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Abstract—Data privacy is a major concern when users query data, such as personal addresses, incomes, medical cosditi
public online data services. The privacy of millions of peole and other sensitive information such as credit card numbers
has been jeopardized in numerous user data leakage incident and social security numbers [5].

in many popular online applications. To address the criticd Existi luti f tecti . .
problem of personal data leakage through queries, we enable Xisling solutions Tor protecting user query privacy in

private querying on pub“c data services so that the conterst online data services are not yet SatISfaCtOI‘y. PUI“ng thtee

of user queries and any user data are hidden and therefore public data to the client side to process user queries on the
not revealed to the online service provider. We propose two client is infeasible in many cases. Anonymizing networks
protocols for processing private database queries, nhamelBHE such as Tor [8] hide user identities, but require users to
and HHE. BHE provides complete query privacy by using trust . third- infrast t, dd t t
Paillier's homomorphic encryption along with the bucketization rus _Peers ina 'r party in r_as ructure, f':m 0 notgxd
of public data. In contrast to traditional Private Informat ion S€nsitive contents in the queries from being leakedvate
Retrieval (PIR) proposals, BHE only incurs one round of cliet Information RetrievalPIR) [7], [19] provides users complete
server interaction for processing one query. Built upon BHE privacy and confidentiality by using cryptographic protisco
HHE is a hybrid protocol that applies BHE computation and but traditional single-server PIR protocols [12], [19] do®

communication on a subset of the data buckets, such that this tati I ive to b tical 133 hile riult
subset covers the actual requested data but also mimics fragnt computationally expensive to be practical [33], while mu

query patterns of common users, thus achieving practical gery ~ Server PIR protocols [7] do not allow communication among
performance while providing proper privacy protection. Because all servers. Recent single-server PIR protocol [22] sigaiitly
of the use of frequent query patterns and data specific privag  improves server computational performance, but incurgexp
protection, HHE is not vulnerable to traditional attacks on k- gjya communication costs. Query anonymization, i.e. using
Anonymity that explore data similarity an_d skewness. Morewer, k-Anonymity [32], [34], on the other hand, is a low cost
HHE consistently protects user query privacy for a sequencef ) ' v . ' .
queries in a query session. solution but does not provide strong privacy,lagnonymity
and its variants are vulnerable to a number of attacks [10],
[20]. Such attacks also apply to hybrid solutions that ruR PI
l. INTRODUCTION on k-anonymous data subset [26], [35].

Public online data services have become important informa-The aim of this paper is to design techniques towards a
tion sources. Billions of people query search engines,abocpractical private database query processing mechanisth, su
network sites, news portals, and different kinds of spemdl that computation and communication costs are affordablke, a
information services every day. Research organizatioms goroper privacy protection for users’ private data and cesegire
companies also often need to access public data sourcesiplace. We model a public online data service as a database
their work. For example, biomedical researchers who need a remote server, and consider any user data involved in
to verify properties derived from a local gene database, mayquery and the plaintext query contents as private data. We
join a publicly released gene bank with their local gene datacus on the private processing of range queries over public
table. As another example, a company may search on an onlilaa and joins of private and public data, as range querigs an
patent database for patents in the same area as its forthgonmins are the basis for supporting a lot more database querie
inventions. To conquer the challenge of obfuscated query formulation

Privacy, however, has been a big concern when queryiog the client, i.e. especially for range queries, we projlata
these public online data services. User queries can bedeakecketization on the server and synchronizing bucket suippma
intentionally to advertisers such as in some of the Googtk awith clients. As the basic framework for private databasergu
Facebook applications [2] or even to the general public sischprocessing, we fist propose a protocol called BHE based on
in the AOL log release incident in 2006 [5]. User queries cammomorphic encryptiof28]. Like PIR, BHE provides users
also be leaked unintentionally, such as to the attackers wtwmplete privacy and confidentiality. In contrast to PIR, BH
hacked the back-end database of Twitter in 2008 [3]. Someafly incurs asingle round of client server interaction for
the leaked query traces contain sensitive and even conifitlerpirocessing a query.



To make private query processing practical while avoidirgnd Ostrovsky proposed a single server, computational PIR
the vulnerabilities ofk-Anonymity related query anonymiza-solution [19] which is usually referred to a&PIR. cPIR
tion solutions and hybrid approaches, we then propose a namd its follow-up single-server PIR proposals, howeveg, ar
hybrid protocol called HHE based on BHE. HHE reducesriticized as impractical for their expensive computatimst-
computation and communication costs by allowing the server[33], although communication costs have been reduced in
to know that a client is interested in a subset of all dathe follow-up single-servetPIR proposals [12]. Multi-server
buckets, such that the computation and communication &H solutions have been shown to be more efficient than
only consumed for that subset instead of on the entire daiagle-server PIR solutions [25], however, multi-servéR P
in BHE. This subset covers a client’s actual query buckedoes not allow communication among all the servers, thus
and also includes the relevant frequently co-accessedo$etdeaving only single-server PIR suitable to use in publidrol
buckets of other clients, such that this subset is not likely data services. Two approaches were later proposed to make
be linked a specific individual and the client's actual quersingle-server PIR practical. One uses oblivious RAM, but it
buckets are not likely to be filtered out. In contrast#e only applies to a specific setting where a client retrieves it
Anonymity based hybrid approaches [26], [35] which onlpwn data outsourced on the server [37]. The other bases the
provide a coarse privacy guarantee Ioft regardless of the foundation of its PIR protocol on linear algebra [22] insted
data and query semantics, HHE providepravacy risk mea- the number theory which previous single-server PIR sahstio
sure that is specific to which buckets and frequent patteras dase on. Unfortunately, the latter lattice based PIR scheme
included in the subseMoreover, HHE consistentlprotects cannot guarantee that its security is as strong as previbus P
user query privacy in a sequence of queries of a query sessgmiutions, and it incurs a lot more communication costs.
by generating cover buckets at the beginning of the sessiorinstead of hiding a user’s query completely and providing
and generating decoy buckets based on cover buckets for esithng privacy and confidentiality in PIR, query anonymimat
subsequent query. Both cover and decoy buckets are getheratually usesk-Anonymity [32], [34] and its variants to mix
to minimize privacy risk under a user given constraint. the user’s query with other noisy query data. For example in
Our contributions are summarized as follows. privacy-preserving location based services [23], a uspréry
« We propose two protocols using homomorphic encryfint is anonymized with an enclosing region containing1
tion, name|y BHE and HHE, to So|ve the private procesﬁﬂints of other users. Such anonymization is Computaﬁ}bnal
ing of two important database queries, joins and rang#icient compared to PIR, but it does not provide strong
queries, which can be the basis for private processing Rfivacy, e.g. query anonymization based épAnonymity

other database queries. is subject to attacks ok-Anonymity and its variants such
« The basic protocol BHE only incurs a single round oS similarity attacks [20] and composition attacks [10]. A
client server interaction for processing a query. similar anonymization teChnique which generates addition

« The hybrid, lower costs protocol HHE is better than prevP0isy queries is employed in a private web search tool called
ous hybrid solutions in that it protects user query privacyfackMeNot [15]. The privacy in TrackMeNot, however, is
for a sequence of queries in a query session, and it is igeken by query classification [30], which suggests that ran
subject to traditional attacks drrAnonymity, because its domly extracted noise alone does not protect a query from
generated decoy buckets are frequently associated wigntification.
the private query buckets in the global query history. ~ To avoid the vulnerabilities of randoktanonymous noises

« Our privacy measure is defined for a query session, affid to generate meaningful and disguising noigdausibly
is specific to the actual data requested and decoy buckegniable SearciPDS) is proposed in [24], [29] for private
used. text search. PDS employs a topic model or an existing taxono-

Road map: Section Il reviews the related work. Section jmy to build a static clustering of cover word sets. The words i

reviews homomorphic encryption and presents our modet. S&?Ch cluster are of different topics but with similar speai

tion IV and Section V describe the BHE and HHE protocolgo their respective topics, thus are used to cover each other

respectively. Section VI experimentally evaluates theppeed In a query. ?DS protecots p:\(_'aEcy for[ On? .que_ry_,l but ngthgr_a
protocols, while Section VII concludes the paper. sequence of queries. Lur protocol IS simifar to n
that we generate meaningful but not similar buckets to cover

the buckets containing the requested data. In contrast &, PD
HHE generates these cover / decoy buckets dynamically, and
We categorize the previous work for solving the problerprotects privacy for a sequence of queries in a query session
of private query processing as follows: Private Informatio Recently, hybrid approaches have been proposed to use
Retrieval, query anonymization using noisy queries, RiByls query anonymization in global and apply PIR protocols in
Deniable Search, and hybrid approaches. an anonymized data subset [26], [35], thus gaining a good
Private Information Retrieval (PIR) models the privaté¢rade-off between processing efficiency and query privacy.
retrieval of public data as a theoretical problem: Given lHowever, there are two problems with these hybrid proposals
server which stores a binary string = x;...z,, of length First, their selection of an anonymized subset just follows
n, a client wants to retrieve; privately such that the serverthe simplek-Anonymity model, and does not have a detailed
doesnot learn: at all. Chor et al. [7] introduced the PIR privacy measure to justify the selection; Second, they ahg o
problem and gave solutions on multiple servers. Kushievifocused on specific queries such as simple selections [35]

II. RELATED WORK



and location queries [26]. Our HHE protocol is also a hybriB. System Model
ﬁgﬂgﬁ%ﬂiéh:;cfy;g?nb'Qaeiegogregt:g;keat:Eleﬁtﬁg S\f\gfce;We refer to private data owners and query initiators as
the above mentioned two problems: First, instead of follavi Clients and refer to public data service providerssasvers

. . . ) . . .We consider interactions between one client and one server.
k-Anonymity or its variants, HHE defines a privacy risk mEtr'We abstract the private data on the client and the publicalata
based on query semantic and minimizes the privacy risk

{Re server as relational databaggs;, and R, respectively.
selecting cover buckets; Second, HHE supports both joids 3R thermore. we denote a wple %p . asp:(bR 4p) and Z\
H 1V priv

range queries, and can be extended to support other datalfﬁls% in Rypup a5 £(Ryus). let Ryriv.A and Ryup.B be the
pu pub /- Priv e pub-

gueries. . ; . .
. . _attributes inRk,,., and R, respectively for evaluating query
Other. technlqueglhave peen proposed for splvmg .pnv%%gnditions. We assume that these attributes are orderéeld, an
processing of specific queries. For example, private joia ofh

) . L ve matching schemas and data domains.
private data column and a public data column is mplementegw

N . o ~We focus on range queries and joins. A range query
by hashing in [31], but join by hashing is not able to reS ecifies a rangér,, r,] based on the values aR,,q.A

trieve other relevant data columns. A recent paper pro osgs .
paper prop and asks for matching?,., tuples whoseR,.;.B values

processing private remote KNN queries using homomorphig,”. .
. : . fall in [r1, 2] (half closed range queries are also supported),
encryption [16]. Theoretical protocols using homomorphic - L )
pub) Ryup.BEr,r2]- A JOIN query joins Ry, tuples with

encryption have been proposed to process private documen
search by keywords in a stream of documents [6], [27],7% tuples whosef,.,.A and Ry B values are equal,
These protocols are still too expensive to be practical, an priv) PRy iy A=Ryuy. B HBpuy). SiMlar queries such as a

they can only perform approximate search. Finally, we 4lQin query with a range constraint can be easily processed on

. : . we have the basic foundation to process range and join guerie
not concerned with private query processing on outsour

encrypted data, although our data bucketization is indgie ithout loss of generality, assume that the query results do

the data bucketization idea in a work from that area [13@8:#;;;(';3;%2qua;tf;jgz”“b'B values but include the entire
pub .

Our approaches can also apply to protecting query privacy in . . .
bp - pplytop g query p y Our goal is to preserve the privacy of a user's private data
outsourced scenarios. . . .
for a sequence of queries in a session. We assume a public data
. PRELIMINARIES server has |nterapt|ons with a large number of such usetyquer
. . sessions. A session usually has a small number of queries. We
A. Homomorphic Encryption assume that users do not create profiles on the server nor do
We rely onhomomorphic encryptiofil1], [28] to provide they have cookies enabled, and users do not disclose their IP
strong privacy protection. Homomorphic encryption allowaddresses to the server (e.g. via the use of a proxy).
addition and multiplication to be performed directly onlogp-
texts without the need for decryption. Without loss of gatier
ty, we use the popular Paillier's homomorphic encryptio8][2 C. Adversary Model

Paillier's homomorphic encryption is a public key cryp- e consider the server and any other attackers who can
tosystem. Lets = pg wherep and ¢ are large primes. Let e\ the data retrieved from the server and monitor actigiti
the public keyKp., = n, and the private key<,.i, be the e server as adversaries. We assume that the adversaries
factorization ofn, (p,q). In a finite field, Z, x Z — Z}.,  re honest but curious: they perform computations cogrectl

in which Z, and Z;, are groups of integers modulo. In 54 completely as required by the query processing protocol
Pailiier's cryptosystem, plaintexts: € Z, and ciphertexts o they are not malicious), but they are free to inferrt

c€Z,. The er:cryption ang decryption functions are definegleries and clients’ private data. We assume that datadstore
askE: Zy = Z,» and D : Z,, = Zy respectively. Then the o glients are secure, and one client does not collude with
following properties hold: adversaries to compromise another client's privacy.

le, me € Zy,

D(E(m1)E(mg) mod n?) = my+my mod (1) IV. BASIC PRIVATE QUERY PROCESSING

ma 2 —
D(E(m1)™ mod n%) = mimz mod n () 5oo ot the main challenges for private query processing is

These properties enable one party (e.g. server) to perfotorprivatelyrepresent a given user query, and find and retrieve
blind calculation on the ciphertext provided by anothertyparthe qualified values fronk,.,.B for the query. In our basic
(e.g. client), while only the party holding the private keyd. framework, we propose to use a novel approach of data bucke-
client) can decrypt and obtain the result. For example,entli tization with homomorphic encryption to solve this chagien
sendsE(0) to a server, the server perfornis(0) £(100) = and we provide perfect privacy gliery indistinguishabilityor
E(0+100) = E(100), and the client decrypts to obtai0. clients meaning that the adversaries who may have control of
Similarly, if the client sendsE/(1) to the server, the serverserversshould not be able to differentiate accesses of different
performs E(1)!1°° = E(1-100) = E(100), and the client queries onR,,;.B. One advantage of our framework over any
still decrypts to obtairi00. Pailier’s cryptosystem has provenother PIR protocols is that our framework can answer a query
to be semantically secure based on the decisional composit®nly one roundof client server interaction, thus saving the
residuosity assumption (DCRA) [28]. bandwidth for the server.



0.1. bucket summary S the potential matching buckets for a range quify; 65) are
BK,, BK3 and BKy; the potentially matching buckets for
joining with R,,.;,,.A = {10, 30, 50, 55,90} are BK;, BKj,
BK3 and BKg. Note that there is only a slight variation in
—— guery formulation and result post filtering between proicess
-3 decrypt V & filter a range query and processing a join. The rest of the processin
is the same for both types of queries.
Fig. 1. BHE. In this protocol, before processing any queried) Server After finding the potentially matching buckets, the client
sends the bucket summasy of its database to the client; 0.2) Client sendreates a binary vector of sizedenoted ag), sets the entries
her public key K, to the server. Then to process a queryl) Client whose indexes correspond to the positions of potentially
formulates an encrypted query vec@f based onS andgq, and send€)’ to . .
the server; 2) Server performs blind processing@nand public database, m_atChmg buckets as 1, and the _Other emneS_ as 0. Then the
sends the answer vectdf back to the client; 3) Finally, the client decrypts client encrypts each entry ap using her public keyK .,
V' and reconstructs the answer to the query with re-randomization by multiplying each time by a new
encryption of 0 (re-randomization does not change the entry
] o values according to Equation (1)), resulting in an encrypte
A. Public Data Bucketization query vectorQ’. The client sends)’ to the server. In the
We first describe data bucketization. Assume that tlaove exampleQ)’ = (E(0), E(1), E(1), E(1), E(0), E(0),
ordered values ofR,,,.B are divided into b bucket- FE(0)) for the range query, wheredg = (E(1), £(1), E(1),
s, BKi, BKs,...,BK;,, in which the values in buck- E(0), E(0), E(1), E(0)) for the join.
et BK; are no larger than the values in the bucket Query Processing on Server. Upon receiving@’, the
BK;+1. The R, tuples corresponding to th&,,,.5 val- server creates a vectdr of the same size as the size of
ues in a bucketBK;, t(Ryu)r,., BeBK,» Can be locat- @', b, and initializes all the entries i/ as E(0) using
ed in constant time. The boundary values of the bucketee client's public keyK,,,. For each entry; in V, the
{BK; : [vi1,vi2)}, are publicly accessible. Let this sum-server retrieve$(Ryup)r,.,.BeBK,, transforms them to byte
mary information of the buckets b8. For example, Giv- sequencd’oBytes(t(Rpus)R,.,.BeBK; ), and then performs a
en R,,.B € [0,100), a bucketization summary; = modular exponentiatioh’[i] = Q'[i]VP¥:, whereVBK; =
{BK; : [0,20), BK> : [20,50), BK3 : [50,60), BKy : ToBytes(t(Rpub)R,..,.BeBK;) iS @ big integer transformed
[60,70), BK5 : [70,85), BKg : [85,95), BK7 : [95,100)}. from the byte sequence. The transformation is a one-to-one
S should be small enough to be downloadable to the cliemapping so that the client can derive the origidg),,.B
since S will be used by the client to formulate obfuscatedalues inBK; when she get¥ BK;. In practice when the size
queries for private query processing on the server. We assuof BEK; is too big for all the tuple values aBK; to fit in a
that the server decides the data bucketization. In our teahn single ciphertext of modula!, we breakt(Rpub)R, ... BeBK,;
report [36], we discuss the trade-offs of different bucketi into a group of big integer¥ BK;s, resulting inV[i] being
tions. In Section VI, we experimentally evaluate the effeict a group of ciphertexts that have the potentially obfuscated
different bucketizations on query performance. matching values. To simplify the following discussion, we
can think of V[i] consisting of only one ciphertext value.
The server performs the above modular exponentiation on all
buckets. After that the server sends vedioto the client.
Before a client issues her first query 5., the client ob-  Query Processing on Client. Upon receivingV, the client
tains the bucket summaryaboutR,,... B, generates a privacy, only needs to process the entries@ji] = 1 (the previous po-
public key pair(Kpyiv, Kpus) as defined in Section Ill-A, and tentially matching buckets). For such an entry with indethe
then sends to the server her public k&y.,. The server uses client decrypts/[i] using her private keys,,,.,. According to
Kypus to initialize ciphertexts to be calculated for processingquation (2),D(V[i]) = D(Q'[i{]VE%") = D(Q'[i]) - V BK.
all subsequent queries of the client. Since BK; is a potentially matching bucketD(Q’[i]) =
After these preliminary steps, processing a query takes t@q&i] = 1, the decryption resulD(V[i]) = V BK;, from which
following three steps (also shown in Fig. 1). We call our Baskhe client reconstructs the original valuest¢R,;) in BK;.
private query processing protocol based on Homomorphfgen the client performs post filtering on these potentially
Encryption as BHE. matching values to pick the actual matching answers to her
Query Formulation. A client uses the bucket summa#y query.
to determine the buckets which may have matches to herThe correctness of the BHE protocol can be easily seen
query, denoted apotentially matching buckets-or a range pased on Equation (2). In the last processing ste/[i]) =
query, the potentially matching buckets are consecutiakbu p('[i]VBE:) = D(Q'[i]) - VBK; = Qli] - VBK;. For the
ets BK;, ..., BKj, the concatenation of whose value rangesotentially matching bucket®K; which the client specifies
[vi1,v;2) minimally covers the query ranggi,r2]. FOr a in the query formulationQ[i] = 1, D(V[i]) = Q]i] -
join, the potentially matching buckets are the buckets whoy' B, = VBEK, = ToBytes(t(Ryub) R, ... 5Bk, ), Where
range theR,,;,.A values fall in,[v;1, v;2). For example, given

Sy ={BK1 :[0,20), BK> : [20,50), BK3 : [50,60), BKj : 1The number of bits im is the number of bits of information that can be
[60,70), BK5 : [70,85), BKg : [85,95), BK7 : [95,100)}, stored in one ciphertext.
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0.2. public key Ko
1. query vector Q'

2. answer vector V

B. Basic Query Processing Protocol



t(Rpub)r,.,.BeBK, IS @ superset of the query answers. Fdt contradicts the assumption that Paillier's homomorphic
non-matching bucketBK;, Q[j] = 0, D(V[j]) = Q[j] - encryption is semantically secure. Therefore, the prapose
VBK; = 0, because these data are not requested by the cliHE protocol is semantically secure and the advantagé,of
€, is negligible. [ |
. rity Analysi
c secu pd "’_‘YSS _ o ~ D. Discussion on Bucketization Trade-offs
Given that Paillier’'s homomorphic encryption is semaritica Similar to the above analysis on costs, we consider equal

ly secure, we clla|m that for all pro_bab|||st|c, polynomlahe size bucketization. Note that the data calculation with ci-
(PPT). adversar!es, the abovg basic query processing piotq ertexts on the server in the second step of BHE and the
BH.E 'S semann_cally secure, 1.e., the advantgge of the advgzrata decryption on the client in the third step of BHE are
saries in breaking the _securlty of BHE (by_ mterpre_tmg th(‘?omputationally intensive, whereas the encryption of 0 and
content qfaquery and its _answer_s) is negligible. Basmd_aldy 1 of sizeb on the client in the first step of BHE is less
:(rjg(z?gl)”eliggggog;eggmﬁgisgt:ﬁﬁnzzﬁ (rlLi;gn";m?:ﬁo(éomputationally intensive. In the case of larger number of
; ) ucketsbd, the size of one bucket is smaller, the chance for

resultV[i] = Q'[i]VPX: for each bucket, the adversaries hav

no id 1o which bucket h tential answers to the slier ne bucket to be selected as a potentially matching bucket fo

Oereav‘?/l: oro 'dce auf((:)rﬁqalasrggfea ?ofllos eltsfglloe tﬁea query is less, thus the amount of data decryption on the
query. We provi pr S Ws. WS N&lient is less. In contrast, whehnis small ands is large, if a
similar rationale of the proofs in [6], [27].

Py S . bucket is selected as a potentially matching bucket, altitita
. Th_eorem 4.1_.G|ven that Paillier’s homomorphic ENCIYP-in the bucket have to be decrypted on the client. In addition,
tion is _semantlcally secure, the proposed BHE protacol & the public data in the potentially matching buckets can b
semantically secure. . . obtained by the client. However for large size of public data
Proof: Suppose that there is an adversarshat can gain in practice, the server cannot use too fine bucketizatiory, so

a non-negligible advantagein playing the game of breaking cannot be arbitrarily large. The advantage of smakhough
the security of BHE protocol. Thed can be used to gain is to have small query vectors’

an advantage in breaking the semantic security of Padlier
homomorphic encryption.
First we initiate a game with a challenger on behalf of

Paillier's homomorphic encryption, simply called as Reill X : . . o
challenger. The Paillier challenger sends us an integéaf/e achieves perfect privacy, its computation and commuraoati
choose plaintextsng, my € Z, to bemy = 0 andm; — 1 costs are proportional to the size of the entire public data
b n - - . . . . . . .
After sendingmg, m; to the Paillier challenger, we receiveRl’”b’. making 't.St'” unswtablg In pract|c<_a. We hence quk for
' ractical yet privacy-preserving alternatives. We notat tin

E , In which is randomly generated by the Paillier® . .
ch(gﬁgln)g el ; ;:I] dl n Otﬂ 1kn|§wn to usy 9 y " most cases, strong privacy rather than perfect privacy avoul

Next we initiate the game of breaking the security of BHél;?;eti;ﬁr zgigsfgzésa;]: dtzr?qdlrnc?vgﬁ ;?g?ﬂazz\éacgocoeﬂgr
protocol with A, in which we become the challenger. W y P P - FOW

serd modulus 1 4. 1 chooses o querieg, and Q.  Pare PV st bedefned and measured caretubtie,
and sends them to us. We flip a caia and construct the P ymity

. .~ a humber of attacks [10], [20].
encrypted query vectoR);;, following the query formulation : . . .
step in BHE. Then we replace all the entries Bf1) with In this section, we propose a new way lofbrid private

E(my,) with re-randomization by multiplying each time byquery processing such that the client selects a subset of the

; . . - ublic data buckets that cover the query buckets but also
a new encryption of 0. With probablhty}, B =0, Q’B2 is P query

independent ofg, and does not search for anything. WitHmimic the frequently co-accessed sets of buckets of other

" d then server computation and communication are
r ility %, 81 = 1 and@’,_ represents th . After US€rs, an . )
P Ob?‘b t¥2’ A a dQ52 eprese s t, € que/@B? te only consumed on this subset of data buckets. Different from
We gIVe Qyeq, 10 4, A TeWIMS its guess,. If f; = [, we reious work, our selection of the subsets of the buckets
let our guess for the Paillier challenge pé = 1, otherwise preiou . . . .
we let 3, — 0. minimizes privacy risk under constrainis dynamicand can

Since A hase advantage in breaking the security of BHEPrOteCt query privacy for a sequence of queries in a session

If 81 = 1, the probability of 3} = 32 is p(85 = B2) = 1 +e.
If B1 =0, p(B, = B2) = 1, since B, is randomly chosen

V. HYBRID PRIVATE QUERY PROCESSING
Although the basic private query processing protocol BHE

1 A. Design Overview
2 L

and it is completely independent of the choice #f Then Let private bucketbe a user requested bucket in a query
the probability of our advantage in the Paillier challeng@a$ (private query buckgtor a bucket containing the user’s private
follows. data ¢rivate data buckgt decoy buckebe a bucket other
than private bucket in the subset of buckets that the client

p(BL=B1) = pBilA)- % +p(Bo1Bo) - % selects to reveal to the server. During our design of a hybrid
1 1 1 1 private query processing solution, we reviewed and rejecte
= (5 +e)- B} + 39 three approaches of decoy bucket generation. The first one we
1 € rejected is usinge random buckets ok continuous bucket-
- 3 + 5 s [35]. As we discussed beforé;Anonymity is vulnerable,



and moreover, these-anonymous decoy buckets are likely tdelief, H,,s, on a user’s private data and queries in a query
be inconsistent in a sequence of queries. The second apprasession, before and after they observe the actual quenpsess
we rejected is generating decoy buckets correspondingeto terfect privacy is achieved whé,,; = Hp,s, as in BHE and
positive Laplace noise generated by differential priva8} [ ¢PIR [19]. In HHE we try to minimiz€ Hp,; — Hpos).

This approach incurs a large cost, which is proportional to When defining metrics foH,,, and H,,, that can capture
the number of public data buckets. The third approach vilee characteristics of queries, we explored and rejectestake
chose not to use is plausibly deniable search (PDS) [2ghssible metric definitions. We first note that a metric using
[29], because we would like our solution to work for varioushe number of buckets requested in a query, E-gnonymity,
data types instead of only texts, and we target to generateuld be highly biased towards adding a large amount of
decoy buckets dynamically and to protect query privacy forgecoy buckets and does not capture the semantic of the query,
sequence of queries in a session. i.e. what buckets requested. If considering the actual dtsck

To protect a user’s privacy in a query sequence, we negtjuested by a query in the metric, for example using the sum
consistentdecoy buckets which appear in the user's queri@$ individual buckets’ frequencies as the metric, the biske
as likely as private bucket©ur solution is therefore tpre- with the highest access frequencies would probably be chose
generate super decoy buckets called cover buckets basedasmlecoy buckets in every query. A simple analysis on maltipl
the user’s private data before a query session starts, aad thqueries would be able to single out these decoy buckets and
pick from the cover bucket set to generate decoy buckets éxpose private buckets.
each subsequent queryhe maximum number of cover and We observe that in an online data service with a large
decoy bucketper private bucket are specified by a user, and letumber of user sessions, queries are highly likely to have
them bern. andn, respectively. These two parameters boungpeatedly co-accessed sets of buckets due to the nature of
the number of buckets on which the server needs to perfosikewed query accesses. Assume that there exists a historica
calculations as well as the amount of data transmission fraquery log HL with a large number of query sessions of
the server to the client;. gives an upper bound on all queriedlifferent users, in which a private query is represented by
in a user query session, whilg; gives an upper bound onthe buckets requested in query formulation step of BHE. For
one query to avoid the cases in which the number of bucketsample, the example join query in Section IV which requests
requested in a query is far less than the total number ofterivaBK;, BK», BK3 and BKg is represented ad, 2, 3,6). We
buckets but too many decoy buckets from the cover bucket $atis rely onfrequently co-accessed sets of buckét$3S,
are still used in the query. Generally < n; so that every mined fromHL, to defineH,,; and Hp,s.
cover bucket in the cover bucket set would be used as a decofowever, it is not practical to obtain a historical query log
for a query bucket in some queries. To simplify parametéf L from a large number of users in the first place, since
setting, a user can choosejaand setn. = ng . historical query buckets are usually private information o

Our goal is then to maximize privacy protection in generatisers. On the other hand, the frequently co-accessed sets of
ing cover buckets for private buckets subject to the coimgtrabucketsF BS are aggregate information extracted fraif,

n. and generating decoy buckets for each query subject to thes are much less sensitive, and could be shared among
constraintry. Observing that queries are highly likely to conall benign users after we remove low frequency bucket sets.
sist of repeatedly co-accessed sets of buckets, we leveragaVe therefore propose to run privacy-preserving distribute
frequently co-accessed bucket sets mined from historigadyg frequent pattern mining [18] on the private query histories
logs to define privacy. The intuition is that the bucket settw of participant users, so that'BS can be mined privately
higher access frequencies provide better privacy pratectis from a virtual global query logH L that consists of private
they are less likely to be linked to specific individuals. iden query histories of individual users. A user’s private query
we generate cover buckets and decoy buckets by maximizinigtory can be built when usingH E for processing private
the chances that each private bucket is covered among theries. To prevent adversaries to masquerade as normal use
buckets of at least one frequently co-accessed bucket aad to tempt or steal the mining resultB.S, we can have
pattern, e.g.BK3 can be covered by bucketBK,, BK, a certification server to authenticate identities of pgréint
from a co-accessed bucket set patté®K,, BK3, BK4). users. After constructing’BS, the less expensive protocol
The more frequently co-accessed bucket set patterns nedtai H £ would be able to run as presented in Sections V-C
in the query bucket sets and the more frequent they ae#d V-D. Fig. 2 illustrates the above flow processtaBS.

the better privacy protection. We call our solution of Hybri We call a frequently co-accessed set of buckets gaexy
privacy-preserving query processing outlined above as HHpattern call the frequency it appears fd L assupporf repre-
and describe it in details below. sented asup as in frequent pattern mining [14]. To account
for individual effects of the patterns, we are only inteeglsin
closedquery patterns, which do not have supersets with the
same supports as their supports [14]. For examplél,i6)

Our privacy metric for protecting the private buckets folenly appears i1, 2, 3,6), it is not a closed pattern and will
lows the similar idea of the privacy metric in some privacynot be considered. Figure 3 depicts an example of a query log
preserving data mining literatures [4], mutual informatio H L and the corresponding query pattern 8&85.
between a priori entropy and a posteriori entropy. Suppteste t An adversary’sa priori belief ideally consists of all the
adversaries have ampriori belief, H,,;, and ana posteriori possible query patterns. After the adversary observes gy que

B. Privacy Definition for a Query Session



For the above example query sessi@b;, risk(QSi) =

8/‘\5\ n HP”—%;(QS” = 3085-21 = 0.319. Since aQS has less

server query patterns than &L has, H,.; > IZ,;(QS), 0 <
risk(QS) < 1. If a QS contains more query patterns in
FBS and these patterns are more frequent, according to (4),
H,,s(QS) is larger, and-isk(QS) is smaller. The above defi-
nition applies to BHE and PIR as well: a query in BHE or PIR

client

=2
histor

client

(52
histor

private distributed
frequent pattern mining

FBS
requests all public data buckets, thus all query patterft&iy
HHE ‘

are covered inRSs, Hpos(QS) H,,; andrisk(QS) = 0,
which is perfect privacy.

I| nt
clie server

Fig. 2. The Generation and Usage BIBS C. Generating Cover and Decoy Buckets

To minimizerisk(Q.S) according to Equation (5), the client

HL: FBS: sup needs to select more and frequent patterns ffoBS based

g g g> i g ;2,,; 3 on which cover and decoy buckets can be generated for private

(1.2, 5) (3. 4) 2 data buckets and private query buckets. We first discuss how

(3,4,5) (2,7) 2 to select patterns to generate cover buckets, i.e. to use non

g: g) 7 E‘f g: g) 6) 1 private buckets in these patterns as cover buckets, soj¢oet
(1,2,5) 1 constraintn.. The generation of decoy buckets is similar and
g o ?; : is discussed later.

Let Pl patternbe a pattern that includes at least one private

Fig. 3. An Example Virtual Historical Query Log/ L and Closed Query bUCket,’ andNPI patternbe a pattern that does not include
PatternsF BS any private bucket. We say thanly after all Pl patterns are

considered and the number of cover buckets generatedlis stil

less tham,, are the NPI patterns examingedhis is to avoid
session@®.S, his a posteriori belief only contains the query the cases that an NPI pattern with an extremely high support
patterns that appear iQ.S. Without exact knowledge of the could use alln. and may not leave enough budget to use
probabilities of all possible query patterns, we approxénabuckets in Pl patterns. Such high support NPI patterns alone
the adversariesa priori belief anda posteriori belief using are not recommended to be cover buckets, as they could be
the query patterns inF'BS, such that theapproximate a easily identified by adversaries.
priori belief consists of all query patterns iRBS, and the  These candidate patterns (Pl or NPI) are picked in a way
approximate a posteriori beliefonly contains the patternsthat the union of non-private buckets in these patternsfgati
of FBS that appear in a query sessigpS, denoted as the constraint,, and the total support of all involved patterns
FBS(QS). The more user query sessioffs. has, the more (candidate patterns and their sub-patterns) is maximirex,
representative and accurate are the approximaéori anda  maximizing Hpos(QS) and minimizingrisk(QS). To maxi-
posteriori beliefs. Let theapproximate probabilityof a query mize the total support of all involved patterrise supports of
patterni be p(‘) = Z;‘% Similar to [4], we define a pattern and its sub-patterns which appearAtBS should
the approximate priori belief Hpm and a posteriori belief be considered together in pattern selectidhus we define the
T SUm of the support of a pattern and the supports of its sub-

. based on the entropies of the contained query patterts.
Hpos P query p patterns asuper supportdenoted assup. For example, as

ﬁ\,i _ -1 N 3 pattern(1,2,3,6) with sup = 1 contains sub-patternd, 2)

P ieFZBSp(Z) 092(p(1)) 3 with sup = 2 and (2,3) with sup = 2, ssup(1,2,3,6) =

— — — sup(1,2,3,6) + sup(1,2) + sup(2,3) =1+2+2 =5.

Hpos(@S) = — Z p(i) - log2(p(i))  (4) To quickly get sub-patterns and the support support of a
i€FBS(QS)

pattern, we build a mapping list of sub-patterns for eachrygue

pattern. An example of sub-pattern mapping list and super

supports for the patterns i'BS of Fig. 3 are shown in

5 1o7e7 - log2(zzz7) = 3.085. Given a query session Fig. 4(a). To quickly select a PI pattern for a private buchet

Q51 = {(2,3,4),(1,2,3,5,6), (1,2,5)}, FBS(Q51) = (2. g an inverted bucket-to-patterns liEB List. An example

3), (3, 4), (1,2), (2, 3, 4),(1,2,3, 6), 1, 2,}5)H;1;os(Q51) = IBList for the FBS of Fig. 3 is shown in Fig. 4(b), where a

—3 73751 2+5 1 1092(4 215 1) 3.7 2+5 7 -10ga(7z51) =21 colon separates a data bucket and a list of patterns that cove
Based onH,,,, and Hpoé, we define the risk of privacy the bucket. These structures along wittBS are replicated

For theFBS in Figure 3 Ii; =—4- L 2i5 < -loga (T 2-2+5 o) —

disclosure in a sessioR.S as on each server certified benign client so that the client can
o make its own decision to generate cover and decoy buckets.
risk(QS) = Hpri —ﬂos(QS) 5)  In the following, we discuss selecting Pl patterns and NPI

Hy,i patterns for generating cover buckets separately, and then



(a) Closed Query PatternisBS
FBS

Fig. 4. Example Closed Query Patteri&B.S and Index Structures for
Selecting Cover/Decoy Buckets

briefly discuss generating decoy buckets, which follows the,.

similar rational as generating cover buckets.

1) Selecting PI patterns for Generating Cover Buckets: 6:
A client first considers Pl patterns for generating cover7f

buckets. Denote a query pattern fromMBS as F'B, the
private data buckets aBK (R,..A). Let the set of PI
patterns belBList(BK(Rpriv.A)). For example, the PI
patterns for private bucketBK (R, i,.A) (3,5) are

IBList(BK (Rpriv-A)) = {(2, 3, 4), (1, 2, 3, 6), (3, 4, 5),
(1, 2, 5), (2, 3), (3, 4. Let operatoi| applied to a pattern be
the number of buckets in the pattern. The client first seletts

patterns for whichF'B; — BK (Rpriv-A)| < |BK(Rpriv-A4)| -
Ne (FB; € IBList(BK(Rpriv.A))). Denote this set of Pl
patterns asPI_candidates. Given BK (Rpiy.A) = (3,5)
andn. = 2, PI_candidates = IBList(BK(Rprin.A)) =
{(2,3,4),(1,2,3,6), (3,4,5), (1, 2,5), (2, 3), (3}4)

Let the super support operatesup applied to a bucket set
be the total supports of its all contained patterns, and ¢he
operations such dg), — to be be applicable to bucket sets an
bucket sets of patterns. We formalize the problem of selgcti
patterns for generating cover buckets to maximize the to

support of all involved patterns as follows, wherg = 1,0
denotes if a candidate pattern is selected or not.
maximize ssup(U FB; - ;). (6)

(2

subject to
31, ndns (FBj | JF B\ JFB;,) [\ BE(Rpriv. A) #
where iy J1, .--Jn € |PI_candidates|..

In the maximization, we consider the supports of all in

volved patterns in the union of selected Pl patterns. No&

he OPT.
if2

cluded in a previously selected Pl pattern can be addgaerefore,Aeitherssu

that two Pl patterns could have overlapping sub-patte
only the support of a pattern / sub-pattern that is not

Algorithm 1 maximize Pl_ssug PI_candidates, BK (Rpriv-A), nc)

FBS: sup  sub-patterns  ssup |BList

8 g g :3:: g 1:(1,2,3,6),(1,2,5),(1,2)

@) 5 il 2 2:(2,3,4),(1,2,3,6),(1,2,5),(1,2), (2. 3), 2, 7)
27 p oy 5 3:(2,3,4),(1,2,3,6),(3,4,5), (2 3), (3, 4)
a4 1 23,34 5 4:(2,3,4),(3,4,5),(3,4)

(1.2,3.6) 1 (1.2,(23) 5 5:(1,2,5),(3,4,5)

(1,2,5) 1 1,2) 3 6:(1,2,3,6),(2,6,7)

(3,4,5) 1 (3,4) 3 7:(2,6,7),(2,7)

(267 1 27 3

(b) Inverted Bucket-Pattern LigtB List fory:

|| (FB: — BK (Ryriv.A)) - 71| < |BK(Rppi0. Algseribed in Algorithm 1.

Require: |FB; — BK(Rpriv.a)| > 0. If FB; C BK(Rpriv.a), Set
|FB; — BK(Rpriv.a)| + 0.001.
Require: PI_scb, the set of cover buckets from selected Pl patterns
in the maximization of (6).
Require: total_ssup, the total support of all unique patterns that
only consist of buckets itPI_scb and BK (Rpriv.A).
Sort PI_candidates in non-increasing order
M%% (FB; € PI_candidates).
2: while |PI_scb |J(FB; — BK(Rpriv.a) — PI_scb)]
|BK (Rpriv.A)| - 1. do
3:  Greedily add the buckets ifB; — BK(Rpriv.a) — PI_scb
to PI_scb and updateotal_ssup using F'B; and the sub-
patterns ofF'B; that are not in previously selected patterns.
end while
5: if total_ssup < ssup(F B;) then
PI_scb <+ FB; — BK(Rp7‘i1hA)-
total_ssup < ssup(F B;).
8: end if
9: ReturnPI_scb.

of

<

of selected PI patterns, only the buckets that are not in-
cluded by previously selected Pl patterns can be count-
ed. For the previous exampléF By — BK(Rpriy.A)|
1(2,3,4) — (3,5)] [(2,4)] 2, we can only count
(1,6) but not including2 for the next pattern(1,2,3,6),
thus (FBO — BK(Rp,“,A)) U (FBl — BK(Rp,“,A))| =
(2,4) U((1,2,3,6)—(3,5)) = (2,4) U(1,6)| =2+2 = 4.
The above maximization problem (6) is analogous to a
typical NP-complete problem, the 0-1 Knapsack problem.[17]

ased on the union of sets, while the operations in the 0-1
Knapsack problem are based on accumulation of independent
jects. Considering super supports as values of objeds an
the number of buckets as the total weight of objects, if the PI
patterns are disjoint with each other, (6) becomes a stdndar
0-1 Knapsack problem. Hence, (6) is also an NP-complete
problem, and has a fast 2-approximate solution similar to
the fast approximation algorithm that gives a 2-approxénat
solution to the 0-1 Knapsack problem [17]. This solution is

%he difference between them is that the operations in (6) are

The time complexity of this algorithm s
Q(|PI_candidates| - loga| PI_candidates|). The reason
that this algorithm is 2-approximate is as follows. Since ou
solution is suboptimal, we must have some leftover bucket
budget A at the end. Suppose that Algorithm 1 can take
rtial buckets from a pattern. Let the optimal total suppor
Then by adding‘FBJV_BKA(RWU_AHssup(FBj)
total_ssup, we would either match or excee@PT.
p(U;;ll FBj) > $OPT or ssup(FB;)

. 1
up. For example, ifry = 1,21 = 1, and assume pattern-= TF5,—BRE, o SwP(F'Bj) = 30PT.

s (2,3,4) and (1,2,3,6) are consecutively selected, since AS an

ssup(2,3,4) sup(2,3) + sup(3,4) + sup(2,3,4)

example of running Algorithm 1, given
BEK(Rpriv.-A) = (3,5), n. = 2, PI_candidates = {(2,

2+ 2+ 1 = 5 we can only add the supports of3: 4). (1, 2, 3, 6), (3, 4, 5), (1, 2, 5), (2, 3), (3,}4)

patterns (1,2) and (1,2,3,6) but not (2,3) for PI pat-
tern (1,2,3,6), ssup((2,3,4) J(1,2,3,6)) = (sup(2,3) +
sup(3,4) + sup(2,3,4)) + (sup(1,2) + sup(1,2,3,6)) =
5+ (2+1)

ssup(FB;)
\FBq,—BK(Rmm.A)é
5 3

|BK (Rpriv-A)|-ne = 4. for the sequential
€ PI_candidates are g, 3,5

FB; 5,5,2,2. Re-ordered
PI_candidates are thus{(2, 3, 4), (2, 3), (3, 4), (1, 2, 3, 6),

8. Similarly in the first constraint, when (3, 4, 5), (1, 2, 5). Going over re-ordered®I_candidates

counting the total number of cover buckets in the unioand generating cover buckets from these patterns until



the end of PI_candidates, the cover bucket budgetAlgorithm
PI_scb, ssup(PI_scb), BK(Rpriv-A), 0c)

|BK (Rpriv-A)| - 1 is not exceeded, sBPI_scb = (1,2,4,6),

2 maximize NPI_ssup{N PI_candidates,

total_ssup ssup(PI_scb) = sup(2,3) + sup(3,4) +
sup(2,3,4) + sup(1,2) + sup(1,2,3,6) + sup(3,4,5)
+ sup(1,2,5) = 10. If 1, |BK(Rpriv-A)| - ne = 2,
re-orderedPI_candidates = {(2, 3, 4), (2, 3), (3, 4), (3, 4
5), (1, 2, 5}. At the fifth pattern(1,2,5), PI_scb = (2,4)

and bucket 1 cannot be added, the client thus compares the Sort

current total_ssup = sup(2,3) + sup(3,4) + sup(2,3,4)
+ sup(3,4,5) = 6 with ssup(1,2,5) = 5, and keeps the
current PI_scb = (2,4). The resultsPI_scb in the above
two examples happen to be the same as optimal solutions.
2) Selecting NPI patterns for Generating Cover Buckéts:
the maximization goal (6) in Pl patterns is already achieved
and yet the budget of cover bucketBK (R,i-A)| - 7 6:
is not all used, the client selects NPI patterns from the;f
set FBS — IBList(BK (R,i».A)) to generate more cover g
buckets which are different from the cover buckets gendrateo:

Require: |F'B; — PI_scb| > 0. If FB; C PI_scb, set|FB; —

PI_scb| < 0.001.

Require: C'BS, the set of buckets from selected Pl and NPI patterns

in the maximization of (6) and (7).

' Require: total_ssup, the total support of all unique patterns that

only consist of buckets i’ BS.

NPI_candidates in  non-increasing  order

U L‘JFPBIZ',S;b};iZTP(PLSCb) (FB; € NPI_candidates).

CBS + PI_scb.

total_ssup < ssup(PI_scb).

while |CBS |J(FB; — CBS)| < |BK(Rpriv-A)| - n. do
Greedily add the buckets iR B; — C'BS to C BS and update
total_ssup using F'B; and the sub-patterns df B; that are
not in previously selected patterns.

end while

if total_ssup < ssup(PI_scb|J FB;) then
CBS «+ PI_scb|J FB;.
total_ssup < ssup(PI_scb|J FB;).

end if

of

from Pl patterns. These NPI patterns are selected such that Add private bucketsB K (R,riv.A) to CBS and returnCBS.

|FB; — PI_scb| < |BK(Rpriv-A)| - ne — |PI_scb| (FB; €

(FBS — [BL’L'St(BK(Rp,,Aw.A)))). Denote this set of NPI Algorithm 3 generatgcover_bucket$BK(Rp,.,w.A),nc)

patterns asV PI_candidates. T

In usual cases,FFBS is representative enough that ;.
IBList(BK (Rpriv-A)) is not empty andPI_candidates 3
exist. In some cases when no PI patterns exist for privage dat
buckets,/ BList(BK (Rpriv.A)) = @ and PI_scb = @, the
client randomly samples a subset of NPI patterns for whicl{"
|F'B;| < |BK(Rpriv-A)|-n. (FB; € FBS), and sortthem by ¢
descending super supports. This random sampling is to avoid
the buckets of most frequent patterns to be always selected
as cover buckets, which is risky wheRl_scb = @. The

maximization goal during selecting NPI patterns, simitattte ;f
maximization goal in selecting PI patterns (6), is as fofow
maximize ssup(U FB; - ;). @) 12
12:
subject to |PI_scb U (U FB;-x;)| < |BK(Rpriv-A)| - Ne13:
i 14:

where i € INPI_candidates|.
15:

Calculatel BList(BK (Rpriv.-A)).
if IBList(BK(Rpriv-A)) # & then
Select Pl candidate patternsPI_candidates from
IBList(BK(Rpriv.A)), st. |FB; — BK(Rpriv.A)| <
|BK (Rpriv.A)| -1 (FB; € IBList(BK (Rpriv.A))).
PI_scb + maximize_PI_ssup(PI_candidates, BK(Rpriv.A), .
if |PI_scb| < |BK(Rpriv-A)|-ne then
Select NPI candidate pattern® PI_candidates from
FBS — IBList(BK(Rpriv.A)), S.t. |[FB; — PI_sch| <
|BK(Rpriv-A)| - ne — |PI_scb| (FB; € (FBS —
IBList(BK (Rpriv.A)))).
else
CBS + PI_scb|J BK(Rpriv-A).
end if
else
Randomly sample NPI candidate pattetN$/_candidates
from FBS, s.t.|FB;| < |BK(Rpriv.A)|n. (FB; € FBS).
end if
if NPI_candidates # @ then
CBS — mazimize_N PI_ssup(N PI_candidates,
PI_scb, ssup(PI_scb), BK(Rpriv-A), nc).
end if

Similarly, there exists a 2-approximate algorithm to solve
the maximization problem (7), which is described in Algo-
rithm 2.

Consider the previous example, giveRK (Ryriv.A) =
(3,5), if n 3, the solution PI_scbh (1,2,4,6)

|PI_candidates|-logs| PI_candidates|, |N PI_candidates|-
log2| N PI_candidates|)).
3) Generating Decoy Bucketstet the generated cover

for PI_candidates would not use all cover bucket bud-bucket set including the private buckeB8K (R,..,.A) be
get |[BK(Ryriv-A)| - n. = 6. Then the client considers CBS. Generating decoy buckets is analogous to generating

NPI candidates =

sorts them byssup(FBq, PI_scb)—ssup(PI_scb)

|FB;—PI_scb|

as {(2, 6, 7),

(2, 6, 7), (1, 2), (2, 7) and re- cover buckets, except that candidate patterns must casfsist
only buckets fromCBS, the private bucketBK (R, iy,.A)

(2, 7), (1, 2}. Going over re-ordered PI_candidates and are replaced by the private query buck&%& (q) for a query
generating cover buckets from these patterns until the éndgoand, is replaced by, in the inputs of Algorithms 1 and 2.

NPI_candidates, the cover bucket budgeBK (Rp,i,.A)| -
7. is not exceeded, s6'BS = (1,2,3,4,5,6,7), total_ssup

We show how to generate decoy buckets in Algorithm 4.
Let FBS(CBS) be the set of query patterns that only

= ssup(PI_scb) + sup(2,7) + sup(2,6,7) =10 + 2 + 1 = consist of buckets fromCBS. It can be easily obtained

13. by

running Algorithm 3 and then materialized to use in

The above process of selecting Pl and NPI patterAdgorithm 4. For example, giverBK (R, i,.A) = (3.,5),
s for generating cover buckets in outlined Algorithm 3y, = 2, thenCBS = (1,2,3,4,5,6), FBS(CBS) = {(1,

The time complexity of this algorithm i€ (max( |FBS)|,

2,3,6), (2,3,4), (1, 2,5), (3, 4,5), (1, 2), (2, 3), (3}4)
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0.1. bucket summary S

Algorithm 4 generatedecoy bucket$ BK (q), n4)

Require: IBList(BK(q)), the set of Pl patterns for private query | e | 0.2. publickey K5 i
| H 0|.3. generate cover buckets based on R,;,.A

q. |
Require: FBS(CBS), the set of query patterns that only consistlI

1: generate decoy buckets based on Q
of buckets fromC'BS. |

X . H | 2. query vector Q’ __a
Require: DBS, the generated decoy bucket set 8K (¢) includ- | = _—d .
ing the private query bucketBK (q). | = answer vector V server
1. Calculate IBList(BK(q)) «— client 4. decryptV & filter

IBList(BK(q)) \FBS(CBS).

2. if IBList(BK(q)) # @ then Fig. 5. HHE. In this protocol, before processing any quer4) Server

3 Select Pl candidate patterns PI_candidates  sends the bucket summasyof its database to the client; 0.2) Client sends her
from IBList(BK(q)), st |FB; — BK(q) < public key K, to the server; 0.3) Client identifies the private data bucket
|BK(q)| - na (FB; € IBList(BK(q))). that potentially include her dat&,,;,.A based onS, and generates a set

4:  PI_scb + mazimize_PI_ssup(PI_candidates, BK(q),nq)0f cover buckets. Then to process a queryl) Client identifies the private

5: if |PI_scb| < |BK(q)| -nq then query buckets that potentially include her requested data based onS,

6: Select NPI candidate pattern®’ PI_candidates from and generates decoy buckets from the cover bucket set. @tGbrmulates

_ . 1. - < aquery vectoQ’ that encrypts private and decoy bucket entriedrgs) and
FBS(CBS) = IBList(BK(q)), s.t.[FBi — PI_scb| < E(0) respectively, and sets other bucket entries as plainteah®,send<)’
|[BK(q)| - na — |PI_scb|] (FB; € (FBS(CBS) — n - 3)'S d blind . : £ and
[BList(BK(q))) to the server; ) Server does blind processing on non-zeresmf Q" an

2)))- its database, sends the answer vedtoback to the client; 4) Finally, the

7. else client decryptsV” and reconstructs the answer to the query

8: DBS < PI_scb|JBK(q).

9: endif

10: else . . .

11:  Randomly sample NPI candidate pattef¥i$’I_candidates guargntee of H"!E for. a glven.query sessigy is Qvaluated
from FBS(CBS), st. |FBi| < |BK(q)| - na (FB:; € by risk(QS) defined in Equation (5), the smalleisk(Q.S)
FBS(CBS)). is, the better privacy protection is.

12: end if First, because cover buckets are generated when a session

13: if NPI_candidates # & then

14 DBS <«  mazimize NPI_ssup(NPI_candidates, begins, and decoy buckets for each quergisi are ge.nerated _
PI_sch, ssup(PI_sch), BK(q), 7a). upon cover buckets, decoy buckets appear consistently like
15: end if - private data buckets in the session. Thus HHE is not subject

to attacks that single out inconsistent noises in multiple
queries to find private data, such as composition attacks on
According to Algorithm 1, ifBK (q) = (3), n4 = 2, re-ordered k-Anonymity [10]. Based on Theorem 4.1, private buckets are
PI_candidates = {(2, 3, 4), (2, 3), (3, 4), (1, 2, 3, 6), (3, semantically secure among decoy buckets. Therefore, we say
4, 5)}. From the first three patterng?I_scb = (2,4) and that HHE protects a user’s query privacy for a sequence of
decoy buckets ar®K,, BK,. If nq is changed to 4, decoy queries in a user session, although its privacy guranteetis n
buckets would be generated from the first four patterns up Rerfect, which is discussed below.

(1,2,3,6), PI_scb = (1,2,4,6), DBS = (1,2,3,4,6) and Second, privacy leak in HHE comes from the fact that

the total support is 8. only partial buckets (private and decoy buckets) are reqdes
Following Algorithms 3 and 4, any private bucket would be
D. Hybrid Query Processing Protocol covered by at least a Pl or an NPI pattern. If a private bucket i

overed by a PI pattern, it is part of a frequent query pattern

We build our hy_b”d private query processing protqcol Hngo the reformulated query is not unique and is not likely to be
hased on the basic protocol BHE presented in Section IV Aifked to a specific individual. If a private bucket is covere

cover / decoy bupkets gene_ration algorithms _describedeal_)og an NPI pattern, since we assume that adversaries do not
As BHE? H.HE relies on public data bucketlzafuon and requIrghow FBS (this information is secure with clients), althbug
the preliminary steps of bucket summary dissemination al b adversaries may try to perform frequent pattern mining

public fkey ?xghange. HHE also_ followi;hthree stepsa c_:l|e ?1 observed query buckets (private and decoy buckets), they
query formulation, query processing on the server and fina till cannot tell that the private bucket is not part of a real

query processing on the client. In contrast to BHE_‘ HH attern, again the reformulate query looks not unique and
requires the client to generate cover buckets before PSOTES ¢ ¢ jikely to be linked to a specific individual. The link
any queries, and during the processing of a query, H obability depends on how many patterns are included in the

requires the client to generate decoy buckets in the qu ery buckets set and the supports of these patterns, widch a
formulation step, the server to compute only on the da antified byrisk(QS) '

belonging to private and decoy buckets in the query proogssi Finally, we would like to emphasize that HHE is not subject

step on t_he Server, and the server fo only ;end to the CIi(?(r)"tthe common attacks oh-Anonymity such as similarity
the data in private and decoy buckets. We illustrate HHE Uhd skewness attacks [20]. The reason is two folds: 1) HHE

Fig. 5. protects privacy in a coaser granularity level, buckettesd of
data values, and the contents of the reformulated query-buck
ets are completely confidential guaranteed by homomorphic
We claim that (1) HHE protects a user's query privacgncryption; 2) special characteristics of a query whichhhig
for a sequence of queries in a user session; (2) The privdmy privacy concerns such as unique similarity and skewness

E. Security Analysis
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TABLE |

would be significantly diminished by using frequent pattern EXPERIMENTAL PARAMETERS
in HHE.
Parameter Domain Default
Number of Tuples 100K,1M,10M 1M
Raw Query Size 50, 100, 200, 400 100
VI. EXPERIMENTAL EVALUATION Number of Bucketd 100, 1000, 10000 10000
. . . _ Decoy Buckets Constrainj., ng 5, 10, 15, 20 10
Our evaluation focuses on the following: (1) the perfor Brivaie DataDistibution 5%, 10%. 50%. 100%| 10%

mance, i.e. client query formulation time, server progessi
time, client post-processing time, query completion time a
data communication size, of our proposed solutions BHE’Experiments Setup. The ciphertext key size irPIR is
HHE compared to those of PIR; (2) the effects of publi¢go4 pits. The block size itPIR is 10 buckets. Queries were
data size and query selectivity / query size on performangginerated omR,,;,.A following Zipf distribution of skewness
(3) the performance trade-offs of different granularitiefs g A join query selected between 50 to 400 random keys
bucketizations; (4) privacy risk of HHE, and the percentaggym Ryriv.A, while a range query selected a random range
of private buckets fully covered by frequent query patterns hat covered between 50 to 400 consecutig.;,.A keys
(default is 100 keys). A user query session has three join
and two range queries. The private kdys.;,.A of each user
_ ] session were generated separately. The frequent quergtbuck
Implementation. We used C and relied on an open sourGgatterns sef” S in HHE was mined from 200 user sessions
Paillier library [1] to implement BHE and HHE. We also im-34 1000 queries, such that each pattern appears in at least fi
plemented the classical single-servBIR protocol [19] which 4 ,eries and two user sessions. The resulting siz& BfS,
we denote agPIR, and adapted the CPU implementation cgepending on the number of public data tuples, is around
the currently known fastest single-server PIR solution] [2%0 000. The number of cover / decoy buckets per private
which we denote agPIR. To see how much privacy riskpyckety, ands, is between 5 and 20 (default is 10) as shown
HHE can save compared to anonymization approaches thafgloraple I. A test run consists of 20 user sessions and 100
not consider data and query semantics in generating decQygeries. The reported results of each run were averaged over
we implemented a simple hybrid protocol that selects randqikse 100 queries. Each of our experiments was run on a Unix

buckets as decoys but also obeys theand 7, constraints seryer with 2 quad-core Intel Nehalem 2.4 GHz processors and
of HHE, which we refer to as Random. We simulated datgy GB memory.

transmission time by dividing the communication sizes with
100Mbps and then adding the latency 20ms for simulatint _
queuing delay and round trip time. - Experimental Results

Data Set. We used both a synthetic data set and a realVarying the Number of Public Tuples. We first study the
data set as the public dat®,,,. The synthetic data setscalability of our proposed solutions BHE and HHE, i.e. the
has between 100K1(°) to 10M (107) tuples (we use 1M effect of increasing the number of public tuples on query
data set as default). Each tuple has three integer attsibuperformance. Here the number of public tuples is varied from
whose values are uniformly distributed in [007]. The first 100K to 10M, while fixing the other parameters as default. The
attribute was used as the query matching Kgy,,.B. Data y-axis in Fig. 6 is in logarithmic scale. As seen from Fig. 6,
bucketization was done on this attribute by equally distity HHE performs the best overall, although it spends extra time
ordered tuples in buckets. Three granularities of buck#tims on selecting patterns and generating decoy buckets corhpare
were generated, 10000 buckets, 1000 buckets and 100 bucketBHE, as seen in Fig. 6(a); BHE is no better tH&R in
respectively (we use 10000 buckets as default). 1000 nmgchprocessing time, but has a smaller communication size than
keys of private datd,,;,.A were generated within a range off PIR. We also confirm thatPIR is much faster thaePIR,
Ryup-B, which is between 5% to 100% of tife,,,,. B domain but we want to emphasize that the security/BIR is not
(default is 10%). These settings are also shown in Tabled. Thuaranteed as strong aPIR or BHE, both of which base
synthetic data set is used as the default data set for runnarg number theory. HHE can answer a join or range query
experiments. involving considerable amount of data within 2 minutes on 1M

The real data set consists of US medical providers from tpeblic tuples (and around 6 minutes on 10M tuples), compared
National Plan and Provider Enumeration System. We exitact® around 17 minutes of BHE, 19 minutes i6fIR and more
6 attributes (including both numeric and text attributesyl a than three hours ofPIR (in Fig. 6(c)). The cost reduction
selected only doctors from this data, resulting in 2,53%,4&f HHE is mainly on the number of buckets that the server
tuples. We call the result data set as NPI data. The firsbat&i needs to process, as seen in Fig. 6(b), and the size of data
of this data set, provider ID, was used as the matching kgnsmitted from the server to the client, as seen in Fig).6(d
of public data. It was bucketized in 8,449 buckets with eacFhe client query formulation time ifPIR for 100K and 1M
bucket having at most 300 tuples. Assuming that there atata, as seen in Fig. 6(a), can be reduced by using largeks bloc
500 cities in US and a user is mainly interested in medicsize such as 100 buckets, but 100 buckets block size does not
providers in a resident city, we generated 1000 private keywrk on 10M data, so we still use 10 buckets block size for
(on provider IDs) of a user session from a range of 0.2% afl synthetic data.
the entire NPI data. Varying Query Selectivity. We then study the effects of

A. Implementation and Experiments Setup
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guery selectivity / raw query sizes on query performance a
well as on the privacy risk of HHE. We varied the raw query '
size from 50 to 400 while fixing the other parameters asé
default. As the query size increases, the size of the andwers x ]
query increases. It can be expected that the time that thetcli w0 e 10000 100 o 10000
spends on decrypting and post-processing results ina@ease () Client Processing Time (b) Privacy Risk

shown in Fig. 7(b). Since BHE retrieves all the buckets iﬁg. 8.
one batch, its server processing time and data communicatio
size do not increase. In contrast, sindelR and/PIR run
many rounds to retrieve data tuples in different blocksijrthe
server processing time and data communication size inereas
with the increasing query sizes, as seen in Figs. 7(a) and 7(cz o
HHE finds more decoy buckets for larger query sizes, so its§ 03 . ,
server processing time increases due to computing on moré °*s 10 15 20 ST 0 100
buckets, which in turn brings down the percentage that NPI Y ey (b) Private Data Distribution
patterns are used for g_eneratlng decoy buckets, thus Biogea Fig. 9. Effects of Other Factors on Privacy Risk
the percentage that private buckets are covered by PI patter

for the same privacy risk 0.57, as seen in Fig. 7(d). Note

that since our privacy risk is defined based on the supports,Af., varied the distribution of 1000 private keys on puby k
covering patterns as in Equations (4) and (5), generating moy, main from 5% to 100%, while fixing the other parameters
random decoy buckets does not improve privacy, i.e. Rando qofa it As the private data keys are distributed in bepad

in Fig. 7(d) always incurs above_ 0.99 privacy risk, and il St'ranges of the pubic data domain, the generated queries are
does not match any patterns or just matches NPI pattemns wijli,) gigtrinuted in broader ranges of the public data domain
increasing numbers of decoy buckets. Since BHE &R 5,4 more | patterns can be found to cover private buckets,

have z.ero privacy ri;ks, they are not s_:hown in Fig. 7(d)- leading to privacy risk reduction and NPI percentage as seen
Varying Bucketization. We next specifically study different;, Fig. 9(b).

granularities of bucketizations on query performance a6 We roqits on NPI Real Data. To mimic real application sce-

as on privacy risk in HHE. We varied the number of buckets,ing sych as searching for medical providers, we evaluate
b from 100 to 10000 on 1M public tuples, while fixing the,,,- hronosals on NPI real data. We fixed raw query size to
other parameters as default. As bucketization becomes fingj, private data tuples;. andrq as 10. The average query
query matching becomes more accurate, then the amount.gf, ietion time for a join or range query in HHE on NPI
ciphertexts that a client needs to decrypt and post-progesg,, js around 72.6 seconds (compared to 88.2 seconds of
smaller, as seen in Fig. 8(a). As bucketization becomes, fing§|x 5 hours of BHE and 20 hours @PIR), with around
query bucket patterns become more diverse, so it is harg@iakp ciphertext being transmitted (compared to 64MB of

to find Pl patterns that can fully cover private buckets, thLi?’lR, 160MB of BHE and 6GB of PIR) and privacy risk being
increasing NPI percentage in Fig. 8(b).

Other Factors on Privacy Risk. Finally, we study different
factors on privacy risk in HHE. We first varied the number of
cover / decoy buckets per private buckgtandn, from 5 to
20, while fixing the other parameters as default. As expectedIn the past, private query processing has not been realized
the privacy risk decreases from 0.77 to 0.29 (in Fig. 9(ap. Wor two reasons: (1) impractical expensive performancé, an
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(2) unable to support rich functionality queries beyondgdn [20] N. Li, T. Li, and S. Venkatasubramanian. t-closenesizaey beyond
selection queries and retrievals. We have addressed th%ﬁe‘éanonymity and I-diversity. INCDE, pages 106-115, 2007.

two problems in the paper by proposing two private query

processing protocols, BHE and HHE, based on homomorphic
encryption for solving private join queries and range ceeri [22]
Our experimental evaluation have shown BHE and HHE

perform better than PIR, and the performance of HHE s3]

practical on properly finer data bucketization. Although EHH
trade-offs partial privacy for performance gain, we meadur

[24]

its privacy using a novel metric based on frequent query duck2s)
patterns and minimized its privacy risk when generatingpgiec

buckets. In addition, our proposed two stages cover andydeé%G]
buckets generation ensures the decoy buckets appear lgs like
as private data buckets in multiple queries of a user sessit!
and thus consistently protects the user’s privacy in theises 28]
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