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Abstract. The search for shortest paths is an essential primitive f@rigty of
graph-based applications, particularly those on onlir@asmetworks. For ex-
ample, LinkedIn users perform queries to find the shortesit {wocial links”
connecting them to a particular user to facilitate intrdares. This type of graph
query is challenging for moderately sized graphs, but besoocomputationally
intractable for graphs underlying today’s social netwprkest of which contain
millions of nodes and billions of edges. We propdgkas, a novel approach to
scalably approximate shortest paths between graph nodes aigollection of
spanning trees. Spanning trees are easy to generate, damlaéige to original
graphs, and can be distributed across machines to pazaltgieries. We demon-
strate its scalability and effectiveness using 6 largesgaraphs from Facebook,
Orkut and Renren, the largest of which includes 43 milliode®and 1 billion
edges. We describe techniques to incrementally updates A8asocial graphs
change over time. We capture graph dynamics using 35 dailyséiots of a Face-
book network, and show that Atlas can amortize the cost efiipelates over time.
Finally, we apply Atlas to several graph applications, amalxsthat they produce
results that closely approximate ideal results.

1 Introduction

The search for shortest paths is a critical component uyidgrhumerous Internet ser-
vices and applications. Itis a particularly useful pringtfor operators of online social
networks (OSNs), whose operations involve analyzing armterstanding the relation-
ships of users in massive social graphs. OSNs like Facebiwaker and LinkedIn
are some of the most popular destinations on the Interneh kore than 400 mil-
lion users, OSNs like Facebook face the difficult challenfggrocessing shortest-path
related queries on the massive social graph in near real time

More specifically, OSN operators are often interested iolvésg two types of
graph queries. First, they would like to support high leveph analysis operations
such as computing graph eccentricity in subgraphs, or tietgéocating central nodes
in subgraphs for targeted ad placement. These applicameisrequire large numbers
of shortest path distance computations between pairs adsa&econd and more im-
portantly, OSN operators need to determine and display do&lsrelationships that
connect two users. For example, a user in the LinkedIn bssinetwork generates
queries to determine how she is connected through mutealdsito potential new con-
tacts. Similarly, in the Overstock social auction site, arus more likely to make a
purchase if she knows the sequence of friendships that coheeto a seller [26]. In
these scenarios, we not only need the number of hops sematat users, but also an
exact path of nodes connecting them.



Two additional issues make the problem even more challgngirst, popular OSNs
have social graphs with hundreds of millions of users anlibb# of edges. In many
cases, even a barebone edge-list representation of a lagie will not fit in a server’s
main memory, making even basic graph operations impracgesond, these graphs
are constantly changing, and a graph analysis system muainkeable to frequent
graph updates.

While there are a number of different techniques for conmgushortest paths and
node distances in graphs, none are appropriate for theandlype of graphs presentin
online social networks. For a graph wifii| nodes andE| edges, traditional techniques
like Dijkstra, Breadth-first-search (BFS), or Floyd-Waaliltan find shortest paths in
O(|Vlog|V| + |E|) time, or shortest-path for all node pairs@y|V|*) time. These
techniques do not scale to million-node graphs, and canupke a minute per path
computation even on today’s hardware [22]. A second apprigato precompute all
shortest paths offline. However, the set of all possiblepfihlarge graphs would not
fit in physical memory of today’s servers. In addition, orlgocial networks are highly
dynamic, and the addition of new nodes and edges can quinkdjidate precomputed
paths. Finally, techniques such as the A* algorithm assulaeap properties missing
from social graphs [16], and graph embedding approachesmigrestimate distance
between nodes, but not provide actual paths connecting f2&m

In this paper, we investigate the feasibility of an alterregtlight-weight approach
towards approximating shortest paths between node paagoaph, using large social
graphs from real world measurements. We propittas, a system that provides accu-
rate estimates of shortest paths by using a constant nurhbgaoning trees to capture
significant structures of the graph. By consulting the pattwieen a pair of nodes on
multiple spanning trees, we can find real paths between thatclosely approximate
or match their actual shortest path on the full graph.

Our approach to shortest path computation has several kefitse First, the span-
ning trees used by our approach are both compact and eassnfiut®, making it ideal
for distributed computation across clusters. For a graph Wi| nodes andE| edges,
each spanning tree consists only|&f nodes andV’| — 1 edges, and can be built us-
ing a single breadth-first-search (BFS) across the grapt(j&|) time). For highly
connected social graphs with average node degree clds#taehis represents a two-
orders of magnitude size reduction compared to the origjregph. An OSN provider
can easily distribute Atlas across a cluster by maintaioimg spanning tree per server.
Even if a single tree becomes too large for a server’s main ongnit is easy to fur-
ther decompose and distribute the tree into multiple brasolm multiple servers using a
node index server. Second, spanner forests approximabalyatode distance, but also
provide actual short paths connecting each node pair.lir&ken as the actual graph
changes with the addition or removal of nodes and edges, wmaintain the accuracy
of Atlas paths by incrementally updating spanning treestas query results.

We make four key contributions. First, we describe the Adlpgroach towards ap-
proximating shortest paths on large social graphs (Se8)iowe also explore different
spanning tree construction techniques, investigate thgiact on shortest paths, and
propose mechanisms to process graphs that do not fit into memory (Section 4).
Second, we evaluate the accuracy of Atlas paths on a varfedpaial graphs from



OSN measurements, including data from Facebook, Orkukif-lLiveJournal, and fi-
nally Renren, the largest OSN in China (Section 5). Our apghicscales to a large
Renren graph with 43 million nodes and 1 billion edges. Resliow that with a smalll
number of trees~20), Atlas can produce paths between nodes that closelysippr
mate their shortest path, using only 0.3 milliseconds pergon commodity servers.
Third, we also examine the efficacy of using Atlas in graphysig applications, and
show that its approximate path can be used to produce ae@pplication results (Sec-
tion 5.5). Finally, we propose and evaluate different apphes to maintain Atlas under
graph dynamics, and show that we can maintain high accunaggiforming simple,
incremental updates to the spanning trees (Section 6).

2 Goals and Potential Solutions

Before we describe Atlas in more detail, we first define oubfgm, and specify our
goals. We then group and describe existing approaches cmsiier their appropriate-
ness for our problem. Finally, we describe graph spannigstand explain why they
are a potential attractive solution.

2.1 Goals and Problem Definition

We are primarily interested in the problem of identifyingoshpaths between node
pairs in large social graphs. While we target dual goals tiineging node distance and
finding a short path between nodes, we focus our attentiometatter, since an ap-
proximate shortest path would answer both questions. Mzeeifically, given a social
graphG = {V, E}, our goal is to build a system that answers shortest pathesguier
real-time. Given a query with two nodesandb € V, the answer is an approximate
shortest path connectingo b. These queries are more general than queries that only re-
quire shortest path length (node distance), since nodendistcan always be computed
from approximate paths.

We assume grapty is large,i.e. has more than 100,000 nodes, and exhibits the
general characteristics of a social graph, high connectivity with an approximate
Power-law degree distribution. For instance, the sociaplyrof Renren [4] has 43 mil-
lion nodes and 1 billion edges as of Jan. 2010, which req@2e&B to store using
an efficient neighbor list representation. Graph proceskimaries such as the Boost
Graph Library or NetworkX generally require a 5-7x increasenemory footprint.
Thus processing queries by loading the entire graph intarthmory of a single ma-
chine is not feasible. Note that processing a query usuagds much more memory
than merely storing the graph.

2.2 Existing and Related Work

Having defined the challenge before us, we begin by first wanig existing and recent
related work in the area. More specifically, we look at selvéiféerent classes of al-
gorithms for computing or estimating shortest paths indaggaphs, and consider the
feasibility of applying each to our problem.

Dijkstra’s Algorithm. Dijkstra’s Algorithm [8] is the most basic algorithm to com-
pute point-to-point shortest paths for general graphs. @neighted graphs ofV|
nodes andE| edges, it reduces to Breadth-First-Search (BFS), and tmplexity is



O(|V|+|E]). To find shortest path betweerandb, it searches the nodes inside a circle
of all equidistant nodes centeredaatThe circle gradually grows until it touchésat
which point the shortest path is found. An improved vers®Bidirectional Dijkstra,
which grows two circles from both andb, and the shortest path is found once the
two circles intersect. On large-scale graphs, particuldbse with high average node
degree, a Dijkstra (or Bidirectional Dijkstra) search wilit a significant portion of

the graph within3 — 4 hops, and thus does not provide the performance we desire for
massive social graphs.

Planar-Driven Algorithms.  Other techniques have been proposed to improve Dijk-
stra’s efficiency on large geographic maps. We categoramihto two types. One type
leverages the planar property of map graphs. Thalgorithm [16] is similar to Dijk-
stra, except that it grows the search area with a bias. freferis given to the nodes
that are estimated to be closer to the destination. On pgawgraphic graphs, Euclid-
ian distance [16, 21] provides a good estimate of proxiniitye ALT algorithm [12,13]
uses a set of carefully chosen landmarks to improve thismiagti. Estimates on the dis-
tance between any pair of nodes are obtained by applyingitiregular inequality to
their respective distances to a set of landmarks. To obtzd gstimates, the landmarks
are usually chosen at the edge of the planar area [13]. Ofp@}partition the graph
into regions and guide the search using region-specificrimdion.

Structure-Driven Algorithms.  The second type of techniques leverages the inher-
ent structural properties of geographic graphs. The id&afiscus the search on struc-
tural highways in the graph to shrink the search space. Fonple, reach-based algo-
rithms [11, 14] identify structural highways using the watiof reach. Informally, the
reach [14] of a node measures how important it is to the shiopiEths between other
pairs in the graph. A node with a high reach maps to a cruciatpn a backbone, and
a node with a low reach usually exists on a local road systenfoBusing on high-
reach nodes, reach-based algorithms greatly speed upahehs&he authors in [24]
propose to apply the highway extraction technique iteesitito obtain a hierarchy of
increasingly simplified highways. A search starts from thedst level of the hierarchy
and moves to the higher levels as it goes.

Landmark-Based Algorithms.  Researchers have extensively used landmark-based
approaches to estimate distances in graph structurese Bipgsoaches select a subset
of nodes as landmarks and pre-compute the distances framlaaimark to all other
nodes in the graph. To answer a query, they examine the shpeths through any of
the landmarks, and pick the shortest one among them. [1Wssti@t randomly picking
landmarks can achieve good theoretical guarantees. [p&fementally shows that se-
lecting landmarks using basic metrics may generate morgatrapproximations. The
Orion system [29] uses a similar idea, but embeds the emyghgnto a low-dimension
Euclidean space, then uses Euclidean distance computatémiimate node distances.
Finally, Song et al. recently proposed two solutions to thmglementary problem of
scalable proximity estimation for online social networRS]. And these algorithms are
designed to estimathortest path distance, not to locate an actual path.

Spanner-Based Algorithms. In graph theory, people have used the notion of graph
spanners to compute approximate shortest paths. A spaaesubgraph with all the
nodes and only a small subset of edges. Many algorithms witiable guarantees



have been designed to construct spanners that approxinatest paths. Algorithms

in [9, 10] produce a spanner with(|V |>/?) edges, where shortest paths between any
pair of nodes on the spanner are at mbkbps longer than those in the original graph.
With the same upper bound on spanner size, [6] produces aspahere shortest paths
are at mos8 times longer than original.

2.3 Our Approach: Graph Spanners

We customize our solution based on the structural propgedidarge social graphs.
More specifically, we consider two key characteristiese connectivity and small-
world property, both of which have been observed in real social graphs B9 Fbr
example, typical average degree in social graphs is 60-28)Q ompared to 4-5 in
geographic graphs [13]. Similarly, average distance inas@raphs is 4—6 hops [28],
compared to 100+ hops in geographic graphs.

These two characteristics make planar- and structuresalgorithms inefficient,
since they leverage the planar connectivity and backbouetste in geographic graphs.
But given their dense connectivity and small average digtasocial graphs lack a pla-
nar or backbone structure.

On the other hand, these properties of social graphs aré fiolegpanner-based
algorithms. Because of the dense connectivity, there dem ohany different shortest
paths between two nodes. As a result, a sparse spannetysttikireserve short paths
between arbitrary node pairs, while greatly reducing thaiper of edges stored in the
spanner. In comparison, landmark-based algorithms fdtqeaths to go through one
of the landmarks. For two close by nodes, this means locéispa¢tween them are
ignored, thus producing significantly longer approximadths.

3 Atlas Design

We describe Atlas, a system for approximating shortestspathlarge social graphs.
We start by outlining the main challenges and presentingvanview of the system,
followed by details of the proposed algorithms.

3.1 Overview

While previous work on graph spanners has demonstratedftwieeness of this ap-
proach on shortest path problems, they are impracticaldopooblem context. More
specifically, prior work focused on general graphs, andrélyms produced graph span-
ners that approximate shortest paths either by a multipliedactor of3 [6] or by an
additive factor of2 [9, 10]. For social graphs with typically short path lengtifsi—

6, these theoretical bounds are clearly unacceptable. Tagtee an additive factor of
< 2, the spanners must lo&|V'|?/2) in size, which is not a significant saving compared
to the original graph. Thus, we seek to construct graph sgarespecially customized
for social graphs to produce accurate approximations at stmal long paths.

Our insight in designing Atlas is to utilize a probabilisipproach to locating short
paths. Instead of searching for a single graph spanner witticplar properties, we
instead propose to construct for every graph multiple spesjreach centered at a dif-
ferent root node. As shown in Figure 1, each spanner condimodes, but only a
small fraction of edges of the original graph. The resultgs@up of compact spanners,



Fig. 1. Atlas constructs multiple spanners from the original graphch spanner contains all
nodes in the original graph, but only a small fraction of tdges. To find a short path between
two nodes, Atlas finds the shortest path between them on g@acimer, then selects the shortest
among the result paths.

each of which is likely to fit into the main memory of today’'snamodity servers. We
resolve a shortest path query by searching on each graphespian a short path, then
selecting the shortest path among the resulting paths.

We designed Atlas to scale extremely well across distribatemputing resources,
e.g. computing clusters. For example, running Atlas on a singlelmne means we load
each of the (potentially large) graph spanners sequeniieth memory, query it, then
repeat. To minimize data transfer latency from secondamage €.g. disk storage) to
main memory, a much more efficient approach would distritasteh spanner onto a
separate server, then parallelize queries across main rgemeries at each server.

3.2 Choosing Spanners

Before describing Atlas’s algorithm for constructing spars, we first identify the types

of spanners suitable for our problem context. We outlinedgired properties of the

spanners, and show that spanning trees based spannerefitly¢o our requirements.
To support efficient shortest path query on large social igape design Atlas

spanners to satisfy the following three properties:

e Small insize.  Each spanner should contain only a small fraction of edgekeof

original graph, for easy storage and processing.

e Fast path computation.  Each spanner should display special structure thus comput-
ing shortest paths on it is much faster than running a gea&garithm €.g. BFS).

e Complementary coverage. Ideally, spanners should cover complementary paths, so
the shortest path between each node pair should be well@dp@ted by at least one
of the spanners.

A Case for Spanning Trees. The simplest structure satisfying the first two proper-
ties is a spanning tree graph. It contains the minimum nurabedges to connect all
the nodes in the graph. The shortest path between two node$rea can be uniquely
found by routing the nodes to their lowest common ancesfaugbg highly efficient
algorithms [15]. To realize the third property, we needtsgées for building multiple
(complementary) trees that together approximate theraligjraph. In Atlas we exper-
iment with several heuristics for constructing and growtiegs.



We note that spanning trees are especially well suited 8iridiuted computing. A
single spanning tree too large to fit into memory can be furtivdded into separate
subtrees and distributed across servers. For example,méivdele a tree into subtrees
rooted at the children of the root. If both nodes in a queryardhe same subtree,
then it suffices to query only the subtree. Otherwise, thetekbpath is constructed by
routing both nodes to the roate. by querying their individual subtrees separately.

3.3 Constructing Spanning Trees

To build spanning trees, we consider a simple constructigorithm as follows. To
build a single tree, we first choose a root node from the gr&fdrting from this root,
we iteratively add edges, where each edge connects a newmatdm the current tree)
to a node on the current tree. This process terminates wheadsds have been added.

The above algorithm requires two major design decisionsiatg how to choose
the root for each tree, and how to grow a tree by choosing ae gdgach iteration.
Both decisions will affect the coverage of the resultingspag trees. In the following,
we propose several strategies in choosing the root and ggawe tree.

Step I: Selecting Roots. Intuitively, for a single tree, selecting a root that is tisely
central in the graph tends to minimize the tree depth, thuémizing the average path
length of the tree. Similar strategies have been shown tdfbetige in landmark se-
lection problems [22]. There are several widely acceptettioseto measure a node’s
centrality, among which the degree centrality or node degrthe simplest. Alternative
centrality metrics, such as closeness, betweenness agvejor centrality, are very
difficult to compute [22] and thus not considered in our study

To select roots fok spanning trees, we consider the following three strategies

e Top-k Centrality. It choosesk nodes with the highest node degrees, seeking to
minimize the depth of each tree. It does not explicitly mdletrtees complementary to
each other.

e Scattered Top-k Centrality. It selects the node with the largest degree as the root
for the first tree. For each subsequent tree, it selects thedadegree node among all
nodes that arat least 2 hops away from previously chosen roots. Intuitively, two trees
with very close roots will tend to overlap significantly ireih covered paths. Thus this
strategy tries to build more complementary trees by selgctiots with some minimal
separation.

e Random.  As a baseline strategy, this algorithm randomly selgatsdes as roots.

Step 2: Growing Trees.  Given a root node, the remaining question is how to grow
the treesi.e. iteratively choosing edges to add them to our spanning @eegoals in
this process are minimizing tree depth to reduce average distance, and producing
trees with complementary coverage.

When it comes to minimizing tree depth, it is easy to see thBES is an ideal
candidate. At each step, BFS adds to the tree an edge thtaébed to the node with
the least depth. When there are multiple candidate edgesspmnding to equal node
depth, we consider two strategies to break therfiedom tie-break that chooses one
candidate edge randomly, amdmplementary tie-break that chooses an edge that is
least used by previous trees.



Fig. 2. An example showing the limitation of a BFS tree. The boxediasea community-like
subgraph connected to the main graph. Each BFS tree roaedtfre main graph will include
the bold edges but not the dotted edges. As a result, allwidegport a distance of betweer
andb, despite the actual distance Df

On the other hand, while BFS trees tend to minimize average dgstance, they
can fail to cover some critical paths. We illustrate thidfact in Figure 2, where a
community-like structure (the boxed area) is connectethéontain graph via an “en-
trance” node:. In this case, any BFS tree rooted in the main graph will idelthe bold
edges¢ <« ¢, e < dande « f), but not the dotted edges & f, ¢ < d andd < f).
They will ignore the dotted edges, and produce suboptintalpahenever the shortest
path includes a dotted edge. It is easy to show that the$acistapply to general graphs
containing community-like structures with either singtenaultiple “entrances.”

This artifact occurs because BFS trees tend to cover “gl@mjes that intercon-
nect communities, but ignore “local” paths that connectasodithin a community. To
overcome this limitation, we consider an edge selectiatey that optimizes for “lo-
cal” paths. Specifically, in each step we prefer an edge thatohosen the least number
of times by previous trees. We refer to this strateglyest-Covered-Edge-First. In the
above example, after addirg— ¢ to build a global path, we add« d andc < f to
cover local paths.

In summary, we consider the following three strategies fomgng spanning trees.
We also illustrate and compare each strategy in Figure 3jusgimple example.

e BFSwith Random Tie-Break. It always adds new edges that are attached to nodes
with the smallest depth. When there are multiple qualifiegiesdit randomly chooses
one. Figure 3 shows three trees. Because of the randometiddr; tree 2 and 3 are
identical.

e BFSwith Complementary Tie-Break. It follows the above strategy, but when break-
ing the tie, it chooses the least chosen edge when buildiistjrex trees. This aims to
minimize the overlap among trees. Thus in Figure 3, treesate-§juite different in the
last level.

e Least-Covered-Edge-First. In each step, it chooses the edge that was least used by
previous trees. This leads to the minimum overlap amongiree

3.4 Atlas’'s Complexity Analysis

Building Trees.  The complexity of building each tree depends on the tree igipw
strategy. Traditional BFS’s complexity &(|V'| + |E|). For BFS with Random Tie-
Break, upon visiting each node, we need to shuffle a subsét ofiildren on the tree.
Since shuffling can be done in linear time [18], the compleiststill O(|V] + | E|).
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Fig. 3. An example showing 3 trees formed using 3 tree growing glieée The BFS starts from
the left-most node.

For BFS with Complementary Tie-Break, we need to sort thisssy resulting in a
complexity ofO(|V'|log|V'| + | E|). For Least-Covered-Edge-First, we need to maintain
the list of active edges to grow a tree. Implementing thisugng a priority queue, we
can build each tree withi®(|V| + | E|log|E]).

Finding Shortest Paths. Each tree can be stored using a dictionary, which maps each
node to its parent. Given two query nodes, we first find the #dwemmon ancestor on
the tree, which can be done in constant time using an auxiliata structure [15]. We
then route both nodes to the lowest common ancestéi(ih) time, whereL is the
distance between the two nodes.

4 Handling Massive Graphs

For social graphs that cannot fit into a server’'s main meneanyyentional approaches
for building spanning trees are no longer feasible. Thiesalnse conventional BFS im-
plementations require a large numberarfidomaccessesto the graph, each retrieving a
given node’s neighbors. This is extremely inefficient whea graph cannot fit in main
memory, since random access queries will produce many @iskss each incurring
latency several orders of magnitude greater than memaouydbeads.

Our proposal is to implement Atlas with support fxternal memory storage, by
computing BFS trees while “streaming the graph” from diskrtemory. We can pro-
duce a BFS tree in several rounds, where the graph is readfamedisk in each
round. Starting from the root node, in each round we seqalgnscan through the
whole graph’s edges on the disk and construct one additiewel of the tree. Specif-
ically, in roundr > 0, for each edge <« b that connects on ther — th level to an
unvisited nodé, we assigrb to be a child ofa. We store the growing tree in the main
memory when streaming the graph on the disk. Note that thigydenly implements
a fixed priority to break ties when growing the tree.

To implement the BFS random tie-break, we need to randongigas parent to
a node on the next level when multiple nodes on the curreet e connected to it
on the graph. Specifically, if we encounter an edge> b with a on therth level and
b already assigned to be a child ebn therth level, we allow a probability thai's



parent is changed te from c. The probability values can be chosen using the reser-
voir sampling [27]. To implement the BFS complementarylieak, we tag each edge
on the disk with the number of times that it is chosen in presitrees, and use this
information to decide the parent assignment.

This implementation is highly memory-efficient. The onlytalatored in the main
memory is the actual tree. We represent the tree using ayBriahereT[i] stores the
parent node of. Additionally, for each nodéwe record its level in the tree. Our largest
social graph, Renren, only requir@8GBs of memory, compared &1 GB of memory
for the standard implementation.

The time complexity of this implementation@(R - |E|), whereR is the number
of rounds we need to stream the whole graph. It is clear thattiimber is equal to
the depth of the tree, or the largest distance from the roahyonode, which is around
8 —12in today’s online social networks. Each round ca@3t&| as we perform constant
time operations for each scanned edge. For the Renren girégites5.8 hours to build
a tree, slightly slower than thie6 hours for the in-memory implementation.

5 Experiments on Social Graphs

In this section, we verify Atlas using real social graphdexikd from five of today’s
popular OSNs.

5.1 Social Graph Datasets

Our dataset includes data we have collected from Faceb@KIfzgest OSN world-
wide, 500+ million users) and RenRen [4] (largest OSN in @hitb0+ million users).
We also use data shared from external measurements on @GtklivjeJournal [2]
and Flickr [1].

Facebook. Our dataset includes anonymized social graphs from 23 ofbresaks
largest regional networks [28], measured between MarchVayd2008, totalling more
than 10 million users and 940 million links. The availaliliaf these graphs allows
us to select a small set with enough diversity. For example,representative graphs
from the Norway and New York City regions (Table 4) displayydifferent size and
connectivity [28].

Renren.  Launched in 2005, it is the largest OSN in China now with mdr@nt
150 million users [4]. It offers functionality very similao Facebook. We collected in
October 2009 a large social graph of roughly 43 million userd 1 billion edges. To
the best of our knowledge, this is the largest dataset eagred from a single OSN.

Orkut.  This social graph was collected by Mislove during Octobet Blovember
2006 [7]. Since our work focuses on connected social graphsextract the largest
connected subgraph from the raw data.

LiveJournal.  Itis a popular online community to publish blog, journal éany [2].
The dataset used in this paper was crawled in December 2008/¢7convert all di-
rected edges to undirected, and extract its largest coetheomponent listed in Table 4,
which includes about 98% users of the raw data.

Flickr. It is a popular website for photo sharing [1]. We use Flicktadeollected
in January 2007 [7], convert all directed edges to undidkcémd extract its largest
connected subgraph.
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Fig.5. Comparing the average path
lengths produced by Atlas to their orig-
Fig. 4. Six representative social graphs (with undiinal distances. Atlas wittk = 20 is
rected edges) from five popular OSNSs. able to approximate the average path
length within 1-hop absolute error.

We focus on two performance metrics. First, we studyatteiracy in path length,
measured by the difference between the path length retimnAtas to the exact length
returned by BFS. Second, we study thecuracy in path, defined as the maximum
overlap between the path returned by Atlas and any shoréistrpported by BFS on
the original social graph. During the process, we also comg#ferent root selection
and tree growing strategies. We observe consistent rdeultdl the social graphs. We
only show representative results from the Renren graphalspéce limit.

5.2 Accuracy in Path Length

We start from examining Atlas’s accuracy in estimating sbsirpath length. We first
examine Atlas with basic strategies and then examine thaétgf root selection and
tree growing strategies.

Atlas with Basic Strategies. We first evaluate Atlas by its basic configuration: using
the Top#4 Centrality to select roots and the BFS with Random Tie-Brteakow trees.
For each social graph, we first buitdspanning trees, randomly select 200,000 pairs of
nodes on the graph, and calculate the shortest path lengéraged by Atlas and the
original BFS based search. Atlas returns the path lengthtieg querying each of the

k trees separately and selecting the shortest path returoredliese: trees.

Figure 5 compares the average path length answered by Attasttanswered by
BFS, as a function of the number of trdgg: = 1...20. We make two key observations.
First, ask increases, the average path length produced by Atlas agiprsshe optimal
value.k=10-20 is likely to be a “sweet point” since the improvemeatictases quickly
and becomes marginal whénexceeds beyond 10. Second, for all the graphs, Atlas
with k = 20 is able to approximate the average path length within 1-tsplate error.

To understand the accuracy of Atlas at individual path lesgtve classify the node
pairs by their distance computed using BFS, and computeafcin distance value the
average difference in path length between Atlas and BFSur&ig(a) shows the results
with £ = 1, 3,6, 10, 20. Interestingly, Atlas’s accuracy in path length increasiks the
node path length, especially when the number of tkeisssmall. Even folk = 20, At-
las produces more accurate results for long paths. Thisic&s with our expectation
in Section 3 and Figure 2 where Atlas with BFS Random Tie-Bfeauses on cover-
ing “global” paths that interconnect communities but iggetlocal” paths that connect
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Fig. 6.a) Impact of original node distance to the accuracy of Attaterms of the average amount
of increases in distance measured by Atlas over the origalak. Atlas’s accuracy in path length
increases with the node path length. Evenifor 20, Atlas produces more accurate results for
long paths. b) Comparing different root selection strasgdrandom performs poorly because it
fails to minimize the tree depth. The two centrality-basedtsgies are consistently similar.

nodes within a community. This also motivates us to examiherdree growing strate-
gies that seek to cover local paths.

Comparing Root Selection Strategies. Figure 6(b) compares the three root selec-
tion strategiesTop-k Centrality, Scattered Top-k Centrality and Random, while using
the BFS with Random Tie-Break to grow trees. As expedRaddom performs poorly
compared to the centrality-based strategies becausdsitdaminimize the tree depth
and thus suffers from larger average path length. On the btied, the two centrality-
based strategies perform consistently similar to eachr.othsimilar observation was
found in landmark selection [22]. From the graph statistis infer that this is be-
cause many nodes with largest degree centrality are seddmaimore than 2 hops. For
Renren, the two strategies select exactly the same setsf roo

Comparing Tree Growing Strategies. We also examine Atlas with different tree
growing strategiesRandom Tie-break, Complementary Tie-break and Least-Covered-
Node-First. We omit the detailed results due to space limit. Our resshlitswv that in
terms of average path length, the default Random Tie-breategy withk = 20 al-
ways outperforms the other two. Complementary Tie-bredkiomproves the accuracy
slightly by 0.1 hop when the number of trees is small{ 5). Least-Covered-Node-
First only improves the accuracy when the node distanteTifis shows that covering
global paths is crucial for providing accurate shorteshgatimation. Atlas’s multiple
trees, together, help to cover local paths ignored by iddigi trees. Overall, Random
Tie-break is still the best strategy among the tree.

Contribution of Individual Trees.  Since Atlas uses multiple spanning trees, we are
interested in understanding the contribution of individwees to the overall shortest
path computation. To do so, we measure the contributionrefdy the probability that

it outputs the minimum path length among/alirees. Note that for a given query, there
might be multiple trees that achieve the same minimum leragtth we count the query
at all these trees. We plot in Figure 7(a) the result for Renisng the basic strategies.
We see that tree 16—18 make much higher contribution tharatRrom the traces, we
found that the contribution of each tree is highly corredatgth the closeness centrality



.

oN A~ O ® O

Contribution

Atlas

o
N
Closeness centrality
w

N s o o
Average Path Length

,,,,,,,,,
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 2 4 6 8 10 12 14 16 18 20
Tree Index Tree Index Number of Trees

(a) Contribution of individua(b) Closeness centrality of trée) Using closeness centrality
trees roots in root selection
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complex to compute). (¢) Yet using closeness centralitydut help wherk is large.

of its root (Figure 7(b)). A tree whose root has a lower clessrvalue produces a higher
contribution. This is not surprising because closeness &caurate metric on a node’s
connectivity with the rest of the graph.

Because computing closeness is highly difficult [22], Atleses node degree to
select tree roots. To understand the impact of such pradeécision, we show in Fig-
ure 7(c) the average path length result of Atlas, Atlas usiogeness centrality and the
optimal BFS approach. Interestingly, wher> 16, using closeness centrality does not
lead to any gain. This shows that having multiple trees caorsates the imperfect root
selection strategy, and proves the efficiency and effentigs of our Atlas design.

5.3 Accuracy in Shortest Path

A unique advantage of Atlas is that it can not only estimagesifiortest path length but
also record all nodes along the paite, produce the actual path. Information on the
actual path is useful to many applications. For examplersusgn monitor how their
information is delivered by those media nodes that are orp#ibs. In this case, if
there is less deviation for a shortest path (produced bysplampared to the real one
(produced by BFS), users can reduce/avoid such monitdringther words, the path
produced by Atlas, if displays minimum deviation from theéuat path, will be more
reliable to users and thus more accurate.

We use the metric of maximum overlap of shortest path prodlbgeAtlas with the
original path to evaluate Atlas’s path accuracy. BecausgyuaFS, there could also be
several shortest paths between any two nodes. We compuytesaible shortest paths
using BFS and also use Atlas to produce a shortest path. Weeapmpare the Atlas
shortest path to the multiple BFS shortest paths and coenttimber of overlapped
nodes between Atlas path and each BFS shortest path. We thefineaximum match-
ing path as the BFS path with the maximum number of overlappets . We then
compute the deviation of shortest path as the number of tbdeare in the maximum
matching path but not in Atlas path, and use this to quarttiéydath accuracy.

In our implementation, we randomly select 20 nodes as saades in each graph
and compute 100 random paths for each node, producing 20@8les To avoid bias,
we do not use any root node or nodes with large degree. Weh@datistribution of the
deviation of shortest path in Table 1. We see that at least 8086 paths do not miss
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Social | Atlas Tree| Atlas query] BFS query|
by Atlas path [New York| Norway Graph |construction on 20 trees
0.341 0.314 Renren | 96min/tree|0.3ms/query86.5s/query
0.072 0.058 .

Orkut 8min/tree |0.3ms/queryl2.0s/query
0.2395 0.3235 . .
LiveJournal 2.5min/treg0.3ms/queryl9.8s/quer
0.29 0.2895 : .
Flickr | 0.8min/treg0.3ms/query6.2s/query|
0.0555 0.015 . -
5 0.002 0 Table 2. Atlas runtime performance in terms

Table 1. Deviation of Atlas shortest path of constructing trees and answering query.

# of nodes misse&requency of occurrence 4‘

<
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any node and very few paths miss more than 3 nodes. By avegrdwroverlap to the
path length, Atlas can cover 60.6% nodes in Norway graph @né% nodes in NY
graph. This shows Atlas’s confidence in approximating dctbartest paths.

5.4 Runtime

Having examined Atlas’s complexity bound, we now examiagitactical runtime per-
formance. Table 2 lists Atlas’s runtime metrics for consting spanning trees and pro-
cessing shortest path queries. This was measured on a cdtyre@der of 2.4GHz,
dual core with 32GB of RAM. We implement Atlas tree constioietin C and shortest
path query in Python. Our approach scales to the extremegg Benren graph with
43 million nodes and 1 billion edges, taking a reasonabléhbif's to build one tree.
To compute a shortest path, Atlas searches through &ll 20 trees sequentially (no
parallelism). It takes<60 seconds to process 200,000 queries, translating intns0.3
per query even for the Renren graph. This is orders of mad@ismaller compared to
the conventional shortest path query time.

5.5 Application Benchmarks

Having examined Atlas using shortest path analysis, we xamee the efficacy of us-
ing Atlas in graph analysis application. Our goal is to exaanwhether the approximate
shortest path produced by Atlas can be used to produce aeaalication results. We
consider two graph analysis applicationagle centrality computation andranked social
search. We run these applications on three social graphs: Faceldookay, Facebook
New York, and Flickr.

Node Centrality Computation.  Closeness centrality is the average path length from
one node to all the other nodes in the graph. It can be usedrdigal enetric to estimate
how fast information traverses the whole graph. Intuifiyalnode of smaller average
path length can be considered as higher centrality. Thahsi@éormation can spread
through the graph in a shorter time.

Since Atlas can estimate shortest path length between angddes accurately, we
can estimate centrality precisely. To evaluate the acguscentrality computed by
Atlas, we use the results computed by BFS as the ground ¥thrandomly select
500 nodes from each graph and compute centrality for each nsidg Atlas and BFS.
Specifically, we rank the nodes by their average path lengtalltother nodes and
select the topV nodes in both methods. We then compute the accuracy as thenamo
of overlap between Atlas and BFS results, normalizedvby
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Fig. 8. The accuracy of using Atlas in graph analysis applications.

Figure 8 (a) plots the results for differeNtvalues. The accuracy of Atlas increases
gradually with/N because nodes with larger centrality are being includedtaatditlas
produces less error in estimating longer paths (shown iarEi§ (a)). Overall our sys-
tem promises at least 60% accuracy for Norway, 70% for New #ad 90% for Flickr.
The difference between these graphs is because both Rtidbiew York display larger
average shortest path length.

Ranked Social Search. Users in OSNs often choose search results based on the
relationship between themselves to responders. In othetsythey prefer the results
provided by closer nodes, and order results by their distémthe responders. This is
called social-based search rank. To implement such shpda#slength based ranking,
we randomly select 500 nodes from each graph. Each nodeegdiive 100 random
responses from 100 distinct nodes. Each node ranks themsspbased on its shortest
path length to the responder. Again we chooseXopesponses and count the overlap
between Atlas and BFS results.

Figure 8(b) shows that the accuracy of Atlas’s selectiomeiases withV. Even
when selecting only top 10% respons@é & 10), Atlas provides 60% accuracy for
Norway, 80% for New York and 90% for Flickr. Similar to the easf centrality com-
putation, the accuracy for Norway is lower because its ayepath length is smaller.

6 Handling Dynamic Graphs

Online social networks display dynamic characteristinsluding users adding/removing
accounts, changing relationship status, and evolutiorsef interactions [28]. These
dynamics make the corresponding social graphs time-vauryinthis section, we dis-
cuss how Atlas updates its spanning trees to handle dynaaphg efficiently.

To help motivate and validate our design, we have colleatedrsl dynamic social
graphs. One particular example is that using our Faceboalsunement, we obtained
35 daily snapshot social graphs of the San Francisco relgietaork during October
2008, where the number of users in the graph grew from 160R@&K1This sequence
of social graphs captures the dynamics of users joining (@aing) Facebook and
updating their friend connections. Table 3 lists the degfe@riation in both nodes and
edges across the 35 daily snapshots, indicating a slowémdpgrowth.

6.1 Atlas for Dynamic Graphs
Intuitively, the simplest solution to address graph dyremi$ to update Atlas’s trees
whenever there is a change in the social graph. Given the st#dday’s social graphs,



Nodes Edges
Added RemovegAdded Removed
Mean 0.36% 0.22% |0.61% 0.39%
Standard deviatigf.0025 0.0012 |0.0044 0.0025
Table 3. The mean and standard deviation of proportion of nodes agelsealided/removed per-
day across our 35 San Francisco snapshot social graphs.

Statistics

updating all the trees in real-time is intractable. For eplmnit takes 1.6 hours on
commodity servers to build a single tree for Renren, thus @& ifor 20 trees. This
means that to support large dynamic graphs, we can only egbatspanning trees
periodically and/or incrementally.

With this in mind, we introduce two new mechanisms on top da#&s original
design for dynamic graphs:

e Incremental Tree Update.  Atlas periodically updates the spanning trees to reflect
changes in the social grapég. addition and removal of graph nodes and edges. To
reduce the overhead, Atlas only updates a small subsetexf ta¢her than all the trees.

e Path Validation.  With periodic and incremental update, some trees beconaeibs
and could return invalid paths that contain deleted noddsages. We add to Atlas a
verification process to verify paths returned from thesesrand discard invalid paths.
The process is simple and efficient since it only involvegsahhash table lookups. In
rare cases that none of the trees return valid paths, Atkeses the query by running
a generic algorithm on the current social graph.

In the following, we focus on dynamic tree update becauseyaidation is straight-
forward to design.

Incremental Tree Update. The motivation behind our design comes from the actual
observed dynamic patterns, shown in Table 3. Between eaghgipdate, the number
of changed nodes/edgesis relatively small compared tosbratbgraph scalex0.5%).
Thus it is highly likely that slightly obsolete trees arelggiood for the majority of
shortest path queries and thus do not need to be replacediiauelg.

Motivated by the above observation, we propose in Atlas ttdkanly one new
tree per update period or when detecting sufficient changebfe graph, and use it
to replace an existing tree. The new tree covers newly addddsn(and edges) with-
out significant computation overhead. The design questia is “which existing tree
should we replace?” Intuitively, the tree to replace shdagdthe most “obsolete” in
terms of answering shortest path queries. For this we intredwo metrics on the level
of “obsoleteness”:

e Query-Accuracy. We evaluate each tree by its performance in answering querie
In this case, two types of events will affect the obsoleteradsa tree. First, the tree
does not contain one of the query nodes because it is re@altd to the social graph.
Second, the tree returns an invalid path that contains rexty®r edges that no longer
exist. We score each tree by the total occurrence of bothtgvand the tree with the
highest score is the most obsolete one and will be replaced.

e Ageor Tree Creation Time.  This metric measures the level of obsoleteness by the
time it is created, where we always replace the oldest tréeeiset.
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Fig. 9. Comparing Atlas with incremental tree update (Update-Qdafg-A) to Atlas with full
tree rebuild (fullUpdate), in terms of the difference in mge path length. Incremental update
performs closely to full update. There is no significantetiéince between query-accuracy and
age based incremental update.

6.2 Experiment on Dynamic Social Graphs

We performed detailed experiments to evaluate Atlas'stekbpath query with dy-
namic social graphs, and to compare the above two tree mgdsttiategies. In particu-
lar, we examine three options in Atlas tree update:

i) Update-Q, the proposed incremental tree update mechanism usingtiigy@erformance
metric;

i) Update-A, incremental tree update using the Age metric;

iii) fullUpdate, which completely rebuilds alk = 20 trees.

Graph Data Set.  We use both measured and model-generated dynamic graphs. We
use synthetic graphs because they allow us to examine thactngp dynamics in a
longer period than the measured ones and to control thedreywof graph/tree update.

e Measured Dynamic Social Graphs.  This is the set of 35 daily snapshots of the
San Francisco regional network discussed in the aboveidrcéise, the social graph is
updated once per day, upon which Atlas also updates itsjtee(

e Model-generated Dynamic Social Graphs. We use a modified Nearest Neigh-
bor(NN) model [23] to generate dynamic graphs. This modsltheen shown to sta-
tistically approximate real social graphs with high confide [23]. We use an iterative
process to build dynamic graphs: first construct a syntlygéiph that closely approxi-
mates the Facebook New York City graph, then follow the mealgradually grow the
graph by 0.5% of the original size per iteration. We produse@uence of 100 graphs
where the last graph is 50% larger than the first graph. Riffefrom real dynamic
graphs, these synthetic graphs do not capture node or edgwaé In this case the
social graph is updated once per 0.5% growth, so are Atlas.tre

For both datasets, we build/update Atlas trees using thekTGpntrality strategy
to choose roots and the BFS with Random Tie-Break to growsiréé& choose this
configuration based on the evaluation result in Section 5.

Results: Incremental Update vs. Full Update. We first compare Atlas with incre-
mental and full update by the average path length returnezbfg 000 random queries
performed on each graph snapshot. To highlight the diffezeme plot in Figure 9 the



difference in average path length between Update-Q andgdthte, and Update-A and
fullUpdate, for the three dynamic graphs.

For both graphs, the mean difference between progress dngflate is roughly
0.1 hop. We also found that full update is within 0.6 hop frdma bptimal solution that
uses BFS on the actual social graph. This result demonstreeffectiveness of Atlas’s
incremental tree update. For both scenarios, we see thaitriranitially increases with
time and then flattens and even decreases. The initial iseisalue to the edge effect
since we build 20 fresh trees at time 0. The flattening (andedsing) trend indicates
that the proposed incremental tree update can quicklylglover time.

We also observe that there is no significant difference batipdate-Q and Update-
A. This result is as expected but also encouraging. Becégsarhount of change be-
tween snapshots is still relatively small given the ovegediph scale, the majority path
gueries can be answered by the slightly obsolete trees.eMgehs get updated one by
one, the oldest tree will likely produce the worst query hssand should be updated.

Results: Impact of Individual Events.  For a detailed look at the impact of graph
dynamics, we categorize the dynamics into four events aalyamtheir impact.

e Removing an edge. Removing an edge affects a tredl’ only if T containsp and
thus could return invalid paths that containWe measure the impact kys weight
on the tree, defined as the size of the subtree rootédwahich relies ony to connect
with other nodes in the graph. Intuitively, removing an edggh larger weight leads to
heavier impact.

e Removing a node.  Removing a node: also removes all of its edges. This event
affects an existing tre® only if T containsu. Similarly, we measure the impact by its
weight, defined by the size of the subtree rooted at node

e Adding an edge. Adding an edge) = (u < v) to a graph can produce large
impact on a tre if nodesu andv were widely separated on the tree. Thus we measure
its direct impact on Atlas’s accuracy by the distance betweandv observed oIT.
Another related question is whether addingo the graph make$ no longer a BFS
tree on the new graph. If so, this will introduce significah&nges to the tree when it
gets updated. To examine this we record the differeneedandv’s depth onT. When
the difference is no more than T,is still a BFS tree on the new graph and adding
will not introduce changes t@.

e Addinganode. It produces no impact unless followed by adding an edge,wikic
already covered.

Figure 10 plots the impact measures using the San Frangiseadc social graphs.
We make several observations. First, of all the edges reh@®&% have no impact
on any treej.e. they were not on any tree (results not shown for brevity). \Ié¢ in
Figure 10(a) the weight of edges that were on at least oneNter than 90% of them
have a weight of 5 or less, meaning that their removal onlgca$fa small subtree of 5
nodes. Similar observations were found on node removau(Eig0(b)). This implies
that the majority of node/edge removed were on the boundahegraph. They do not
affect the core graph structure, and have minimal impacherspanning tree structure.

Figure 10(c)-(d) examine the impact of adding an edge v by the distance ofi
andv on a tree and the difference of their depths on the tree. €ijQ(c) shows that
edges were uniformly added among nodes that were closeéwaelhseparated. This
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Fig. 10. The impact of each dynamic event on Atlas trees, using theF8amcisco snapshots
as the dynamic social graph. (a) Most of edges removed haweah weight and affect only a

small number (5) of nodes. (b) Most nodes removed have a sveaht and affect a minimum

number of queries. (c) Edges were added between nodes Wiltedi separations. This triggers
the majority of errors. (d) For 95% of added edges, the tworertks’ tree depths differs by 1 or
0. This means that the tree is still a BFS on the new graph.

is the key source for Atlas’s path estimation error. Figudéd) shows that for 95% of
new edges, the depths@findv only differ by 1. This means that with high probability
adding a new edge still makes a tree a BFS tree on the new grabthas has no
effect on the tree. Overall, our detailed analysis confitmas €ach individual event has
minimum impact on the tree structure.

7 Conclusion
This paper describeatlas, a novel approach to scalably approximate shortest paths
between graph nodes using multiple spanning trees. Atkily ehstributes across dis-
tributed machine clusters to handle massive graphs, anldipes short paths that closely
match the ideal shortest path. We demonstrate its scayahbiiid effectiveness using
large graphs from multiple social networks, the largest bfcl includes 43 million
nodes and 1 billion edges. Using snapshots of graph dynaméalso show that At-
las can be incrementally updated over time to handle dyragraphs. Experiments
show that Atlas can help real graph applications scale tesweagraphs. With the rapid
growth of OSNs, we believe Atlas will be a critical componfartgraph analysis in the
future. We are already in discussions to deploy Atlas atgelaocial network provider.
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