
Noname manuscript No.
(will be inserted by the editor)

Cloud Platform Datastore Support
UCSB Technical Report #2011-08

Navraj Chohan · Chris Bunch · Chandra Krintz · Navyasri Canumalla

Received: date / Accepted: date

Abstract 1

Recent technological advances in hardware and software
have facilitated the explosive growth in the production
of digital information. Cloud systems offer tremendous
scale, resource availability, and ease of use, with which
we can process this data in the pursuit of scientific, finan-
cial, social, and technological advances. However, there
are many systems to choose from that differ in many
ways including public versus private cloud support, data
management interfaces, programming languages, supported
feature sets, fault tolerance, consistency guarantees, con-
figuration and deployment processes.

In this paper, we focus on technologies for structured
data access (database/datastore systems) in cloud systems.
Our goal is to simplify the use of these systems through
automation and to facilitate their empirical evaluation us-
ing real world applications. To enable this, we provide
a cloud platform abstraction layer that decouples a data
access API from its implementation. Applications that
use this API can use any datastore that “plugs into” our
abstraction layer, thus enabling portability. We use this
layer to extend the functionality of multiple datastores
without modifying the datastores directly. Specifically,
we provide support for ACID transaction semantics for
popular key-value stores (none of which provide this fea-
ture). We integrate this layer into the AppScale cloud
platform – an open-source cloud platform that executes
cloud applications written in Python, Java, and Go, over

Computer Science Department
University of California, Santa Barbara
E-mail:{nchohan, cgb, ckrintz, navyasri} @ cs.ucsb.edu

1 This paper is a combined and extended version of papers [5]
and [12].

virtualized cluster resources and infrastructures-as-a-ser-
vice (Eucalyptus and Amazon EC2). We use this system
to investigate the overhead of providing this application
portability layer for disparate datastores and the impact
of extending them via the layer with distributed transac-
tion support.

1 Introduction

Recent advances in hardware and software have culmi-
nated in the emergence of cloud computing – a service-
oriented, computing model that simplifies the use of large-
scale distributed systems through transparent and adap-
tive resource management, automating configuration, de-
ployment, and customization for entire systems and ap-
plications. Using this model, many high-technologycom-
panies have been able to make their proprietary comput-
ing and storage infrastructure available to the public (or
internally via private clouds) at extreme scales.

Given the availability of vast compute and storage re-
sources at low cost, along with virtually infinite amounts
of information (financial, scientific, social) via the Inter-
net, applications have become increasingly data-centric
and our data resources and products have grown explo-
sively in both number and size. One prominent way in
which a wide range of applications access such data is
via a well-defined structures that facilitate data process-
ing, manipulation, and communication. Structured data
access (via database/datastore systems) is a mature tech-
nology in wide-spread use that provides programmatic
and web-based access to vast amounts of data efficiently.

Public and private cloud providers increasingly em-
ploy specialized databases, called key-value stores (or
datastores) [10,13,14,11,20,8,36,39,28,21]. These sys-
tems support structured data access over warehouse-scale



2 Navraj Chohan et al.

resource pools, by large numbers of concurrent users and
applications, and with elasticity (dynamic growing and
shrinking of resource and table use). Examples of pub-
lic cloud datastores include Google’s BigTable, Amazon
Web Services (AWS) SimpleDB, and Microsoft’s Azure
Table Storage. Examples of private or internal cloud use
of datastores include Amazon’s Dynamo [14], and cus-
tomized versions of open source systems (e.g. HBase [20],
Hypertable [21], Cassandra [8], etc.) in use by use by
Facebook, Baidu, SourceForge, LinkedIn, Twitter, Red-
dit, and others.

To enable high scalability and dynamism, key-value
stores differ significantly from more traditional database
technologies (e.g. relational systems) in that they are much
simpler (entities are accessed via a single key) and ex-
clude support for multi-table queries (e.g. joins, unions,
differencing, merges, etc.) and other features such as multi-
row (multi-key) atomic transaction support. Extant data-
store offerings differ in query language, topology (mas-
ter/slave vs peer-to-peer), data consistency policy, repli-
cation policy, programming interfaces, and implemen-
tations in different programming languages. Moreover,
each system has a unique methodology for configuring
and deploying the system in a distributed environment.

In this paper, we address two growing challenges with
the use of cloud-base datastore technologies. The first is
the vast diversity of offerings: applications written to use
one datastore must be modified and ported to use another.
Moreover, it is difficult to “test drive” public offerings ex-
tensively without paying for such use, and challenging to
configure and deploy distributed open source technolo-
gies in a private setting. The second challenge is the lack
of support for atomic transactions across multiple keys
in a table. Most datastores offer atomic updates at the
row (key) level only. The lack of all-or-nothing updates to
multiple data entities concurrently precludes many busi-
ness, financial, and data-analytic applications and signif-
icantly limits datastore utility for all but very simple ap-
plications.

To address these issues, we present the design and
implementation of a database-agnostic, portability layer
for cloud platforms. This layer consists of a well-defined
API for key-value-based structured storage, a plug-in model
for integrating different database/datastore technologies
into the platform, and a set of components that automati-
cally configures and deploys any datastore that is plugged
into the layer. This layer decouples the API that applica-
tions use to access a datastore from its implementation
(to enable program portability across datastore systems)
and automates distributed deployment of these systems
(to make it easy to configure and deploy the systems).
Developers write their application to use our datastore

API and their applications execute using any datastore
that plugs into the platform, without modification. This
support enables us to compare and contrast the differ-
ent systems for different applications and usage models
and enables users to select across different datastore tech-
nologies with less effort and learning curve.

To address the second challenge, we extend this layer
to provide distributed transactional semantics for the data-
store plug-ins. Such semantics increase the range of ap-
plications that can make use of cloud systems. Our ap-
proach emulates and extends the limited transaction se-
mantics of the Google App Engine cloud platform to pro-
vide atomic, consistent, isolated, and durable (ACID) up-
dates to multiple rows at a time for any datastore that
provides row-level atomicity. To enable this, we rely on
ZooKeeper [43], an open-source locking service in use
by cloud fabrics and other distributed systems.

We implement this database-agnostic software layer
within the open source AppScale cloud platform and in-
tegrate a number of different popular open source and
proprietary database and datastore systems. These plug-
ins include Cassandra, HBase, Hypertable, and MySQL
cluster [30] (which we employ as a key-value store), among
others. Moreover, since AppScale executes over different
infrastructure-as-a-service (IaaS) cloud systems (Ama-
zon EC2 [1] and EUCALYPTUS [32,16]) and emulates
Google App Engine functionality, developers are given
the freedom to choose the infrastructure on which their
application runs on.

We use the system to empirically evaluate different
datastore systems and to evaluate the overhead of em-
ploying distributed transactions. We find that the database-
agnostic portability layer adds approximately 7-8 ms per
put/get (read/write). We find that DAT adds an additional
16 ms to each put/write (and no additional overhead to
each get/read) on average. We find that the scalability,
throughput, and latency of transactional applications (e.g.
a financial exchange) using this layer and DAT, varies
significantly across datastores and workloads but that Cas-
sandra significantly outperforms other datastores includ-
ing MySQL cluster (without DAT) which usesnative(built-
in) transaction support.

In the sections that follow, we first describe the de-
sign and implementation of AppScale and its abstract
database layer that decouples the AppScale datastore API
from the plug-ins (implementations of the API). We then
describe how we extend this layer with ACID transaction
semantics in a database-agnostic fashion in Section 3. We
then present an evaluation of the system using different
datastores in Section 6, present related work in Section 7,
and conclude in Section 8.



Cloud Platform Datastore Support UCSB Technical Report #2011-08 3

2 The AppScale Database Support and Portability
Layer

In this work, we provide a database-agnostic software
layer for cloud platforms that decouples the datastore in-
terface from its implementation(s) and automates distributed
deployment of datastore systems. We design and imple-
ment this layer as part of the AppScale cloud platform
and then extend it to support database-agnostic distributed
transaction support.

AppScale is an open source cloud runtime system
that enables applications written high level languages (Py-
thon, Java, and Go) to execute over virtualized clusters
and cloud infrastructures. To enable this, AppScale im-
plements a set of APIs for a multitude of cloud services
using existing open source technologies. To make App-
Scale attractive to application and service developers, the
AppScale APIs include all those made available by Google
App Engine (GAE). By doing so, any application that ex-
ecutes over GAE can execute in a private cluster setting
over AppScale and vice versa.

GAE is a public cloud platform to which users upload
their applications for execution on Google’s resources.
Applications invoke API functions for different services.
When a user uploads her GAE application (it is made
available by GAE via a subdomain on appspot.com), the
APIs connect to proprietary, scalable, and highly avail-
able implementations of each service. GAE applications
respond to user requests on a web page using libraries
and GAE services, access structured data in a non-rela-
tional, key-value datastore, and execute tasks in the back-
ground. The set of libraries and functionality that devel-
opers can integrate within the applications is restricted
by Google, i.e., they are those ”white-listed” as activities
that Google is able to support securely and at scale. Users
are charged a fee based on the resources their applica-
tions use beyond a specified quota. AppScale emulates
this cloud platform functionality using private/local vir-
tualized clusters and/or infrastructure-as-a-service (IaaS)
systems Amazon EC2 and EUCALYPTUS.

AppScale can execute GAE applications without white-
list restrictions at the cost of reverse GAE compatibility,
if doing so is desirable by the cloud administrator. App-
Scale also implements a wide range of other APIs, not
available in GAE, in support of more computationally
and data intensive tasks. These APIs include those for
MapReduce, MPI, and UPC programming, and StochKit
for scientific simulations [6].

Figure 1 shows the AppScale software stack. At the
top of the stack are the application servers that serve
Python, Java, and Go applications. The AppScale APIs
that the applications employ leverage existing open source

Fig. 1 The AppScale Software Stack. Herein, we present the de-
sign and implementation of the database software layer and its
extensions in support of distributed, database-agnostic,multi-key
transactional semantics.

software such as eJabberD [15] and memcacheD [27], or
custom services (e.g. blobstore) that we provide, for their
implementations. AppScale uses Nginx [31] and HAPr-
oxy [19] to route and load balance requests to the ap-
plication servers. Nginx provides SSL connections, and
HAProxy performs health checks on servers, routing only
to responsive application servers. A background service
on each node in an AppScale cloud restarts any service
that stops functioning correctly. An AppScale cloud con-
sists of a set of virtual machine instances (nodes), each
of which implement this software stack.

The AppController is a software layer in the stack
that is in charge of service initiation, configuration, and
heart beat monitoring, cloud-wide. Below the AppCon-
troller is the database-agnostic software layer (to which
we refer to as the datastore support layer in the figure).

The datastore support layer decouples application ac-
cess to structured data from its implementation. It is this
layer we extend with ACID transaction semantics in the
next section. This layer exports a simple yet universal
key-value programming interface that we implement us-
ing a wide range of available datastore technologies. This
layer provides portability for applications across datas-
tores, i.e. applications written to access this datastore in-
terface will work with any datastore that implements this
interface, without modification. The interface provides
full GAE functionality and consists of:

– Put(table, key, value)
– Get(table, key)
– Delete(table, key)
– Query(table, q)



4 Navraj Chohan et al.

Put stores the value given the key and creates a ta-
ble if one does not already exist. If aGet or Query is
performed on a table which does not exist, nothing is re-
turned. ADelete on a key which does exist results in
an exception.Queryuses the Google Query Language (a
subset of SQL) syntax and semantics.

The data values that AppScale stores in the datastore
are called entities (data objects) and are similar to those
defined by GAE [41]. Each entity has a key object; App-
Scale stores each entity according to its key as a serial-
ized protocol buffer [35].

GAE implements this API using proprietary key-value
systems called Megastore [2] and BigTable [11] and charges
for access to these systems both in terms of the amount
of storage and number of API calls. AppScale imple-
ments its datastore API using popular open source, dis-
tributed datastore systems including HBase [20], Hyper-
table [21], Cassandra [8], Redis [36], Voldemort [39],
MongoDB [29], SimpleDB [38], and MySQL Cluster [30].
HBase and Hypertable both rely on HDFS [17] for their
distributed file system implementations, as does the Map-
Reduce API which integrates Hadoop MapReduce [18]
support.

To automate configuration and deployment of dis-
tributed datastores for users in a private setting, we re-
lease the AppScale system as a single virtual machine
image. This image consists of the operating system ker-
nel, Linux distribution, and the software required for each
of the AppScale components services (the software in the
stack displayed in Figure 1). When an AppScale cloud is
deployed, a cloud administrator employs a set of App-
Scale tools to instantiate the image (over Xen, KVM, or
an IaaS system). This instance becomes the head node
which starts all of its own services and then does so for
all other nodes (instantiated images) in the system. Each
AppScale cloud deployment implements a single datas-
tore (cloud-wide).

The AppController in the system interacts with a tem-
plate to configure and deploy each datastore dynamically
upon cloud instantiation. The set of scripts configure, start,
stop, and test an instantiated datastore using the follow-
ing API:

– startdb master()
– startdb slave()
– setupdb config files(masterip, slaveips, creds)
– stopdb master()
– stopdb slave()

Each datastore must implement these calls. To set up the
configuration files, the AppController provides template
files and inserts node names as appropriate. The ”creds”
argument is a dictionary in which additional, potentially

datastore-specific, arguments are passed, e.g. the number
of replicas to use for fault tolerance.

3 Database-Agnostic Distributed
Transaction Support

We next extend the datastore support layer in the cloud
platform with ACID transaction semantics. We refer to
this extension as database-agnostic transactions (DAT).
Such support is key for a wide range of applications that
require atomic updates to multiple keys at a time. Thus,
we provide it in a database-agnostic fashion that is in-
dependent of any datastore but that can be used by all
datastores that plug into the database support layer.

3.1 DAT Design

To enable DAT, we extend the AppScale datastore API
with support for specifying the boundaries of a transac-
tion programmatically. To ensure GAE compatibility, we
use the GAE syntax for this API:run in transaction,
which defines the transaction block.

We make three key assumptions in the design of DAT.
First, we assume that each of the underlying datastores
provide strong consistency. Most extant datastores pro-
vide strong consistency either by default (e.g. HBase,
Hypertable, MySQL-cluster) or as a command-line op-
tion (e.g. Cassandra). Second, we assume that any data-
store that plugs into the DAT layer provides row-level
atomicity. All the datastores we have evaluated provide
row-level atomicity, where any row update provides all-
or-nothing semantics across the row’s columns. Third,
we assume that there are no global or table-level trans-
actions; instead, transactions can be performed across a
set of related entities. We impose this restriction for scal-
ability purposes, specifically to avoid slow, coarse-grain
locking across large sections or tables of the datastore.

To enable multi-entity transactional semantics, we em-
ploy the notion of entity groups as implemented in GAE [41].
Entity groups consist of one or more entities, all of whom
share the same ancestor. This relationship is specified
programmatically. For example, the Python code for an
application that specifies such a relationship looks as fol-
lows:

class Parent(db.Model):
balance = db.IntegerProperty()

class Child(db.Model):
balance = db.IntegerProperty()

p = Parent(key_name="Alice")
c = Child(parent=p, key_name="Bob")



Cloud Platform Datastore Support UCSB Technical Report #2011-08 5

A class is a model that defines akind, an instance of
a kind is an entity, and an entity group consists of a set
of entities that share the same root entity (an entity with-
out a parent) or ancestor. In addition, entity groups can
consist of multiplekinds. An entity group defines the
transactional boundary between entities.

The keys for each of these entities areapp id\Par-
ent:Alice, andapp id\Parent:Alice\Child:
Bob for p (Alice) andc (Bob), respectively. Alice is a
root entity with attributes type (kind),key name (a re-
served attribute), and balance. The key of a non-root en-
tity, such as Bob, contains the name of the application
and the entire path of its ancestors, which for this exam-
ple, consists of only Alice. It is possible to have a deeper
hierarchy of entities as well. AppScale prepends the ap-
plication ID to each key to enable multitenancy for data-
stores which do not support dynamic table creation and
thus share one key space (i.e., Cassandra as of version
0.68).

A transactional work-flow in which a program trans-
fers some monetary amount from the parent entity to the
child entity is specified programmatically as:

def give_allowance(src, dest, amount):
def tx()

p = Parent.get_by_key_name(src)
c = Child.get_by_key_name(dest)
p.balance = p.account - amount
p.put()
c.balance = c.balance + amount
c.put()

db.run_in_transaction(tx)

A transaction may composegets, puts, deletesand
querieswithin a single entity group. Any entity without
a parent entity is a root entity; a root entity without child
entities is alone in an entity group. Once entity relation-
ships are specified they cannot be changed.

3.2 DAT Semantics

DAT enforces ACID (atomicity, consistency, isolation,
and durability) semantics for each transaction. To enable
this, we use multi-version concurrent control (MVCC) [3].
When a transaction completes successfully, the system
attempts to commit any changes that the transaction pro-
cedure made and updates thevalid version number(the
last committed value) of the entity in the system. The
operationsputor deleteoutside of a programmatic trans-
action are transparently implemented as transactions. If
a transaction cannot complete due to a program error or
lock timeout, the system rolls back any modifications that

have been made, i.e., DAT restores the last valid version
of the entity.

A read (get) outside of a programmatic transaction
accesses the valid version of the entity, i.e., reads have
“read committed” isolation. Within a transaction, all op-
erations have serialized isolation semantics, i.e., they see
the effects of all prior operations. Operations outside of
transactions and other transactions see only the latest valid
version of the entity.

The implementation of transaction semantics GAE
and AppScale differ, each having their own set of trade-
offs. GAE implements transactions using optimistic con-
currency control [4]. If a transaction is running, and an-
other one begins on the same entity group, the prior trans-
action will discover its changes have been disrupted, forc-
ing a retry. An entity group will experience a drop in
throughput as contention on a group grows. The rate of
serial updates on a single root entity, or an entity group
depends on the update latency and contention, and ranges
from 1 to 20 updates per second [2].

We instead associate each entity group with a lock.
DAT attempts to acquire the lock for each transaction
on the group. DAT will retry three times (a default, con-
figurable setting) and then throw an exception if unsuc-
cessful. In contrast to GAE, we provide a fixed amount
of throughput regardless of contention depending on the
length of time the lock is held before being released.
A rollback for an active transaction for an entity group
does not get triggered when a new transaction attempts
to commence for that same entity group as it does for
GAE, but a transaction must acquire the lock in DAT be-
fore moving forward, a restriction GAE does not have. In
practice, our locking mechanism is simple, works well,
and provides sufficient throughput in private cloud set-
tings which always consist of orders of magnitude fewer
machines than Google’s public cloud.

We also have designed DAT to handle faults at mul-
tiple levels, although we do not handle Byzantine faults.
Failure at the application level is detected by a timeout
mechanism. We reset this timeout each time the applica-
tion attempts to modify the datastore state to avoid pro-
longed stalls. We also prevent silent updates and failures
at the database support layer and describe this further in
the next section.

4 DAT Implementation

To implement DAT within AppScale, we provide support
for entities, an implementation of the programmatic data-
store interface for transactions (runin transaction), and
multi-version consistency control and distributed trans-
action coordination (global state maintenance and lock-



6 Navraj Chohan et al.

ing service). To support entities, we extend the AppScale
key-assignment mechanism with hierarchical entity nam-
ing and implement entity groups. Each application that
runs in AppScale owns multiple entity tables, one for
each entitykind it implements. We create each entity
table dynamically when aput is first invoked for a new
entity type. In contrast, GAE designates a table for all
entity types, across all applications. We chose to create
tables for each entity kind to provide additional isolation
between applications.

We implement an adaptation of multi-version consis-
tency control to manage concurrent transactions. Typi-
cally timestamps on updates are used to distinguish ver-
sions [3]. However, not all datastores implement times-
tamp functionality. We thus employ a different, database
agnostic, approach to maintaining version consistency.
First, with each entity, we assign and record a version
number. This version number is updated each time the
entity is updated. We refer to this version number as the
transaction IDsince an update is associated with a trans-
action. We maintain transaction IDs using a counter per
application. Each entry in an entity table contains a seri-
alized protocol buffer and transaction ID.

To enable multiple concurrent versions of an entity,
we use a single table, which we call thejournal, to store
previous versions of an entity. AppScale applications do
not have direct access to this table. We append the trans-
action ID (version number) to the entity row key (in App-
Scale it is the application ID and the entity row key)
which we use to index the journal.

4.1 Distributed Transaction Coordinator (DTC)

To enable distributed, concurrent, and fault tolerant trans-
actions, DAT implements a Distributed Transaction Co-
ordinator (DTC). The DTC provides global and atomic
counters, locking across entity groups, transaction black-
listing support, and a verification service to guarantee
that accesses to entities are made on the correct versions.
The DTC enables this through the use of ZooKeeper [43],
an open source, distributed directory service that main-
tains consistent and highly available access to metadata
using a variant of the Paxos algorithm [26,9]. ZooKeeper
is the open source equivalent to Google’s Chubby lock-
ing service [7]. The directory service allows for the DTC
to create arbitrary paths, on which both leaves and branches
can hold values.

The API for the DTC is

– txn id getTransactionID(app id)
– bool acquireLock(app id, txn id,
root key)

– void notifyFailedTransaction(app id,
txn id)

– txn id getValidTransactionID(app id,
previous txn id, row key)

– bool registerUpdateKey(app id,
current txn id, target txn id,
entity key)

– bool releaseLock(app id, txn id)
– block range generateIDBlock(app id,
root entity key)

DAT intercepts and implements each transaction made
by an application (put, delete, or programmatic transac-
tion) as a series of interactions with the DTC via this
API. A transaction is first assigned a transaction ID by
the DTC (getTransactionID) which returns an ID
with which all operations that make up the transaction are
performed. Second, DAT obtains a lock from the DTC
(acquireLock) for the entity group over which the op-
eration is being performed. For each operation, DAT veri-
fies that all entities accessed have valid versions (getVal-
idTransactionID). For eachputor deleteoperation,
DAT registers the operation with the DTC. This allows
the DTC to track of which entities within the group are
being modified, and, in the case where the application
forces a rollback (applications can throw a rollback ex-
ception within the transaction function) or any type of
failure, the DTC can successfully know what the cur-
rent correct versions of an entity are. The API call of
registerUpdateKey is how previously valid states
are registered. This call takes as arguments the current
valid transaction number, the transaction number which
is attempting to apply changes, and the root entity key to
specify the entity group.

When a transaction completes successfully or a roll-
back occurs (due to an error during a transaction, appli-
cation exception, or lock timeout), DAT notifies the DTC
which releases the lock on that entity group, and the layer
notifies the application appropriately. We set the default
lock timeout to be 30 seconds (it is configurable). DAT
notifies the application via an exception.

Transactions that start, modify an entity in the entity
table, and then fail to commit or rollback due to a fail-
ure, thrown exception, or a timeout, areblacklistedby
the system. If an application attempts to perform an op-
eration that is part of a blacklisted transaction, the opera-
tion fails and DAT returns an exception to the application.
Application servers that issue operations for a blacklisted
transaction must retry their transaction under a new trans-
action ID. Any operations which were executed under a
failed transaction are rolled back to the previous valid
state.



Cloud Platform Datastore Support UCSB Technical Report #2011-08 7

Fig. 2 Transaction sequence example for two puts.

Every operation employs the DTC for version veri-
fication. A get operation will fetch from an entity table
which returns the entity and a transaction ID number.
DAT checks with the DTC whether the version is valid
(i.e., is not on the blacklist and is not part of an uncom-
mitted, on-going transaction). If the version is not valid,
the DTC returns the valid transaction ID for the entity
and DAT uses this ID with the original key to read the
entity from the journal.Getoperations outside of a trans-
action are read-committed as a result of this verification
(we do not allow fordirty reads). The result of a query
must follow this step for each returned entity. Both GAE
and AppScale recommend that applications keep entity
groups small as possible to enable scaling (parallelizing
access across entity groups) and to reduce bottlenecks.

Lone puts and deletesare handled as if they were
individually wrapped programmatic transactions. For a
put or deletethe previous version must be retrieved from
the entity table. The version returned could potentially
not exist because the entry was previously never writ-
ten to and thus we assign it zero. The version number
is checked to see if it is valid, if it is not, the DTC re-
turns the current valid number. The valid version number
is used for registration to enable rollbacks if needed.

Either using the original version (transaction ID) or
the transaction ID returned from the DTC due to invali-
dation, DAT creates a new journal key and journal entry
(journal keys are guaranteed to be unique), registers the
journal key with the DTC, and in parallel performs an up-
date on the entity table. We overview these steps with an
example in Figure 2 and show the DTC API being used
during the lifetime of a transaction.

DAT does not perform explicitdeletes. Instead, we
convert alldeletesinto putsand use atombstonevalue
to signify that the entry has been deleted. We place the
tombstone in the journal as well to maintain a record of

Fig. 3 Structure of transaction metadata in ZooKeeper nodes.

the current valid version. Any entries with tombstones
which are no longer live are garbage collected periodi-
cally.

4.2 ZooKeeper Configuration of the DTC

We present the DTC implementation using the ZooKeeper
node structure prefix tree (trie) in Figure 3. We store ei-
ther a key name as a string (for locks and the blacklist)
or use the node directly as an atomically updated counter
(e.g., for transaction IDs). The tree structure is as follows:

– /appscale/apps/appid/ids: counter for next available
transaction IDs for root or child entities.

– /appscale/apps/appid/txids: current live transactions.
– /appscale/apps/appid/txids/blacklist: invalid transac-

tion ID list.
– /appscale/apps/appid/validlist: valid transaction ID

list.
– /appscale/apps/appid/locks: transaction entity groups.

The blacklist contains the transaction IDs that have
failed due to a timeout, an application error, an exception,
or an explicit rollback. The valid list contains the valid
transaction IDs for blacklisted entities (so that we can
find/retrieve valid entities).

Transactions implemented by DAT provide transac-
tional semantics at the entity group level. We implement
a lock subtree that is responsible for mapping a transac-
tion ID to the entity group it is operating on. The name of
the lock is the root entity key and it stores the transaction
ID. We store the locking node path in a child node of the
transaction named ”lockpath”. Any new transaction that
attempts to acquire a lock on the same entity group will
see that this file exists which will cause the acquisition to
fail. This lock node is removed when a transaction com-
pletes (via successful commit or rollback).



8 Navraj Chohan et al.

4.3 Scalable Entity Keys

We employ ZooKeeper sequential nodes to implement
entity counters (these should not be confused with trans-
action IDs). When entities are created without specifying
a key name, IDs are assigned in an incremental fashion.
We ensure low overhead on key assignment by allocating
blocks of 1,000 entity IDs at a time to reduce the over-
head of counter access. The block of IDs is cached by the
instance of the call handler in the database support layer.
Keys are provisioned on a first-come-first-serve basis to
new entities which do not have a key name. There is no
guarantee that entity IDs are ordered.

Entity IDs use two types of counters for concurrent
access. One counter is for root keys of a specific entity
type, while another counter is created for each child of a
root key. Entity IDs are stored under the inner node upon
creation and are removed once committed. The node struc-
ture holds values for each entity group as seen in the
/appscale/apps/app1/idspath. The ”ids” node contains
the next batch value for all root keys, whilekey03 and
key04 nodes hold values for the next batch of child keys.

4.4 Garbage Collection

In some cases (application error, response time degrada-
tion, service failure, network partition, etc.), a transaction
may be held for a long period of time or indefinitely. We
place a maximum of 30 seconds on each lock lease ac-
quired by applications. We update the value dynamically
as needed. Furthermore, for performance reasons we use
ZooKeeper’s asynchronous calls where it does not break
ACID semantics (i.e., removing nodes after completion
of a transaction).

In the background, DAT implements a garbage col-
lection (GC) service. The service scans the transaction
list to identify expired transaction locks (we record the
time when the lock is acquired). The service adds any
expired transaction to the blacklist and releases the lock.
For correct operation with timeouts, the system is coordi-
nated using NTP. Nodes which were not successfully re-
moved by an asynchronous call to ZooKeeper are garbage
collected during the next iteration of the GC.

The GC service also cleans up entities and all related
metadata that have been deleted (tombstoned) within a
committed transaction. In addition, journal entries that
contain entities older than the current valid version of an
entity are also collected. We do not remove nodes in the
valid version list at this time.

We perform garbage collection every thirty seconds.
There is one master garbage collector and multiple slaves

checking to make sure the global ”gclock” has not ex-
pired. If the lock has expired (it has been over 60 sec-
onds since last being updated), a slave will take over as
the master, and will now be in charge of periodically up-
dating the ”gclock”. When a lock has expired, the master
will receive a call back from ZooKeeper. At this point the
master can try to refresh the lock, or if the lock has been
taken, step down to a slave role.

4.5 Fault Tolerance

DAT handles certain kinds of failures, excluding byzan-
tine faults. Our implementation of the DTC ensures that
the worst case timing scenario does not leave the datas-
tore in an inconsistent state (”Heisenbugs”) [22].

A race condition can occur due to the distributed and
shared nature of the access to the datastore. Take for ex-
ample the following scenario:

– The DTC acquires a lock on an entity group
– It becomes slow or unresponsive
– The lock expires
– It perform an update to the entity table
– The DTC node silently dies

In this case, we must ensure that the entity is not updated
(overwritten with an invalid version). We detect and pre-
vent such silent faults using the transaction blacklist and
valid versions are retrieved from the journal.

We address other types of failures using the lock leases.
Locks which are held by a faulty service in the cloud will
be released by the GC. We have considered employing
an adaptive timeout on an application or service basis for
applications/services that repeatedly timeout. That is, re-
duce the timeout value for the application/service – or for
individual entity groups – in such cases to reduce the po-
tential of delayed update access. Additional state would
be required that would add overhead to lookup each time-
out value per entity group or application. Currently, the
timeout is configurable upon cloud deployment.

Our system is designed to handle complete system
failures (power outages) in addition to single/multi node
failures. All writes and deletes are issued to the datas-
tore, each write persists on disk before acknowledgment.
No transaction which has been committed is lost attain-
ing full durability (granted at least one replica survived).
Meta state is also replicated in ZooKeeper for full recov-
ery as well as the transaction journal. Replication factor
is also configurable upon cloud deployment.

5 Methodology

In this section, we overview our benchmarks and experi-
mental methodology. For our experiments, AppScale em-



Cloud Platform Datastore Support UCSB Technical Report #2011-08 9

ploys Hadoop 0.20.2, HBase 0.89, Hypertable 0.9.4.3,
MySQL Cluster 6.3.20, Redis 2.2.11, Voldemort 0.80,
MemcacheDB 1.2.1, and Cassandra 0.6.8. We execute
AppScale using a private cluster via the Eucalyptus cloud
infrastructure. Our Eucalyptus private cloud consists of
12 virtual machines with 4 cores, and 7.5 GB of RAM.
We use two public clouds–Amazon’s EC2, using m1.large
instances (4 cores and 7.5 GB of RAM), and Google App
Engine, where the infrastructure is abstracted away. We
synchronize the clocks across the cluster using the Linux
tool ntpdate for both our Eucalyptus cluster and EC2
cluster.

5.1 Single Node Benchmark

Our first experiment measures the latency of datastore
operations with and without the database support layer
and with and without transaction support. We refer to
the measurements without the database support layer as
direct operations. We refer to the measurements with
the database support layer asindirect operations. We
refer to measurements with transaction support astrans
and without asnotrans.

The experiment consists of a single node deployment
using different datastore/database technologies over Eu-
calyptus. We measure datastore latency (end-to-end time)
for put and get operations. For each experiment, we make
sequential requests, first storing (usingputs) 1,000 enti-
ties in the datastore and measuring each request, and then
retrieving each entity (usinggets). Each entity has a
payload of 10 KB. We report the average time with stan-
dard deviation across these requests.

5.2 Transaction Benchmarking Application

We then experiment more extensively using distributed
cloud deployments and a smaller set of datastores. For
these experiments we use a transactional benchmark that
emulates a banking application. In particular, our appli-
cation transfers money from one account to another. Each
instance of the application creates 100,000 accounts. A
request made to the system has a receiver account num-
ber, a sender account number, and the amount to be trans-
ferred.

The implementation of the bank transfer requires two
separate transactional functions. The first transaction sub-
tracts the requested amount from the sender and creates
a transfer record which is a child entity of the sender ac-
count. The second transaction adds the requested amount
to the receiver and creates a transfer record signifying the
successful receivable funds. Errors during the first trans-
action result in a failure to transfer the funds. Errors in the
second transaction require a retry using a cron job which

scans for incomplete transfers. Our results only consider
a request a success if both transactions were successful.

In our experimental setup, three machines serve to
issue different numbers of concurrent bank transfer re-
quests. The numbers we report are for 10, 100, 1,000,
and 10,000 requests. We measure the number of success-
ful operations and the latency (round trip time and ap-
plication time) of the successful requests with 10 trials
each. Round trip time is the time it takes for the request
to receive a response. Application time is a portion of the
round trip time: the time for an application server to han-
dle a request. The difference between the round trip time
and application time is the latency to and from the server
and all queuing delay.

We set the replication factor to two for these exper-
iments. Our AppScale implementation employs 20 ap-
plication servers per node for our Eucalyptus and EC2
cluster. For GAE, Google uses its own scheduling policy
to enable the scaling of applications, and it is unknown
how many servers are being employed.

6 Results

We first present the overhead of the database support layer
and DAT. We then present an extensive evaluation of the
performance and scalability of DAT. We close this sec-
tion with a comparison of AppScale/DAT over EC2 and
Eucalyptus versus GAE’s proprietary implementation.

For this experiment we perform sequential puts and
gets for payloads of 10 KB using an AppScale single
node deployment cloud as described in the previous sec-
tion. We consider the different datastores that we cur-
rently support with the DAT layer and present the results
in Tables 1 and 2 and 3.

Table 1 (labeledDirect) presents the average time
of puts and gets (with standard deviation) when we ac-
cess each datastore directly, i.e. without our database sup-
port layer. Table 2 (labeledNon-Trans) shows this time
with our database support layer. The difference between
these two sets of numbers is the overhead imposed by
this layer to enable application portability across cloud
and datastore systems, system simplicity, elasticity, data-
store plug-in support, and automation of distributed data-
store deployment. On average, the database support layer
adds 8.3 ms to each put and 6.9 ms to each get (when we
omit consideration of the HBase direct access anomaly).
The maximum overhead is 9.8 ms for puts and 7.6 ms
for gets. HBase direct access time for gets seems to be an
outlier, but the data is repeatable – the database support
layer significantly improves its performance.

The layer increases the variance for both operations
for all but HBase. The overhead and variance increase



10 Navraj Chohan et al.

Puts Puts Gets Gets
Direct (msec) (stdev) (msec) (stdev)
Cassandra 0.40 ± 0.12 0.45 ± 0.10
Redis 0.50 ± 0.07 0.22 ± 0.03
HBase 39.30 ± 5.66 38.10 ± 8.48
Hypertable 1.38 ± 0.66 0.47 ± 0.03
Voldemort 14.50 ± 2.08 2.53 ± 0.52
MemcacheDB 2.57 ± 3.39 0.31 ± 0.01

Table 1 A comparison of datastore latencies for put and get using
direct accesses.

Puts Puts Gets Gets
Non-Trans (msec) (stdev) (msec) (stdev)
Cassandra 8.81 ± 4.99 8.09 ± 4.11
Redis 8.25 ± 4.60 7.75 ± 3.78
HBase 46.50 ± 6.87 8.33 ± 4.33
Hypertable 9.26 ± 4.05 7.34 ± 3.38
Voldemort 24.30 ± 4.76 7.84 ± 3.68
MemcacheDB 11.50 ± 19.60 7.61 ± 3.70

Table 2 A comparison of datastore latencies for put and get us-
ing the database support layer in AppScale (without transactions
support).

observed here comes primarily from Nginx and HAProxy
layer which intercepts and load balances requests across
the system. This impact is similar to that for any use of
a load-balancing system in front a distributed database
implementation.

Table 3 (labeledTrans) presents results with our
database support layer (in AppScale)andtransaction sup-
port. The difference between this table and Table 2 is the
additional overhead that is required to support transac-
tion semantics in the system. This overhead is required
regardless of whether the applications executing over the
cloud use transactions in their code. On average, this layer
adds 16 ms (with a maximum difference of 43 ms) to
each put operation and no additional overhead on gets
(the difference is not statistically significant and in some
cases shows an improvement in raw value due to noise).
The variance is similar to that without transaction sup-
port as well. The additional overhead on puts is due to
calls to the ZooKeeper system and to writes to the jour-
nal. For gets, our system employs a only single, very fast,
ZooKeeper call to verify that the version of the entity is
valid for a particular get operation. The differences in the
amount of overhead across datastores derives from how
well the interface to the datastore is implemented (e.g.,
the handling of connection pools) by its progenitors, and
the degree of parallelism that each datastore is able to
achieve for journal and entity table writes (puts).

Since the database support layer enables multiple data-
store technologies to be plugged in and thus evaluated
using the same empirical setup, we can also compare and
contrast the performance and feature sets across datas-
tores. The data in these tables also show that Redis has
the fastest access time for both puts and gets. This is be-

Puts Puts Gets Gets
Trans (msec) (stdev) (msec) (stdev)
Cassandra 13.30 ± 6.83 7.85 ± 3.99
Redis 12.00 ± 3.78 7.91 ± 3.94
HBase 89.70 ± 80.20 8.06 ± 4.15
Hypertable 15.40 ± 5.75 6.96 ± 3.08
Voldemort 57.40 ± 7.69 7.79 ± 3.55
MemcacheDB 21.60 ± 63.30 7.36 ± 3.47

Table 3 A comparison of datastore latencies for put and get us-
ing the database support layer in AppScale (without transactions
support).

cause it is primarily an in-memory datastore. Because of
this, it does not supply the full durability required for
ACID semantics. Yet, if the application does not require
strong durability in the face of failures and the dataset
is small enough to fit within RAM, Redis is an excellent
choice of datastore. Other limitations of Redis include a
lack of sharding of data across nodes, replication occurs
only on and across all slave nodes, and all writes (puts)
must go through a master node. All of these factors im-
pact scalability and system performance when significant
amounts of data are stored.

Cassandra shows very low latency is as well. Cassan-
dra, however, persists data using a write-ahead-log. This
architecture allows for fast puts because seeks are mini-
mized. Writes are done to memtables which are period-
ically flushed to immutable Sorted String Tables (SSTa-
bles). As SSTables accumulate over time, compactions
occur to combine these data files. For both puts and gets,
we configure Cassandra to use a quorum, where a major-
ity of the replicas must respond.

HBase imposes the longest latencies for this set of
datastores. HBase was initially designed for fault toler-
ance and reliability, although newer releases now focus
on performance improvements, so its position in this com-
parison should improve over time. Moreover, HBase’s
performance is highly dependent on HDFS, which pro-
vides the distributed file system. The choice of Java for
its implementation (as opposed to C++ used in other sys-
tems) also impacts performance, memory footprint, and
pause times (for periodic garbage collection). HBase ex-
hibits much higher variance in put and get latency due to
these factors in general, and garbage collection interrup-
tions in particular.

Hypertable performs very well compared to its sim-
ilar counterpart HBase, for both puts and gets, 9.26 ms
and 7.34 ms, respectively. While Hypertable also relies
on HDFS for its distributed storage, it does not have the
drawback of having its own periodic garbage collections
(since the datastore is written in C++).

Voldemort and MemcacheDB both use Berkeley DB
as their persistence layer, although MemcacheDB has more



Cloud Platform Datastore Support UCSB Technical Report #2011-08 11

2 4 6 8 10 12
Number of Machines

0

5

10

15

20

25

La
te

nc
y 

in
 S

ec
on

ds

0.408 0.368 0.336 0.366 0.312 0.311

2.792

1.339 1.049 0.907 0.740 0.781

15.925

8.663

5.589
4.633

4.114 3.973

18.521

16.213
15.331 15.478 15.382 15.612

10
100
1000
10000

(a) Round trip time of successful transaction requests.

2 4 6 8 10 12
Number of Machines

0.0

0.5

1.0

1.5

2.0

La
te

nc
y 

in
 S

ec
on

ds

0.370
0.300

0.257 0.282
0.225 0.227

0.934
0.891

0.933
0.868

0.702
0.741

0.865

0.956
0.999

1.111

1.205

1.371

0.836

0.992
1.071

1.198

1.375

1.533

10
100
1000
10000

(b) Application time of successful transaction requests.

2 4 6 8 10 12
Number of Machines

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f S
uc

ce
ss

fu
l R

eq
ue

st

10 10 10 10 10 10
100 100 100 100 100 100

689

999 999 999 999 999

749

1815

2719

3386

3766

4134

10
100
1000
10000

(c) Number of successful transaction requests.

Fig. 4 Cassandra results as the number of machines increases.

than half the latency of Voldemort for puts, while get
performance is very similar. Both datastores require (for
AppScale query support) the use of a set of reserved meta-
keys and a locking mechanism via memcached to keep
track of which keys belong to which table or keyspace
because the datastore itself does not provide for it. The
management of this keyset imposes very large overheads
on all operations for these datastores. As such, we do not
include them in our performance evaluation of DAT in
the next section. Range query support for these datas-
tores will enable them to be more competitive with the
others when/if it is provided by the developers of these
systems.

6.1 Transaction Performance

We next evaluate more extensively, the transaction per-
formance of our system and datastores. We measure trans-
action performance with three metrics, (1) round trip time
from the requesting client to the application server and
back, (2) the latency of a request to be serviced by an

application server, and (3) the number of successful re-
quests out of the total number of requests sent. As de-
scribed in Section 5, evaluate our system for different
loads and number of nodes.

We focus on those datastores which provide consis-
tent, scalable, and dependent performance. From here for-
ward, for brevity and reasons previously mentioned, we
focus on Cassandra, HBase, Hypertable, and MySQL Clus-
ter distributed database/datastore systems. Moreover, these
datastores are representative of others and represent dif-
ferent points in the design space of database technolo-
gies (peer-to-peer vs master/slave, implementation lan-
guages, maturity, etc.). Even though MySQL Cluster pro-
vides support for relational queries, we use it as a key-
value store like the others and use its native transaction
support to compare to the other datastores under the DAT
system.

Figure 4 shows Cassandra’s performance when the
number of machines varies from 2 to 12. Figure 4(a) de-
picts the round trip time of successful requests and each



12 Navraj Chohan et al.

2 4 6 8 10 12
Number of Machines

0

5

10

15

20

25

La
te

nc
y 

in
 S

ec
on

ds

0.451 0.405 0.394 0.323 0.378 0.354

2.799

1.558 1.231 1.135 0.968 0.855

15.909

13.958

12.198
11.378

10.794 11.156

18.520

16.212
15.805 16.069

16.614 16.884

10
100
1000
10000

(a) Round trip time of successful transaction requests.

2 4 6 8 10 12
Number of Machines

0

1

2

3

4

5

La
te

nc
y 

in
 S

ec
on

ds

0.414 0.335 0.312 0.242 0.296 0.273

0.905
1.048 1.101 1.099

0.933
0.817

1.011

1.538

2.128

2.684

3.179

3.784

0.975

1.522

2.185

2.782

3.398

3.988

10
100
1000
10000

(b) Application time of successful transaction requests.

2 4 6 8 10 12
Number of Machines

0

500

1000

1500

Nu
m

be
r o

f S
uc

ce
ss

fu
l R

eq
ue

st

10 10 10 10 10 10

100 100 100 100 100 100

587

990 999 999 998 998

649

1148

1296

1404 1426
1487

10
100
1000
10000

(c) Number of successful transaction requests.

Fig. 5 HBase results as the number of machines increases.

series shows a different load level. The lowest load level,
where most the system is left idle has the best response
time, 408 ms for a 2 node configuration, and 311 ms
for a 12 node configuration. Additional nodes help al-
leviate load removing queuing delay. This is the case for
all load levels. At the highest load we see that the sys-
tem is overloaded and additional machines are needed
beyond 12 nodes. Whereas 10,000 concurrent requests
do not see much improvement in latency, Figure 4(c)
shows that more requests are being fulfilled linearly as
more machines are added. At 2 nodes there are 749 re-
quests being served, while a 12 node configuration can
serve 4,134 requests. For lower loads of 1,000 requests
or less, most requests are handled successfully with 4 or
more machines.

Figure 4(b) shows application time which is domi-
nated by datastore access. There is a general trend of tak-
ing longer to access the datastore as more load is added.
This also happens when more machines are added be-

cause there is more contention for datastore access as
more requests are handled.

HBase performance is shown in Figure 5. Figure 5(a)
shows round trip time for an increasing number of ma-
chines with a varying load. Compared to Cassandra we
see that the latency does not drop as much as it did for
Cassandra for the 1,000 request case. For Cassandra the
1,000 request case for 12 nodes was measured at 3.973
seconds, but HBase is 11.156 seconds and exhibits higher
variance under the same conditions. Moreover, we see
that Figure 5(b) shows higher application time which is
dominated by HBase’s handling of datastore requests.

Figure 5(c) has similarity with Cassandra for loads
of 1,000 or less in that near 100 percent of requests are
handled, but these requests are handled with much more
latency than Cassandra. Lastly, the most requests that are
handled under a 12 node configuration is on average only
1,487. We suspect this is due to hot tablet contention,
where the key space is located on a particular node that
is overwhelmed with requests.



Cloud Platform Datastore Support UCSB Technical Report #2011-08 13

2 4 6 8 10 12
Number of Machines

0

5

10

15

20

25

La
te

nc
y 

in
 S

ec
on

ds

0.448 0.360 0.360 0.326 0.374 0.377

3.348

1.754 1.600 1.496 1.455 1.423

16.015

14.423

11.122

9.772 9.878
9.175

18.548

16.030 15.711
16.161 16.300 16.089

10
100
1000
10000

(a) Round trip time of successful transaction requests.

2 4 6 8 10 12
Number of Machines

0

1

2

3

4

La
te

nc
y 

in
 S

ec
on

ds

0.412
0.293 0.283 0.246 0.285 0.294

1.068
1.178

1.442 1.457 1.417 1.384

1.158

1.652

1.958

2.302

2.950

3.180

1.105

1.819

2.125

2.837

3.212

3.455

10
100
1000
10000

(b) Application time of successful transaction requests.

2 4 6 8 10 12
Number of Machines

0

500

1000

1500

2000

Nu
m

be
r o

f S
uc

ce
ss

fu
l R

eq
ue

st

10 10 10 10 10 10

100 100 100 100 100 100

515

973 999 999 999 998

572

944

1381 1376

1529

1722

10
100
1000
10000

(c) Number of successful transaction requests.

Fig. 6 Hypertable results as the number of machines increases.

Hypertable has very similar characteristics to that of
HBase as seen in Figure 6 because both provide similar
implementations of Google’s BigTable architecture. The
round trip time (Figure 6(a)) and the application time
(Figure 6(b)) both show slightly favorable latencies for
Hypertable over HBase primarily because of Hypertable’s
use of C++ over Java and thus better memory manage-
ment (no garbage collection overhead). At 12 nodes with
the highest load, Hypertable completes 1,732 requests
with an average latency of 16.089s, compared with HBase’s
1,437 requests at 16.884s.

Figure 7 presents MySQL Cluster’s performance for
a varying number of machines. MySQL’s transaction im-
plementation does not use the DAT system, rather it em-
ploys its own native transaction support. All requests to
begin a transaction and commit a transaction go directly
to the datastore and transaction handles are assigned by
MySQL as opposed to using ZooKeeper. MySQL is not
informed of entity groups and cannot leverage this in-
formation for its locking purposes and thus uses course

grain locks limiting its ability to scale the number of con-
current transactions as see in Figure 7(c). Latencies are
also much higher for application time, which go as high
as 6.177s.

Our next set of graphs (Figure 8 provide a side-by-
side comparison between different databases (although
the data is repeated from the graphs presented previously)
for the heaviest load (10,000 requests). Figure 8(a) com-
pares the round trip time, Figure 8(b) compares applica-
tion request latencies, and Figure 8(c) compares the num-
ber of successful transactions completed for the work-
load. Application request time again is the time between
when the application server receives the request and when
it replies (the round trip time minus the routing time and
queuing delay) to the application.

The comparison shows similar round trip time across
datastores. However, there is a significant difference in
the number of completed requests (Figure 8(c)). The lower
the latency on the application time, the more requests can
be served. Also for all systems, as the number of ma-



14 Navraj Chohan et al.

2 4 6 8 10 12
Number of Machines

0

5

10

15

20

25

La
te

nc
y 

in
 S

ec
on

ds

4.352

0.931 0.709 0.775
0.365 0.385

12.125

4.982

3.670
2.998

2.525 2.273

17.330 17.397 17.332 17.145 16.749

13.497

17.931 17.865

15.797

17.818 17.558 17.624

10
100
1000
10000

(a) Round trip time of successful transaction requests.

2 4 6 8 10 12
Number of Machines

0

1

2

3

4

5

6

7

8

La
te

nc
y 

in
 S

ec
on

ds

4.313

0.903
0.685 0.752

0.344 0.364

4.061

3.432 3.363

2.949

2.477
2.200

4.610
4.791

5.075

5.557 5.630

4.8024.918

5.398

4.749

5.725

6.177

5.633

10
100
1000
10000

(b) Application time of successful transaction requests.

2 4 6 8 10 12
Number of Machines

0

200

400

600

800

1000

1200

Nu
m

be
r o

f S
uc

ce
ss

fu
l R

eq
ue

st

10 10 10 10 10 10

100 100 100 99 99 99111

308

483

624

768

976

107

280

533

586

728

957

10
100
1000
10000

(c) Number of successful transaction requests.

Fig. 7 MySQL Cluster results as the number of machines increases.

chines increases there is more time spent in the datastore
layer and less in front-end queuing delay. In summary,
under this load, Cassandra serves the most requests and
MySQL cluster serves the least. Overall Cassandra with
our DAT layer imposes lower latencies and higher scal-
ability than any other datastore, followed by Hypertable
and HBase and then by MySQL cluster. MySQL clus-
ter performance and scalability are limited by its use of
course-grain locking.

We next focus on the Cassandra data store and inves-
tigate the overhead of the DAT system for transactional
workloads. We measure the overhead of DAT measured
by disabling the calls to ZooKeeper and journal writes,
each of which adds latency and therefore reduces the to-
tal number of processed requests when under high load.
Note that this disables full ACID semantics and we only
include it to lend insight into the performance of the DAT
layer. In this scenario, each transactional block become a
series of unprotected put and get operations.

The results are shown in Figure 9. While round trip
time is very similar (Figure 9(a)), we see that applica-
tion time is much less and ranges from 0.84-1.53 seconds
under heavy load to 0.64-0.90 seconds with transactions
disabled.

The number of successful requests, shown in Fig-
ure 9(c), is as high as 7,182 with transaction support turned
off (it is 4,134 with it turned on). The overhead comes in
two primary forms which are required for DAT. First is
the additional write which happens to the journal. This
means there is double the load to the datastore system
for each application put. To keep this overhead low, both
puts to the entity table and the journal are performed
in parallel. However, under heavy loads response times
can increase. Additionally, each ZooKeeper operation is
performed in a blocking manner, which is required for
transactional semantics. An optimization we employ is
to use asynchronous calls to ZooKeeper when appropri-
ate (when doing so does not invalidate the semantics).
These calls are not required to be successful because they



Cloud Platform Datastore Support UCSB Technical Report #2011-08 15

0 4 6 8 10 12
Number of Machines

0

5

10

15

20

25

La
te

nc
y 

in
 S

ec
on

ds

18.521

16.213
15.331 15.478 15.382 15.612

18.520

16.212 15.805 16.069
16.614 16.884

17.931 17.865

15.797

17.818 17.558 17.624
18.548

16.030 15.711
16.161 16.300 16.089

cassandra
hbase
mysql
hypertable

(a) Round trip time of successful transaction requests.

0 4 6 8 10 12
Number of Machines

0

2

4

6

8

La
te

nc
y 

in
 S

ec
on

ds

0.836 0.992 1.071 1.198
1.375

1.533

0.975

1.522

2.185

2.782

3.398

3.988

4.918

5.398

4.749

5.725

6.177

5.633

1.105

1.819
2.125

2.837
3.212

3.455

cassandra
hbase
mysql
hypertable

(b) Application request time of successful transaction requests.

0 4 6 8 10 12
Number of Machines

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f S
uc

ce
ss

fu
l R

eq
ue

st

749

1815

2719

3386

3766

4134

649

1148
1296

1404 1426 1487

107
280

533 586
728

957

572

944

1381 1376
1529

1722

cassandra
hbase
mysql
hypertable

(c) Number of successful transaction requests.

Fig. 8 A comparison of different datastores under heavy load as thenumber of machines increases. This data is also presented inthe
previous graphs and combined here for easy comparison.

will be redone through the garbage collection mecha-
nism. An example of when this is employed is during
the commit phase of a transaction. Nodes can be asyn-
chronously deleted, and if a failure happens, a garbage
collection thread finds and removes them.

6.2 AppScale and Other Cloud Fabrics

We next compare our transactional system across two dif-
ferent public cloud offerings, and do so using the same
transaction benchmark. We employ AppScale on EC2
using Cassandra for a 12 node configuration and bench-
mark it under high load (10,000 requests). The requests
originate from three nodes within the same EC2 region
to minimize latency for the round trip time. Google App
Engine runs the same application unmodified, yet in this
deployment the number of machines and resources is un-
known. For the App Engine deployment billing is en-
abled to ensure our benchmarking is unimpeded by quo-
tas. The requests for GAE originate from the same three

Successes App Time (s) RTT (s)
GAE 7263.1± 1736.29 0.187± 0.022 12.41± 2.078
EC2 2169.7± 133.30 2.843± 0.144 15.52± 0.577
Euca 4134.2± 336.21 1.533± 0.136 15.61± 1.031

Table 4 A comparison between GAE, 12-node Cassandra App-
Scale on EC2, and 12-node Cassandra AppScale on a Eucalyptus
cluster under high load.

machines we used for our Eucalyptus testing, which are
three nodes from within our local cluster.

Table 4 compares the two public clouds and our pri-
vate cloud all under heavy load using the same metrics
as we used in the previous graphs (number of success-
ful requests out of 10,000, the average application time
per request, and the average round trip time (RTT) per
request). The data shows that GAE scales very well, con-
trary to previous results [23], due to upgrades since it was
last benchmarked. GAE has multiple advantages com-
pared to our EC2 and Eucalyptus deployment. Firstly,



16 Navraj Chohan et al.

2 4 6 8 10 12
Number of Machines

0

5

10

15

20

25

La
te

nc
y 

in
 S

ec
on

ds
0.334 0.429 0.407 0.355 0.352 0.354

1.979
1.107 0.849 0.751 0.563 0.569

15.804

7.139

4.661

3.389
2.822 2.585

19.035

16.291
15.499 15.221 15.366 15.583

10
100
1000
10000

(a) Round trip time of successful transaction-disabled requests.

2 4 6 8 10 12
Number of Machines

0.0

0.2

0.4

0.6

0.8

1.0

1.2

La
te

nc
y 

in
 S

ec
on

ds

0.298 0.302 0.284
0.256 0.249 0.259

0.636

0.718 0.707
0.661

0.457 0.458

0.676

0.778
0.827 0.818 0.831

0.900

0.643

0.774

0.825
0.792

0.820

0.899

10
100
1000
10000

(b) Application time of successful transaction-disabled requests.

2 4 6 8 10 12
Number of Machines

0

2000

4000

6000

8000

Nu
m

be
r o

f S
uc

ce
ss

fu
l R

eq
ue

st

10 10 10 10 10 10100 100 100 100 100 100

877 1000 1000 1000 1000 1000995

2348

3542

5159

6425

7182

10
100
1000
10000

(c) Number of successful transaction-disabled requests.

Fig. 9 Cassandra results with transactions disabled.

GAE does not operate using virtualization (virtual ma-
chines). Second, while our AppScale deployments are 12
nodes, GAE is capable of leveraging far more machines
within the capacity of Google’s massive infrastructure.
GAE is also finely tuned to use Megastore and BigTable,
whereas AppScale trades off potential performance gains
by adding an abstraction layer for flexibility in the back-
end.

Our private Eucalyptus cluster performs significantly
better than a comparable EC2 cluster of 12 nodes un-
der high load with lower application latency and a higher
number of successful requests. Our private cluster has a
few advantages compared to the EC2 cluster in that it
is in a non-shared environment and there are no other
users of this cluster. Disk bandwidth and network band-
width are not in contention in our private cluster, whereas
in EC2 the virtual machines performance may vary de-
pending on the level of provisioning onto the physical
machines. Moreover, the nodes are all located on a single

rack, whereas for EC2 machines are placed on different
racks as available [37].

7 Related Work

Distributed transactions, two-phase locking, and multi-
version concurrency control (MVCC) have been employed
in a multitude of distributed systems since the distributed
transaction process was defined in [3]. Our design is based
on MVCC and uses versioning of data entities. Google
App Engine’s implementation of transactions uses opti-
mistic currency control [41], which was first presented
by Kung et al. in 1981 [24].

There are two systems closely related to our work that
provide a software layer implementing transactional se-
mantics over top of distributed datastore systems. They
are Google’s Percolator [34] and Megastore [2]. Percola-
tor is a system, proprietary to Google, that provides dis-
tributed transaction support for the BigTable datastore.
The system is used by Google to enable incremental pro-
cessing of web indexes. Megastore is the most similar



Cloud Platform Datastore Support UCSB Technical Report #2011-08 17

to our system as it is used directly by Google App En-
gine for transactions and for secondary indexing. Our
approach is database agnostic and not tied to any par-
ticular datastore. Prior approaches tightly couple trans-
action support to the database. DAT can be used for any
key/value store and, with AppScale, provide scale, fault
tolerance, and reliability with an open source solution.
Moreover, our system is platform agnostic as well (run-
ning in/on Eucalyptus, OpenStack [33], EC2, VMWare,
Xen [42], and KVM [25]) while automatically installing
and configuring a datastore and the DAT layer for any
given number of nodes.

Cloud TPS [40] provides transactional semantics over
key spaces in datastores such as HBase. Cloud TPS achieves
high throughput because its design is based heavily in
in-memory storage. Replication is done across nodes in
memory, and the system will periodically flush the data
to a persistence layer such as S3 or another cloud stor-
age. DAT differs from Cloud TPS providing higher dura-
bility because DAT requires each write to be written to
disk. In the case of system wide outages, it is possible to
lose all transactions which have not been persisted with
Cloud TPS, while in DAT all writes are written to a jour-
nal which is replicated on disk at multiple nodes.

In [23] Kossman et al. compared different clouds and
datastores, one of which is GAE. GAE has improved over
time so the results, while valid at that point in time, are no
longer valid. The same can be said for the other clouds
which were benchmarked, as each system has evolved
over time.

8 Conclusions

With this work, we investigate the trade offs of providing
cloud platform support for multiple distributed datastores
automatically and portably. To enable this we design and
implement a database support layer, i.e. a cloud data-
store portability layer, that decouples the datastore in-
terface from its implementation(s), load-balances across
datastore entry points in the system, and automates dis-
tributed deployment of popular datastore systems. Devel-
opers write their application to use our datastore API and
their applications execute using any datastore that plugs
into the platform, without modification, precluding lock-
in to any one public cloud vendor. This support enables
us to compare and contrast the different systems for dif-
ferent applications and usage models and enables users
to select across different datastore technologies with less
effort and learning curve.

We extend this layer to provide distributed ACID trans-
action semantics to applications – that is independent,
AKA agnostic, of any particular datastore system and

that does not require any modifications to the datastore
systems that plug into our cloud portability layer. These
semantics allow applications to update atomically multi-
ple key-value pairs programmatically. We refer to this ex-
tension as DAT for database-agnostic transactions. Since
no open source datastore today provide such semantics,
this layer facilitates their use by new applications and ap-
plication domains including those from the business, fi-
nancial, and data analytic communities, that depend upon
such semantics. We implement this layer within the open
source AppScale cloud platform. Our system (including
all databases) is available fromhttp://appscale.
cs.ucsb.edu.

We empirically evaluate the overhead and scalability
of this layer using a number of popular database tech-
nologies and different cloud systems. We find that the
portability layer adds approximately 7-8 ms to puts/gets
(reads/writes) due to load balancing across datastore en-
try points in the cluster. We find that DAT adds an addi-
tional 16 ms on average across datastores to each put/write
for lock acquisition and journaling (and no additional
overhead to get/read operations). We find that the scal-
ability, throughput, and latency of transactional applica-
tions (e.g. a financial exchange) using our system varies
significantly across datastores but that the Cassandra data-
store performs best. Finally, we find that DAT with the
Cassandra datastore performs better and is more scalable
than native MySQL cluster transaction support.

9 Acknowledgements

This work was funded in part by Google, IBM, and the
National Science Foundation (CNS/CAREER-0546737,
CNS-0905273, and CNS-0627183).

References

1. Amazon Web Services home page.http://aws.amazon.
com/.

2. J. Baker, C. Bond, J. Corbett, J. Furman, A. K. J. Larson,
J. Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore: Pro-
viding Scalable, Highly Available Storage for InteractiveSer-
vices. In Conference on Innovative Data Systems Research
(CIDR), pages 223–234, January 2011.

3. P. A. Bernstein and N. Goodman. Concurrency control in dis-
tributed database systems.ACM Comput. Surv., 13(2):185–
221, 1981.

4. P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency
control and recovery in database systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1987.

5. C. Bunch, N. Chohan, C. Krintz, J. Chohan, J. Kupferman,
P. Lakhina, Y. Li, and Y. Nomura. An Evaluation of Dis-
tributed Datastores Using the AppScale Cloud Platform. In
IEEE International Conference on Cloud Computing, 2010.



18 Navraj Chohan et al.

6. C. Bunch, N. Chohan, C. Krintz, and K. Shams. Neptune: a
domain specific language for deploying hpc software on cloud
platforms. In International Workshop on Scientific Cloud
Computing, pages 59–68, 2011.

7. M. Burrows. The Chubby Lock Service for Loosely-Coupled
Distributed Systems. InOSDI’06: Seventh Symposium on Op-
erating System Design and Implementation, 2006.

8. Cassandra.http://cassandra.apache.org/.
9. T. Chandra, R. Griesemer, and J. Redstone. Paxos Made Live

- An Engineering Perspective. InPODC ’07: 26th ACM Sym-
posium on Principles of Distributed Computing, 2007.

10. F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: A
Distributed Storage System for Structured Data. InSymposium
on Operating System Design and Implementation, 2006.

11. F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: A
Distributed Storage System for Structured Data.Proceedings
of 7th Symposium on Operating System Design and Implemen-
tation(OSDI), page 205218, 2006.

12. N. Chohan, C. Bunch, Y. Nomura, and C. Krintz. Database-
Agnostic Transaction Support for Cloud Infrastructures. In
IEEE International Conference on Cloud Computing, 2011.

13. B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yer-
neni. PNUTS: Yahoo!’s hosted data serving platform.Proc.
VLDB Endow., 1(2):1277–1288, 2008.

14. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels. Dynamo: Amazon’s Highly Available Key-Value
Store. InSymposium on Operating System Principles, 2007.

15. ejabberd.http://ejabberd.im.
16. Eucalyptus home page. http://eucalyptus.cs.

ucsb.edu/.
17. Hadoop Distributed File System. http://hadoop.

apache.org.
18. Hadoop MapReduce.http://hadoop.apache.org/.
19. HAProxy.http://haproxy.1wt.eu.
20. HBase.http://hadoop.apache.org/hbase/.
21. Hypertable.http://hypertable.org.
22. G. Kola, T. Kosar, and M. Livny. Faults in large distributed

systems and what we can do about them.Lecture Notes in
Computer Science, 3648:442–453, 2005.

23. D. Kossmann, T. Kraska, and S. Loesing. An evaluation of al-
ternative architectures for transaction processing in thecloud.
In International Conference on Management of Data, pages
579–590, 2010.

24. H. T. Kung and J. T. Robinson. On optimistic methods for
concurrency control.ACM Trans. Database Syst., 6(2):213–
226, 1981.

25. Kernel based virtual machine.http://www.linux-kvm.
org/.

26. L. Lamport. The Part-Time Parliament. InACM Transactions
on Computer Systems, 1998.

27. ”memcached”.http://memcached.org.
28. MemcacheDB.http://memcachedb.org/.
29. MongoDB.http://mongodb.org/.
30. MySQL Cluster.http://www.mysql.com/cluster.
31. Nginx.http://www.nginx.net.
32. D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,

L. Youseff, and D. Zagorodnov. The eucalyptus open-source
cloud-computing system. In”9th IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGRID)”,
May 2009.

33. OpenStack.http://openstack.org.

34. D. Peng and F. Dabek. Large-scale Incremental Processing Us-
ing Distributed Transactions and Notifications. InSymposium
on Operating System Design and Implementation, 2010.

35. Protocol Buffers. Google’s Data Interchange Format.http:
//code.google.com/p/protobuf.

36. Redis.http://redis.io.
37. T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,

you, get off of my cloud: exploring information leakage in
third-party compute clouds. InProceedings of the 16th ACM
conference on Computer and communications security, CCS
’09, pages 199–212, New York, NY, USA, 2009. ACM.

38. SimpleDB.http://aws.amazon.com/simpledb/.
39. Voldemort.http://project-voldemort.com/.
40. Z. Wei, G. Pierre, and C.-H. Chi. Scalable transactions for web

applications in the cloud. InProceedings of the Euro-Par Con-
ference, Delft, The Netherlands, Aug. 2009.http://www.
globule.org/publi/STWAC_europar2009.html.

41. What is Google App Engine?http://code.google.
com/appengine/docs/whatisgoogleappengine.
html.

42. XenSource.http://www.xensource.com/.
43. ZooKeeper. http://hadoop.apache.org/

zookeeper.


