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Abstract ! virtualized cluster resources and infrastructures-asra-
vice (Eucalyptus and Amazon EC2). We use this system
Recent technological advances in hardware and softwate investigate the overhead of providing this application
have facilitated the explosive growth in the productionportability layer for disparate datastores and the impact
of digital information. Cloud systems offer tremendousof extending them via the layer with distributed transac-
scale, resource availability, and ease of use, with whichion support.
we can process this data in the pursuit of scientific, finan-
cial, social, and technological advances. However, ther& Introduction
are many systems to choose from that differ in many
ways including public versus private cloud support, dateRecent advances in hardware and software have culmi-
managementinterfaces, programming languages, suppaéed in the emergence of cloud computing — a service-
feature sets, fault tolerance, consistency guarantees, cooriented, computing model that simplifies the use of large-
figuration and deployment processes. scale distributed systems through transparent and adap-
In this paper, we focus on technologies for structuredive resource management, automating configuration, de-
data access (database/datastore systems) in cloud systéiffyment, and customization for entire systems and ap-
Our goal is to simplify the use of these systems througplications. Using this model, many high-technology com-
automation and to facilitate their empirical evaluation us Panies have been able to make their proprietary comput-
ing real world applications. To enable this, we provideind and storage infrastructure available to the public (or
a cloud platform abstraction layer that decouples a datiiternally via private clouds) at extreme scales.
access API from its implementation. Applications that ~ Given the availability of vast compute and storage re-
use this API can use any datastore that “plugs into” ougources at low cost, along with virtually infinite amounts
abstraction layer, thus enabling portability. We use this?f information (financial, scientific, social) via the Inter
layer to extend the functionality of multiple datastoresnet, applications have become increasingly data-centric
without modifying the datastores directly. Specifically, @hd our data resources and products have grown explo-
we provide support for ACID transaction semantics forSively in both number and size. One prominent way in
popular key-value stores (none of which provide this feaWhich a wide range of applications access such data is
ture). We integrate this layer into the AppScale cloudvia @ well-defined structures that facilitate data process-
platform — an open-source cloud platform that executed’d, Mmanipulation, and communication. Structured data

cloud applications written in Python, Java, and Go, ovePCCeSS (via database/datastore systems) is a mature tech-
nology in wide-spread use that provides programmatic

Computer Science Department and Wep-based access to vast amount§ of datg efficiently.
University of California, Santa Barbara Public and private cloud providers increasingly em-
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1 This paper is a combined and extended version of papers [sflatastores) [10,13,14,11,20,8, 36,39,28,21]. These sys-
and [12]. tems support structured data access over warehouse-scale
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resource pools, by large numbers of concurrent users ar®P| and their applications execute using any datastore
applications, and with elasticity (dynamic growing andthat plugs into the platform, without modification. This
shrinking of resource and table use). Examples of pubsupport enables us to compare and contrast the differ-
lic cloud datastores include Google’s BigTable, Amazorent systems for different applications and usage models
Web Services (AWS) SimpleDB, and Microsoft's Azure and enables users to select across different datastore tech
Table Storage. Examples of private or internal cloud us@ologies with less effort and learning curve.

of datastores include Amazon’s Dynamo [14], and cus- g address the second challenge, we extend this layer

tomized versions of open source systems (e.g. HBase [2Q] ,rovide distributed transactional semantics for thadat

Hypertable [21], Cassandra [8], etc.) in use by use by;qare plug-ins. Such semantics increase the range of ap-
Facebook, Baidu, SourceForge, LinkedIn, Twitter, Redications that can make use of cloud systems. Our ap-

dit, and others. proach emulates and extends the limited transaction se-
To enable high scalability and dynamism, key-valuemantics of the Google App Engine cloud platform to pro-
stores differ significantly from more traditional database,;ige atomic, consistent, isolated, and durable (ACID) up-
technologies (e.g. relational systems) in that they ardmugates to multiple rows at a time for any datastore that
simpler (entities are accessed via a single key) and exsrovides row-level atomicity. To enable this, we rely on
clude support for multi-table queries (e.g. joins, unionszooKeeper [43], an open-source locking service in use

differencing, merges, etc.) and other features such a$muly, cloud fabrics and other distributed systems.

row (multi-key) atomic transaction support. Extant data- . _ .
) e We implement this database-agnostic software layer
store offerings differ in query language, topology (mas- . . . k
; o within the open source AppScale cloud platform and in-
ter/slave vs peer-to-peer), data consistency policyj-repl .
; ] D . tegrate a number of different popular open source and
cation policy, programming interfaces, and implemen-

tations in different programming languages. Moreoverproprietary database and datastore systems. These plug-

each system has a unique methodology for configurinInS include Cassandra, HBase, Hypertable, and MySQL

and deploying the system in a distributed environment. %Iuster [30] (which we employ as a key-value store), among

. . .. others. Moreover, since AppScale executes over different
Inthis paper, we address two growing challenges with :

. . infrastructure-as-a-service (laaS) cloud systems (Ama-
the use of cloud-base datastore technologies. The first IS

. . . . . Zon EC2 [1] and BCALYPTUS [32,16]) and emulates
the vast diversity of offerings: applications written teeus . . ; .
Google App Engine functionality, developers are given

N u . . . $fie freedom to choose the infrastructure on which their
Moreover, it is difficult to “test drive” public offerings ex L
application runs on.

tensively without paying for such use, and challenging to
configure and deploy distributed open source technolo- We use the system to empirically evaluate different
gies in a private setting. The second challenge is the lacRatastore systems and to evaluate the overhead of em-
of support for atomic transactions across multiple key§)loying distributed transactions. We find that the database
in a table. Most datastores offer atomic updates at th@gnostic portability layer adds approximately 7-8 ms per
row (key) level only. The lack of all-or-nothing updates to Put/get (read/write). We find that DAT adds an additional
multiple data entities concurrently precludes many busil6 ms to each put/write (and no additional overhead to
ness, financial, and data-analytic applications and signiffach get/read) on average. We find that the scalability,
icantly limits datastore utility for all but very simple ap- throughput, and latency of transactional applicatiorg (e.
plications. a financial exchange) using this layer and DAT, varies
To address these issues, we present the design asignificantly across datastores and workloads but that Cas-

implementation of a database-agnostic, portability |aye§andra significantly o_utperforms other datastc_)res inplud-
for cloud platforms. This layer consists of a well-definedi"d MySQL cluster (without DAT) which usesative(built-
API for key-value-based structured storage, a plug-in rhoffi fransaction support.

for integrating different database/datastore technekgi In the sections that follow, we first describe the de-
into the platform, and a set of components that automatisign and implementation of AppScale and its abstract
cally configures and deploys any datastore that is pluggedatabase layer that decouples the AppScale datastore API
into the layer. This layer decouples the API that applicafrom the plug-ins (implementations of the API). We then
tions use to access a datastore from its implementatiotiescribe how we extend this layer with ACID transaction
(to enable program portability across datastore systemsemantics in a database-agnostic fashion in Section 3. We
and automates distributed deployment of these systenteen present an evaluation of the system using different
(to make it easy to configure and deploy the systems)Xatastores in Section 6, present related work in Section 7,
Developers write their application to use our datastorend conclude in Section 8.
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2 The AppScale Database Support and Portability

Layer Pythom Server lava Server G Sarver

. . . efabbert : g i
In this work, we provide a database-agnostic software junng & channel aei Blobstore server memcachel
layer for cloud platforms that decouples the datastore in Riowting [HAPraky and Neing)

terface from its implementation(s) and automates distieitht
deployment of datastore systems. We design and imple

AppCentroller

ment this layer as part of the AppScale cloud platform : e ﬂatﬂﬂtm;unmmfgert

. . . 1, -, autl e tontde et It
and then extend it to support database-agnostic distdbute| g el sl e
transaction SUppOI’t. g Datastare

. . : lall
AppScale is an open source cloud runtime systen| g | (fesecrfmenatE A
that enables applications written high level languages (P {Cassandra, MySOL Cluster, Voldamar,
. . ) MongoD8, memcacheDE, Redis; )

thon, Java, and Go) to execute over virtualized cluster: HDFS

and cloud infrastructures. To enable this, AppScale im-

plements a set of APIs for a multitude of cloud SerVlcesFig. 1 The AppScale Software Stack. Herein, we present the de-

using existing open source technologigs. To make ApPsign and implementation of the database software layer &nd i
Scale attractive to application and service developees, thextensions in support of distributed, database-agnastiti-key

AppScale APIs include all those made available by Googfi@nsactional semantics.
App Engine (GAE). By doing so, any application that ex-

ecutes over GAE can execute in a private cluster setting
over AppScale and vice versa. Software such as eJabberD [15] and memcacheD [27], or

GAE is a public cloud platform to which users upload F:ustom services (e.g. blobstore) that we provide, for their

their applications for execution on Google’s resources'.mplementat'ons' AppScale uses Nginx [31] and HAPr-

Applications invoke API functions for different services. °*Y [_19] to route an(_j load b_alance requests fo the ap-
When a user uploads her GAE application (it is madephcatlon servers. Nginx provides SSL connectlo.ns, and
available by GAE via a subdomain on appspot.com), th&!APTOXY p-erforms.heqlth checks on servers, routing oqu
APIs connect to proprietary, scalable, and highly avajlfo responsive gpphcatlon servers. A background service
able implementations of each service. GAE application?n each node in an AppScale cloud restarts any service

respond to user requests on a web page using Iibrariégat stops functioning correctly. An AppScale cloud con-

and GAE services, access structured data in a non-rel§StS Of a set of virtual machine instances (nodes), each

tional, key-value datastore, and execute tasks in the bach which implement this software stack.
ground. The set of libraries and functionality that devel- ~ The AppController is a software layer in the stack
opers can integrate within the applications is restrictedhat is in charge of service initiation, configuration, and
by Google, i.e., they are those "white-listed” as actigtie heart beat monitoring, cloud-wide. Below the AppCon-
that Google is able to support securely and at scale. Usefpller is the database-agnostic software layer (to which
are charged a fee based on the resources their applicie refer to as the datastore support layer in the figure).
tions use beyond a specified quota. AppScale emulates The datastore support layer decouples application ac-
this cloud platform functionality using private/local vir cess to structured data from its implementation. It is this
tualized clusters and/or infrastructure-as-a-serviga%) layer we extend with ACID transaction semantics in the
systems Amazon EC2 andUEALYPTUS. next section. This layer exports a simple yet universal

AppScale can execute GAE applications without whitkey-value programming interface that we implement us-
list restrictions at the cost of reverse GAE compatibility,ing a wide range of available datastore technologies. This
if doing so is desirable by the cloud administrator. App-layer provides portability for applications across datas-
Scale also implements a wide range of other APIs, notores, i.e. applications written to access this datastore i
available in GAE, in support of more computationally terface will work with any datastore that implements this
and data intensive tasks. These APIs include those fdnterface, without modification. The interface provides
MapReduce, MPI, and UPC programming, and StochKifull GAE functionality and consists of:
for scientific simulations [6].

Figure 1 shows the AppScale software stack. At the — Put(table, key, value)
top of the stack are the application servers that serve— Get(table, key)
Python, Java, and Go applications. The AppScale APIs— Delete(table, key)
that the applications employ leverage existing open source- Query(table, q)
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Put stores the value given the key and creates a tadatastore-specific, arguments are passed, e.g. the number
ble if one does not already exist. If@et or Query is  of replicas to use for fault tolerance.
performed on a table which does not exist, nothing is re-
turned. ADel et e on a key which does exist results in 5 Database-Agnostic Distributed

an exceptionQueryuses the Google Query Language (aTransaction Support
subset of SQL) syntax and semantics.

The data values that AppScale stores in the datastoige next extend the datastore support layer in the cloud
are called entities (data objects) and are similar to thosﬁlatform with ACID transaction semantics. We refer to
defined by GAE [41]. Each entity has & key object; App-thjs extension as database-agnostic transactions (DAT).
Scale stores each entity according to its key as a seriakcp support is key for a wide range of applications that
ized protocol buffer [35]. require atomic updates to multiple keys at a time. Thus,

GAE implements this API using proprietary key-valugye provide it in a database-agnostic fashion that is in-
systems called Megastore [2] and BigTable [11] and charggsendent of any datastore but that can be used by all

for access to these systems both in terms of the amoughtastores that plug into the database support layer.
of storage and number of API calls. AppScale imple-

ments its datastore API using popular open source, dis-

tributed datastore systems including HBase [20], Hyper- :
table [21], Cassandra [8], Redis [36], Voldemort [39],3'1 DAT Design

MongoDB [29], SimpleDB [38], and MySQL Cluster [3O]'To enable DAT, we extend the AppScale datastore API

H.Ba.se and.HypertabI(.a both rely O'.'] HDFS [17] for the'rwith support for specifying the boundaries of a transac-
distributed file system implementations, as does the MaFI

Red AP which i Had ManRed 18 ion programmatically. To ensure GAE compatibility, we
Sl?p:(;:r? which integrates Hadoop MapReduce [ se the GAE syntax for this APl:.un_i n_t ransact i on,

T 6 . 4 del ¢ di which defines the transaction block.
' automate con |gurat|on and dep oymgnt OP IS \we make three key assumptions in the design of DAT.
tributed datastores for users in a private setting, we rez:

. . ._First, we assume that each of the underlying datastores
lease the AppScale system as a single virtual machin

: This i ists of th i tem k rovide strong consistency. Most extant datastores pro-
|m??_§. ('js Itm'sgt? con5|gtsho ffwopera N9 sgsf em eh\7ide strong consistency either by default (e.g. HBase,
ne’, Linux distribution, and the sottware requiredtior eac Hypertable, MySQL-cluster) or as a command-line op-

of the AppScale components services (the software in thﬁon (e.g. Cassandra). Second, we assume that any data-

stack displayed in Figure 1). When an AppScale cloud 'Jtore that plugs into the DAT layer provides row-level

deployed, a CI.OUd ad_mlmstra_tor employs a set of App'atomicity. All the datastores we have evaluated provide
Scale tools to instantiate the image (over Xen, KVM, or

row-level atomicity, where any row update provides all-

an.IaaS system). Thls mstange becomes the head nog?-nothing semantics across the row’s columns. Third,
which starts all of its own services and then does so fo e assume that there are no global or table-level trans-

all other nodes (instantiated images) in the system. Each .. . .
AopScale cloud depl timol N ale dat actions; instead, transactions can be performed across a
¢ PP cla edc O.lé eploymentimpiements a single dalaSset of related entities. We impose this restriction forscal
oreT(r(]: 0: Vg €). llerin th ) ith ability purposes, specifically to avoid slow, coarse-grain
€App ontrollerin the system interacts wit at(.em'locking across large sections or tables of the datastore.
plate to configure and deploy each datastore dynamically s . .
To enable multi-entity transactional semantics, we em-

upon cloud instantiation. The set of scripts configurefstar loy the notion of entity groups as implemented in GAE [41].
stop, and test an instantiated datastore using the foIIO\AE . . s
ntity groups consist of one or more entities, all of whom

Ing API: share the same ancestor. This relationship is specified
— startdb_master() programmatically. For example, the Python code for an
— startdb_slave() application that specifies such a relationship looks as fol-
— setupdb_config files(masteiip, slaveips, creds) lows:

— stopdb_master() _
— stopdh slave() cl ass Parent (db. Model ) :

bal ance = db. | ntegerProperty()
Each datastore must implement these calls. To set up thd ass Chi | d( db. Mbdel ) :

configuration files, the AppController provides template bal ance = db. I nt eger Property()
files and inserts node names as appropriate. The "credg’ = Par ent (key_nane="Al i ce")
argument is a dictionary in which additional, potentiallyc = Chi | d( par ent =p, key_nane="Bob")
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A class is a model that defineska nd, an instance of have been made, i.e., DAT restores the last valid version
a kind is an entity, and an entity group consists of a sebf the entity.

of entities that share the same root entity (an entity with- A read @e? outside of a programmatic transaction
out a parent) or ancestor. In addition, entity groups caraccesses the valid version of the entity, i.e., reads have
consist of multipleki nds. An entity group defines the “read committed” isolation. Within a transaction, all op-

transactional boundary between entities. erations have serialized isolation semantics, i.e., teey s
The keys for each of these entities app_i d\Par - the effects of all prior operations. Operations outside of

ent: Al'i ce,andapp.i d\Parent: Ali ce\Chil d: transactions and other transactions see only the latégdt val

Bob for p (Alice) andc (Bob), respectively. Alice is a version of the entity.

root entity with attributes type (kindkey _nane (a re- The implementation of transaction semantics GAE

served attribute), and balance. The key of a non-root erand AppScale differ, each having their own set of trade-
tity, such as Bob, contains the name of the applicatioroffs. GAE implements transactions using optimistic con-
and the entire path of its ancestors, which for this exameurrency control [4]. If a transaction is running, and an-
ple, consists of only Alice. Itis possible to have a deepenther one begins on the same entity group, the prior trans-
hierarchy of entities as well. AppScale prepends the apaction will discover its changes have been disrupted, forc-
plication ID to each key to enable multitenancy for data-ing a retry. An entity group will experience a drop in
stores which do not support dynamic table creation anthroughput as contention on a group grows. The rate of
thus share one key space (i.e., Cassandra as of versiearial updates on a single root entity, or an entity group
0.68). depends on the update latency and contention, and ranges
A transactional work-flow in which a program trans- from 1 to 20 updates per second [2].
fers some monetary amount from the parent entity to the We instead associate each entity group with a lock.
child entity is specified programmatically as: DAT attempts to acquire the lock for each transaction
on the group. DAT will retry three times (a default, con-
figurable setting) and then throw an exception if unsuc-
cessful. In contrast to GAE, we provide a fixed amount
of throughput regardless of contention depending on the
length of time the lock is held before being released.
A rollback for an active transaction for an entity group

def give_all owance(src, dest, anount):
def tx()
p = Parent.get by key nane(src)
= Chil d.get_by key nane(dest)
. bal ance = p.account - anount

O O T T O

: Euf 0 _ bal . ¢ does not get triggered when a new transaction attempts
: pﬁt ?)nce = c.balance amoun to commence for that same entity group as it does for

GAE, but a transaction must acquire the lock in DAT be-
fore moving forward, a restriction GAE does not have. In
A transaction may composgets puts deletesand ~ practice, our locking mechanism is simple, works well,

querieswithin a single entity group. Any entity without and provides sufficient throughput in private cloud set-

a parent entity is a root entity; a root entity without child tings which always consist of orders of magnitude fewer

entities is alone in an entity group. Once entity relation-machines than Google’s public cloud.

ships are specified they cannot be changed. We also have designed DAT to handle faults at mul-
tiple levels, although we do not handle Byzantine faults.
Failure at the application level is detected by a timeout

3.2 DAT Semantics mechanism. We reset this timeout each time the applica-
tion attempts to modify the datastore state to avoid pro-

DAT enforces ACID (atomicity, consistency, isolation, longed stalls. We also prevent silent updates and failures

and durability) semantics for each transaction. To enablét the database support layer and describe this further in

this, we use multi-version concurrent control (MVCC) [3]the next section.

When a transaction completes successfully, the system

attempts to commit any changes that the transaction prer DAT Implementation

cedure made and updates thadid version numbe(the

last committed value) of the entity in the system. TheTo implement DAT within AppScale, we provide support

operationput or deleteoutside of a programmatic trans- for entities, an implementation of the programmatic data-

action are transparently implemented as transactions. #tore interface for transactions (rimtransaction), and

a transaction cannot complete due to a program error anulti-version consistency control and distributed trans-

lock timeout, the system rolls back any modifications thataction coordination (global state maintenance and lock-

db. run_i n_transacti on(tx)



6 Navraj Chohan et al.

ing service). To support entities, we extend the AppScale— voi d noti fyFai | edTransacti on(app. d,
key-assignment mechanism with hierarchical entity nam- t xn_i d)
ing and implement entity groups. Each application that — t xn_i d get Val i dTransacti onl D( app. d,
runs in AppScale owns multiple entity tables, one for previ ous_txn.i d, rowkey)
each entityki nd it implements. We create each entity — bool regi st erUpdat eKey(app. d,
table dynamically when put s first invoked for a new current txn.id, target_txn.d,
entity type. In contrast, GAE designates a table for all entity key)
entity types, across all applications. We chose to create— bool rel easeLock(app.i d, txn.d)
tables for each entity kind to provide additional isolation — bl ock_range gener at el DBl ock( app.i d,
between applications. root _entity._key)

We implement an adaptation of multi-version consis-
tency control to manage concurrent transactions. Typi- DAT intercepts and implements each transaction made
cally timestamps on updates are used to distinguish veby an applicationgut, delete or programmatic transac-
sions [3]. However, not all datastores implement timestion) as a series of interactions with the DTC via this
tamp functionality. We thus employ a different, databaseAPl. A transaction is first assigned a transaction ID by
agnostic, approach to maintaining version consistencghe DTC @get Tr ansact i onl D) which returns an ID
First, with each entity, we assign and record a versionwith which all operations that make up the transaction are
number. This version number is updated each time thperformed. Second, DAT obtains a lock from the DTC
entity is updated. We refer to this version number as théacqui r eLock) for the entity group over which the op-
transaction IDsince an update is associated with a transeration is being performed. For each operation, DAT veri-
action. We maintain transaction IDs using a counter pefies that all entities accessed have valid versiges {al -
application. Each entry in an entity table contains a serit dTr ansact i onl D). For eaclputor deleteoperation,
alized protocol buffer and transaction ID. DAT registers the operation with the DTC. This allows

To enable multiple concurrent versions of an entity,the DTC to track of which entities within the group are
we use a single table, which we call fozirnal, to store  being modified, and, in the case where the application
previous versions of an entity. AppScale applications ddorces a rollback (applications can throw a rollback ex-
not have direct access to this table. We append the transeption within the transaction function) or any type of
action ID (version number) to the entity row key (in App- failure, the DTC can successfully know what the cur-
Scale it is the application ID and the entity row key) rent correct versions of an entity are. The API call of
which we use to index the journal. regi st er Updat eKey is how previously valid states

are registered. This call takes as arguments the current
valid transaction number, the transaction number which
4.1 Distributed Transaction Coordinator (DTC) is attempting to apply changes, and the root entity key to
o specify the entity group.

To gnable dlst.nbuted, concurrgnt_, and fault tolera_mﬂ{an When a transaction completes successfully or a roll-
actl_ons, DAT implements a D|str_|buted Transaction C_O'back occurs (due to an error during a transaction, appli-
ordinator (DTC). The DTC provides global and atomic ¢5jq, exception, or lock timeout), DAT notifies the DTC

gognters, locking across en_tlty QVOUPS' t.ransactlon bIaCIﬂNhich releases the lock on that entity group, and the layer
listing support, and a verification service to guaranteg,yifies the application appropriately. We set the default

that accesses to entities are made on the correct versiorlléck timeout to be 30 seconds (it is configurable). DAT
The DTC enables this through the use of ZooKeeper [43],, jiifies the application via an exception.

an open source, distributed directory service that main- . . L .
. . . ) Transactions that start, modify an entity in the entity
tains consistent and highly available access to metadata . . .
. . . able, and then fail to commit or rollback due to a fail-
using a variant of the Paxos algorithm [26, 9]. ZooKeeper . . .
. ) \ ure, thrown exception, or a timeout, doéacklistedby
is the open source equivalent to Google’s Chubby lock- J
. : . . the system. If an application attempts to perform an op-
ing service [7]. The directory service allows for the DTC . . : :
. ; ration that is part of a blacklisted transaction, the opera
to create arbitrary paths, on which both leaves and brancpes ;. ) o
ion fails and DAT returns an exception to the application.
can hold values. S . . i
. Application servers that issue operations for a blacldiste
The API for the DTC is ) : .
transaction must retry their transaction under a new trans-
—txn. d get Transactionl D(app. d) action ID. Any operations which were executed under a
— bool acquirelLock(app.d, txn.d, failed transaction are rolled back to the previous valid

r oot key) state.
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EntityTable JournalTable

| PB Server

| ZKTransaction

T T T

. | |

| |
|

| AppServer

BegmTransaction

T
| |
| |
| |

getlransactionlD ! !
| |
| |
| |

acquirelock - 1 |

getversign
getvandIransactioniD ™|

TegietUpdateaRey |
Tisert -

insert/updpt
[ -------
put
getversign

GetvaTdTransactionD »

regTUpdateaRey | L Fig. 3 Structure of transaction metadata in ZooKeeper nodes.
TRSert/upapt >
<. _______
[ commt |
Teleaselock gl T T . . . .
[« ™ i ‘ ‘ the current valid version. Any entries with tombstones
‘ ‘ which are no longer live are garbage collected periodi-
Fig. 2 Transaction sequence example for two puts. cally.

Every operation employs the DTC for version veri-
fication. A get operation will fetch from an entity table
which returns the entity and a transaction ID number
DAT checks with the DTC whether the version is valid

(i.e., is not on the blacklist and is not part of an uncom—W tthe DTC imol i inathe ZooK.
mitted, on-going transaction). If the version is not valid, ¢ presentthe impiementation using the 2ooReeper

the DTC returns the valid transaction ID for the entity node structure prefix treg (rie) in Figure 3. We store .8i_
and DAT uses this ID with the original key to read the ther a key name asa string (for Ioc;ks and the blacklist)
entity from the journalGetoperations outside of a trans- or use the node Q|rectly as an atomically upc.iated counter
action are read-committed as a result of this verification(e'g" for transaction IDs). The tree structure is as foiow

(we do not allow fodi r t y reads). The result of a query o .
must follow this step for each returned entity. Both GAE — /appscale/apps/apg/ids: counter for next available
and AppScale recommend that applications keep entity ~transaction IDs for root or child entities. _
groups small as possible to enable scaling (parallelizing™ lappscale/apps/apg/txids: current live transactions.
access across entity groups) and to reduce bottlenecks. — /aPpscale/apps/apg/txids/blacklist: invalid transac-
Lone puts and deletesare handled as if they were ~ ton IDlist S _ _
individually wrapped programmatic transactions. For a — /appscale/apps/apg/validiist: valid transaction 1D
putor deletethe previous version must be retrieved from list. . . .
the entity table. The version returned could potentially — /@Ppscale/apps/apg/locks: transaction entity groups.
not exist because the entry was previously never writ-
ten to and thus we assign it zero. The version number The blacklist contains the transaction IDs that have
is checked to see if it is valid, if it is not, the DTC re- failed due to atimeout, an application error, an exception,
turns the current valid number. The valid version numbe@r an explicit rollback. The valid list contains the valid
is used for registration to enable rollbacks if needed. ~ transaction IDs for blacklisted entities (so that we can
Either using the original version (transaction ID) or find/retrieve valid entities).
the transaction ID returned from the DTC due to invali-  Transactions implemented by DAT provide transac-
dation, DAT creates a new journal key and journal entrytional semantics at the entity group level. We implement
(journal keys are guaranteed to be unique), registers theelock subtree that is responsible for mapping a transac-
journal key with the DTC, and in parallel performs an up-tion ID to the entity group it is operating on. The name of
date on the entity table. We overview these steps with athe lock is the root entity key and it stores the transaction
example in Figure 2 and show the DTC API being usedD. We store the locking node path in a child node of the
during the lifetime of a transaction. transaction named "lockpath”. Any new transaction that
DAT does not perform explicitleletes Instead, we attempts to acquire a lock on the same entity group will
convert alldeletesinto putsand use aombstonevalue  see that this file exists which will cause the acquisition to
to signify that the entry has been deleted. We place théail. This lock node is removed when a transaction com-
tombstone in the journal as well to maintain a record ofpletes (via successful commit or rollback).

4.2 ZooKeeper Configuration of the DTC
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4.3 Scalable Entity Keys checking to make sure the global "gclock” has not ex-
pired. If the lock has expired (it has been over 60 sec-

We employ ZooKeeper sequential nodes to implemenbnds since last being updated), a slave will take over as

entity counters (these should not be confused with tranghe master, and will now be in charge of periodically up-

action IDs). When entities are created without specifyingdating the "gclock”. When a lock has expired, the master

a key name, IDs are assigned in an incremental fashionill receive a call back from ZooKeeper. At this point the

We ensure low overhead on key assignment by allocatinghaster can try to refresh the lock, or if the lock has been

blocks of 1,000 entity IDs at a time to reduce the over-taken, step down to a slave role.

head of counter access. The block of IDs is cached by the

instance of the_ gall handler |_n the datab_ase support I?‘yeﬁ'_5 Fault Tolerance

Keys are provisioned on a first-come-first-serve basis to

new entities which do not have a key name. There is n

. DAT handles certain kinds of failures, excluding byzan-
guarantee that entity IDs are ordered.

tine faults. Our implementation of the DTC ensures that

Entity IDs use tWO_ types of counters for cohgurreqtthe worst case timing scenario does not leave the datas-
access. One counter is for root keys of a specific entity o in an inconsistent state ("Heisenbugs”) [22]

type, while another counter is created for each child of a A race condition can occur due to the distributed and

root k_ey. Entity IDs are stored under the inner node UPORhared nature of the access to the datastore. Take for ex-
creation and are removed once committed. The node Str'é?ﬁple the following scenario:

ture holds values for each entity group as seen in the
/appscale/apps/appl/igsath. The "ids” node contains
the next batch value for all root keys, whitey03 and
key04 nodes hold values for the next batch of child keys.

— The DTC acquires a lock on an entity group
— It becomes slow or unresponsive

— The lock expires

— It perform an update to the entity table

— The DTC node silently dies

In this case, we must ensure that the entity is not updated
(overwritten with an invalid version). We detect and pre-

In some cases (application error, response time degradg?nt such silent faults using the transaction blacklist and

tion, service failure, network partition, etc.), a trartsac valid versions are refrieved fro”? the jour_nal.
may be held for a long period of time or indefinitely. We We address other types of failures using the lock leases.

place a maximum of 30 seconds on each lock lease ai,_ocks which are held by a faulty service in the cloud will

quired by applications. We update the value dynamicallybe releaged _by the GC. We hgve .considerepl emplpying
as needed. Furthermore, for performance reasons we ugf adaptive timeout on an application or service basis for

ZooKeeper's asynchronous calls where it does not breaQpplications/services that repeatedly timeout. Thatis, r
duce the timeout value for the application/service — or for

ACID semantics (i.e., removing nodes after completion”™" -~ : .
of a transaction) individual entity groups — in such cases to reduce the po-
' tential of delayed update access. Additional state would

In the background, DAT implements a garbage col- _ .
lection (GC) service. The service scans the transactioRe required thatwould add overhegd t(.) lookup each time-
out value per entity group or application. Currently, the

list to identify expired transaction locks (we record the (i " bl loud deol ¢
time when the lock is acquired). The service adds an)ym%)u IS c?n |g_urc'; e_upog f Oﬁ delp oyme? t ;
expired transaction to the blacklist and releases the Iocl%rjlil ur system 1s designed to handie complete system

For correct operation with timeouts, the system is coordi- . ures (power. outages) in addition FO single/multi node
failures. All writes and deletes are issued to the datas-

nated using NTP. Nodes which were not successfully re- . . .
re, each write persists on disk before acknowledgment.

moved by an asynchronous call to ZooKeeper are garbag%\% . . . . .
collected during the next iteration of the GC 0 transaction which has been committed is lost attain-

The GC service also cleans up entities and all relatedd full durability (granted at least one replica survived)

metadata that have been deleted (tombstoned) within aeta state is also repllcate_d m_ZooKeeperf_orfgII recov-
. . o . . ery as well as the transaction journal. Replication factor
committed transaction. In addition, journal entries thatIS also confiaurable upon cloud deolovment
contain entities older than the current valid version of an g P ploy ’
entity are also collected. We do not remove nodes in thg Methodology
valid version list at this time.
We perform garbage collection every thirty secondsln this section, we overview our benchmarks and experi-

There is one master garbage collector and multiple slavasental methodology. For our experiments, AppScale em-

4.4 Garbage Collection
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ploys Hadoop 0.20.2, HBase 0.89, Hypertable 0.9.4.3scans for incomplete transfers. Our results only consider
MySQL Cluster 6.3.20, Redis 2.2.11, Voldemort 0.80,a request a success if both transactions were successful.
MemcacheDB 1.2.1, and Cassandra 0.6.8. We execute In our experimental setup, three machines serve to
AppScale using a private cluster via the Eucalyptus cloudssue different numbers of concurrent bank transfer re-
infrastructure. Our Eucalyptus private cloud consists ofjuests. The numbers we report are for 10, 100, 1,000,
12 virtual machines with 4 cores, and 7.5 GB of RAM. and 10,000 requests. We measure the number of success-
We use two public clouds—Amazon’s EC2, using m1.largéul operations and the latency (round trip time and ap-
instances (4 cores and 7.5 GB of RAM), and Google Appplication time) of the successful requests with 10 trials
Engine, where the infrastructure is abstracted away. Weach. Round trip time is the time it takes for the request
synchronize the clocks across the cluster using the Linuto receive a response. Application time is a portion of the
tool nt pdat e for both our Eucalyptus cluster and EC2 round trip time: the time for an application server to han-
cluster. dle a request. The difference between the round trip time
and application time is the latency to and from the server
and all queuing delay.
. . We set the replication factor to two for these exper-
Our first experiment measures the latency of datastore Our AopScale implementation emplovs 20 ap-
operations with and without the database support Iayelrment.s' bp b pioy b
. . : plication servers per node for our Eucalyptus and EC2
and with and WlthOUt. transaction support. We refer tocluster. For GAE, Google uses its own scheduling policy
the measurements without the database support Iayer f5 enable the scaling of applications, and it is unknown
di r ect operations. We refer te the measurements W'”]wow many servers are being employed.
the database support layeriasdi r ect operations. We
refer to measurements with transaction suppartrams
and without aot r ans.
The experiment consists of a single node deploymer\}v
using different datastore/database technologies over Ed
calyptus. We measure datastore latency (end-to-end timé

for put and get operations. For each experiment, we ma . :
putandgetop : . &Xp .. tion with a comparison of AppScale/DAT over EC2 and
sequential requests, first storing (uspg s) 1,000 enti- ; . . .
L . Eucalyptus versus GAE’s proprietary implementation.
ties in the datastore and measuring each request, and then . _ .
For this experiment we perform sequential puts and

retrieving each entity (usinget s). Each entity has a ) :
payload of 10 KB. We report the average time with stan 961S for payloads of 10 KB using an AppScaIe single
dard deviation across these requests. node deployment cloud as described in the previous sec-
tion. We consider the different datastores that we cur-
5.2 Transaction Benchmarking Application rently support with the DAT layer and present the results
in Tables 1 and 2 and 3.
We then experiment more extensively using distributed Table 1 (labeledi r ect ) presents the average time
cloud deployments and a smaller set of datastores. Faf puts and gets (with standard deviation) when we ac-
these experiments we use a transactional benchmark thagss each datastore directly, i.e. without our database sup
emulates a banking application. In particular, our appliportlayer. Table 2 (labeledon- Tr ans) shows this time
cation transfers money from one account to another. Eachith our database support layer. The difference between
instance of the application creates 100,000 accounts. fiese two sets of numbers is the overhead imposed by
request made to the system has a receiver account nuitiis layer to enable application portability across cloud
ber, a sender account number, and the amount to be traresad datastore systems, system simplicity, elasticitg-dat
ferred. store plug-in support, and automation of distributed data-
The implementation of the bank transfer requires twastore deployment. On average, the database support layer
separate transactional functions. The first transactibn suadds 8.3 ms to each put and 6.9 ms to each get (when we
tracts the requested amount from the sender and createmit consideration of the HBase direct access anomaly).
a transfer record which is a child entity of the sender acThe maximum overhead is 9.8 ms for puts and 7.6 ms
count. The second transaction adds the requested amoudat gets. HBase direct access time for gets seems to be an
to the receiver and creates a transfer record signifying theutlier, but the data is repeatable — the database support
successful receivable funds. Errors during the first trandayer significantly improves its performance.
action resultin a failure to transfer the funds. Errors i th The layer increases the variance for both operations
second transaction require a retry using a cron job whicffor all but HBase. The overhead and variance increase

5.1 Single Node Benchmark

6 Results

first present the overhead of the database support layer
d DAT. We then present an extensive evaluation of the
erformance and scalability of DAT. We close this sec-
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Puts Puts Gets Gets Puts Puts Gets Gets
Direct (msec) | (stdev) | (msec)| (stdev) Trans (msec) | (stdev) | (msec)| (stdev)
Cassandra 0.40 +0.12 | 0.45 +0.10 Cassandra 13.30 | +£6.83 7.85 + 3.99
Redis 0.50 +0.07 | 0.22 +0.03 Redis 12.00 | +£3.78 7.91 +3.94
HBase 39.30 | £5.66 | 38.10 | +8.48 HBase 89.70 | +£80.20 | 8.06 +4.15
Hypertable 1.38 +0.66 | 0.47 +0.03 Hypertable 1540 | £5.75 | 6.96 + 3.08
Voldemort 1450 | +2.08 | 2.53 + 0.52 Voldemort 57.40 | +7.69 7.79 + 3.55
MemcacheDB| 2.57 +3.39 | 0.31 +0.01 MemcacheDB| 21.60 | +63.30 | 7.36 + 3.47
Table 1 A comparison of datastore latencies for put and get usingTable 3 A comparison of datastore latencies for put and get us-
direct accesses. ing the database support layer in AppScale (without traimses
Puts | Puts Gets | Gets support).
Non-Trans (msec) | (stdev) | (msec)| (stdev)
g:zissandra g'gé i j'gg ?'32 i g'% cause it is primarily an in-memory datastore. Because of
fBase 7650 1687 1833 | 1433 this, it does not supply the full durability required for
Hypertable 9.26 +405 | 7.34 +3.38 ACID semantics. Yet, if the application does not require
Voldemort 2430 | £4.76 | 784 | +3.68 strong durability in the face of failures and the dataset
MemcacheDB| 11.50 | +19.60] 7.61 | £3.70 is small enough to fit within RAM, Redis is an excellent

Table 2 A comparison of datastore latencies for put and get us-choice of datastore. Other limitations of Redis include a
[snug ”(‘)‘ft)database support layer in AppScale (without rdis&e |5k of sharding of data across nodes, replication occurs
PPOrL): only on and across all slave nodes, and all writes (puts)

b dh imarily f NG dHAP must go through a master node. All of these factors im-
observednere comes primartly fromiNginxan rOXYhact scalability and system performance when significant
layer which intercepts and load balances requests acrorg?*nounts of data are stored
the system. This impact is similar to that for any use o '

a load-balancing system in front a distributed databasg Cr?ssandra shoyvs v;rylow_latency_|s ashwelé. FaSST?:_"
implementation. ra, however, persists data using a write-ahead-log. This

Table 3 (labeledTr ans) presents results with our architecture allows for fast puts because seeks are mini-

: . ized. Writes are done to memtables which are period-
database supportlayer (in AppScaeytransaction sup- mize . .
port. The difference between this table and Table 2 is th cally flushed to immutable Sorted String Tables (SSTa-

additional overhead that is required to support transac-les)' As SSTgbIes accumulgte over time, compactions
tion semantics in the system. This overhead is require ceur to combine these data files. For both puts and gets,

regardless of whether the applications executing over the® conﬂgure.Cassandra to use a quorum, where a major-
cloud use transactions in their code. On average, this Iaygy of the replicas must respond.
adds 16 ms (with a maximum difference of 43 ms) to HBase imposes the longest latencies for this set of
each put operation and no additional overhead on gegatastores. HBase was initially designed for fault toler-
(the difference is not statistically significant and in some@nce and reliability, although newer releases now focus
cases shows an improvement in raw value due to noise§ Performance improvements, so its position in this com-
The variance is similar to that without transaction sup-Parison should improve over time. Moreover, HBase’s
port as well. The additional overhead on puts is due td@rformance is highly dependent on HDFS, which pro-
calls to the ZooKeeper system and to writes to the jour}’id_es the distril?uted file system. The choice. of Java for
nal. For gets, our system employs a only single, very fast!S implementation (as opposed to C++ used in other sys-
ZooKeeper call to verify that the version of the entity is éMS) also impacts performance, memory footprint, and
valid for a particular get operation. The differences in theP@use times (for periodic garbage collection). HBase ex-
amount of overhead across datastores derives from hojbits much higher variance in put and get latency due to
well the interface to the datastore is implemented (e.ghese factors in general, and garbage collection interrup-
the handling of connection pools) by its progenitors, andions in particular.
the degree of parallelism that each datastore is able to Hypertable performs very well compared to its sim-
achieve for journal and entity table writes (puts). ilar counterpart HBase, for both puts and gets, 9.26 ms
Since the database support layer enables multiple dagd 7.34 ms, respectively. While Hypertable also relies
store technologies to be plugged in and thus evaluate@n HDFS for its distributed storage, it does not have the
using the same empirical setup, we can also compare arffawback of having its own periodic garbage collections
contrast the performance and feature sets across datdsince the datastore is written in C++).
tores. The data in these tables also show that Redis has Voldemort and MemcacheDB both use Berkeley DB
the fastest access time for both puts and gets. This is bas their persistence layer, although MemcacheDB has more
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Fig. 4 Cassandra results as the number of machines increases.

than half the latency of Voldemort for puts, while get application server, and (3) the number of successful re-
performance is very similar. Both datastores require (foquests out of the total number of requests sent. As de-
AppScale query support) the use of a set of reserved metseribed in Section 5, evaluate our system for different
keys and a locking mechanism via memcached to keejmads and number of nodes.

track of which keys belong to which table or keyspace We focus on those datastores which provide consis-

because the datastore itself does not provide for it. Th?ent, scalable, and dependent performance. From here for-
management of this keyset imposes very large OVerhe‘"“f}ﬁard, for brevity and reasons previously mentioned, we
on all operatio_ns for these datastores. As _such, we do_ no ~us on Cassandra, HBase, Hypertable, and MySQL Clus-
include them_ln our performance evaluation of DAT in o jisyributed database/datastore systems. Moreoesg th
the nex.t section. Range query support fo_r .these.z datagriastores are representative of others and represent dif-
tores will ena_bl_e .them tp be more competitive with thegy oy points in the design space of database technolo-
others whenlif it is provided by the developers of thesegies (peer-to-peer vs master/slave, implementation lan-
systems. guages, maturity, etc.). Even though MySQL Cluster pro-
vides support for relational queries, we use it as a key-
value store like the others and use its native transaction
gupportto compare to the other datastores under the DAT

6.1 Transaction Performance

We next evaluate more extensively, the transaction pe
formance of our system and datastores. We measure traf¥Stem.

action performance with three metrics, (1) round triptime  Figure 4 shows Cassandra’s performance when the
from the requesting client to the application server anchumber of machines varies from 2 to 12. Figure 4(a) de-
back, (2) the latency of a request to be serviced by apicts the round trip time of successful requests and each
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Fig. 5 HBase results as the number of machines increases.

series shows a different load level. The lowest load levelgcause there is more contention for datastore access as
where most the system is left idle has the best responseore requests are handled.

time, 408 ms for a 2 ner CO”“QWa“O”' and 311 ms HBase performance is shown in Figure 5. Figure 5(a)
for.a 12 node corﬁgura‘uop. Addmonallnc.)des help al'shows round trip time for an increasing number of ma-
leviate load removing queuing delay. This is the case fo'éhines with a varying load. Compared to Cassandra we
all Iogd levels. At the h|ghe_s'F load we See that the SYSgee that the latency does not drop as much as it did for
tem is overloaded and additional machines are neeow@assandra for the 1,000 request case. For Cassandra the
beyond 12 nodes. .Whereas 10’(_)00 concurre_nt req“esi‘?ooo request case for 12 nodes was measured at 3.973
do not see much improvement in latency, Figure 4(Cke.onds but HBase is 11.156 seconds and exhibits higher
shows that more requests are being fulfilled linearly as,;jance under the same conditions. Moreover, we see
more machines are added. At 2 nodes there are 749 Mhat Figure 5(b) shows higher application time which is

quests being served, while a 12 node configuration “@fominated by HBase’s handling of datastore requests.
serve 4,134 requests. For lower loads of 1,000 requests

or less, most requests are handled successfully with 4 or Figure 5(c) h_as similarity with Cassandra for loads
more machines. of 1,000 or less in that near 100 percent of requests are

handled, but these requests are handled with much more
latency than Cassandra. Lastly, the most requests that are
Figure 4(b) shows application time which is domi- handled under a 12 node configuration is on average only
nated by datastore access. There is a general trend of tak-487. We suspect this is due to hot tablet contention,
ing longer to access the datastore as more load is addedhere the key space is located on a particular node that
This also happens when more machines are added bis-overwhelmed with requests.
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Fig. 6 Hypertable results as the number of machines increases.

Hypertable has very similar characteristics to that ofgrain locks limiting its ability to scale the number of con-
HBase as seen in Figure 6 because both provide similaurrent transactions as see in Figure 7(c). Latencies are
implementations of Google’s BigTable architecture. Thealso much higher for application time, which go as high
round trip time (Figure 6(a)) and the application timeas 6.177s.

(Figure 6(b)) both show s.light-ly favorable latencies for Our next set of graphs (Figure 8 provide a side-by-
Hypertable over HBase primarily because of Hypertable’§ide comparison between different databases (although

use of C++ over Java ar?d thus better memory MaNadne data is repeated from the graphs presented previously)
ment_(no garbage collection overhead). At 12 nodes with - 1o heaviest load (10,000 requests). Figure 8(a) com-
th_e highest load, Hypertable completes 1,732_ reques&jlres the round trip time, Figure 8(b) compares applica-
with an average latency of 16.089s, compared with HBasg’s, request latencies, and Figure 8(c) compares the num-

1,437 requests at 16.884s. ber of successful transactions completed for the work-

Figure 7 presents MySQL Cluster's performance forload. Applicati_on request time again is the time between
a varying number of machines. MySQL's transaction im_yvhen_the application serverreceives the req.uest_ and when
plementation does not use the DAT system, rather it em! repl_les (the round trip t'”_]e minus the routing time and
ploys its own native transaction support. All requests tgueuing delay) to the application.
begin a transaction and commit a transaction go directly The comparison shows similar round trip time across
to the datastore and transaction handles are assigned Ogtastores. However, there is a significant difference in
MySQL as opposed to using ZooKeeper. MySQL is notthe number of completed requests (Figure 8(c)). The lower
informed of entity groups and cannot leverage this in-the latency on the application time, the more requests can
formation for its locking purposes and thus uses coursee served. Also for all systems, as the number of ma-
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Fig. 7 MySQL Cluster results as the number of machines increases.

chines increases there is more time spent in the datastore The results are shown in Figure 9. While round trip
layer and less in front-end queuing delay. In summarytime is very similar (Figure 9(a)), we see that applica-
under this load, Cassandra serves the most requests atimh time is much less and ranges from 0.84-1.53 seconds
MySQL cluster serves the least. Overall Cassandra withinder heavy load to 0.64-0.90 seconds with transactions
our DAT layer imposes lower latencies and higher scaldisabled.

ability than any other datastore, followed by Hypertable

and HBase and then by MySQL cluster. MySQL clus- The number of successful requests, shown in Fig-

ter performance and scalability are limited by its use of'® 9(C), is as high as 7,182 with transaction support turned
course-grain locking. off (it is 4,134 with it turned on). The overhead comes in

two primary forms which are required for DAT. First is
the additional write which happens to the journal. This
We next focus on the Cassandra data store and invemeans there is double the load to the datastore system

tigate the overhead of the DAT system for transactionafor each application put. To keep this overhead low, both
workloads. We measure the overhead of DAT measureduts to the entity table and the journal are performed
by disabling the calls to ZooKeeper and journal writes,in parallel. However, under heavy loads response times
each of which adds latency and therefore reduces the t@an increase. Additionally, each ZooKeeper operation is
tal number of processed requests when under high loagerformed in a blocking manner, which is required for
Note that this disables full ACID semantics and we onlytransactional semantics. An optimization we employ is
include it to lend insight into the performance of the DAT to use asynchronous calls to ZooKeeper when appropri-
layer. In this scenario, each transactional block become ate (when doing so does not invalidate the semantics).
series of unprotected put and get operations. These calls are not required to be successful because they
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Fig. 8 A comparison of different datastores under heavy load asitimeber of machines increases. This data is also presentib in
previous graphs and combined here for easy comparison.

will be redone through the garbage collection mechat SAE 726?110091575;;29 ?Eg;ir%e 0(2)2 - 4RIT (25)078
; o - : 1t : 187+ 0. 417 2.

nr:sm. An (.exar:nple Off when this is emp:]:oyed |sbdur|ng~ EC2 | 2169.7+ 133.30 | 2.843+ 0.144 | 15.52+ 0.577

the commit phase of a transaction. Nodes can be asyRg ca T 213221 33691 | 153350136 | 15615 1.031

chronously deleted, and if a failure happens, a garbage

collection thread finds and removes them. Table 4 A comparison between GAE, 12-node Cassandra App-
Scale on EC2, and 12-node Cassandra AppScale on a Eucalyptus
6.2 AppScale and Other Cloud Fabrics cluster under high load.

We next compare our transactional system across two dif-

ferent public cloud offerings, and do so using the samenachines we used for our Eucalyptus testing, which are
transaction benchmark. We employ AppScale on EC2hree nodes from within our local cluster.

using Cassandra for a 12 node configuration and bench- Table 4 compares the two public clouds and our pri-
mark it under high load (10,000 requests). The requestgate cloud all under heavy load using the same metrics
originate from three nodes within the same EC2 regioras we used in the previous graphs (humber of success-
to minimize latency for the round trip time. Google App ful requests out of 10,000, the average application time
Engine runs the same application unmodified, yet in thiper request, and the average round trip time (RTT) per
deployment the number of machines and resources is umequest). The data shows that GAE scales very well, con-
known. For the App Engine deployment billing is en- trary to previous results [23], due to upgrades since it was
abled to ensure our benchmarking is unimpeded by qudast benchmarked. GAE has multiple advantages com-
tas. The requests for GAE originate from the same threpared to our EC2 and Eucalyptus deployment. Firstly,
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Fig. 9 Cassandra results with transactions disabled.

GAE does not operate using virtualization (virtual ma-rack, whereas for EC2 machines are placed on different
chines). Second, while our AppScale deployments are 12acks as available [37].

nodes, GAE is capable of leveraging far more machines

within the capacity of Google’s massive infrastructure.” Related Work

GAE is also finely tuned to use Megastore and BigTable,

whereas AppScale trades off potential performance gainRistributed transactions, two-phase locking, and multi-

by adding an abstraction layer for flexibility in the back- Version concurrency control (MVCC) have been employed
end. in a multitude of distributed systems since the distributed

transaction process was defined in [3]. Our design is based
on MVCC and uses versioning of data entities. Google
Our private Eucalyptus cluster performs significantly App Engine’s implementation of transactions uses opti-

better than a comparable EC2 cluster of 12 nodes umistic currency control [41], which was first presented
der high load with lower application latency and a higherby Kung et al. in 1981 [24].
number of successful requests. Our private cluster has a There are two systems closely related to our work that
few advantages compared to the EC2 cluster in that iprovide a software layer implementing transactional se-
is in a non-shared environment and there are no otheanantics over top of distributed datastore systems. They
users of this cluster. Disk bandwidth and network bandare Google’s Percolator [34] and Megastore [2]. Percola-
width are not in contention in our private cluster, whereador is a system, proprietary to Google, that provides dis-
in EC2 the virtual machines performance may vary detributed transaction support for the BigTable datastore.
pending on the level of provisioning onto the physicalThe system is used by Google to enable incremental pro-
machines. Moreover, the nodes are all located on a singleessing of web indexes. Megastore is the most similar
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to our system as it is used directly by Google App En-that does not require any modifications to the datastore
gine for transactions and for secondary indexing. Ousystems that plug into our cloud portability layer. These
approach is database agnostic and not tied to any pasemantics allow applications to update atomically multi-
ticular datastore. Prior approaches tightly couple transple key-value pairs programmatically. We refer to this ex-
action support to the database. DAT can be used for anension as DAT for database-agnostic transactions. Since
key/value store and, with AppScale, provide scale, faulho open source datastore today provide such semantics,
tolerance, and reliability with an open source solutionthis layer facilitates their use by new applications and ap-
Moreover, our system is platform agnostic as well (run-plication domains including those from the business, fi-
ning in/on Eucalyptus, OpenStack [33], EC2, VMWare,nancial, and data analytic communities, that depend upon
Xen [42], and KVM [25]) while automatically installing such semantics. We implement this layer within the open
and configuring a datastore and the DAT layer for anysource AppScale cloud platform. Our system (including
given number of nodes. all databases) is available fron t p: / / appscal e.

Cloud TPS [40] provides transactional semantics ovees. ucsb. edu.
key spaces in datastores such as HBase. Cloud TPS achiev&¥e empirically evaluate the overhead and scalability
high throughput because its design is based heavily iof this layer using a number of popular database tech-
in-memory storage. Replication is done across nodes inologies and different cloud systems. We find that the
memory, and the system will periodically flush the dataportability layer adds approximately 7-8 ms to puts/gets
to a persistence layer such as S3 or another cloud stofreads/writes) due to load balancing across datastore en-
age. DAT differs from Cloud TPS providing higher dura- try points in the cluster. We find that DAT adds an addi-
bility because DAT requires each write to be written totional 16 ms on average across datastores to each put/write
disk. In the case of system wide outages, it is possible téor lock acquisition and journaling (and no additional
lose all transactions which have not been persisted witbverhead to get/read operations). We find that the scal-
Cloud TPS, while in DAT all writes are written to a jour- ability, throughput, and latency of transactional applica
nal which is replicated on disk at multiple nodes. tions (e.g. a financial exchange) using our system varies

In [23] Kossman et al. compared different clouds andsignificantly across datastores but that the Cassandra data
datastores, one of which is GAE. GAE has improved ovestore performs best. Finally, we find that DAT with the
time so the results, while valid at that pointin time, are noCassandra datastore performs better and is more scalable
longer valid. The same can be said for the other cloudthan native MySQL cluster transaction support.
which were benchmarked, as each system has evolved
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