, and then
pick from the cover bucket set to generate decoy buckets for
each subsequent query. The maximum number of cover and
decoy bucketsperprivate bucket are specified by a user, and let
them beηc andηd respectively. These two parameters bound
the number of buckets on which the server needs to perform
calculations as well as the amount of data transmission from
the server to the client.ηc gives an upper bound on all queries
in a user query session, whileηd gives an upper bound on
one query to avoid the cases in which the number of buckets
requested in a query is far less than the total number of private
buckets but too many decoy buckets from the cover bucket set
are still used in the query. Generallyηc ≤ ηd so that every
cover bucket in the cover bucket set would be used as a decoy
for a query bucket in some queries. To simplify parameter
setting, a user can choose aηd and setηc = ηd .

Our goal is then to maximize privacy protection in generat-
ing cover buckets for private buckets subject to the constraint
ηc and generating decoy buckets for each query subject to the
constraintηd. Observing that queries are highly likely to con-
sist of repeatedly co-accessed sets of buckets, we leverageon
frequently co-accessed bucket sets mined from historical query
logs to define privacy. The intuition is that the bucket sets with
higher access frequencies provide better privacy protection, as
they are less likely to be linked to specific individuals. Hence,
we generate cover buckets and decoy buckets by maximizing
the chances that each private bucket is covered among the
buckets of at least one frequently co-accessed bucket set
pattern, e.g.BK3 can be covered by bucketsBK2, BK4

from a co-accessed bucket set pattern(BK2, BK3, BK4).
The more frequently co-accessed bucket set patterns contained
in the query bucket sets and the more frequent they are,
the better privacy protection. We call our solution of Hybrid
privacy-preserving query processing outlined above as HHE,
and describe it in details below.

B. Privacy Definition for a Query Session

Our privacy metric for protecting the private buckets fol-
lows the similar idea of the privacy metric in some privacy-
preserving data mining literatures [4], mutual information
between a priori entropy and a posteriori entropy. Suppose that
adversaries have ana priori belief, Hpri, and ana posteriori

belief, Hpos, on a user’s private data and queries in a query
session, before and after they observe the actual query session.
Perfect privacy is achieved whenHpri = Hpos, as in BHE and
cPIR [19]. In HHE we try to minimize|Hpri −Hpos|.

When defining metrics forHpri andHpos that can capture
the characteristics of queries, we explored and rejected several
possible metric definitions. We first note that a metric using
the number of buckets requested in a query, e.g.k-Anonymity,
would be highly biased towards adding a large amount of
decoy buckets and does not capture the semantic of the query,
i.e. what buckets requested. If considering the actual buckets
requested by a query in the metric, for example using the sum
of individual buckets’ frequencies as the metric, the buckets
with the highest access frequencies would probably be chosen
as decoy buckets in every query. A simple analysis on multiple
queries would be able to single out these decoy buckets and
expose private buckets.

We observe that in an online data service with a large
number of user sessions, queries are highly likely to have
repeatedly co-accessed sets of buckets due to the nature of
skewed query accesses. Assume that there exists a historical
query log HL with a large number of query sessions of
different users, in which a private query is represented by
the buckets requested in query formulation step of BHE. For
example, the example join query in Section IV which requests
BK1, BK2, BK3 andBK6 is represented as(1, 2, 3, 6). We
thus rely on frequently co-accessed sets of buckets, FBS,
mined fromHL, to defineHpri andHpos.

However, it is not practical to obtain a historical query log
HL from a large number of users in the first place, since
historical query buckets are usually private information of
users. On the other hand, the frequently co-accessed sets of
bucketsFBS are aggregate information extracted fromHL,
thus are much less sensitive, and could be shared among
all benign users after we remove low frequency bucket sets.
We therefore propose to run privacy-preserving distributed
frequent pattern mining [18] on the private query histories
of participant users, so thatFBS can be mined privately
from a virtual global query logHL that consists of private
query histories of individual users. A user’s private query
history can be built when usingBHE for processing private
queries. To prevent adversaries to masquerade as normal users
and to tempt or steal the mining resultFBS, we can have
a certification server to authenticate identities of participant
users. After constructingFBS, the less expensive protocol
HHE would be able to run as presented in Sections V-C
and V-D. Fig. 2 illustrates the above flow process ofFBS.

We call a frequently co-accessed set of buckets as aquery
pattern, call the frequency it appears inHL assupport, repre-
sented assup as in frequent pattern mining [14]. To account
for individual effects of the patterns, we are only interested in
closedquery patterns, which do not have supersets with the
same supports as their supports [14]. For example, if(1, 6)
only appears in(1, 2, 3, 6), it is not a closed pattern and will
not be considered. Figure 3 depicts an example of a query log
HL and the corresponding query pattern setFBS.

An adversary’sa priori belief ideally consists of all the
possible query patterns. After the adversary observes a query
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Fig. 2. The Generation and Usage ofFBS

Fig. 3. An Example Virtual Historical Query LogHL and Closed Query
PatternsFBS

sessionQS, his a posteriori belief only contains the query
patterns that appear inQS. Without exact knowledge of the
probabilities of all possible query patterns, we approximate
the adversaries’a priori belief anda posteriori belief using
the query patterns inFBS, such that theapproximate a
priori belief consists of all query patterns inFBS, and the
approximate a posteriori beliefonly contains the patterns
of FBS that appear in a query sessionQS, denoted as
FBS(QS). The more user query sessionsHL has, the more
representative and accurate are the approximatea priori anda
posteriori beliefs. Let theapproximate probabilityof a query
patterni be p̂(i) = supi∑

j∈FBS supj
. Similar to [4], we define

the approximatea priori belief Ĥpri and a posteriori belief
Ĥpos based on the entropies of the contained query patterns.

Ĥpri = −
∑

i∈FBS

p̂(i) · log2(p̂(i)) (3)

Ĥpos(QS) = −
∑

i∈FBS(QS)

p̂(i) · log2(p̂(i)) (4)

For theFBS in Figure 3,Ĥpri = −4· 2
4·2+5·1 ·log2(

2
4·2+5·1 )−

5 · 1
4·2+5·1 · log2(

1
4·2+5·1 ) = 3.085. Given a query session

QS1 = {(2, 3, 4), (1, 2, 3, 5, 6), (1, 2, 5)}, FBS(QS1) = {(2,
3), (3, 4), (1, 2), (2, 3, 4), (1, 2, 3, 6), (1, 2, 5)}, Ĥpos(QS1) =
−3 · 2

4·2+5·1 · log2(
2

4·2+5·1 )− 3 · 1
4·2+5·1 · log2(

1
4·2+5·1) = 2.1.

Based onĤpri and Ĥpos, we define the risk of privacy
disclosure in a sessionQS as

risk(QS) =
Ĥpri − Ĥpos(QS)

Ĥpri

(5)

For the above example query sessionQS1, risk(QS1) =
Ĥpri−Ĥpos(QS1)

Ĥpri

= 3.085−2.1
3.085 = 0.319. Since aQS has less

query patterns than aHL has, Ĥpri > Ĥpos(QS), 0 ≤
risk(QS) ≤ 1. If a QS contains more query patterns in
FBS and these patterns are more frequent, according to (4),
Ĥpos(QS) is larger, andrisk(QS) is smaller. The above defi-
nition applies to BHE and PIR as well: a query in BHE or PIR
requests all public data buckets, thus all query patterns inFBS

are covered inQS, Ĥpos(QS) = Ĥpri and risk(QS) = 0,
which is perfect privacy.

C. Generating Cover and Decoy Buckets

To minimizerisk(QS) according to Equation (5), the client
needs to select more and frequent patterns fromFBS based
on which cover and decoy buckets can be generated for private
data buckets and private query buckets. We first discuss how
to select patterns to generate cover buckets, i.e. to use non-
private buckets in these patterns as cover buckets, suject to the
constraintηc. The generation of decoy buckets is similar and
is discussed later.

Let PI patternbe a pattern that includes at least one private
bucket, andNPI pattern be a pattern that does not include
any private bucket. We say thatonly after all PI patterns are
considered and the number of cover buckets generated is still
less thanηc, are the NPI patterns examined. This is to avoid
the cases that an NPI pattern with an extremely high support
could use allηc and may not leave enough budget to use
buckets in PI patterns. Such high support NPI patterns alone
are not recommended to be cover buckets, as they could be
easily identified by adversaries.

These candidate patterns (PI or NPI) are picked in a way
that the union of non-private buckets in these patterns satisfy
the constraintηc, and the total support of all involved patterns
(candidate patterns and their sub-patterns) is maximized,thus
maximizing Ĥpos(QS) and minimizingrisk(QS). To maxi-
mize the total support of all involved patterns,the supports of
a pattern and its sub-patterns which appear inFBS should
be considered together in pattern selection. Thus we define the
sum of the support of a pattern and the supports of its sub-
patterns assuper support, denoted asssup. For example, as
pattern(1, 2, 3, 6) with sup = 1 contains sub-patterns(1, 2)
with sup = 2 and (2, 3) with sup = 2, ssup(1, 2, 3, 6) =
sup(1, 2, 3, 6) + sup(1, 2) + sup(2, 3) = 1 + 2 + 2 = 5.

To quickly get sub-patterns and the support support of a
pattern, we build a mapping list of sub-patterns for each query
pattern. An example of sub-pattern mapping list and super
supports for the patterns inFBS of Fig. 3 are shown in
Fig. 4(a). To quickly select a PI pattern for a private bucket, we
build an inverted bucket-to-patterns listIBList. An example
IBList for theFBS of Fig. 3 is shown in Fig. 4(b), where a
colon separates a data bucket and a list of patterns that cover
the bucket. These structures along withFBS are replicated
on each server certified benign client so that the client can
make its own decision to generate cover and decoy buckets.

In the following, we discuss selecting PI patterns and NPI
patterns for generating cover buckets separately, and then
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(a) Closed Query PatternsFBS (b) Inverted Bucket-Pattern ListIBList for
FBS

Fig. 4. Example Closed Query PatternsFBS and Index Structures for
Selecting Cover/Decoy Buckets

briefly discuss generating decoy buckets, which follows the
similar rational as generating cover buckets.

1) Selecting PI patterns for Generating Cover Buckets:
A client first considers PI patterns for generating cover
buckets. Denote a query pattern fromFBS as FB, the
private data buckets asBK(Rpriv.A). Let the set of PI
patterns beIBList(BK(Rpriv.A)). For example, the PI
patterns for private bucketsBK(Rpriv.A) = (3, 5) are
IBList(BK(Rpriv.A)) = {(2, 3, 4), (1, 2, 3, 6), (3, 4, 5),
(1, 2, 5), (2, 3), (3, 4)}. Let operator|| applied to a pattern be
the number of buckets in the pattern. The client first selectsPI
patterns for which|FBi−BK(Rpriv.A)| ≤ |BK(Rpriv.A)| ·
ηc (FBi ∈ IBList(BK(Rpriv.A))). Denote this set of PI
patterns asPI candidates. Given BK(Rpriv.A) = (3, 5)
and ηc = 2, PI candidates = IBList(BK(Rpriv.A)) =
{(2, 3, 4), (1, 2, 3, 6), (3, 4, 5), (1, 2, 5), (2, 3), (3, 4)}.

Let the super support operatorssup applied to a bucket set
be the total supports of its all contained patterns, and the set
operations such as

⋃
,− to be be applicable to bucket sets and

bucket sets of patterns. We formalize the problem of selecting
patterns for generating cover buckets to maximize the total
support of all involved patterns as follows, wherexi = 1, 0
denotes if a candidate pattern is selected or not.

maximize ssup(
⋃

i

FBi · xi). (6)

subject to |
⋃

i

(FBi −BK(Rpriv.A)) · xi| ≤ |BK(Rpriv.A)| · ηc.

∃j1, ..., jh, (FBj1

⋃
FBj2 ...

⋃
FBjh)

⋂
BK(Rpriv.A) 6= ∅.

where i, j1, ...jh ∈ |PI candidates|..

In the maximization, we consider the supports of all in-
volved patterns in the union of selected PI patterns. Note
that two PI patterns could have overlapping sub-patterns,
only the support of a pattern / sub-pattern that is not in-
cluded in a previously selected PI pattern can be added
up. For example, ifx0 = 1, x1 = 1, and assume pattern-
s (2, 3, 4) and (1, 2, 3, 6) are consecutively selected, since
ssup(2, 3, 4) = sup(2, 3) + sup(3, 4) + sup(2, 3, 4) =
2 + 2 + 1 = 5, we can only add the supports of
patterns (1, 2) and (1, 2, 3, 6) but not (2, 3) for PI pat-
tern (1, 2, 3, 6), ssup((2, 3, 4)

⋃
(1, 2, 3, 6)) = (sup(2, 3) +

sup(3, 4) + sup(2, 3, 4)) + (sup(1, 2) + sup(1, 2, 3, 6)) =
5 + (2 + 1) = 8. Similarly in the first constraint, when
counting the total number of cover buckets in the union

Algorithm 1 maximize PI ssup(PI candidates,BK(Rpriv.A), ηc)

Require: |FBi−BK(Rpriv.A)| > 0. If FBi ⊆ BK(Rpriv.A), set
|FBi −BK(Rpriv.A)| ← 0.001.

Require: PI scb, the set of cover buckets from selected PI patterns
in the maximization of (6).

Require: total ssup, the total support of all unique patterns that
only consist of buckets inPI scb andBK(Rpriv.A).

1: Sort PI candidates in non-increasing order of
ssup(FBi)

|FBi−BK(Rpriv.A)|
(FBi ∈ PI candidates).

2: while |PI scb
⋃

(FBi − BK(Rpriv.A) − PI scb)| ≤
|BK(Rpriv.A)| · ηc do

3: Greedily add the buckets inFBi −BK(Rpriv.A)− PI scb
to PI scb and updatetotal ssup using FBi and the sub-
patterns ofFBi that are not in previously selected patterns.

4: end while
5: if total ssup < ssup(FBi) then
6: PI scb← FBi −BK(Rpriv.A).
7: total ssup← ssup(FBi).
8: end if
9: ReturnPI scb.

of selected PI patterns, only the buckets that are not in-
cluded by previously selected PI patterns can be count-
ed. For the previous example,|FB0 − BK(Rpriv.A)| =
|(2, 3, 4) − (3, 5)| = |(2, 4)| = 2, we can only count
(1, 6) but not including2 for the next pattern(1, 2, 3, 6),
thus (FB0 − BK(Rpriv.A))

⋃
(FB1 − BK(Rpriv.A))| =

|(2, 4)
⋃
((1, 2, 3, 6)−(3, 5))| = |(2, 4)

⋃
(1, 6)| = 2+2 = 4.

The above maximization problem (6) is analogous to a
typical NP-complete problem, the 0-1 Knapsack problem [17].
The difference between them is that the operations in (6) are
based on the union of sets, while the operations in the 0-1
Knapsack problem are based on accumulation of independent
objects. Considering super supports as values of objects and
the number of buckets as the total weight of objects, if the PI
patterns are disjoint with each other, (6) becomes a standard
0-1 Knapsack problem. Hence, (6) is also an NP-complete
problem, and has a fast 2-approximate solution similar to
the fast approximation algorithm that gives a 2-approximate
solution to the 0-1 Knapsack problem [17]. This solution is
described in Algorithm 1.

The time complexity of this algorithm is
O(|PI candidates| · log2|PI candidates|). The reason
that this algorithm is 2-approximate is as follows. Since our
solution is suboptimal, we must have some leftover bucket
budget∆ at the end. Suppose that Algorithm 1 can take
partial buckets from a pattern. Let the optimal total support
be OPT . Then by adding ∆

|FBj−BK(Rpriv.A)|ssup(FBj)
to total ssup, we would either match or exceedOPT .
Therefore, eitherssup(

⋃i−1
j=1 FBj) ≥ 1

2OPT or ssup(FBi)

≥ ∆
|FBj−BK(Rpriv.A)|ssup(FBj) ≥

1
2OPT .

As an example of running Algorithm 1, given
BK(Rpriv.A) = (3, 5), ηc = 2, PI candidates = {(2,
3, 4), (1, 2, 3, 6), (3, 4, 5), (1, 2, 5), (2, 3), (3, 4)},
|BK(Rpriv.A)| · ηc = 4. ssup(FBi)

|FBi−BK(Rpriv.A)| for the sequential
FBi ∈ PI candidates are 5

2 ,
5
3 ,

3
2 ,

3
2 , 2, 2. Re-ordered

PI candidates are thus{(2, 3, 4), (2, 3), (3, 4), (1, 2, 3, 6),
(3, 4, 5), (1, 2, 5)}. Going over re-orderedPI candidates
and generating cover buckets from these patterns until
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the end of PI candidates, the cover bucket budget
|BK(Rpriv.A)| · ηc is not exceeded, soPI scb = (1, 2, 4, 6),
total ssup = ssup(PI scb) = sup(2, 3) + sup(3, 4) +
sup(2, 3, 4) + sup(1, 2) + sup(1, 2, 3, 6) + sup(3, 4, 5)
+ sup(1, 2, 5) = 10. If ηc = 1, |BK(Rpriv.A)| · ηc = 2,
re-orderedPI candidates = {(2, 3, 4), (2, 3), (3, 4), (3, 4,
5), (1, 2, 5)}. At the fifth pattern(1, 2, 5), PI scb = (2, 4)
and bucket 1 cannot be added, the client thus compares the
current total ssup = sup(2, 3) + sup(3, 4) + sup(2, 3, 4)
+ sup(3, 4, 5) = 6 with ssup(1, 2, 5) = 5, and keeps the
currentPI scb = (2, 4). The resultsPI scb in the above
two examples happen to be the same as optimal solutions.

2) Selecting NPI patterns for Generating Cover Buckets:If
the maximization goal (6) in PI patterns is already achieved,
and yet the budget of cover buckets,|BK(Rpriv.A)| · ηc
is not all used, the client selects NPI patterns from the
set FBS − IBList(BK(Rpriv.A)) to generate more cover
buckets which are different from the cover buckets generated
from PI patterns. These NPI patterns are selected such that
|FBi − PI scb| ≤ |BK(Rpriv.A)| · ηc − |PI scb| (FBi ∈
(FBS − IBList(BK(Rpriv.A)))). Denote this set of NPI
patterns asNPI candidates.

In usual cases,FBS is representative enough that
IBList(BK(Rpriv.A)) is not empty andPI candidates
exist. In some cases when no PI patterns exist for private data
buckets,IBList(BK(Rpriv.A)) = ∅ andPI scb = ∅, the
client randomly samples a subset of NPI patterns for which
|FBi| ≤ |BK(Rpriv.A)|·ηc (FBi ∈ FBS), and sort them by
descending super supports. This random sampling is to avoid
the buckets of most frequent patterns to be always selected
as cover buckets, which is risky whenPI scb = ∅. The
maximization goal during selecting NPI patterns, similar to the
maximization goal in selecting PI patterns (6), is as follows.

maximize ssup(
⋃

i

FBi · xi). (7)

subject to |PI scb
⋃

(
⋃

i

FBi · xi)| ≤ |BK(Rpriv.A)| · ηc.

where i ∈ |NPI candidates|.

Similarly, there exists a 2-approximate algorithm to solve
the maximization problem (7), which is described in Algo-
rithm 2.

Consider the previous example, givenBK(Rpriv.A) =
(3, 5), if ηc = 3, the solution PI scb = (1, 2, 4, 6)
for PI candidates would not use all cover bucket bud-
get |BK(Rpriv.A)| · ηc = 6. Then the client considers
NPI candidates = {(2, 6, 7), (1, 2), (2, 7)} and re-
sorts them byssup(FBi

⋃
PI scb)−ssup(PI scb)

|FBi−PI scb| as {(2, 6, 7),
(2, 7), (1, 2)}. Going over re-orderedNPI candidates and
generating cover buckets from these patterns until the end of
NPI candidates, the cover bucket budget|BK(Rpriv.A)| ·
ηc is not exceeded, soCBS = (1, 2, 3, 4, 5, 6, 7), total ssup
= ssup(PI scb) + sup(2, 7) + sup(2, 6, 7) = 10 + 2 + 1 =
13.

The above process of selecting PI and NPI pattern-
s for generating cover buckets in outlined Algorithm 3.
The time complexity of this algorithm isO(max( |FBS|,

Algorithm 2 maximize NPI ssup(NPI candidates,
PI scb, ssup(PI scb), BK(Rpriv.A), ηc)

Require: |FBi − PI scb| > 0. If FBi ⊆ PI scb, set |FBi −
PI scb| ← 0.001.

Require: CBS, the set of buckets from selected PI and NPI patterns
in the maximization of (6) and (7).

Require: total ssup, the total support of all unique patterns that
only consist of buckets inCBS.

1: Sort NPI candidates in non-increasing order of
ssup(FBi

⋃
PI scb)−ssup(PI scb)

|FBi−PI scb|
(FBi ∈ NPI candidates).

2: CBS ← PI scb.
3: total ssup← ssup(PI scb).
4: while |CBS

⋃
(FBi − CBS)| ≤ |BK(Rpriv.A)| · ηc do

5: Greedily add the buckets inFBi−CBS to CBS and update
total ssup usingFBi and the sub-patterns ofFBi that are
not in previously selected patterns.

6: end while
7: if total ssup < ssup(PI scb

⋃
FBi) then

8: CBS ← PI scb
⋃

FBi.
9: total ssup← ssup(PI scb

⋃
FBi).

10: end if
11: Add private bucketsBK(Rpriv.A) to CBS and returnCBS.

Algorithm 3 generatecover buckets(BK(Rpriv.A), ηc)

1: CalculateIBList(BK(Rpriv.A)).
2: if IBList(BK(Rpriv.A)) 6= ∅ then
3: Select PI candidate patternsPI candidates from

IBList(BK(Rpriv.A)), s.t. |FBi − BK(Rpriv.A)| ≤
|BK(Rpriv.A)| · ηc (FBi ∈ IBList(BK(Rpriv.A))).

4: PI scb← maximize PI ssup(PI candidates,BK(Rpriv.A), ηc
5: if |PI scb| < |BK(Rpriv.A)| · ηc then
6: Select NPI candidate patternsNPI candidates from

FBS − IBList(BK(Rpriv.A)), s.t. |FBi − PI scb| ≤
|BK(Rpriv.A)| · ηc − |PI scb| (FBi ∈ (FBS −
IBList(BK(Rpriv.A)))).

7: else
8: CBS ← PI scb

⋃
BK(Rpriv.A).

9: end if
10: else
11: Randomly sample NPI candidate patternsNPI candidates

from FBS, s.t.|FBi| ≤ |BK(Rpriv.A)|·ηc (FBi ∈ FBS).
12: end if
13: if NPI candidates 6= ∅ then
14: CBS ← maximize NPI ssup(NPI candidates,

PI scb, ssup(PI scb), BK(Rpriv.A), ηc).
15: end if

|PI candidates|·log2|PI candidates|, |NPI candidates|·
log2|NPI candidates|)).

3) Generating Decoy Buckets:Let the generated cover
bucket set including the private bucketsBK(Rpriv.A) be
CBS. Generating decoy buckets is analogous to generating
cover buckets, except that candidate patterns must consistof
only buckets fromCBS, the private bucketsBK(Rpriv.A)
are replaced by the private query bucketsBK(q) for a query
q, andηc is replaced byηd in the inputs of Algorithms 1 and 2.
We show how to generate decoy buckets in Algorithm 4.

Let FBS(CBS) be the set of query patterns that only
consist of buckets fromCBS. It can be easily obtained
by running Algorithm 3 and then materialized to use in
Algorithm 4. For example, givenBK(Rpriv.A) = (3, 5),
ηc = 2, thenCBS = (1, 2, 3, 4, 5, 6), FBS(CBS) = {(1,
2, 3, 6), (2, 3, 4), (1, 2, 5), (3, 4, 5), (1, 2), (2, 3), (3, 4)}.
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Algorithm 4 generatedecoy buckets(BK(q), ηd)

Require: IBList(BK(q)), the set of PI patterns for private query
q.

Require: FBS(CBS), the set of query patterns that only consist
of buckets fromCBS.

Require: DBS, the generated decoy bucket set forBK(q) includ-
ing the private query bucketsBK(q).

1: Calculate IBList(BK(q)) ←
IBList(BK(q))

⋂
FBS(CBS).

2: if IBList(BK(q)) 6= ∅ then
3: Select PI candidate patterns PI candidates

from IBList(BK(q)), s.t. |FBi − BK(q)| ≤
|BK(q)| · ηd (FBi ∈ IBList(BK(q))).

4: PI scb← maximize PI ssup(PI candidates,BK(q), ηd).
5: if |PI scb| < |BK(q)| · ηd then
6: Select NPI candidate patternsNPI candidates from

FBS(CBS)− IBList(BK(q)), s.t. |FBi − PI scb| ≤
|BK(q)| · ηd − |PI scb| (FBi ∈ (FBS(CBS) −
IBList(BK(q))).

7: else
8: DBS ← PI scb

⋃
BK(q).

9: end if
10: else
11: Randomly sample NPI candidate patternsNPI candidates

from FBS(CBS), s.t. |FBi| ≤ |BK(q)| · ηd (FBi ∈
FBS(CBS)).

12: end if
13: if NPI candidates 6= ∅ then
14: DBS ← maximize NPI ssup(NPI candidates,

PI scb, ssup(PI scb), BK(q), ηd).
15: end if

According to Algorithm 1, ifBK(q) = (3), ηd = 2, re-ordered
PI candidates = {(2, 3, 4), (2, 3), (3, 4), (1, 2, 3, 6), (3,
4, 5)}. From the first three patterns,PI scb = (2, 4) and
decoy buckets areBK2, BK4. If ηd is changed to 4, decoy
buckets would be generated from the first four patterns up to
(1, 2, 3, 6), PI scb = (1, 2, 4, 6), DBS = (1, 2, 3, 4, 6) and
the total support is 8.

D. Hybrid Query Processing Protocol

We build our hybrid private query processing protocol HHE
based on the basic protocol BHE presented in Section IV and
cover / decoy buckets generation algorithms described above.
As BHE, HHE relies on public data bucketization and requires
the preliminary steps of bucket summary dissemination and
public key exchange. HHE also follows three steps: client
query formulation, query processing on the server and finally
query processing on the client. In contrast to BHE, HHE
requires the client to generate cover buckets before processing
any queries, and during the processing of a query, HHE
requires the client to generate decoy buckets in the query
formulation step, the server to compute only on the data
belonging to private and decoy buckets in the query processing
step on the server, and the server to only send to the client
the data in private and decoy buckets. We illustrate HHE in
Fig. 5.

E. Security Analysis

We claim that (1) HHE protects a user’s query privacy
for a sequence of queries in a user session; (2) The privacy

Fig. 5. HHE. In this protocol, before processing any queries, 0.1) Server
sends the bucket summaryS of its database to the client; 0.2) Client sends her
public keyKpub to the server; 0.3) Client identifies the private data buckets
that potentially include her dataRpriv.A based onS, and generates a set
of cover buckets. Then to process a queryq, 1) Client identifies the private
query buckets that potentially include her requested data in q based onS,
and generates decoy buckets from the cover bucket set. 2) Client formulates
a query vectorQ′ that encrypts private and decoy bucket entries asE(1) and
E(0) respectively, and sets other bucket entries as plaintext 0,and sendsQ′

to the server; 3) Server does blind processing on non-zero entries ofQ′ and
its database, sends the answer vectorV back to the client; 4) Finally, the
client decryptsV and reconstructs the answer to the queryq.

guarantee of HHE for a given query sessionQS is evaluated
by risk(QS) defined in Equation (5), the smallerrisk(QS)
is, the better privacy protection is.

First, because cover buckets are generated when a session
begins, and decoy buckets for each query inQS are generated
upon cover buckets, decoy buckets appear consistently like
private data buckets in the session. Thus HHE is not subject
to attacks that single out inconsistent noises in multiple
queries to find private data, such as composition attacks on
k-Anonymity [10]. Based on Theorem 4.1, private buckets are
semantically secure among decoy buckets. Therefore, we say
that HHE protects a user’s query privacy for a sequence of
queries in a user session, although its privacy gurantee is not
perfect, which is discussed below.

Second, privacy leak in HHE comes from the fact that
only partial buckets (private and decoy buckets) are requested.
Following Algorithms 3 and 4, any private bucket would be
covered by at least a PI or an NPI pattern. If a private bucket is
covered by a PI pattern, it is part of a frequent query pattern,
so the reformulated query is not unique and is not likely to be
linked to a specific individual. If a private bucket is covered
by an NPI pattern, since we assume that adversaries do not
know FBS (this information is secure with clients), although
the adversaries may try to perform frequent pattern mining
on observed query buckets (private and decoy buckets), they
still cannot tell that the private bucket is not part of a real
pattern, again the reformulate query looks not unique and
is not likely to be linked to a specific individual. The link
probability depends on how many patterns are included in the
query buckets set and the supports of these patterns, which are
quantified byrisk(QS).

Finally, we would like to emphasize that HHE is not subject
to the common attacks onk-Anonymity such as similarity
and skewness attacks [20]. The reason is two folds: 1) HHE
protects privacy in a coaser granularity level, buckets instead of
data values, and the contents of the reformulated query buck-
ets are completely confidential guaranteed by homomorphic
encryption; 2) special characteristics of a query which might
be privacy concerns such as unique similarity and skewness
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would be significantly diminished by using frequent patterns
in HHE.

VI. EXPERIMENTAL EVALUATION

Our evaluation focuses on the following: (1) the perfor-
mance, i.e. client query formulation time, server processing
time, client post-processing time, query completion time and
data communication size, of our proposed solutions BHE,
HHE compared to those of PIR; (2) the effects of public
data size and query selectivity / query size on performance;
(3) the performance trade-offs of different granularitiesof
bucketizations; (4) privacy risk of HHE, and the percentage
of private buckets fully covered by frequent query patterns.

A. Implementation and Experiments Setup

Implementation. We used C and relied on an open source
Paillier library [1] to implement BHE and HHE. We also im-
plemented the classical single-servercPIR protocol [19] which
we denote ascPIR, and adapted the CPU implementation of
the currently known fastest single-server PIR solution [21]
which we denote aslPIR. To see how much privacy risk
HHE can save compared to anonymization approaches that do
not consider data and query semantics in generating decoys,
we implemented a simple hybrid protocol that selects random
buckets as decoys but also obeys theηc and ηd constraints
of HHE, which we refer to as Random. We simulated data
transmission time by dividing the communication sizes with
100Mbps and then adding the latency 20ms for simulating
queuing delay and round trip time.

Data Set. We used both a synthetic data set and a real
data set as the public dataRpub. The synthetic data set
has between 100K (105) to 10M (107) tuples (we use 1M
data set as default). Each tuple has three integer attributes
whose values are uniformly distributed in [0,107]. The first
attribute was used as the query matching keyRpub.B. Data
bucketization was done on this attribute by equally distributing
ordered tuples in buckets. Three granularities of bucketizations
were generated, 10000 buckets, 1000 buckets and 100 buckets
respectively (we use 10000 buckets as default). 1000 matching
keys of private dataRpriv.A were generated within a range of
Rpub.B, which is between 5% to 100% of theRpub.B domain
(default is 10%). These settings are also shown in Table I. The
synthetic data set is used as the default data set for running
experiments.

The real data set consists of US medical providers from the
National Plan and Provider Enumeration System. We extracted
6 attributes (including both numeric and text attributes) and
selected only doctors from this data, resulting in 2,534,461
tuples. We call the result data set as NPI data. The first attribute
of this data set, provider ID, was used as the matching key
of public data. It was bucketized in 8,449 buckets with each
bucket having at most 300 tuples. Assuming that there are
500 cities in US and a user is mainly interested in medical
providers in a resident city, we generated 1000 private keys
(on provider IDs) of a user session from a range of 0.2% of
the entire NPI data.

TABLE I
EXPERIMENTAL PARAMETERS

Parameter Domain Default
Number of Tuples 100K, 1M, 10M 1M
Raw Query Size 50, 100, 200, 400 100
Number of Bucketsb 100, 1000, 10000 10000
Decoy Buckets Constraintηc, ηd 5, 10, 15, 20 10
Private Data Distribution 5%, 10%, 50%, 100% 10%

Experiments Setup. The ciphertext key size incPIR is
1024 bits. The block size inlPIR is 10 buckets. Queries were
generated onRpriv.A following Zipf distribution of skewness
0.8. A join query selected between 50 to 400 random keys
from Rpriv.A, while a range query selected a random range
that covered between 50 to 400 consecutiveRpriv.A keys
(default is 100 keys). A user query session has three join
and two range queries. The private keysRpriv.A of each user
session were generated separately. The frequent query bucket
patterns setFBS in HHE was mined from 200 user sessions
and 1000 queries, such that each pattern appears in at least five
queries and two user sessions. The resulting size ofFBS,
depending on the number of public data tuples, is around
20,000. The number of cover / decoy buckets per private
bucketηc andηd is between 5 and 20 (default is 10) as shown
in Table I. A test run consists of 20 user sessions and 100
queries. The reported results of each run were averaged over
these 100 queries. Each of our experiments was run on a Unix
server with 2 quad-core Intel Nehalem 2.4 GHz processors and
24 GB memory.

B. Experimental Results

Varying the Number of Public Tuples. We first study the
scalability of our proposed solutions BHE and HHE, i.e. the
effect of increasing the number of public tuples on query
performance. Here the number of public tuples is varied from
100K to 10M, while fixing the other parameters as default. The
y-axis in Fig. 6 is in logarithmic scale. As seen from Fig. 6,
HHE performs the best overall, although it spends extra time
on selecting patterns and generating decoy buckets compared
to BHE, as seen in Fig. 6(a); BHE is no better thanlPIR in
processing time, but has a smaller communication size than
lPIR. We also confirm thatlPIR is much faster thancPIR,
but we want to emphasize that the security oflPIR is not
guaranteed as strong ascPIR or BHE, both of which base
on number theory. HHE can answer a join or range query
involving considerable amount of data within 2 minutes on 1M
public tuples (and around 6 minutes on 10M tuples), compared
to around 17 minutes of BHE, 19 minutes oflPIR and more
than three hours ofcPIR (in Fig. 6(c)). The cost reduction
of HHE is mainly on the number of buckets that the server
needs to process, as seen in Fig. 6(b), and the size of data
transmitted from the server to the client, as seen in Fig. 6(d).
The client query formulation time inlPIR for 100K and 1M
data, as seen in Fig. 6(a), can be reduced by using larger block
size such as 100 buckets, but 100 buckets block size does not
work on 10M data, so we still use 10 buckets block size for
all synthetic data.

Varying Query Selectivity. We then study the effects of
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Fig. 6. Effects of Varying Number of Tuples

query selectivity / raw query sizes on query performance as
well as on the privacy risk of HHE. We varied the raw query
size from 50 to 400 while fixing the other parameters as
default. As the query size increases, the size of the answersto a
query increases. It can be expected that the time that the client
spends on decrypting and post-processing results increases, as
shown in Fig. 7(b). Since BHE retrieves all the buckets in
one batch, its server processing time and data communication
size do not increase. In contrast, sincecPIR and lPIR run
many rounds to retrieve data tuples in different blocks, their
server processing time and data communication size increase
with the increasing query sizes, as seen in Figs. 7(a) and 7(c).
HHE finds more decoy buckets for larger query sizes, so its
server processing time increases due to computing on more
buckets, which in turn brings down the percentage that NPI
patterns are used for generating decoy buckets, thus increasing
the percentage that private buckets are covered by PI patterns
for the same privacy risk 0.57, as seen in Fig. 7(d). Note
that since our privacy risk is defined based on the supports of
covering patterns as in Equations (4) and (5), generating more
random decoy buckets does not improve privacy, i.e. Random
in Fig. 7(d) always incurs above 0.99 privacy risk, and it still
does not match any patterns or just matches NPI patterns with
increasing numbers of decoy buckets. Since BHE andcPIR
have zero privacy risks, they are not shown in Fig. 7(d).

Varying Bucketization. We next specifically study different
granularities of bucketizations on query performance as well
as on privacy risk in HHE. We varied the number of buckets
b from 100 to 10000 on 1M public tuples, while fixing the
other parameters as default. As bucketization becomes finer,
query matching becomes more accurate, then the amount of
ciphertexts that a client needs to decrypt and post-processis
smaller, as seen in Fig. 8(a). As bucketization becomes finer,
query bucket patterns become more diverse, so it is harder
to find PI patterns that can fully cover private buckets, thus
increasing NPI percentage in Fig. 8(b).

Other Factors on Privacy Risk. Finally, we study different
factors on privacy risk in HHE. We first varied the number of
cover / decoy buckets per private bucketηc andηd from 5 to
20, while fixing the other parameters as default. As expected,
the privacy risk decreases from 0.77 to 0.29 (in Fig. 9(a)). We
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Fig. 9. Effects of Other Factors on Privacy Risk

then varied the distribution of 1000 private keys on public key
domain from 5% to 100%, while fixing the other parameters
as default. As the private data keys are distributed in broader
ranges of the pubic data domain, the generated queries are
also distributed in broader ranges of the public data domain,
and more PI patterns can be found to cover private buckets,
leading to privacy risk reduction and NPI percentage as seen
in Fig. 9(b).

Results on NPI Real Data. To mimic real application sce-
narios such as searching for medical providers, we evaluated
our proposals on NPI real data. We fixed raw query size to
100 private data tuples,ηc and ηd as 10. The average query
completion time for a join or range query in HHE on NPI
data is around 72.6 seconds (compared to 88.2 seconds of
lPIR, 2 hours of BHE and 20 hours ofcPIR), with around
613KB ciphertext being transmitted (compared to 64MB of
lPIR, 160MB of BHE and 6GB of PIR) and privacy risk being
0.53.

VII. C ONCLUSION

In the past, private query processing has not been realized
for two reasons: (1) impractical expensive performance, and
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(2) unable to support rich functionality queries beyond simple
selection queries and retrievals. We have addressed these
two problems in the paper by proposing two private query
processing protocols, BHE and HHE, based on homomorphic
encryption for solving private join queries and range queries.
Our experimental evaluation have shown BHE and HHE
perform better than PIR, and the performance of HHE is
practical on properly finer data bucketization. Although HHE
trade-offs partial privacy for performance gain, we measured
its privacy using a novel metric based on frequent query bucket
patterns and minimized its privacy risk when generating decoy
buckets. In addition, our proposed two stages cover and decoy
buckets generation ensures the decoy buckets appear as likely
as private data buckets in multiple queries of a user session,
and thus consistently protects the user’s privacy in the session.
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