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ABSTRACT
We analyze the problem of minimizing the cost for satis-
fying information demand in a network of moving nodes,
where the communication between nodes is subject to dis-
tance constraints and a costly communication link with an
information source (central server or Internet). This prob-
lem has applications in several fields ranging from vehicular
networks to space exploration, and it is NP-hard. We pro-
pose a novel indexing system that is able to reduce the search
space and show that in practical cases, our system is able
to find an optimal solution in a reasonable length of time.
An extensive experimental analysis on large real and syn-
thetic datasets shows that the proposed method responds in
less than 10 seconds on datasets with millions of events and
thousands of information requests, with an improvement of
up to 100 times compared to the non-indexed solution.

1. INTRODUCTION
The analysis of trajectories of moving objects has interest-

ing applications in many fields ranging from wildlife studies
to traffic analysis [14]. An interesting application concerns
the optimization of the information management in a sce-
nario in which several moving objects are provided with mo-
bile devices and can communicate among themselves subject
to some distance constraints. The mobile devices form a
communication network whose structure changes over time.
This kind of networks have been studied by the network-
ing community under the name of Intermittently Connected
Mobile Networks (ICMN) [18], a special case of Delay Tol-
erant Networks (DTN) [1]. Past work on this field has been
limited to the design of single-cast routing strategies that
optimize the delay or the probability of delivery.
In a common scenario, moving nodes (e.g. people or ve-

hicles) are provided with a device that supports two kinds
of communication: a node-to-node communication (radio),
usually non costly, and a centralized communication (cellu-
lar or satellite) that involves a cost. For example, consider a

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘11, August 29 September 3, 2011, Seattle, WA
Copyright 2011 VLDB Endowment, ACM 0000000000000/00/00.

network of city buses, in which each bus is provided with a
mobile device that receives updated information about traf-
fic, weather and so on. Each device can obtain the updates
by the cellular (e.g. UMTS) network (costly), but it is more
convenient to share the information among various buses
via node-to-node communication (non-costly). Another ex-
ample considers soldiers or convoys that move following a
specific strategy. They need to access certain information
related to their location (e.g. satellite images). In this
case, the only options available are satellite communication
(highly costly) and node-to-node communication. Note that
in both examples, the node routes as well as the information
demands are known in advance.

The described scenarios have some important aspects that
make it difficult to apply current approaches. First, the
problem considers two communication networks in synergy,
while current approaches are usually based on one single net-
work. Second, it is based on multi-cast transmission, since
the same information object needs to be delivered to many
destinations. Third, it is mobility-aware, allowing one to
take advantage of the available knowledge about the tra-
jectories of moving nodes. Although some mobility-aware
approaches exist [9, 8], they do not consider the case of
multi-cast transmission. Last but not least, the amount of
data to analyze may be huge, therefore an efficient solution
is necessary.

In this paper we formulate the problem of optimizing the
information demand in a network of moving nodes and call
it demand cover problem. We prove that this problem is NP-
hard and present a graph-based algorithm for it. In order to
make this problem feasible on large datasets, we formulate it
as a query processing problem and develop a novel indexing
solution. Due to the index, we are able to solve each query
in less than 10 seconds on datasets with millions of events
and queries with thousands of information requests, with
an improvement of up to 100 times compared to the non-
indexed approach.

Our contribution can be summarized as follows:

• We define a novel problem (demand cover) that for-
malizes the problem of optimizing the information de-
mand in a network of moving nodes. We prove that
demand cover is NP-hard.

• We develop a compact graph-based representation of a
demand cover instance. The graph formulation itself
has interesting applications in other fields.

• We propose a novel indexing system for solving de-



mand cover on graphs optimally. Our system uses a
compact graph representation to efficiently locate a
small portion of vertices that are relevant for achiev-
ing an optimal solution.

• We evaluate the proposed approach on two real and
one synthetic datasets and show that an exact solu-
tion can be found in reasonable time in datasets with
millions of events.

The paper is structured as follows: Sect. 2 describes re-
lated work. Sect. 3 defines the problem, provides a graph
representation and a simple solution. Sect. 4 describes our
indexing system for demand cover. Sect. 5 presents an ex-
tensive experimental analysis on real and synthetic datasets.
Finally, Sect. 6 concludes the paper with some future direc-
tions.

2. RELATED WORK

2.1 Index structures for moving objects
Common indexing approaches for moving objects aim to

perform spatio-temporal queries on databases of moving ob-
jects. They are usually based on TPR-Tree [22, 19], an
adaptation of R∗-Tree that takes into account temporal fea-
tures of moving objects. Other approaches are based on B+-
tree [4, 10]. Some approaches incorporate movement models
in order to answer predictive queries [26, 20, 11]. Our in-
dexing system differs substantially from previous approaches
since our purpose is to manage information demand in a net-
work of moving nodes. Although our approach assumes that
the trajectories are known in advance, it can be integrated
with existing predicting models to manage uncertainty.

2.2 Routing in Delay Tolerant Networks
Previous work on communication networks with mobile

nodes has been focused on designing routing strategies that
minimize the delay of message transmission or maximize the
probability of delivery. Some approaches analyze the case
in which the moving nodes have an uncertain behavior and
hence heuristics need to be employed [18, 17], while other
approaches focus on the case in which some knowledge about
the future trajectories and the information demand is avail-
able [9, 8].
In [9], the authors consider the general case in which the

loss of connectivity depends on various factors, including
node mobility. They consider several cases, based on the
level of knowledge available, from zero knowledge (no infor-
mation about connectivity and information demand is avail-
able) to complete knowledge (connectivity, information de-
mand and state of the network is known in advance). The
full knowledge case is the closest to our work. In addition,
the authors consider the bandwidth capacity and the stor-
age capacity of each node. The traffic demand is given by
a number of source-destination pairs representing messages.
Since a fixed discretization interval introduces a problem of
balance between quality and efficiency, the authors propose
to sample the connectivity network based on a set of time
intervals of variable length, that is proved to achieve an op-
timal result. They then use a Linear Programming (LP)
method to find a solution and show that LP is able to find
a solution only on very small scenarios (a few nodes and
edges). In our work we analyze a multi-cast scenario with

two kinds of communication and aim to minimize the com-
munication cost. Moreover, we provide a solution that can
be applied efficiently on large datasets.

2.3 Graph indexing
Graph indexing systems generally aim to solve problems

as subgraph isomorphism [5, 25, 23], graph matching [15] or
reachability [4, 12]. For subgraph isomorphism (and graph
matching), a preprocessing off-line phase generates a data
index, starting from a database of graphs or from a large net-
work. When a query (generally a small graph) is requested,
a filtering phase is performed, followed by the execution of
a subgraph isomorphism algorithm on a reduced instance
(matching phase). The filtering phase prunes unnecessary
graphs or parts of them, with the purpose of reducing as
much as possible the size of the input for the expensive
matching phase. In some cases [5], the labels of the query
and the target graph are substituted, so as to further reduce
the matching time. The structure of the index is usually
based on an inverted index of features (i.e. subgraphs, trees
or paths) that is used to identify graphs of the database that
are candidates to match the query. In this work, we use an
analogous preprocessing-filtering-optimization scheme. The
structure of the index, however, is completely different. Our
index uses a compact graph representation based on disjoint
path decomposition (Sect. 4) and a suitable set of labels to
solve the demand cover problem.

Systems for reachability queries generally use compressed
data structures to efficiently perform reachability tests. Some
systems use chains [7] (generalization of paths) decomposi-
tion or path-tree [12] decomposition. The underlying idea
is that if a vertex u of a chain (or a tree-of-paths) is reach-
able from another vertex v, all the vertices downstream in
that chain are reachable from v. We use a similar idea to
develop a compact index. However, our work differ from
reachability indexes in many aspects. First, our system is
designed to fast identify the regions of the graph that can
reach a given destination instead of verifying the reachabil-
ity between pairs. Second, we take into account the time
constraints. Last but not least, we identify a small sub-
set of vertices that is representative and allows to solve the
demand cover problem optimally and with reasonable effi-
ciency on large datasets (see Sect. 4).

3. PROBLEM DESCRIPTION
In the considered scenario, each moving node is provided

with two types of wireless communication. Two nodes can
communicate with each other through a non costly radio
communication when they are at a distance lower than a
certain threshold. Each node can also communicate with
a central information source (Internet or a central server)
through cellular or satellite communication. Depending on
its location or other factors, each node needs to access cer-
tain data (information objects). Since typically the same
information object needs to be accessed by several nodes,
it is convenient to use the non costly radio communication
to share objects among nodes when possible. However, the
object sharing is subject to some time-constraints. In fact,
since the information objects can be updated over time, each
information request has a recency constraint that limits the
delay in which an object can reach the destination.

We are interested in computing the minimum set of source-
to-node (costly) transmissions that satisfies the information



demand. After the optimal set is found, the information ob-
jects could be delivered using standard techniques [13, 21],
or a reasonable route can be detected efficiently by a post-
processing phase. Since the node-to-node communication is
not expensive, a suboptimal route would not penalize the
quality of the solution.
Next we define the problem formally. We consider a single

information object, since the case of multiple objects can be
solved optimally by applying the solution one object at a
time.

3.1 The demand cover problem
We consider a set of trajectories T = {T1, T2, . . . , Tm} as-

sociated with moving nodes (n1, n2, . . . , nm respectively). A
trajectory Ti is a function Ti : [0, tMAX ] → RD that asso-
ciates each time instant t ∈ [0, tMAX ] with a point in the
space (typically a plane) that the corresponding node occu-
pies at time t. At a specific time, two nodes can communi-
cate with each other if their Euclidean distance is within a
fixed threshold d. When this happens, we say that the two
nodes are within radio range. The communication between
nodes does not involve any cost. Each node can also com-
municate at any time with the information source (e.g. a
central server) with a certain cost.
The information is organized in a number of information

objects, each of them representing a single indivisible part.
Given an information object, we define its information de-
mand I as a set of information requests, i.e. triples of the
form (ni, t, δ), where ni, t and δ represent the node that
needs the object, the time instant in which the information
is required and the maximum delay allowed respectively.
In order to model the flow of information in the network

we consider two kind of transmissions: source-to-node object
transmission, represented by a pair (ni, t) where ni repre-
sents the node that receives the object and t is the time in-
stant in which the transmission occurs, and node-to-node ob-
ject transmission, represented by a triple (ni1 , ni2 , t) where
ni1 , ni2 , t represent the node that transmits the object,
the node that receives the object and the time instant at
which the transmission occurs respectively. For simplicity,
all the object transmissions are considered instantaneous.
Although it may not be true in real cases, the movement
between nodes is usually very slow compared to the speed
of transmission. Therefore, in most cases all the necessary
objects can always be transmitted before the two commu-
nicating nodes exit from the radio range. We say that a
source-to-node object transmission (nis , ts) covers an infor-
mation request (nid , td, δ) if there exists a sequence of node-
to-node object transmissions (ni0 , ni1 , t1), (ni1 , ni2 , t2), . . .,
(nik−1 , nik , tk) with ni0 = nis and nik = nid , such as ts ≤
t1 ≤ t2 ≤ . . . ≤ tk ≤ td and td − ts ≤ δ. The demand cover
problem is defined as follows:

Problem definition 1. Given a set T of trajectories and
an information object with demand I, detect the minimum
set of source-to-node object transmissions that covers all the
information requests in I.

Figure 1 depicts an instance of the demand cover problem.
At the starting time t0, the nodes n2 and n3 are within the
radio range and can communicate with each other, while n1

and n4 are far from other nodes. At time t1, n4 enters in the
radio range of n2. At time t4, n2 exits from the radio range
of n3. Three information requests are also represented with

filled triangles. Note that to be able to communicate, two
nodes must be close to each other in space and time, there-
fore in general the fact that two trajectories overlap in some
point in the space does not imply that the corresponding
nodes can communicate.

n4

n1

t4

t0

t0

t0

t0

t1

t1

t1

t2

t2

t2

t2

t3

t3

t3

t3

t4

t4

t4

t5

t5

t5

t5

(n3, t2, 2)

(n2, t3, 3)

(n4, t5, 5)
.

t1

.

.

n2

n3

Figure 1: An instance of the demand cover problem.
The four solid lines represents four trajectories. The
big dashed circle represents the radio range of nodes.
The information requests are represented by trian-
gles.

The formulated problem can be shown to be NP-hard
(even in the 2D plane) by reduction from the well known Set-
cover problem. Given a family of sets S = {S1, S2, ..., Sm}
of elements taken from a set C, Set-cover calls for finding
the minimum sub-family of S that covers all the elements of
C. A proof is given in the Appendix.

Theorem 1. Any instance of Set-cover can be reduced in
polynomial time to an instance of the demand cover problem.

3.2 Graph representation
The demand cover problem can be formulated in ILP (In-

teger Linear Programming) and solved by a standard solver.
However, this solution would be extremely inefficient, in par-
ticular when applied on large datasets. An alternative ap-
proach is to represent an instance of demand cover with a
graph, whose nodes that represent points in the plane and
with two kind of edges that represent motion between two
points and connectivity (distance lower than d) between two
nodes respectively. A path connecting two nodes s and d of
the graph represents a possible route from s to d. There
are several advantages in working with graphs. First, an in-
stance of the problem is represented in a compact manner,
by hiding details concerning the motion and maintaining
only details that are relevant. Second, we can take advan-
tage of a large amount of literature available on graph algo-
rithms.

However, the above representation has an important draw-
back concerning the choice of the time discretization inter-
val. Although we could employ the approach of Jain et. al.
[9], it would generate a lot of redundancy, since between two
consecutive samples most of the connectivity graph must be
repeated. Instead we resort to a novel approach that allows
us to remove unnecessary nodes and edges without compro-
mising the quality of the result. We identify three types of
events that have an effect on the information flow:

• information request event or ir-event which denotes
the occurrence of an information request;



• in radio range event or in-event which denotes the mo-
ment at which two nodes enter in the radio range (at
this moment they are close enough to communicate);

• out radio range event or out-event which denotes the
moment at which two nodes exit from the radio range
(after this moment the communication between them
is not possible).

Ir-events and out-events are sufficient for solving the de-
mand cover problem optimally. In fact, given an optimal
solution for demand cover, it is always possible to modify
this solution in such a way that each transmission between
two nodes n1 and n2 is delayed until an ir-event or out-event
that involves n1 or n2 occurs, without increasing the cost.
Since communication is assumed to be instantaneous, the
length of time in which two specific nodes are in the radio
range is not important. In practice, the communication can
be anticipated in order to guarantee that all the necessary
objects are transmitted correctly. However, for simplicity of
description we do not consider this practical detail in our
algorithm. In-events will be considered in Section 4.
In-events and out-events can be extracted from the database

of trajectories. Ir-events depend on the information demand.
Figure 1 shows an in-event, involving the nodes n4 and n2

at time t1, an out-event, involving n4 and n3 at time t4, and
three ir-events, represented by filled triangles, at time t2,
t3 and t5 respectively. Now we describe in detail our graph
representation named Event-Driven Influence Graph (Edig).

3.2.1 EventDriven Influence Graph (Edig)
The Edig representation is based on two main observa-

tions. First, in the connectivity graph, all the vertices in
the same connected component have the same property of
reachability, so one vertex is representative of all the others.
Second, when an event occurs, connected components of the
connectivity graph that do not contain any nodes involved
in the event, are not influential.
A connectivity graph is a graph in which vertices repre-

sent moving nodes and two vertices are connected by an
undirected edge if the corresponding nodes are in the radio
range (distance lower than d). This graph evolves in time.
For each event we consider a connectivity graph that rep-
resents the network connectivity in the time interval that
spans from the previous event to the current event. We call
this interval the lifetime of the connected component.
Given a set of events Ev, we first remove from Ev all

the in-events and out-events that do not change the con-
nected components of the connectivity graph. Then, for
each event e ∈ Ev, the connected components of the con-
nectivity graph that contain nodes involved in e are consid-
ered and collapsed into single vertices. For completeness,
the connectivity graph at time tMAX (the last time stamp)
is considered and each of its connected components is col-
lapsed into vertices. All the collapsed connected components
are then connected by directed edges in the following way:
given a component ct corresponding to time t, for each mov-
ing node n in ct, consider the component ct′ corresponding
to time t′ > t, containing the node n and such as there is
not any other component at time t′′ < t′ that satisfies the
same properties. Connect ct to c′t by an edge with weight
t′ − t.
One example of Edig is shown in Figure 2. It represents

the Edig graph corresponding to the example in Figure 1.

Small circles represents nodes. Undirected edges represents
edges of the connectivity graphs. Filled circles represent
nodes involved in in-events or out-events while filled trian-
gles represents nodes involved in ir-events. The big ovals
represent connected components.
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Figure 2: The Edig representation of the example
in Fig. 1. All the in-events, out-events and ir-events
are shown. Small circles or triangles represent nodes
at specific time instants. Filled circles represent
nodes that are involved in the current in-event or
out-event, while triangles represent nodes that per-
form information requests. Big ovals represent con-
nected components (vertices of the Edig graph).

3.2.2 Solving demand cover on Edig
The demand cover problem can be formulated as a graph

problem. Given a directed weighted graph Gedig and a set
of destinations (information requests) I = {(c1, δ1), (c2, δ2),
. . . , (ck, δk)}, where c1, c2, . . . , ck are vertices of Gedig and
δ1, δ2, . . . , δk are distance constraints (time delay), find the
minimum set of vertices VS of Gedig so that each destination
vi can be reached by at least one vertex of VS with a distance
not larger than δi.

The demand cover problem on graphs is a general problem
that has applications in other fields. For instance, suppose
one wants to arrange a number of facilities that cover certain
sensitive locations, where cover means that each sensitive
location must not be too far from the closest facility. An
interesting question is how many facilities are required to
satisfy the constraints and where they must be located. An-
other possible application is on Named Data Networking [6].
In this model, data packets can be cached in some routers
in order to optimize the demand. An important question
here is which is the minimum set of caches that need to
be stored to satisfy a certain demand with maximum delay
constraints, and where to place them.

The demand cover problem on graphs can be reduced to
Set-cover by building a family of sets for Set-cover in the
following way: consider one set for each vertex of the graph
that contains all the destinations that can be reached by
it satisfying the distance constraints. This family can be
built by executing a backward (following the edges in the
opposite direction) BFS or DFS from each destination. The
optimal subfamily for Set-cover corresponds to an optimal
set of vertices for demand cover.

The following theorem states that the original demand



cover problem can be reduced to a demand cover problem
on graphs.

Theorem 2. Let (T, I) be an instance of demand cover,
where T is a set of trajectories and I is a set of information
requests. Let Gedig be an Edig graph built on (T, I) by con-
sidering only out-events and ir-events. If C = {c1, c2, . . . , cq}
is the optimal solution of demand cover on Gedig, the set
of vertices obtained by choosing arbitrarily one vertex from
each connected component in C is an optimal solution for
the original demand cover problem.

4. AN INDEXING SYSTEM FOR THE DE
MAND COVER PROBLEM

Solving the demand cover problem efficiently raises sev-
eral challenges. First, for each vertex v of the Edig graph,
and each information request vertex u, we need to check if
u can be reached by v in acceptable time. This operation
may be very expensive when the size of Edig is large. Sec-
ond, Set-cover is NP-hard, therefore no polynomial-time so-
lutions exist (unless P=NP) in the general case. For small
instances, Set-cover can be solved optimally in acceptable
time by pruning techniques as branch-and-bound. In our
case, however, the number of sets generated by Edig is usu-
ally very high, since an information request can potentially
be reached by many vertices. Many of these sets are redun-
dant, i.e. they are fully contained in other sets. Remov-
ing redundant sets leads to a considerable reduction of the
Set-cover instance. However, removing the redundancy by
traditional methods is expensive, since it requires to find
maximal sets [24]. Additionally, in a typical application, a
large amount of information objects are requested and each
information object has its own set of information requests.
Solving the demand cover problem for each information ob-
ject may be extremely expensive.
We propose a novel approach, Compressed Edig based on

time-Interval labeled Disjoint Paths (CIDP, for short) that
builds an index of the set of trajectories with the purpose
of efficiently performing queries of the form: given a set of
information requests, return the the minimum set of source-
to-node object transmissions that covers all the information
requests.
We use a preprocessing-filtering-optimization scheme to

solve the demand cover problem. Given a database of tra-
jectories, a preprocessing phase generates a compact data
index. When a query (represented by a set of information
requests) needs to be performed, we use the data index to
generate a lightweight instance of Set-cover (filtering phase).
Set-cover is then solved optimally (optimization phase) and
the solution is returned.
The proposed indexing system gives several advantages.

First, the index is much more compact than the Edig graph,
and hence require less memory and is much more efficiently
manageable. Second, it allows to fast identify the set of
nodes in the Edig graph from which the information requests
are reachable. Note that current reachability indexes cannot
be efficiently applicable to our problem since many reacha-
bility tests need to be performed. Finally, we can efficiently
prune nodes of the Edig graph that are not promising and
generate a small instance for Set-cover. Next, we introduce
the proposed index and describe the three phases of our in-
dexing system: preprocessing, filtering and optimization.

4.1 Index structure
The key idea is that the set of requests covered by a node

in an Edig path includes the set of requests covered by other
subsequent nodes in the path. Therefore, a node can be
taken as representative of a portion of the path. Moreover
an Edig node can be univocally determined by a path and
a time instant. Based on these considerations, we parti-
tion the Edig graph in a set of disjoint paths and build a
compact graph, named CIDP, whose vertices represent dis-
joint paths and edges preserve the connectivity across paths.
Each vertex of CIDP is labeled with a time interval (named
lifetime) that is the union of the lifetimes of its composing
vertices (note that a vertex of Edig represents a connected
component of moving nodes and has a lifetime). Instead
of exploring all the nodes of a path, we can determine a
set of time instants that is representative of the whole path
by exploring the compact CIDP graph. We describe this
idea more in detail by highlighting the two key properties of
CIDP nodes.

Property 1. Let Gedig be an Edig graph and Gcidp its
corresponding CIDP graph. A pair (pi, t), where pi is a node
of Gcidp and t is a time instant, identify univocally a node
of Gedig.

This property imply that we can use the coverage of a pair
(pi, t) in place of the coverage of the corresponding Edig
node. We denote the coverage of (pi, t) as C(pi,t). The
following lemma states that the coverage of a time instant
contains the coverage of following time instants until the
minimum transmission time of some request is reached.

Lemma 1. Let Gcidp be a CIDP graph, I be a set of in-
formation requests, and (pi, t1), (pi, t2) be two pairs where
pi represents a node of Gcidp and t1 ≤ t2 two time instants.
If for all requests (n, t, δ) ∈ I it holds (t− δ) ̸∈ [t1, t2], then
C(pi,t2) ⊆ C(pi,t1).

The lemma follows by the fact that all the nodes that pre-
cede a node c in a directed path conserve the reachability
properties of c. Therefore, all the requests (n, t, δ) ∈ I that
are covered by (pi, t2) can also be covered by (pi, t1), pro-
vided that the time constraints are compatible with both
t1 and t2 (controlled by the condition t − δ ̸∈ [t1, t2]). An
interesting consequence of the lemma is that a time instant
can be used as representative of an interval in a path.

Figure 3 shows an example. The set of requests covered by
pi at time ta is C(pi,ta) = {r1, r2}. Since no other requests
(n, t, δ) ∈ I have (t − δ) ∈ [ta, tb], (pi, ta) is representa-
tive of the interval [ta, tb]. tb coincides with the minimum
transmission time of r3 (i.e. (t3 − δ3)). Therefore, its cov-
erage (C(pi,tb) = {r3}) cannot be contained in C(pi,ta). The
pair (pi, tb) is instead representative of the remaining part
of the path. The path pi produces only two sets (C(pi,ta)

and C(pi,tb)) for Set-cover, instead of four that would be
produced without indexing.

Next we describe in details the three steps of our method:
preprocessing, filtering and optimization.

4.2 Preprocessing
Given the set of trajectories, first an Edig graph (Gedig)

based on in-events and out-events is generated. Ir-events
are not considered since during the preprocessing phase the
information demand is unknown. For each vertex of Gedig



Figure 3: An example of path in the Edig graph.
The directed graph composed by small circles rep-
resents the Edig graph. The big oval pi represents a
path. Solid triangles within circles represent infor-
mation requests. The times ft1, ft2 and ft3, asso-
ciated with outgoing edges, represent the end-times
of source vertices.

we consider its lifetime, i.e. the interval [s, e] in which the
represented component is valid. We call s the start-time and
e the end-time. The Edig graph is then decomposed into
a disjoint set of paths. We associate each path to the time
interval that represents its lifetime (the time associated with
the two extremes) and refer to it as IDP (Interval-labeled
Disjoined Path). We consider a graph of IDPs, Gcidp, where
an edge is placed between two IDPs if there is an edge that
connects two vertices across the two IDPs. Each edge (pi, pj)
of Gcidp is associated with the set FT (pi, pj) of end-times of
all the source vertices in pi (note that in general an edge in
Gcidp can be associated to many edges in Gedig). FT (pi, pj)
represents the set of time instants in which an information
object can flow through (pi, pj). Note that there is a large
number of possible ways to partition the graph in disjoint
paths. We use a simple strategy consisting on choosing one
vertex at a time (proceeding in time order) and elongating
it by random walk until a vertex without outgoing edges is
reached. Figure 4 depicts an example of Gcidp. The small
vertices and thin edges representGedig, while the big vertices
and thick edges represent the compressed Gcidp.

4.3 Filtering
Our filtering algorithm finds a set of time instants TIp

for each IDP that are representative of the whole IDP, and
the family S of corresponding sets. Our strategy guarantees
that each vertex of the Edig graph that covers at least one
information request, is fully contained in at least one set in
S. Since CIDP is much smaller than Edig, exploring the
former is much more advantageous in terms of elaboration
time and memory consumption.
The filtering procedure considers two steps: backflow and

prune. Backflow propagates the requests in reverse order
from the destination paths to all the possible source paths.
For each path, we compute the validity interval of a request
that define the time interval in which the information object
must reach the path for the request to be covered. At the
end, each path has a set of requests that it can cover with

c1

c2

c3

c6

c7

c9

in-event

out-event

p1: (t0, tmax]

p2: (t0, tmax]

p3: (t0, t1]

p4: (t4, tmax]

Figure 4: An example of CIDP built over the exam-
ple of Figure 1. The small circles and thin arrows
represents the Edig graph (compared to Figure 2
here the components corresponding to ir-events are
removed). Each IDP is circumscribed by a solid line
and links between IDPs are represented by thick ar-
rows. For each IDP, its lifetime is reported.

their validity intervals. The coverage of a pair (p, t) can be
identified by the set of requests such as their validity inter-
val in p include t. After the validity intervals are generated,
prune computes the family of sets for Set-cover. It collects
the set of coverages that correspond to minimum validity
times (starting times of validity intervals) in all paths. Be-
low we show that this procedure discards only redundant
sets.

4.3.1 Backflow
We define the validity interval of a request r = (n, t, δ) in

a path p (valid int(r, p)) recursively in the following way:
If p is the path that contains r, with lifetime [b, e]:

valid int(r, p) = [max(b, t− δ), t]

If p is an unexplored path with lifetime [b, e] that links
to a set of paths p1, p2, . . . , pk with validity intervals [b1, e1],
[b2, e2], . . . , [bk, ek] respectively:

valid int(r, p) =

{
Φ if FT (p, pi) ∩ [bi, ei] = Φ ∀i | 1 ≤ i ≤ k
[max(b, t− δ), max

t′∈
∪k

i=1 (FT (p,pi)∩[bi,ei])
t′] otherwise

The latter equation means that the maximum validity
time in a path is given by the maximum time in which the
information object can flow in another path that have a com-
patible validity interval, while the minimum validity time is
limited by t− δ and the starting time of the path.

The following lemma states that the coverage of a pair
(p, t) can be identified by the set of requests whose validity
intervals include t.

Lemma 2. Let (T, I) be an instance of demand cover and
GCIDP be the CIDP graph built from (T, I). Given a path p
of GCIDP and a time instant t, the coverage of p at time t
is:

C(p,t) = {r ∈ I | t ∈ valid int(r, p)}



valid int(r, p) can be computed for all paths in a BFS
fashion, by starting from the path containing r and explor-
ing the CIDP edges in reverse time order until the mini-
mum starting time is reached. When a new vertex is vis-
ited, the validity interval of r in it is updated. The last
step requires to explore the set FT (pi, pj) of the incoming
edge. This operation can be done in time O(log(|pj |)) by us-
ing a binary tree, where |pj | represents the number of Edig
vertices that pj contains. The overall complexity is then
O(|Ecidp| · log(|Vedig|)) in the worst case, where Ecidp is the
set of edges in the CIDP graph and Vedig is the set of vertices
in the Edig graph. In practice, the complexity is almost lin-
ear in the number of edges of the compressed graph, since
the IDPs are usually short.
[Conjecture: the complexity can be reduced to O(|Ecidp|)

by using a suitable strategy of graph partitioning. More
in details, doing the topological order of the Edig graph
and generating paths by DFS starting from the vertices
that have lower order. The point is that with this strat-
egy |FT (pi, pj)| = 1]

4.3.2 Prune
For each path p, we identify a set TIp of time instants that

are representative of the whole path, i.e. such that for all
t ∈ lifetime(p) we have C(p,t) contained in at least one set
C(p,t′) with t′ ∈ TIp. The following lemma states that this
set is composed by the starting times of all validity intervals
in the path.

Lemma 3. Let (T, I) be an instance of demand cover and
GCIDP be the CIDP graph built from (T, I). Given a path p
of GCIDP , consider the set TIp = {b | [b, e] = valid int(p, r) with
r ∈ I}. For any time instant t ∈ lifetime(p) we have:

∃t′ ∈ TIp | C(p,t) ⊆ C(p,t′)

Proof. Set t′ as:

t′ = max
b∈TIp
b≤t

b

By lemma 2, C(p,t) = {r ∈ I | t ∈ valid int(r, p)}. Let r
be a request in C(p,t). By definition of t′, the starting time
of r cannot follow t′. Therefore r ∈ C(p,t′).

Figure 5 shows the path pj of the example in Fig. 3 and
the validity interval of each request in it. The validity inter-
vals of r1 and r2 start at the begin of the path, since their
minimum transmission times are antecedent to it. These
intervals end at times ft1 and ft2 respectively, times asso-
ciated to outgoing edges (see Fig. 3). For request r1 (r2
resp.), if the information object does not leave the path be-
fore ft1 (ft2 resp.), the destination cannot be reached in
time. The validity interval of r3 starts at time tb, corre-
sponding to the minimum transmission time of r3, and ends
ar time ft3, time associated to the unique outgoing edge
that can reach r3. The representative time instants for this
path are ta and tb, corresponding to minimum validity times
of requests. Therefore, the minimal family of sets for this
path is S = {C(pi,ta), C(pi,tb)}. Note that no other time in-
stants have a coverage that is not included in at least one
set of the family.
TIp can be built in time O(|I| · log(|I|)) in the worst case.

Given the set of requests that have a non empty validity

Figure 5: Validity intervals of a set of requests in
a path, corresponding to the example depicted in
Fig. 3. Bars represent the extent of validity intervals
of requests. The minimal family of sets for this path
is {C(pi,ta), C(pi,tb)}.

interval in p, the set of time instants that correspond to
minimum validity times and maximum validity times of all
requests is first ordered in reverse order. Then a partial set
C of requests is build by scanning the set of time instants
(in reverse order). When the maximum validity time of a
request r is processed, r is added to C. When the minimum
validity time of a request r is processed, C is added to the
family of candidate sets for Set-cover and r is removed from
C.

4.4 Optimization
After the filtering process, a post-pruning (in short PP)

phase can be applied in order to remove eventual sets that
are fully contained in other sets. Note that, although the
purpose of the filtering procedure is to remove these sets,
this procedure is not guaranteed to be exhaustive. The post-
pruning phase can be applied (expensively) independently
from filtering (see Sect. 5).

We use an Integer Linear Program to solve Set-cover op-
timally. Finally, the optimal set of source-to-node object
transmissions is extracted from the optimal subfamily re-
turned by Set-cover.

5. EXPERIMENTAL ANALYSIS

5.1 Dataset
Cabs Mobility [16] (CAB, for short) contains mobility traces

of taxi cabs in San Francisco, USA. It consists of GPS coor-
dinates of 536 taxis collected over 23 days in the San Fran-
cisco Bay Area and the average time interval between two
consecutive location updates is less than 10 seconds.

GeoLife GPS Trajectories [2] (GeoLife, for short) is a GPS
trajectory dataset collected in (Microsoft Research Asia) Ge-
oLife project by 165 users in a period of over two years.

Synthetic trajectories (SYN, for short) consists of 10K
nodes that move on a 2-D plane with the size of 3600 km2

over 10 days. The details on how we generate this dataset
are specified in the Appendix.

For all datasets, the radio range allowing communication
is set to 100 meters. The information demands (queries)
are generated by a random process (detail are given in the
Appendix).

5.2 Implementation
We implement the algorithm for the demand cover prob-

lem based on Edig (Sect. 3.2.2) as well as the CIDP indexing
system (Sect. 4, details are discussed in the Appendix). We
also tried a naive solution, developed as follows. We build a



composite connectivity graph by putting together a connec-
tivity graph for each event. We use the composite graph to
verify reachability between moving nodes and information
requests and build an instance of Set-cover. We then exe-
cute an LP program for Set-cover on the computed instance.
However, this solution was not feasible on the datasets em-
ployed, therefore we do not present it in the results. We
do not compare against a naive LP solution, since clearly
it would not be feasible, considering the huge number of
variables that we should consider.
All the approaches are implemented in C++ (Dev C++

IDE ver. 4.9.9.2) and perform the experiments on a DELL
Intel core I7 CPU with 2 Gb of memory. For the ILP solver
we use lp solver 5.5.2.0 [3], an open source tool based on
branch-and-bound.

5.3 Results
On CAB, the execution time for demand cover queries is

shown in Figure 6(a) and 6(b). Figure 6(a) shows the exe-
cution time for a number of datasets spanning from 1 to 10
days. The number of requests per cab per day is set to 2.
Edig cannot answer queries in reasonable time for databases
of more than 5 days. We extend the comparison to 10 days
in order to demonstrate the strength of the CIDP approach.
The reported time represents an average over 10 queries. We
demonstrate the performance of both the Edig and the CIDP
approach, with or without the post-pruning (PP) process.
The post-pruning phase slightly improves the performance
of both CIDP and Edig. However, CIDP performs more
than 10 times faster than Edig in all cases and up to 100
times faster on a dataset of 5 days. CIDP performs a set of
10 queries on the whole dataset (23 days), with an average
processing time of 40.2 seconds (not reported). In order to
evaluate the scalability over the size of the query, we gener-
ate queries by varying the expected number of information
requests per cab per day from 1 to 5. The results of the ex-
periment over 1 day are reported in Figure 6(b). We do not
report results for queries generated by setting the expected
number of requests to more than 5, since in those cases Edig
is unable to answer queries in an acceptable time.
On GeoLife, Figure 6(c) and 6(d) show the execution time

for demand cover queries. In Figure 6(c) the expected num-
ber of requests per person per day is set to 10. The results
refer to a set of datasets, each of them spanning a time
interval ranging from 1 day to 30 days. As for CAB, the
reported time represents an average over 10 queries. Here
the post-pruning process barely improves the performance,
due to the fact that the post-pruning itself is expensive. As
before, we generate queries by varying the expected number
of information requests per person per day from 1 to 10 aim-
ing to evaluate the scalability over the size of the query. The
results of the experiment over 1 day are presented in Figure
6(d). In this dataset, the CIDP approach scales better than
Edig with the number of requests.
On SYN, the results are reported in Figure 6(e) and 6(f).

In all cases the CIDP approach outperforms Edig. Figure
6(e) show that when we increase the time interval, the per-
formances of CIDP on response time are at least 10 times
better than for Edig in all cases. When we increase the ex-
pected number of requests per moving node per day, the
comparison shown in Figure 6(f) indicates that the CIDP
approach is more scalable than Edig.
Additional experimental results showing preprocessing time,
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Figure 6: Evaluating the response time as a function
of the size of the dataset (number of days) and the
number of requests

index size and filtering performances are provided in the
Appendix. Additionally, we report the communication cost
achieved by our system in comparison to a naive solution.

6. CONCLUSION
We presented an a new approach that aim to optimize the

communication cost for satisfying the information demand
in a network of moving nodes with two kinds of commu-
nication. After formalizing the demand cover problem and
showing that it is NP-hard, we provided a graph-based so-
lution for it. Since solving the problem on large instances is
expensive and may be unfeasible, we formulated the problem
as a query problem and designed an indexing system that,
after a preprocessing phase, is able to process queries in
reasonable time. An extensive experimental analysis on real
and synthetic datasets shows that our system effective and
reasonably efficient on solving the demand cover problem.
The proposed system can solve the demand cover problem
optimally on large real instances (dataset with million od
events and queries with thousands of nodes) in reasonable
time (less than 10 seconds in most cases).

We plan to extend our work in two folds. First, we aim to
take into account the uncertainty in mobility and informa-
tion demand. This requires to fit stochastic mobility mod-
els in our framework with the purpose of optimizing the
expected communication cost. Finally, we plan to consider
the problem of scheduling new trajectories with the purpose



of guarantee the connectivity, in the case when the com-
munication with a central information source is not always
available.
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7.2 Proof of theorems

7.2.1 Proof of theorem 3.1
Proof. Let the family S be an instance of Set-cover.

Choose d, ts and td arbitrarily and set δ = td − ts. For
each element c of C, consider a fixed (non-moving) node
nc and an information request (nc, td, δ). Set the trajecto-
ries of these nodes along a line so that any two of them are
always at a distance greater than d from each other. Con-
sider m points p1, p2, . . . , pm separated by a distance greater
than d in a parallel line at a considerable distance dl >> d
from the first line (how to choose the value of dl will be
discussed later). Given a set Si, for each element c of Si

consider a straight trajectory starting from pi and ending
to the location of mc. The number of moving nodes will be
z =

∑n
i=1 |Si|. The speed of each moving node is assigned

in the following way. Divide the time interval [ts, td] in z
slots of the same length, each of them associated to a mov-
ing node. Each node remains without moving until its time
slot is reached. Then it moves with a constant speed that
allows it to reach the destination at the end of the time slot.
Then it stops again. The value dl is chosen so as to guar-
antee that the moving trajectories are always at a distance
greater than d from any points in {p1, p2, . . . , pm} and any
fixed nodes, except the two endpoints. The full proof de-
pends on geometrical considerations and will appear in the
full paper.
It is easy to verify that an optimal set of source-to-node

object transmissions corresponds to an optimal subfamily of
S for Set-cover.

7.3 Details of algorithms

7.3.1 Preprocessing
A pseudocode of the preprocessing phase is given in Al-

gorithm 1. Given the set of trajectories, first the procedure
buildEvents generates the initial connectivity graph (G) and
a set of in-events and out-events that represents the changes
in the connectivity graph over time. An Edig graph (Gedig)
based on in-events and out-events is then generated (pro-
cedure buildEdigTIL). Ir-events are not considered since
during the preprocessing phase the information demand is
unknown. For each vertex of Gedig the lifetime of such a
component i.e. the interval (s, e] in which that component
is valid, is stored in tilc. We call s the start-time and e the
end-time.
The procedure buildCIDP decomposes the Edig graph in

a disjoint set of paths. We generate a compressed graph
Gcidp where each vertex is an IDP and two vertices are con-
nected by an edge if and only if the two IDPs are connected

Algorithm 1 preprocessing(T )

1: (Ev,G)←buildEvents(T );
2: (Gedig, idxv2c, idxc2v, tilc)←buildEdigTIL(Ev,G);
3: (Gcidp, idxc2p, idxp2c, tilp, tele)←buildCIDP(Gedig, tilc);
4: return (Gcidp, tilc, tilp, tele, idxv2c, idxc2v, idxc2p, idxp2c);

by at least one edge in the original Gedig graph. Each IDP
p is associated with its lifetime, i.e. the union of the life-
time of the vertices contained in p. The lifetime of paths
is stored in tilp. Each edge of Gcidp is associated with the
end-time of the source vertex in the Gedig graph (maximum
time from which an information object can flow through this
edge). We call this time the maximum edge time and store
it in tele. During the process, the correspondence between
original vertices, components of Gedig and paths of Gcidp is
maintained in the data structures idxv2c, idxc2v, idxc2p and
idxp2c.

Algorithm 2 buildEdigTIL(Ev,G)

1: (Gedig, idxv2c, idxc2v, cnum)←cc compress(G);
2: for i← 1 to cnum do
3: tilc[i]← (0,MXT ];
4: for k ← 1 to Ev.size() do
5: (ni, nj , type, time)← Ev[k];
6: if type=IN then
7: ci ← idxv2c[ni, time], cj ← idxv2c[nj , time];
8: if ci ̸= cj then
9: (si, ei]← tilc[ci], (sj , ej ]← tilc[cj ];
10: tilc[ci]← (si, time], tilc[cj ]← (sj , time];
11: cnum← cnum+ 1;
12: tilc[cnum]← (time,MXT ];
13: V (Gedig)← V (Gedig) ∪ {cnum};
14: E(Gedig)← E(Gedig) ∪ {⟨ci, cnum⟩};
15: E(Gedig)← E(Gedig) ∪ {⟨cj , cnum⟩};
16: vlist← idxc2v[ci] ∪ idxc2v[cj ];
17: idxc2v[cnum]← vlist;
18: for each nl ∈ vlist do
19: idxv2c[nl, tilc[cnum]]← cnum;
20: E(G)← E(G) ∪ {(ni, nj)};
21: else
22: E(G)← E(G)− {(ni, nj)};
23: vlist←ccAt(G,ni);
24: if nj /∈ vlist then
25: ci ← idxv2c[ni, time], cnum← cnum+ 2;
26: (si, ei]← tilc[ci], tilc[ci]← (si, time];
27: tilc[cnum− 1]← (time,MXT ];
28: tilc[cnum]← (time,MXT ];
29: V (Gedig)← V (Gedig) ∪ {cnum− 1, cnum};
30: E(Gedig)← E(Gedig) ∪ {⟨ci, cnum− 1⟩};
31: E(Gedig)← E(Gedig) ∪ {⟨ci, cnum⟩};
32: idxc2v[cnum− 1]← vlist;
33: for each nl ∈ vlist do
34: idxv2c[nl, tilc[cnum− 1]]← cnum− 1;
35: vlist←ccAt(G,nj);
36: idxc2v[cnum]← vlist;
37: for each nl ∈ vlist do
38: idxv2c[nl, tilc[cnum]]← cnum;
39: return (Gedig, idxv2c, idxc2v, tilc);

7.3.2 Filtering



Algorithm 3 buildCIDP(Gedig, tilc)

1: pnum← 0;
2: for each ci ∈ V (Gedig) do
3: visited[ci]← false;
4: for each ci ∈ V (Gedig) do
5: if visited[ci] = false then
6: pnum← pnum+ 1;
7: V (Gcidp)← V (Gcidp) ∪ {pnum};
8: clist←simplepath search(Gedig, visited, ci);
9: idxp2c[pnum]← clist;
10: for each cj ∈ clist do
11: idxc2p[cj ]← pnum;
12: (sj , ej ]← tilc[cj ];
13: (s, e]← tilp[pnum];
14: tilp[pnum]← (min(sj , s),max(ej , e));
15: for each ⟨ci, cj⟩ ∈ E(Gedig) do
16: pi ← idxc2p[ci], pj ← idxc2p[cj ];
17: (si, ei]← tilc[ci];
18: if pi ̸= pj then
19: E(Gcidp)← E(Gcidp) ∪ {⟨pi, pj⟩};
20: tele[⟨pi, pj⟩]← ei;
21: return (Gcidp, idxc2p, idxp2c, tilp, tele);

A pseudocode of the backflow procedure is given in Algo-
rithm 4. A heap (maxheap) is used to maintain the vertices
to visit and the associated times. tele[(pj , pk)] represents
the maximum edge time of the edge (pj , pk)
For each queue Qp, the procedure prune (Alg. 5) proceeds

in the following way. First, it initializes an empty set (set)
and then examines the entries of Qp in order (reverse time
order). For each entry of kind +, the corresponding infor-
mation request is added to set. When an entry of kind −
is encountered, the current set is placed in the list of candi-
date sets and the information request corresponding to that
entry is removed from set. At the end the final set is placed
in the list of candidate sets.

Algorithm 4 backflow(r)

1: (ni, t, δ)← r;
2: ci ← idxv2c[ni, t];
3: pi ← idxc2p[ci];
4: for each pk ∈ V (Gcipd) do
5: visited[pk]← false;
6: tstart ← t− δ, tend ← t;
7: maxheap.insert(tend, pi);
8: while maxheap ̸= ϕ do
9: (tk, pk)← maxheap.pop();
10: if visited[pk] = false then
11: visited[pk]← true;
12: Q[pk].push((ni, t, δ), tk, ‘+

′);
13: (sk, ek]← tilp[pk];
14: if tstart > sk then
15: Q[pk].push((ni, t, δ), tstart, ‘−′);
16: for each ⟨pj , pk⟩ ∈ Gcidp do
17: tj ← tele[⟨pj , pk⟩];
18: if visited[pj ] = false and tstart ≤ tj < tk then
19: maxheap.insert(tj , pj);
20: return Q;

7.4 Additional Experiment Results

Algorithm 5 prune(Q)

1: candidates← ϕ;
2: for each p ∈ V (Gcidp) do
3: set← ϕ, M ← ‘−′;
4: for i← 1 to Q[p].size() do
5: (r, t, symbol)← Q[p][i];
6: if symbol = ‘+′ then
7: set← set ∪ {r};
8: else
9: if M = ‘+′ then
10: candidates← candidates ∪ {(set, p, t)};
11: set← set\{r};
12: M ← symbol;
13: return candidates;

7.4.1 Dataset
GeoLife GPS Trajectories (GeoLife) records a broad range

of users’ outdoor movements, including life routines like go
home and go to work and some entertainments and sports
activities, such as shopping, sightseeing, dining, hiking, and
cycling.

Synthetic trajectories consists of 10K moving nodes, the
starting coordinates of which are uniformly distributed on
the plane. For each moving node we record its coordinates
every 60 seconds. At some time points, the moving node
updates its moving speed, by replacing it with another speed
generated via normal distribution with µ = 1.2 meters per
second and σ = 1, and its moving direction, by adding a
deviation generated via normal distribution with µ = 0 and
σ = 1 radiant. The time interval between two consecutive
updates is generated by an exponential distribution with
µ = 60 seconds.

Queries are generated as follows: for each trajectory and
for each information object, first a number of information
requests is generated by a Poisson distribution (with an av-
erage of 1 request per moving node per day unless differently
specified). Then, for each information request (ni, t, δ), its
request time t is generated by a uniform distribution in the
whole interval and δ is generated by a normal distribution
with mean µ = 15 minutes and σ = 1 minute.

7.4.2 Implementation
The implementation of Edig algorithm goes as follows.

Given an Edig representationGedig, we run depth-first search
on each candidate vertex v of Gedig, to generate a set of in-
formation needs that are covered by v. We then use an
ILP solver to execute Set-cover optimally on the resulting
family of sets. Before being fed into the ILP solver, the in-
put family for Set-cover is divided into disjoint subfamilies.
The Set-cover solver is then executed on each subfamily and
eventually the results are merged. We set the timeout for
each execution of the ILP solver to 300 seconds. If execu-
tion time exceeds the timeout, we consider it as a failure to
answer a query.

The implementation of the CIDP approach is described in
Section 3.2.2 and its Set-cover solver is implemented in the
same way as for the Edig algorithm.

7.4.3 Results
The preprocessing time and the index size of CIDP for all

datasets are reported in Figure 7. Since the preprocessing
phase does not apply to Edig we do not compare with it.



In order to verify scalability, we evaluate the algorithm on a
number of datasets. For CAB and SYN, each dataset spans
a number of days ranging from 1 to 10. For GeoLife, each
spans a number of days from 1 to 30.
On CAB, the time for preprocessing and the size of index

are presented in Figure 7(a) and 7(b) respectively.
On GeoLife, the preprocessing time and the index size of

CIDP are demonstrated in Figure 7(c) and 7(d) respectively.
We experiment on a number of datasets and each of them
spans a number of days ranging from 1 to 30. In GeoLife,
the preprocessing time is less than that for CAB and the
index size is smaller. The main reason is that the number
of events captured in Geolife is much smaller than the ones
in CAB. In GeoLife, the average number of events per day
is 1, 401, while in CAB it is 809, 558.
On SYN, the preprocessing time and the index size is

shown in Figure 7(e) and Figure 7(f) respectively. This ex-
periment performs on a number of datasets, each of them
spanning a number of days ranging from 1 to 10. The num-
ber of events captured in SYN is 904, 818 per day, which is
comparable to that in CAB. Since in SYN there are 10, 000
moving nodes, the average number of events per node per
day is 90.5 while for CAB it is 1, 510. Therefore a moving
node in CAB has more opportunities to connect to other
nodes and it takes more time to identify connected compo-
nents in preprocessing phase for CIDP.
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Figure 7: Preprocessing time and index size pro-
duced by CIDP on different datasets

7.4.4 Evaluation of Filtering Capability

In Figure 8, the filtering time and the size of the input
family for Set-cover obtained by Edig and CIDP are reported
respectively for all datasets. In the case of Edig, the filtering
time refers to the time for generating the family of sets.
CIDP strongly outperforms Edig on both filtering time and
size of the input family generated for Set-cover in all cases.
Figures 8(a), 8(c) and 8(e) show that CIDP spends much
less time in generating the input family for Set-cover and
especially in SYN, CIDP performs up to 100 times better
than Edig. Figure 8(b), 8(d) and 8(f) show that the size
of the input family filtered by CIDP is much smaller than
the one generated by Edig. The size of the input family
after post-pruning (referred as Pruned) is also reported and
show that in SYN and GeoLife the input family generated
by CIDP is almost the most compact one.
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Figure 8: Evaluation of filtering capability



7.4.5 Communication cost
In Figure 9 we show the communication cost obtained by

our solution, compared to a naive solution that considers
a source-to-node transmission for each information request.
We do not distinguish between Edig and CIDP since they
produce the same result. We perform this experiment on
CAB. The queries are generated by varying the expected
number of requests per cab per day λ from 1 to 20. With
λ = 20 our solution reduces the number of transmissions by
more than 50% and the gain increases with λ.
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Figure 9: Communication cost with varying number
of requests per cab per day


