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Abstract. The search for shortest paths is an essential primitive for avariety of
graph-based applications, particularly those on online social networks. For ex-
ample, LinkedIn users perform queries to find the shortest path “social links”
connecting them to a particular user to facilitate introductions. This type of graph
query is challenging for moderately sized graphs, but becomes computationally
intractable for graphs underlying today’s social networks, most of which contain
millions of nodes and billions of edges. We proposeAtlas, a novel approach to
scalably approximate shortest paths between graph nodes using a collection of
spanning trees. Spanning trees are easy to generate, compact relative to original
graphs, and can be distributed across machines to parallelize queries. We demon-
strate its scalability and effectiveness using 6 large social graphs from Facebook,
Orkut and Renren, the largest of which includes 43 million nodes and 1 billion
edges. We describe techniques to incrementally update Atlas as social graphs
change over time. We capture graph dynamics using 35 daily snapshots of a Face-
book network, and show that Atlas can amortize the cost of tree updates over time.
Finally, we apply Atlas to several graph applications, and show that they produce
results that closely approximate ideal results.

1 Introduction
The search for shortest paths is a critical component underlying numerous Internet ser-
vices and applications. It is a particularly useful primitive for operators of online social
networks (OSNs), whose operations involve analyzing and understanding the relation-
ships of users in massive social graphs. OSNs like Facebook,Twitter and LinkedIn
are some of the most popular destinations on the Internet. With more than 400 mil-
lion users, OSNs like Facebook face the difficult challenge of processing shortest-path
related queries on the massive social graph in near real time.

More specifically, OSN operators are often interested in resolving two types of
graph queries. First, they would like to support high level graph analysis operations
such as computing graph eccentricity in subgraphs, or detecting/ locating central nodes
in subgraphs for targeted ad placement. These applicationseach require large numbers
of shortest path distance computations between pairs of nodes. Second and more im-
portantly, OSN operators need to determine and display the social relationships that
connect two users. For example, a user in the LinkedIn business network generates
queries to determine how she is connected through mutual friends to potential new con-
tacts. Similarly, in the Overstock social auction site, a user is more likely to make a
purchase if she knows the sequence of friendships that connect her to a seller [26]. In
these scenarios, we not only need the number of hops separating two users, but also an
exact path of nodes connecting them.



Two additional issues make the problem even more challenging. First, popular OSNs
have social graphs with hundreds of millions of users and billions of edges. In many
cases, even a barebone edge-list representation of a large graph will not fit in a server’s
main memory, making even basic graph operations impractical. Second, these graphs
are constantly changing, and a graph analysis system must beamenable to frequent
graph updates.

While there are a number of different techniques for computing shortest paths and
node distances in graphs, none are appropriate for the scaleand type of graphs present in
online social networks. For a graph with|V | nodes and|E| edges, traditional techniques
like Dijkstra, Breadth-first-search (BFS), or Floyd-Warshall can find shortest paths in
O(|V |log|V | + |E|) time, or shortest-path for all node pairs inΘ(|V |3) time. These
techniques do not scale to million-node graphs, and can takeup to a minute per path
computation even on today’s hardware [22]. A second approach is to precompute all
shortest paths offline. However, the set of all possible paths for large graphs would not
fit in physical memory of today’s servers. In addition, online social networks are highly
dynamic, and the addition of new nodes and edges can quickly invalidate precomputed
paths. Finally, techniques such as the A* algorithm assume planar properties missing
from social graphs [16], and graph embedding approaches canonly estimate distance
between nodes, but not provide actual paths connecting them[29].

In this paper, we investigate the feasibility of an alternative, light-weight approach
towards approximating shortest paths between node pairs ona graph, using large social
graphs from real world measurements. We proposeAtlas, a system that provides accu-
rate estimates of shortest paths by using a constant number of spanning trees to capture
significant structures of the graph. By consulting the path between a pair of nodes on
multiple spanning trees, we can find real paths between them that closely approximate
or match their actual shortest path on the full graph.

Our approach to shortest path computation has several key benefits. First, the span-
ning trees used by our approach are both compact and easy to compute, making it ideal
for distributed computation across clusters. For a graph with |V | nodes and|E| edges,
each spanning tree consists only of|V | nodes and|V | − 1 edges, and can be built us-
ing a single breadth-first-search (BFS) across the graph (inO(|E|) time). For highly
connected social graphs with average node degree close to100, this represents a two-
orders of magnitude size reduction compared to the originalgraph. An OSN provider
can easily distribute Atlas across a cluster by maintainingone spanning tree per server.
Even if a single tree becomes too large for a server’s main memory, it is easy to fur-
ther decompose and distribute the tree into multiple branches on multiple servers using a
node index server. Second, spanner forests approximate notonly node distance, but also
provide actual short paths connecting each node pair. Finally, even as the actual graph
changes with the addition or removal of nodes and edges, we can maintain the accuracy
of Atlas paths by incrementally updating spanning trees based on query results.

We make four key contributions. First, we describe the Atlasapproach towards ap-
proximating shortest paths on large social graphs (Section3). We also explore different
spanning tree construction techniques, investigate theirimpact on shortest paths, and
propose mechanisms to process graphs that do not fit into mainmemory (Section 4).
Second, we evaluate the accuracy of Atlas paths on a variety of social graphs from



OSN measurements, including data from Facebook, Orkut, Flickr, LiveJournal, and fi-
nally Renren, the largest OSN in China (Section 5). Our approach scales to a large
Renren graph with 43 million nodes and 1 billion edges. Results show that with a small
number of trees (∼20), Atlas can produce paths between nodes that closely approxi-
mate their shortest path, using only 0.3 milliseconds per query on commodity servers.
Third, we also examine the efficacy of using Atlas in graph analysis applications, and
show that its approximate path can be used to produce accurate application results (Sec-
tion 5.5). Finally, we propose and evaluate different approaches to maintain Atlas under
graph dynamics, and show that we can maintain high accuracy by performing simple,
incremental updates to the spanning trees (Section 6).

2 Goals and Potential Solutions
Before we describe Atlas in more detail, we first define our problem, and specify our
goals. We then group and describe existing approaches, and consider their appropriate-
ness for our problem. Finally, we describe graph spanning trees and explain why they
are a potential attractive solution.

2.1 Goals and Problem Definition

We are primarily interested in the problem of identifying short paths between node
pairs in large social graphs. While we target dual goals of estimating node distance and
finding a short path between nodes, we focus our attention on the latter, since an ap-
proximate shortest path would answer both questions. More specifically, given a social
graphG = {V, E}, our goal is to build a system that answers shortest path queries in
real-time. Given a query with two nodesa andb ∈ V , the answer is an approximate
shortest path connectinga to b. These queries are more general than queries that only re-
quire shortest path length (node distance), since node distance can always be computed
from approximate paths.

We assume graphG is large,i.e. has more than 100,000 nodes, and exhibits the
general characteristics of a social graph,i.e. high connectivity with an approximate
Power-law degree distribution. For instance, the social graph of Renren [4] has 43 mil-
lion nodes and 1 billion edges as of Jan. 2010, which requires22 GB to store using
an efficient neighbor list representation. Graph processing libraries such as the Boost
Graph Library or NetworkX generally require a 5-7x increasein memory footprint.
Thus processing queries by loading the entire graph into thememory of a single ma-
chine is not feasible. Note that processing a query usually needs much more memory
than merely storing the graph.

2.2 Existing and Related Work

Having defined the challenge before us, we begin by first reviewing existing and recent
related work in the area. More specifically, we look at several different classes of al-
gorithms for computing or estimating shortest paths in large graphs, and consider the
feasibility of applying each to our problem.

Dijkstra’s Algorithm. Dijkstra’s Algorithm [8] is the most basic algorithm to com-
pute point-to-point shortest paths for general graphs. On unweighted graphs of|V |
nodes and|E| edges, it reduces to Breadth-First-Search (BFS), and the complexity is



O(|V |+ |E|). To find shortest path betweena andb, it searches the nodes inside a circle
of all equidistant nodes centered ata. The circle gradually grows until it touchesb, at
which point the shortest path is found. An improved version is Bidirectional Dijkstra,
which grows two circles from botha andb, and the shortest path is found once the
two circles intersect. On large-scale graphs, particularly those with high average node
degree, a Dijkstra (or Bidirectional Dijkstra) search willvisit a significant portion of
the graph within3 − 4 hops, and thus does not provide the performance we desire for
massive social graphs.

Planar-Driven Algorithms. Other techniques have been proposed to improve Dijk-
stra’s efficiency on large geographic maps. We categorize them into two types. One type
leverages the planar property of map graphs. The A∗ algorithm [16] is similar to Dijk-
stra, except that it grows the search area with a bias. Preference is given to the nodes
that are estimated to be closer to the destination. On planargeographic graphs, Euclid-
ian distance [16,21] provides a good estimate of proximity.The ALT algorithm [12,13]
uses a set of carefully chosen landmarks to improve this estimate. Estimates on the dis-
tance between any pair of nodes are obtained by applying the triangular inequality to
their respective distances to a set of landmarks. To obtain good estimates, the landmarks
are usually chosen at the edge of the planar area [13]. Others[20] partition the graph
into regions and guide the search using region-specific information.

Structure-Driven Algorithms. The second type of techniques leverages the inher-
ent structural properties of geographic graphs. The idea isto focus the search on struc-
tural highways in the graph to shrink the search space. For example, reach-based algo-
rithms [11, 14] identify structural highways using the notion of reach. Informally, the
reach [14] of a node measures how important it is to the shortest paths between other
pairs in the graph. A node with a high reach maps to a crucial point on a backbone, and
a node with a low reach usually exists on a local road system. By focusing on high-
reach nodes, reach-based algorithms greatly speed up the search. The authors in [24]
propose to apply the highway extraction technique iteratively to obtain a hierarchy of
increasingly simplified highways. A search starts from the lowest level of the hierarchy
and moves to the higher levels as it goes.

Landmark-Based Algorithms. Researchers have extensively used landmark-based
approaches to estimate distances in graph structures. These approaches select a subset
of nodes as landmarks and pre-compute the distances from each landmark to all other
nodes in the graph. To answer a query, they examine the shortest paths through any of
the landmarks, and pick the shortest one among them. [17] shows that randomly picking
landmarks can achieve good theoretical guarantees. [22] experimentally shows that se-
lecting landmarks using basic metrics may generate more accurate approximations. The
Orion system [29] uses a similar idea, but embeds the entire graph into a low-dimension
Euclidean space, then uses Euclidean distance computationto estimate node distances.
Finally, Song et al. recently proposed two solutions to the complementary problem of
scalable proximity estimation for online social networks [25]. And these algorithms are
designed to estimateshortest path distance, not to locate an actual path.

Spanner-Based Algorithms. In graph theory, people have used the notion of graph
spanners to compute approximate shortest paths. A spanner is a subgraph with all the
nodes and only a small subset of edges. Many algorithms with provable guarantees



have been designed to construct spanners that approximate shortest paths. Algorithms
in [9, 10] produce a spanner withO(|V |3/2) edges, where shortest paths between any
pair of nodes on the spanner are at most2 hops longer than those in the original graph.
With the same upper bound on spanner size, [6] produces a spanner where shortest paths
are at most3 times longer than original.

2.3 Our Approach: Graph Spanners

We customize our solution based on the structural properties of large social graphs.
More specifically, we consider two key characteristics,dense connectivity andsmall-
world property, both of which have been observed in real social graphs [19, 28]. For
example, typical average degree in social graphs is 60–100 [28], compared to 4–5 in
geographic graphs [13]. Similarly, average distance in social graphs is 4–6 hops [28],
compared to 100+ hops in geographic graphs.

These two characteristics make planar- and structure-driven algorithms inefficient,
since they leverage the planar connectivity and backbone structure in geographic graphs.
But given their dense connectivity and small average distance, social graphs lack a pla-
nar or backbone structure.

On the other hand, these properties of social graphs are ideal for spanner-based
algorithms. Because of the dense connectivity, there are often many different shortest
paths between two nodes. As a result, a sparse spanner is likely to preserve short paths
between arbitrary node pairs, while greatly reducing the number of edges stored in the
spanner. In comparison, landmark-based algorithms force all paths to go through one
of the landmarks. For two close by nodes, this means local paths between them are
ignored, thus producing significantly longer approximate paths.

3 Atlas Design
We describe Atlas, a system for approximating shortest paths on large social graphs.
We start by outlining the main challenges and presenting an overview of the system,
followed by details of the proposed algorithms.

3.1 Overview

While previous work on graph spanners has demonstrated the effectiveness of this ap-
proach on shortest path problems, they are impractical for our problem context. More
specifically, prior work focused on general graphs, and algorithms produced graph span-
ners that approximate shortest paths either by a multiplicative factor of3 [6] or by an
additive factor of2 [9, 10]. For social graphs with typically short path lengthsof 4–
6, these theoretical bounds are clearly unacceptable. To guarantee an additive factor of
≤ 2, the spanners must beO(|V |3/2) in size, which is not a significant saving compared
to the original graph. Thus, we seek to construct graph spanners especially customized
for social graphs to produce accurate approximations of short and long paths.

Our insight in designing Atlas is to utilize a probabilisticapproach to locating short
paths. Instead of searching for a single graph spanner with particular properties, we
instead propose to construct for every graph multiple spanners, each centered at a dif-
ferent root node. As shown in Figure 1, each spanner containsall nodes, but only a
small fraction of edges of the original graph. The result is agroup of compact spanners,



Fig. 1. Atlas constructs multiple spanners from the original graph. Each spanner contains all
nodes in the original graph, but only a small fraction of the edges. To find a short path between
two nodes, Atlas finds the shortest path between them on each spanner, then selects the shortest
among the result paths.

each of which is likely to fit into the main memory of today’s commodity servers. We
resolve a shortest path query by searching on each graph spanner for a short path, then
selecting the shortest path among the resulting paths.

We designed Atlas to scale extremely well across distributed computing resources,
e.g. computing clusters. For example, running Atlas on a single machine means we load
each of the (potentially large) graph spanners sequentially into memory, query it, then
repeat. To minimize data transfer latency from secondary storage (e.g. disk storage) to
main memory, a much more efficient approach would distributeeach spanner onto a
separate server, then parallelize queries across main memory queries at each server.

3.2 Choosing Spanners
Before describing Atlas’s algorithm for constructing spanners, we first identify the types
of spanners suitable for our problem context. We outline thedesired properties of the
spanners, and show that spanning trees based spanners fit perfectly to our requirements.

To support efficient shortest path query on large social graphs, we design Atlas
spanners to satisfy the following three properties:

• Small in size. Each spanner should contain only a small fraction of edges ofthe
original graph, for easy storage and processing.

• Fast path computation. Each spanner should display special structure thus comput-
ing shortest paths on it is much faster than running a genericalgorithm (e.g. BFS).

• Complementary coverage. Ideally, spanners should cover complementary paths, so
the shortest path between each node pair should be well approximated by at least one
of the spanners.

A Case for Spanning Trees. The simplest structure satisfying the first two proper-
ties is a spanning tree graph. It contains the minimum numberof edges to connect all
the nodes in the graph. The shortest path between two nodes ona tree can be uniquely
found by routing the nodes to their lowest common ancestor [5] using highly efficient
algorithms [15]. To realize the third property, we need strategies for building multiple
(complementary) trees that together approximate the original graph. In Atlas we exper-
iment with several heuristics for constructing and growingtrees.



We note that spanning trees are especially well suited for distributed computing. A
single spanning tree too large to fit into memory can be further divided into separate
subtrees and distributed across servers. For example, we can divide a tree into subtrees
rooted at the children of the root. If both nodes in a query areon the same subtree,
then it suffices to query only the subtree. Otherwise, the shortest path is constructed by
routing both nodes to the root,i.e. by querying their individual subtrees separately.

3.3 Constructing Spanning Trees

To build spanning trees, we consider a simple construction algorithm as follows. To
build a single tree, we first choose a root node from the graph.Starting from this root,
we iteratively add edges, where each edge connects a new node(not on the current tree)
to a node on the current tree. This process terminates when all nodes have been added.

The above algorithm requires two major design decisions: namely, how to choose
the root for each tree, and how to grow a tree by choosing an edge in each iteration.
Both decisions will affect the coverage of the resulting spanning trees. In the following,
we propose several strategies in choosing the root and growing the tree.

Step I: Selecting Roots. Intuitively, for a single tree, selecting a root that is relatively
central in the graph tends to minimize the tree depth, thus minimizing the average path
length of the tree. Similar strategies have been shown to be effective in landmark se-
lection problems [22]. There are several widely accepted metrics to measure a node’s
centrality, among which the degree centrality or node degree is the simplest. Alternative
centrality metrics, such as closeness, betweenness and eigenvector centrality, are very
difficult to compute [22] and thus not considered in our study.

To select roots fork spanning trees, we consider the following three strategies:

• Top-k Centrality. It choosesk nodes with the highest node degrees, seeking to
minimize the depth of each tree. It does not explicitly make the trees complementary to
each other.

• Scattered Top-k Centrality. It selects the node with the largest degree as the root
for the first tree. For each subsequent tree, it selects the largest degree node among all
nodes that areat least 2 hops away from previously chosen roots. Intuitively, two trees
with very close roots will tend to overlap significantly in their covered paths. Thus this
strategy tries to build more complementary trees by selecting roots with some minimal
separation.

• Random. As a baseline strategy, this algorithm randomly selectsk nodes as roots.

Step 2: Growing Trees. Given a root node, the remaining question is how to grow
the trees,i.e. iteratively choosing edges to add them to our spanning tree.Our goals in
this process are minimizing tree depth to reduce average node distance, and producing
trees with complementary coverage.

When it comes to minimizing tree depth, it is easy to see that aBFS is an ideal
candidate. At each step, BFS adds to the tree an edge that is attached to the node with
the least depth. When there are multiple candidate edges corresponding to equal node
depth, we consider two strategies to break the tie:random tie-break that chooses one
candidate edge randomly, andcomplementary tie-break that chooses an edge that is
least used by previous trees.
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Fig. 2. An example showing the limitation of a BFS tree. The boxed area is a community-like
subgraph connected to the main graph. Each BFS tree rooted from the main graph will include
the bold edges but not the dotted edges. As a result, all treeswill report a distance of4 betweena
andb, despite the actual distance of3.

On the other hand, while BFS trees tend to minimize average node distance, they
can fail to cover some critical paths. We illustrate this artifact in Figure 2, where a
community-like structure (the boxed area) is connected to the main graph via an “en-
trance” nodee. In this case, any BFS tree rooted in the main graph will include the bold
edges (e ↔ c, e ↔ d ande ↔ f ), but not the dotted edges (c ↔ f , c ↔ d andd ↔ f ).
They will ignore the dotted edges, and produce suboptimal paths whenever the shortest
path includes a dotted edge. It is easy to show that these artifacts apply to general graphs
containing community-like structures with either single or multiple “entrances.”

This artifact occurs because BFS trees tend to cover “global” edges that intercon-
nect communities, but ignore “local” paths that connect nodes within a community. To
overcome this limitation, we consider an edge selection strategy that optimizes for “lo-
cal” paths. Specifically, in each step we prefer an edge that was chosen the least number
of times by previous trees. We refer to this strategy asLeast-Covered-Edge-First. In the
above example, after addingc ↔ e to build a global path, we addc ↔ d andc ↔ f to
cover local paths.

In summary, we consider the following three strategies for growing spanning trees.
We also illustrate and compare each strategy in Figure 3 using a simple example.

• BFS with Random Tie-Break. It always adds new edges that are attached to nodes
with the smallest depth. When there are multiple qualified edges, it randomly chooses
one. Figure 3 shows three trees. Because of the random tie-breaker, tree 2 and 3 are
identical.

• BFS with Complementary Tie-Break. It follows the above strategy, but when break-
ing the tie, it chooses the least chosen edge when building existing trees. This aims to
minimize the overlap among trees. Thus in Figure 3, trees 1–3are quite different in the
last level.

• Least-Covered-Edge-First. In each step, it chooses the edge that was least used by
previous trees. This leads to the minimum overlap among trees.

3.4 Atlas’s Complexity Analysis

Building Trees. The complexity of building each tree depends on the tree growing
strategy. Traditional BFS’s complexity isO(|V | + |E|). For BFS with Random Tie-
Break, upon visiting each node, we need to shuffle a subset of its children on the tree.
Since shuffling can be done in linear time [18], the complexity is still O(|V | + |E|).
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Fig. 3. An example showing 3 trees formed using 3 tree growing strategies. The BFS starts from
the left-most node.

For BFS with Complementary Tie-Break, we need to sort this subset, resulting in a
complexity ofO(|V |log|V |+ |E|). For Least-Covered-Edge-First, we need to maintain
the list of active edges to grow a tree. Implementing this list using a priority queue, we
can build each tree withinO(|V | + |E|log|E|).

Finding Shortest Paths. Each tree can be stored using a dictionary, which maps each
node to its parent. Given two query nodes, we first find the lowest common ancestor on
the tree, which can be done in constant time using an auxiliary data structure [15]. We
then route both nodes to the lowest common ancestor inO(L) time, whereL is the
distance between the two nodes.

4 Handling Massive Graphs

For social graphs that cannot fit into a server’s main memory,conventional approaches
for building spanning trees are no longer feasible. This is because conventional BFS im-
plementations require a large number ofrandom accesses to the graph, each retrieving a
given node’s neighbors. This is extremely inefficient when the graph cannot fit in main
memory, since random access queries will produce many disk seeks, each incurring
latency several orders of magnitude greater than memory-bound reads.

Our proposal is to implement Atlas with support forexternal memory storage, by
computing BFS trees while “streaming the graph” from disk tomemory. We can pro-
duce a BFS tree in several rounds, where the graph is read oncefrom disk in each
round. Starting from the root node, in each round we sequentially scan through the
whole graph’s edges on the disk and construct one additionallevel of the tree. Specif-
ically, in roundr ≥ 0, for each edgea ↔ b that connectsa on ther − th level to an
unvisited nodeb, we assignb to be a child ofa. We store the growing tree in the main
memory when streaming the graph on the disk. Note that this design only implements
a fixed priority to break ties when growing the tree.

To implement the BFS random tie-break, we need to randomly assign a parent to
a node on the next level when multiple nodes on the current level are connected to it
on the graph. Specifically, if we encounter an edgea ↔ b with a on therth level and
b already assigned to be a child ofc on therth level, we allow a probability thatb’s



parent is changed toa from c. The probability values can be chosen using the reser-
voir sampling [27]. To implement the BFS complementary tie-break, we tag each edge
on the disk with the number of times that it is chosen in previous trees, and use this
information to decide the parent assignment.

This implementation is highly memory-efficient. The only data stored in the main
memory is the actual tree. We represent the tree using an array T , whereT [i] stores the
parent node ofi. Additionally, for each nodei we record its level in the tree. Our largest
social graph, Renren, only requires0.3GBs of memory, compared to21GB of memory
for the standard implementation.

The time complexity of this implementation isO(R · |E|), whereR is the number
of rounds we need to stream the whole graph. It is clear that this number is equal to
the depth of the tree, or the largest distance from the root toany node, which is around
8−12 in today’s online social networks. Each round costsO|E| as we perform constant
time operations for each scanned edge. For the Renren graph,it takes5.8 hours to build
a tree, slightly slower than the1.6 hours for the in-memory implementation.

5 Experiments on Social Graphs

In this section, we verify Atlas using real social graphs collected from five of today’s
popular OSNs.

5.1 Social Graph Datasets
Our dataset includes data we have collected from Facebook [28] (largest OSN world-
wide, 500+ million users) and RenRen [4] (largest OSN in China, 150+ million users).
We also use data shared from external measurements on Orkut [3], LiveJournal [2] ,
and Flickr [1].

Facebook. Our dataset includes anonymized social graphs from 23 of Facebooks
largest regional networks [28], measured between March andMay 2008, totalling more
than 10 million users and 940 million links. The availability of these graphs allows
us to select a small set with enough diversity. For example, two representative graphs
from the Norway and New York City regions (Table 4) display very different size and
connectivity [28].

Renren. Launched in 2005, it is the largest OSN in China now with more than
150 million users [4]. It offers functionality very similarto Facebook. We collected in
October 2009 a large social graph of roughly 43 million usersand 1 billion edges. To
the best of our knowledge, this is the largest dataset ever crawled from a single OSN.

Orkut. This social graph was collected by Mislove during October and November
2006 [7]. Since our work focuses on connected social graphs,we extract the largest
connected subgraph from the raw data.

LiveJournal. It is a popular online community to publish blog, journal or diary [2].
The dataset used in this paper was crawled in December 2006 [7]. We convert all di-
rected edges to undirected, and extract its largest connected component listed in Table 4,
which includes about 98% users of the raw data.

Flickr. It is a popular website for photo sharing [1]. We use Flickr data collected
in January 2007 [7], convert all directed edges to undirected, and extract its largest
connected subgraph.



Social Graphs Nodes Edges

Renren43,197,3911,040,429,110
Orkut 3,072,440 117,185,083

LiveJournal 5,189,808 48,942,197
Flickr 1,715,255 15,555,042

Facebook: Norway 293,500 5,589,802
Facebook: New York City 377,619 3,616,816

Fig. 4. Six representative social graphs (with undi-
rected edges) from five popular OSNs.
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We focus on two performance metrics. First, we study theaccuracy in path length,
measured by the difference between the path length returnedby Atlas to the exact length
returned by BFS. Second, we study theaccuracy in path, defined as the maximum
overlap between the path returned by Atlas and any shortest path reported by BFS on
the original social graph. During the process, we also compare different root selection
and tree growing strategies. We observe consistent resultsfor all the social graphs. We
only show representative results from the Renren graph due to space limit.

5.2 Accuracy in Path Length

We start from examining Atlas’s accuracy in estimating shortest path length. We first
examine Atlas with basic strategies and then examine the impact of root selection and
tree growing strategies.

Atlas with Basic Strategies. We first evaluate Atlas by its basic configuration: using
the Top-k Centrality to select roots and the BFS with Random Tie-Breakto grow trees.
For each social graph, we first buildk spanning trees, randomly select 200,000 pairs of
nodes on the graph, and calculate the shortest path length generated by Atlas and the
original BFS based search. Atlas returns the path length result by querying each of the
k trees separately and selecting the shortest path returned from thesek trees.

Figure 5 compares the average path length answered by Atlas to that answered by
BFS, as a function of the number of treesk, k = 1...20. We make two key observations.
First, ask increases, the average path length produced by Atlas approaches the optimal
value.k=10-20 is likely to be a “sweet point” since the improvement decreases quickly
and becomes marginal whenk exceeds beyond 10. Second, for all the graphs, Atlas
with k = 20 is able to approximate the average path length within 1-hop absolute error.

To understand the accuracy of Atlas at individual path lengths, we classify the node
pairs by their distance computed using BFS, and compute for each distance value the
average difference in path length between Atlas and BFS. Figure 6(a) shows the results
with k = 1, 3, 6, 10, 20. Interestingly, Atlas’s accuracy in path length increaseswith the
node path length, especially when the number of treesk is small. Even fork = 20, At-
las produces more accurate results for long paths. This coincides with our expectation
in Section 3 and Figure 2 where Atlas with BFS Random Tie-Break focuses on cover-
ing “global” paths that interconnect communities but ignores “local” paths that connect
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Fig. 6.a) Impact of original node distance to the accuracy of Atlas,in terms of the average amount
of increases in distance measured by Atlas over the originalvalue. Atlas’s accuracy in path length
increases with the node path length. Even fork = 20, Atlas produces more accurate results for
long paths. b) Comparing different root selection strategies.Random performs poorly because it
fails to minimize the tree depth. The two centrality-based strategies are consistently similar.

nodes within a community. This also motivates us to examine other tree growing strate-
gies that seek to cover local paths.

Comparing Root Selection Strategies. Figure 6(b) compares the three root selec-
tion strategies:Top-k Centrality, Scattered Top-k Centrality andRandom, while using
the BFS with Random Tie-Break to grow trees. As expected,Random performs poorly
compared to the centrality-based strategies because it fails to minimize the tree depth
and thus suffers from larger average path length. On the other hand, the two centrality-
based strategies perform consistently similar to each other. A similar observation was
found in landmark selection [22]. From the graph statistics, we infer that this is be-
cause many nodes with largest degree centrality are separated by more than 2 hops. For
Renren, the two strategies select exactly the same set of roots.

Comparing Tree Growing Strategies. We also examine Atlas with different tree
growing strategies,Random Tie-break, Complementary Tie-break andLeast-Covered-
Node-First. We omit the detailed results due to space limit. Our resultsshow that in
terms of average path length, the default Random Tie-break strategy withk = 20 al-
ways outperforms the other two. Complementary Tie-break only improves the accuracy
slightly by 0.1 hop when the number of trees is small (k < 5). Least-Covered-Node-
First only improves the accuracy when the node distance is1. This shows that covering
global paths is crucial for providing accurate shortest path estimation. Atlas’s multiple
trees, together, help to cover local paths ignored by individual trees. Overall, Random
Tie-break is still the best strategy among the tree.

Contribution of Individual Trees. Since Atlas uses multiple spanning trees, we are
interested in understanding the contribution of individual trees to the overall shortest
path computation. To do so, we measure the contribution of a tree by the probability that
it outputs the minimum path length among allk trees. Note that for a given query, there
might be multiple trees that achieve the same minimum length, and we count the query
at all these trees. We plot in Figure 7(a) the result for Renren using the basic strategies.
We see that tree 16–18 make much higher contribution than others. From the traces, we
found that the contribution of each tree is highly correlated with the closeness centrality
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Fig. 7. Contribution of individual trees to overall shortest path computation, using the Renren
social graph. (a) The contribution defines the probability atree outputs the minimum path length
among allk trees. It varies across trees. (b) A tree’s contribution is heavily correlated with its
root’s closeness centrality value, motivating us to use closeness for root selection (although highly
complex to compute). (c) Yet using closeness centrality does not help whenk is large.

of its root (Figure 7(b)). A tree whose root has a lower closeness value produces a higher
contribution. This is not surprising because closeness is an accurate metric on a node’s
connectivity with the rest of the graph.

Because computing closeness is highly difficult [22], Atlasuses node degree to
select tree roots. To understand the impact of such practical decision, we show in Fig-
ure 7(c) the average path length result of Atlas, Atlas usingcloseness centrality and the
optimal BFS approach. Interestingly, whenk ≥ 16, using closeness centrality does not
lead to any gain. This shows that having multiple trees compensates the imperfect root
selection strategy, and proves the efficiency and effectiveness of our Atlas design.

5.3 Accuracy in Shortest Path
A unique advantage of Atlas is that it can not only estimate the shortest path length but
also record all nodes along the path,i.e. produce the actual path. Information on the
actual path is useful to many applications. For example, users can monitor how their
information is delivered by those media nodes that are on thepaths. In this case, if
there is less deviation for a shortest path (produced by Atlas) compared to the real one
(produced by BFS), users can reduce/avoid such monitoring.In other words, the path
produced by Atlas, if displays minimum deviation from the actual path, will be more
reliable to users and thus more accurate.

We use the metric of maximum overlap of shortest path produced by Atlas with the
original path to evaluate Atlas’s path accuracy. Because using BFS, there could also be
several shortest paths between any two nodes. We compute allpossible shortest paths
using BFS and also use Atlas to produce a shortest path. Then,we compare the Atlas
shortest path to the multiple BFS shortest paths and count the number of overlapped
nodes between Atlas path and each BFS shortest path. We definethe maximum match-
ing path as the BFS path with the maximum number of overlappednodes . We then
compute the deviation of shortest path as the number of nodesthat are in the maximum
matching path but not in Atlas path, and use this to quantify the path accuracy.

In our implementation, we randomly select 20 nodes as sourcenodes in each graph
and compute 100 random paths for each node, producing 2000 samples. To avoid bias,
we do not use any root node or nodes with large degree. We plot the distribution of the
deviation of shortest path in Table 1. We see that at least 30%Atlas paths do not miss



# of nodes missedFrequency of occurrence
by Atlas path New York Norway

0 0.341 0.314
1 0.072 0.058
2 0.2395 0.3235
3 0.29 0.2895
4 0.0555 0.015
5 0.002 0

Table 1.Deviation of Atlas shortest path

Social Atlas Tree Atlas query BFS query
Graph construction on 20 trees

Renren 96min/tree 0.3ms/query86.5s/query
Orkut 8min/tree 0.3ms/query12.0s/query

LiveJournal 2.5min/tree0.3ms/query19.8s/query
Flickr 0.8min/tree0.3ms/query6.2s/query

Table 2. Atlas runtime performance in terms
of constructing trees and answering query.

any node and very few paths miss more than 3 nodes. By averaging the overlap to the
path length, Atlas can cover 60.6% nodes in Norway graph and 64.6% nodes in NY
graph. This shows Atlas’s confidence in approximating actual shortest paths.

5.4 Runtime
Having examined Atlas’s complexity bound, we now examine its practical runtime per-
formance. Table 2 lists Atlas’s runtime metrics for constructing spanning trees and pro-
cessing shortest path queries. This was measured on a commodity server of 2.4GHz,
dual core with 32GB of RAM. We implement Atlas tree construction in C and shortest
path query in Python. Our approach scales to the extremely large Renren graph with
43 million nodes and 1 billion edges, taking a reasonable 1.6hours to build one tree.
To compute a shortest path, Atlas searches through allk = 20 trees sequentially (no
parallelism). It takes<60 seconds to process 200,000 queries, translating into 0.3ms
per query even for the Renren graph. This is orders of magnitude smaller compared to
the conventional shortest path query time.

5.5 Application Benchmarks
Having examined Atlas using shortest path analysis, we now examine the efficacy of us-
ing Atlas in graph analysis application. Our goal is to examine whether the approximate
shortest path produced by Atlas can be used to produce accurate application results. We
consider two graph analysis applications,node centrality computation andranked social
search. We run these applications on three social graphs: FacebookNorway, Facebook
New York, and Flickr.

Node Centrality Computation. Closeness centrality is the average path length from
one node to all the other nodes in the graph. It can be used as a critical metric to estimate
how fast information traverses the whole graph. Intuitively, a node of smaller average
path length can be considered as higher centrality. That means information can spread
through the graph in a shorter time.

Since Atlas can estimate shortest path length between any two nodes accurately, we
can estimate centrality precisely. To evaluate the accuracy of centrality computed by
Atlas, we use the results computed by BFS as the ground truth.We randomly select
500 nodes from each graph and compute centrality for each node using Atlas and BFS.
Specifically, we rank the nodes by their average path length to all other nodes and
select the topN nodes in both methods. We then compute the accuracy as the amount
of overlap between Atlas and BFS results, normalized byN .
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Fig. 8. The accuracy of using Atlas in graph analysis applications.

Figure 8 (a) plots the results for differentN values. The accuracy of Atlas increases
gradually withN because nodes with larger centrality are being included andthat Atlas
produces less error in estimating longer paths (shown in Figure 6 (a)). Overall our sys-
tem promises at least 60% accuracy for Norway, 70% for New York and 90% for Flickr.
The difference between these graphs is because both Flickr and New York display larger
average shortest path length.

Ranked Social Search. Users in OSNs often choose search results based on the
relationship between themselves to responders. In other words, they prefer the results
provided by closer nodes, and order results by their distance to the responders. This is
called social-based search rank. To implement such shortest path length based ranking,
we randomly select 500 nodes from each graph. Each node will receive 100 random
responses from 100 distinct nodes. Each node ranks the responses based on its shortest
path length to the responder. Again we choose topN responses and count the overlap
between Atlas and BFS results.

Figure 8(b) shows that the accuracy of Atlas’s selection increases withN . Even
when selecting only top 10% responses (N = 10), Atlas provides 60% accuracy for
Norway, 80% for New York and 90% for Flickr. Similar to the case of centrality com-
putation, the accuracy for Norway is lower because its average path length is smaller.

6 Handling Dynamic Graphs
Online social networks display dynamic characteristics, including users adding/removing
accounts, changing relationship status, and evolution of user interactions [28]. These
dynamics make the corresponding social graphs time-varying. In this section, we dis-
cuss how Atlas updates its spanning trees to handle dynamic graphs efficiently.

To help motivate and validate our design, we have collected several dynamic social
graphs. One particular example is that using our Facebook measurement, we obtained
35 daily snapshot social graphs of the San Francisco regional network during October
2008, where the number of users in the graph grew from 160K to 170K. This sequence
of social graphs captures the dynamics of users joining (andleaving) Facebook and
updating their friend connections. Table 3 lists the degreeof variation in both nodes and
edges across the 35 daily snapshots, indicating a slow but steady growth.

6.1 Atlas for Dynamic Graphs
Intuitively, the simplest solution to address graph dynamics is to update Atlas’s trees
whenever there is a change in the social graph. Given the scale of today’s social graphs,



Statistics
Nodes Edges

Added RemovedAdded Removed
Mean 0.36% 0.22% 0.61% 0.39%

Standard deviation0.0025 0.0012 0.0044 0.0025
Table 3.The mean and standard deviation of proportion of nodes and edges added/removed per-
day across our 35 San Francisco snapshot social graphs.

updating all the trees in real-time is intractable. For example, it takes 1.6 hours on
commodity servers to build a single tree for Renren, thus 32 hours for 20 trees. This
means that to support large dynamic graphs, we can only update the spanning trees
periodically and/or incrementally.

With this in mind, we introduce two new mechanisms on top of Atlas’s original
design for dynamic graphs:

• Incremental Tree Update. Atlas periodically updates the spanning trees to reflect
changes in the social graph,e.g. addition and removal of graph nodes and edges. To
reduce the overhead, Atlas only updates a small subset of trees rather than all the trees.

• Path Validation. With periodic and incremental update, some trees become obsolete
and could return invalid paths that contain deleted nodes and edges. We add to Atlas a
verification process to verify paths returned from these trees, and discard invalid paths.
The process is simple and efficient since it only involves several hash table lookups. In
rare cases that none of the trees return valid paths, Atlas answers the query by running
a generic algorithm on the current social graph.

In the following, we focus on dynamic tree update because path validation is straight-
forward to design.

Incremental Tree Update. The motivation behind our design comes from the actual
observed dynamic patterns, shown in Table 3. Between each graph update, the number
of changed nodes/edges is relatively small compared to the overall graph scale (≈0.5%).
Thus it is highly likely that slightly obsolete trees are still good for the majority of
shortest path queries and thus do not need to be replaced immediately.

Motivated by the above observation, we propose in Atlas to build only one new
tree per update period or when detecting sufficient changes on the graph, and use it
to replace an existing tree. The new tree covers newly added nodes (and edges) with-
out significant computation overhead. The design question here is “which existing tree
should we replace?” Intuitively, the tree to replace shouldbe the most “obsolete” in
terms of answering shortest path queries. For this we introduce two metrics on the level
of “obsoleteness”:

• Query-Accuracy. We evaluate each tree by its performance in answering queries.
In this case, two types of events will affect the obsoleteness of a tree. First, the tree
does not contain one of the query nodes because it is recentlyadded to the social graph.
Second, the tree returns an invalid path that contains nodesand/or edges that no longer
exist. We score each tree by the total occurrence of both events, and the tree with the
highest score is the most obsolete one and will be replaced.

• Age or Tree Creation Time. This metric measures the level of obsoleteness by the
time it is created, where we always replace the oldest tree inthe set.
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Fig. 9. Comparing Atlas with incremental tree update (Update-Q, Update-A) to Atlas with full
tree rebuild (fullUpdate), in terms of the difference in average path length. Incremental update
performs closely to full update. There is no significant difference between query-accuracy and
age based incremental update.

6.2 Experiment on Dynamic Social Graphs

We performed detailed experiments to evaluate Atlas’s shortest path query with dy-
namic social graphs, and to compare the above two tree updating strategies. In particu-
lar, we examine three options in Atlas tree update:
i) Update-Q, the proposed incremental tree update mechanism using the Query-performance
metric;
ii) Update-A, incremental tree update using the Age metric;
iii) fullUpdate, which completely rebuilds allk = 20 trees.

Graph Data Set. We use both measured and model-generated dynamic graphs. We
use synthetic graphs because they allow us to examine the impact of dynamics in a
longer period than the measured ones and to control the frequency of graph/tree update.

• Measured Dynamic Social Graphs. This is the set of 35 daily snapshots of the
San Francisco regional network discussed in the above. In this case, the social graph is
updated once per day, upon which Atlas also updates its tree(s).

• Model-generated Dynamic Social Graphs. We use a modified Nearest Neigh-
bor(NN) model [23] to generate dynamic graphs. This model has been shown to sta-
tistically approximate real social graphs with high confidence [23]. We use an iterative
process to build dynamic graphs: first construct a syntheticgraph that closely approxi-
mates the Facebook New York City graph, then follow the modelto gradually grow the
graph by 0.5% of the original size per iteration. We produce asequence of 100 graphs
where the last graph is 50% larger than the first graph. Different from real dynamic
graphs, these synthetic graphs do not capture node or edge removal. In this case the
social graph is updated once per 0.5% growth, so are Atlas trees.

For both datasets, we build/update Atlas trees using the Top-k Centrality strategy
to choose roots and the BFS with Random Tie-Break to grow trees. We choose this
configuration based on the evaluation result in Section 5.

Results: Incremental Update vs. Full Update. We first compare Atlas with incre-
mental and full update by the average path length returned for 200, 000 random queries
performed on each graph snapshot. To highlight the difference we plot in Figure 9 the



difference in average path length between Update-Q and fullUpdate, and Update-A and
fullUpdate, for the three dynamic graphs.

For both graphs, the mean difference between progress and full update is roughly
0.1 hop. We also found that full update is within 0.6 hop from the optimal solution that
uses BFS on the actual social graph. This result demonstrates the effectiveness of Atlas’s
incremental tree update. For both scenarios, we see that theerror initially increases with
time and then flattens and even decreases. The initial increase is due to the edge effect
since we build 20 fresh trees at time 0. The flattening (and decreasing) trend indicates
that the proposed incremental tree update can quickly stabilize over time.

We also observe that there is no significant difference between Update-Q and Update-
A. This result is as expected but also encouraging. Because the amount of change be-
tween snapshots is still relatively small given the overallgraph scale, the majority path
queries can be answered by the slightly obsolete trees. As the trees get updated one by
one, the oldest tree will likely produce the worst query results, and should be updated.

Results: Impact of Individual Events. For a detailed look at the impact of graph
dynamics, we categorize the dynamics into four events and analyze their impact.

• Removing an edge. Removing an edgeφ affects a treeT only if T containsφ and
thus could return invalid paths that containφ. We measure the impact byφ’s weight
on the tree, defined as the size of the subtree rooted atφ, which relies onφ to connect
with other nodes in the graph. Intuitively, removing an edgewith larger weight leads to
heavier impact.

• Removing a node. Removing a nodeµ also removes all of its edges. This event
affects an existing treeT only if T containsµ. Similarly, we measure the impact by its
weight, defined by the size of the subtree rooted at nodeµ.

• Adding an edge. Adding an edgeφ = (u ↔ v) to a graph can produce large
impact on a treeT if nodesu andv were widely separated on the tree. Thus we measure
its direct impact on Atlas’s accuracy by the distance between u andv observed onT.
Another related question is whether addingφ to the graph makesT no longer a BFS
tree on the new graph. If so, this will introduce significant changes to the tree when it
gets updated. To examine this we record the difference inu andv’s depth onT. When
the difference is no more than 1,T is still a BFS tree on the new graph and addingφ

will not introduce changes toT.

• Adding a node. It produces no impact unless followed by adding an edge, which is
already covered.

Figure 10 plots the impact measures using the San Francisco dynamic social graphs.
We make several observations. First, of all the edges removed, 89% have no impact
on any tree,i.e. they were not on any tree (results not shown for brevity). We plot in
Figure 10(a) the weight of edges that were on at least one tree. More than 90% of them
have a weight of 5 or less, meaning that their removal only affects a small subtree of 5
nodes. Similar observations were found on node removal (Figure 10(b)). This implies
that the majority of node/edge removed were on the boundary of the graph. They do not
affect the core graph structure, and have minimal impact on the spanning tree structure.

Figure 10(c)-(d) examine the impact of adding an edgeu ↔ v by the distance ofu
andv on a tree and the difference of their depths on the tree. Figure 10(c) shows that
edges were uniformly added among nodes that were close-by and well-separated. This
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Fig. 10. The impact of each dynamic event on Atlas trees, using the SanFrancisco snapshots
as the dynamic social graph. (a) Most of edges removed have a small weight and affect only a
small number (5) of nodes. (b) Most nodes removed have a smallweight and affect a minimum
number of queries. (c) Edges were added between nodes with different separations. This triggers
the majority of errors. (d) For 95% of added edges, the two endnodes’ tree depths differs by 1 or
0. This means that the tree is still a BFS on the new graph.

is the key source for Atlas’s path estimation error. Figure 10(d) shows that for 95% of
new edges, the depths ofu andv only differ by 1. This means that with high probability
adding a new edge still makes a tree a BFS tree on the new graph and thus has no
effect on the tree. Overall, our detailed analysis confirms that each individual event has
minimum impact on the tree structure.

7 Conclusion
This paper describesAtlas, a novel approach to scalably approximate shortest paths
between graph nodes using multiple spanning trees. Atlas easily distributes across dis-
tributed machine clusters to handle massive graphs, and produces short paths that closely
match the ideal shortest path. We demonstrate its scalability and effectiveness using
large graphs from multiple social networks, the largest of which includes 43 million
nodes and 1 billion edges. Using snapshots of graph dynamics, we also show that At-
las can be incrementally updated over time to handle dynamics graphs. Experiments
show that Atlas can help real graph applications scale to massive graphs. With the rapid
growth of OSNs, we believe Atlas will be a critical componentfor graph analysis in the
future. We are already in discussions to deploy Atlas at a large social network provider.
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20. MÖHRING, R. H., ET AL . Partitioning graphs to speed up Dijkstra’s algorithm. InWEA

(2005), pp. 189–202.
21. NICHOLSON, T. A. J. Finding the shortest route between two points in a network. Computer

J., 9 (1966), 275–280.
22. POTAMIAS , M., ET AL . Fast shortest path distance estimation in large networks.In Proc. of

CIKM (2009).
23. SALA , A., ET AL . Measurement-calibrated graph models for social network experiments.

In Proc. of WWW (2010).
24. SANDERS, P.,AND SCHULTES, D. Highway hierarchies hasten exact shortest path queries.

In Proceedings 17th European Symposium on Algorithms (ESA) (2005).
25. SONG, H. H., ET AL . Scalable proximity estimation and link prediction in online social

networks. InProc. of IMC (2009).
26. SWAMYNATHAN , G., ET AL . Do social networks improve e-commerce: a study on social

marketplaces. InProc. of SIGCOMM WOSN (August 2008).
27. VITTER, J. Random sampling with a reservoir.ACM Trans. Math. Softw. 11, 37–57.
28. WILSON, C.,ET AL . User interactions in social networks and their implications. InProc. of

EUROSYS (2009).
29. ZHAO, X., ET AL . Orion: Shortest path estimation for large social graphs. In Proc. of WOSN

(June 2010).


