
A Flexible Open-Source Toolbox for Scalable Complex Graph Analysis∗

Adam Lugowski† David Alber‡ Aydın Buluç§ John R. Gilbert¶ Steve Reinhardt‖

Yun Teng∗∗ Andrew Waranis††

Abstract
The Knowledge Discovery Toolbox (KDT) enables domain
experts to perform complex analyses of huge datasets on su-
percomputers using a high-level language without grappling
with the difficulties of writing parallel code, calling paral-
lel libraries, or becoming a graph expert. KDT provides a
flexible Python interface to a small set of high-level graph
operations; composing a few of these operations is often suf-
ficient for a specific analysis. Scalability and performance
are delivered by linking to a state-of-the-art back-end com-
pute engine that scales from laptops to large HPC clusters.
KDT delivers very competitive performance from a general-
purpose, reusable library for graphs on the order of 10 billion
edges and greater. We demonstrate speedup of 1 and 2 or-
ders of magnitude over PBGL and Pegasus, respectively, on
some tasks. Examples from simple use cases and key graph-
analytic benchmarks illustrate the productivity and perfor-
mance realized by KDT users. Semantic graph abstractions
provide both flexibility and high performance for real-world
use cases. Graph-algorithm researchers benefit from the abil-
ity to develop algorithms quickly using KDT’s graph and un-
derlying matrix abstractions for distributed memory. KDT
is available as open-source code to foster experimentation.

Keywords: massive graph analysis, scalability, sparse matri-

ces, open-source software, domain experts

1 Introduction

Analysis of very large graphs has become indispens-
able in fields ranging from genomics and biomedicine
to financial services, marketing, and national security,
among others. In many applications, the requirements
are moving beyond relatively simple filtering and ag-
gregation queries to complex graph algorithms involv-
ing clustering (which may depend on machine learn-
ing methods), shortest-path computations, and so on.
These complex graph algorithms typically require high-
performance computing resources to be feasible on large
graphs. However, users and developers of complex

∗This work was partially supported by NSF grant CNS-
0709385, by DOE grant DE-AC02-05CH11231, by a contract from

Intel Corporation, by a gift from Microsoft Corporation and by
the Center for Scientific Computing at UCSB under NSF Grant

CNS-0960316.
†UC Santa Barbara. Email: alugowski@cs.ucsb.edu
‡Microsoft Corp. Email: david.alber@microsoft.com
§Lawrence Berkeley Nat. Lab. Email: abuluc@lbl.gov
¶UC Santa Barbara. Email: gilbert@cs.ucsb.edu
‖Microsoft Corp. Email: steve.reinhardt@microsoft.com
∗∗UC Santa Barbara. Email: yunteng@umail.ucsb.edu
††UC Santa Barbara. Email: andrewwaranis@umail.ucsb.edu

Largest	
Component	

Graph	 of	
Clusters	

Markov	
Clustering	

Input	 Graph	

Figure 1: An example graph analysis mini-workflow in
KDT.

graph algorithms are hampered by the lack of a flexible,
scalable, reusable infrastructure for high-performance
computational graph analytics.

Our Knowledge Discovery Toolbox (KDT) is the
first package that combines ease of use for domain (or
subject-matter) experts, scalability on large HPC clus-
ters where many domain scientists run their large scale
experiments, and extensibility for graph algorithm de-
velopers. KDT addresses the needs both of graph
analytics users (who are not expert in algorithms or
high-performance computing) and of graph analytics re-
searchers (who are developing algorithms and/or tools
for graph analysis). KDT is an open-source, flexible,
reusable infrastructure that implements a set of key
graph operations with excellent performance on stan-
dard computing hardware.

The principal contribution of this paper is the intro-
duction of a graph analysis package which is useful to
domain experts and algorithm designers alike. Graph
analysis packages that are entirely written in very-
high level languages such as Python perform poorly.
On the other hand, simply wrapping an existing high-
performance package into a higher level language im-
pedes user productivity because it exposes the underly-

the variable bigG contains the input graph
find and select the giant component
comp = bigG.connComp()

giantComp = comp.hist().argmax()

G = bigG.subgraph(mask=(comp==giantComp))

cluster the graph
clus = G.cluster(’Markov’)

get per−cluster stats, if desired
clusNvert = G.nvert(clus)

clusNedge = G.nedge(clus)

contract the clusters
smallG = G.contract(clusterParents=clus)

Figure 2: KDT code implementing the mini-workflow
illustrated in Figure 1.

ing package’s lower-level abstractions that were inten-
tionally optimized for speed.

KDT uses high-performance kernels from the Com-
binatorial BLAS [8]; but KDT is a great deal more than
just a Python wrapper for a high-performance back-
end library. Instead it is a higher-level library with
real graph primitives that does not require knowledge
of how to map graph operations to a low-level high per-
formance language (linear algebra in our case). It uses
a distributed memory framework to scale from a laptop
to a supercomputer consisting of hundreds of nodes. It
is highly customizable to fit users’ problems.

Our design activates a virtuous cycle between al-
gorithm developers and domain experts. High-level do-
main experts create demand for algorithm implemen-
tations while lower-level algorithm designers are pro-
vided with a user base for their code. Domain experts
use graph abstractions and existing routines to develop
new applications quickly. Algorithm researchers build
new algorithm implementations based on a robust set
of primitives and abstractions, including graphs, dense
and sparse vectors, and sparse matrices, all of which
may be distributed across the memory of multiple nodes
of an HPC cluster.

Figure 1 is a snapshot of a sample KDT workflow
(described in more detail in Section 4.6). First we locate
the largest connected component of the graph; then we
divide this “giant” component of the graph into clusters
of closely-related vertices; we contract the clusters into
supervertices; and finally we perform a detailed struc-
tural analysis on the graph of supervertices. Figure 2
shows the actual KDT Python code that implements
this workflow.

KDT	

Data	
filtering	

technologies	

Build	
input	
graph	

Analyze	
graph	

Cull	
relevant	
data	

Interpret	
results	

Graph	
viz	

engine	

3	
2	 1	 4	

Figure 3: A notional iterative analytic workflow, in
which KDT is used to build the graph and perform the
complex analysis at steps 2 and 3.

The remainder of this paper is organized as follows.
Section 2 highlights KDT’s goals and how it fits into
a graph analysis workflow. Section 3 covers projects
related to our work. We provide examples and perfor-
mance comparisons in Section 4. The high-level lan-
guage interface is described in Section 5 followed by an
overview of our back-end in Section 6. Finally we sum-
marize our contribution in Section 7.

2 Architecture and Context

A repeated theme in discussions with likely user com-
munities for complex graph analysis is that the domain
expert analyzing a graph often does not know in ad-
vance exactly what questions he or she wants to ask of
the data. Therefore, support for interactive trial-and-
error use is essential.

Figure 3 sketches a high-level analytical workflow
that consists of (1) culling possibly relevant data from a
data store (possibly disk files, a distributed database, or
streaming data) and cleansing it; (2) constructing the
graph; (3) performing complex analysis of the graph;
and (4) interpreting key portions or subgraphs of the
result graph. Based on the results of step 4, the user
may finish, loop back to step 3 to analyze the same data
differently, or loop back to step 1 to select other data to
analyze.

KDT introduces only a few core concepts to ease
adoption by domain experts. The top layer in Figure 4
shows these; a central graph abstraction and high-level
graph methods such as cluster and centrality. Do-
main experts compose these to construct compact, ex-
pressive workflows via KDT’s Python API. Exploratory
analyses are supported by a menu of different algorithms
for each of these core methods (e.g., Markov and even-

2

Ranking	
pageRank	

centrality(‘approxBC’)	

DiGraph	 HyGraph	

Building	 blocks	

Clustering	
cluster(‘Markov’)	

contract	

Vec	

Semiring	 methods	
(SpMV,	 SpGEMM)	

Complex	 methods	

Sparse-‐matrix	 classes/methods	
(e.g.,	 Apply,	 EWiseApply,	 Reduce)	

Underlying	 infrastructure	 (Combinatorial	 BLAS)	

Mat	
• bfsTree,neighbor	
• degree,subgraph	
• load,UFget	
• +,	 -‐,	 sum,	 scale	
• generators	

• toDiGraph	
• load,	 Ufget	
• bfsTree	
• degree	

• SpMV	
• SpGEMM	
• load,	 save,	 eye	
• reduce,	 scale	
• EWiseApply,	 []	

• max,	 norm,sort	
• abs,	 any,	 ceil	 	
• range,	 ones	
• EWiseApply,[]	

other/future	
connComp	
triangles	

Figure 4: The architecture of Knowledge Discovery
Toolbox. The top-layer methods are primarily used by
domain experts, and include centrality and cluster

for semantic graphs. The middle-layer methods are pri-
marily used by graph-algorithm developers to imple-
ment the top-layer methods. KDT is layered on top
of Combinatorial BLAS.

tually spectral and k-means algorithms for clustering).
Good characterizations of each algorithm’s fitness for
various types of very large data are rare and so most
target users will not know in advance which algorithms
will work well for their data. We expect the set of high-
level methods to evolve over time.

The high-level methods are supported by a small
number of carefully chosen building blocks. KDT is
targeted to analyze large graphs for which parallel
execution in distributed memory is vital, and so its
primitives are tailored to work on entire collections of
vertices and edges. As the middle layer in Figure 4
illustrates, these include directed graphs (DiGraph),
hypergraphs (HyGraph), and matrices and vectors (Mat,
Vec). The building blocks support lower-level graph and
sparse matrix methods (for example, degree, bfsTree,
and SpGEMM). This is the level at which the graph
algorithm developer or researcher programs KDT.

Our current computational engine is Combinatorial
BLAS [8] (shortened to CombBLAS), which gives ex-
cellent and highly scalable performance on distributed-
memory HPC clusters. It forms the bottom layer of our
software stack.

Knowledge discovery is a new and rapidly chang-
ing field, and so KDT’s architecture fosters extensi-
bility. For example, a new clustering algorithm can
easily be added to the cluster routine, reusing most
of the existing interface. This makes it easy for the
user to adopt a new algorithm merely by changing the

algorithm argument. Since KDT is open-source (avail-
able at http://kdt.sourceforge.net), algorithm re-
searchers can look at existing methods to understand
implementation details, to tweak algorithms for their
specific needs, or to guide the development of new meth-
ods.

3 Related Work

KDT combines a high-level language environment, to
make both domain users and algorithm developers more
productive, with a high-performance computational en-
gine to allow scaling to massive graphs. Several other
research systems provide some of these features, though
we believe that KDT is the first to integrate them all.

Titan [35] is a component-based pipeline architec-
ture for ingestion, processing, and visualization of in-
formatics data that can be coupled to various high-
performance computing platforms. Pegasus [19] is a
graph-analysis package that uses MapReduce [11] in
a distributed-computing setting. Pegasus uses a gen-
eralized sparse matrix-vector multiplication primitive
called GIM-V, much like KDT’s SpMV, to express vertex-
centered computations that combine data from neigh-
boring edges and vertices. This style of program-
ming is called “think like a vertex” in Pregel [27], a
distributed-computing graph API. In traditional scien-
tific computing terminology, these are all BLAS-2 level
operations; neither Pegasus nor Pregel currently in-
cludes KDT’s BLAS-3 level SpGEMM “friends of friends”
primitive. BLAS-3 operations are higher level primi-
tives that enable more optimizations and generally de-
liver superior performance. Pregel’s C++ API targets
efficiency-layer programmers, a different audience than
the non-parallel-computing-expert domain experts (sci-
entists and analysts) targeted by KDT.

Libraries for high-performance computation on
large-scale graphs include the Parallel Boost Graph Li-
brary [17], the Combinatorial BLAS [8], and the Multi-
threaded Graph Library [4]. All of these libraries target
efficiency-layer programmers, with lower-level language
bindings and more explicit control over primitives.

GraphLab [26] is an example of an application-
specific system for parallel graph computing, in the
domain of machine learning algorithms. Unlike KDT,
GraphLab runs only on shared-memory architectures.

4 Examples of use

In this section, we describe experiences using the
KDT abstractions as graph-analytic researchers, im-
plementing complex algorithms intended as part of
KDT itself (breadth-first search, betweenness centrality,
PageRank, Gaussian belief propagation, and Markov
clustering), and as graph-analytic users, implementing

3

1	
1	

1	 1	 1	
1	 1	

1	 1	
1	 1	

1	 7	

7	
7	
7	

7	
7	
7	

	

3	
4	
5	

4	

4	

5	

4	

7	
7	
7	
5	
	

1	
1	

1	 1	 1	
1	 1	

1	 1	
1	 1	

1	

fin	 fout	 G	 parents	

×	

×	

=	

=	

root	

1st	 Fron6er	

2nd	 Fron6er	
fi	 =	 i	

1 2

3

4
7

6

5

new	

1 2

3

4
7

6

5

new	

old	

Figure 5: Two steps of breadth-first search, starting
from vertex 7, using sparse matrix-sparse vector multi-
plication with “max” in place of “+”.

a mini-workflow.

4.1 Breadth-First Search

4.1.1 An algebraic implementation of BFS
Breadth-first search (BFS) is a building block of many
graph computations, from connected components to
maximum flows, route planning, and web crawling and
analysis [31, 15]. BFS explores a graph starting from
a specific vertex, identifying the “frontiers” consisting
of vertices that can be reached by paths of 1, 2, 3, . . .
edges. BFS also computes a spanning tree, in which
each vertex in one frontier has a parent vertex from the
previous frontier.

In computing the next frontier from the current
one, BFS explores all the edges out of the current
frontier vertices. For a directed simple graph this is
the same computational pattern as multiplying a sparse
matrix (the transpose of the graph’s adjacency matrix)
by a sparse vector (whose nonzeros mark the current
frontier vertices). The example in Figure 5 discovers
the first two frontiers f from vertex 7 via matrix-vector
multiplication with the transposed adjacency matrix G,
and computes the parent of each vertex reached. SpMV

is KDT’s matrix-vector multiplication primitive.
Notice that while the structure of the computa-

tion is that of matrix-vector multiplication, the actual
“scalar” operations are selection operations not addition
and multiplication of real numbers. Formally speaking,
the computation is done in a semiring different from
(+,×). The SpMV user specifies the operations used to
combine edge and vertex data; the computational en-
gine then organizes the operations efficiently according
to the primitive’s well-defined memory access pattern.

It is often useful to perform BFS from multiple
vertices at the same time. This can be accomplished in

KDT by “batching” the sparse vectors for the searches
into a single sparse matrix and using the sparse matrix-
matrix multiplication primitive SpGEMM to advance all
searches together. Batching exposes three levels of
potential parallelism: across multiple searches (columns
of the batched matrix); across multiple frontier vertices
in each search (rows of the batched matrix or columns of
the transposed adjacency matrix); and across multiple
edges out of a single high-degree frontier vertex (rows of
the transposed adjacency matrix). The Combinatorial
BLAS SpGEMM implementation exploits all three levels
of parallelism when appropriate.

4.1.2 The Graph500 Benchmark The intent of
the Graph500 benchmark [16] is to rank computer
systems by their capability for basic graph analysis just
as the Top500 list [30] ranks systems by capability for
floating-point numerical computation. The benchmark
measures the speed of a computer performing a BFS
on a specified input graph in traversed edges per second
(TEPS). The benchmark graph is a synthetic graph with
vertex degrees approximating a power law, generated by
the RMAT [24] algorithm. The size of the benchmark
graph is measured by its scale, the base-2 logarithm
of the number of vertices; the number of edges is
about 16 times the number of vertices. The RMAT
generation parameters are a = 0.59, b = c = 0.19, d =
0.05, resulting in graphs with highly skewed degree
distributions and a low diameter. We symmetrize the
input to model undirected graphs, but we only count
the edges traversed in the original graph for TEPS
calculation, despite visiting the symmetric edges as well.

We have implemented the Graph500 code in KDT,
including the parallel graph generator, the BFS itself,
and the validation required by the benchmark specifi-
cation. Per the spec, the validation consists of a set
of consistency checks of the BFS spanning tree. The
checks verify that the tree spans an entire connected
component of the graph, that the tree has no cycles,
that tree edges connect vertices whose BFS levels differ
by exactly one, and that every edge in the connected
component has endpoints whose BFS levels differ by at
most one. All of these checks are simple to perform with
KDT’s elementwise operators and SpMV.

Figure 6 gives Graph500 TEPS scores for both KDT
and for a custom C++ code that calls the Combinatorial
BLAS engine directly. Both runs are performed on the
Hopper machine at NERSC, which is a Cray XE6. Each
XE6 node has two twelve-core 2.1 Ghz AMD Opteron
processors, connected to the Cray Gemini interconnect.
The C++ portions of KDT are compiled with GNU
C++ compiler v4.5, and the Python interpreter is
version 2.7. We utilized all the cores in each node during

4

0	
1	
2	
3	
4	
5	
6	
7	

1225	 2500	 5041	

G
TE

PS
!

Number of cores!

KDT	

CombBLAS	

Figure 6: Speed comparison of the KDT and pure
CombBLAS implementations of Graph500. BFS was
performed on a scale 29 input graph with 500M vertices
and 8B edges. The units on the vertical axis are
GigaTEPS, or 109 traversed edges per second. The
small discrepancies between KDT and CombBLAS are
largely artifacts of the network partition granted to the
job. KDT’s overhead is negligible.

the experiments. In other words, an experiment on p
cores ran on dp/24e nodes. The two-dimensional parallel
BFS algorithm used by Combinatorial BLAS is detailed
elsewhere [9].

We see that KDT introduces negligible overhead;
its performance is identical to CombBLAS, up to small
discrepancies that are artifacts of the network partition
granted to the job. The absolute TEPS scores are
competitive; the purpose-built application used for the
official June 2011 Graph500 submission for NERSC’s
Hopper has a TEPS rating about 4 times higher (using
8 times more cores), while KDT is reusable for a variety
of graph-analytic workflows.

We compare KDT’s BFS against a PBGL BFS
implementation in two environments. Neumann is a
shared memory machine composed of eight quad-core
AMD Opteron 8378 processors. It used version 1.47 of
the Boost library, Python 2.4.3, and both PBGL and
KDT were compiled with GCC 4.1.2. Carver is an IBM
iDataPlex system with 400 compute nodes, each node
having two quad-core Intel Nehalem processors. Carver
used version 1.45 of the Boost library, Python 2.7.1,
and both codes were compiled with Intel C++ compiler
version 11.1. The test data consists of scale 19 to 24
RMAT graphs.

The comparison results are presented in Figure 7.
We observe that on this example KDT is significantly
faster than PBGL both in shared and distributed mem-
ory, and that in distributed memory KDT exhibits ro-
bust scaling with increasing processor count.

Core Count
Code

Problem Size
(Machine) Scale 19 Scale 22 Scale 24

4 PBGL 3.8 2.5 2.1
(Neumann) KDT 8.9 7.2 6.4

16 PBGL 8.9 6.3 5.9
(Neumann) KDT 33.8 27.8 25.1

128 PBGL 25.9 39.4
(Carver) KDT 237.5 262.0

256 PBGL 22.4 37.5
(Carver) KDT 327.6 473.4

Figure 7: Performance comparison of KDT and PBGL
breadth-first search. The reported numbers are in
MegaTEPS, or 106 traversed edges per second. The
graphs are Graph500 RMAT graphs as described in the
text.

4.2 Betweenness Centrality Betweenness central-
ity (BC) [14] is a widely accepted importance measure
for the vertices of a graph, where a vertex is “important”
if it lies on many shortest paths between other vertices.
BC is a major kernel of the HPCS Scalable Synthetic
Compact Applications graph analysis benchmark [1].

The definition of the betweenness centrality CB(v)
of a vertex v is

CB(v) =
∑

s6=v 6=t∈V

σst(v)

σst
,(4.1)

where σst is the number of shortest paths between
vertices s and t, and σst(v) is the number of those
shortest paths that pass through v. Brandes [6] gave
a sequential algorithm for BC that runs in O(ne) time
on an unweighted graph with n vertices and e edges.
This algorithm uses a BFS from each vertex to find the
frontiers and all shortest paths from that source, and
then backtracks through the frontiers to update a sum
of importance values at each vertex.

The quadratic running time of BC is prohibitive for
large graphs, so one typically computes an approximate
BC by performing BFS only from a sampled subset of
vertices [3].

KDT implements both exact and approximate BC
by a batched Brandes’ algorithm. It constructs a batch
of k BFS trees simultaneously by using the SpGEMM

primitive on n×k matrices rather than k separate SpMV

operations. The value of k is chosen based on problem
size and available memory. The straightforward KDT
code is able to exploit parallelism on all three levels:
multiple BFS starts, multiple frontier vertices per BFS,
and multiple edges per frontier vertex.

Figure 8 shows KDT’s performance on calculating
BC on RMAT graphs. Our inputs are RMAT matrices

5

 0

 25

 50

 75

 100

 125

 150

 175

 200

 1 4 9 16 36 64 121 256

M
T

E
P

S

Number of Cores

Scale-17

Scale-18

Ideal

Figure 8: Performance of betweenness centrality in
KDT on synthetic power-law graphs (see Section 4.1.2).
The units on the vertical axis are MegaTEPS, or 106

traversed edges per second. The black line shows ideal
linear scaling for the scale 18 graph. The x-axis is
in logarithmic scale. Our current backend requires a
square number of processors.

with the same parameters and sparsity as described
in Graph500 experiments (Section 4.1.2). Since the
running time of BC on undirected graphs is quadratic,
we ran our experiments on smaller data sets, presenting
strong scaling results up to 256 cores. We observe
excellent scaling up to 64 cores, but speedup starts to
degrade slowly after that. For 256 cores, we see speedup
of 118 times compared to a serial run. For all the
runs, we used an approximate BC with starting vertices
composed of a 3% sample, and a batchsize of 768. This
experiment was also run on Hopper, utilizing all 24 cores
in each node.

4.3 PageRank PageRank [32] computes vertex rele-
vance by modeling the actions of a “random surfer”. At
each vertex (i.e., web page) the surfer either traverses
a randomly-selected outbound edge (i.e., link) of the
current vertex, excluding self loops, or the surfer jumps
to a randomly-selected vertex in the graph. The prob-
ability that the surfer chooses to traverse an outbound
edge is controlled by the damping factor, d. A typical
damping factor in practice is 0.85. The output of the
algorithm is the probability of finding the surfer visiting
a particular vertex at any moment, which is the station-
ary distribution of the Markov chain that describes the
surfer’s moves.

KDT computes PageRank by iterating the Markov
chain, beginning by initializing vertex probabilities
P0(v) = 1/n for all vertices v in the graph, where n
is the number of vertices and the subscript denotes the

iteration number. The algorithm updates the probabil-
ities iteratively by computing

Pk+1(v) =
1− d
n

+ d
∑

u∈Adj−(v)

Pk(u)

|Adj+(u)|
,(4.2)

where Adj−(u) and Adj+(u) are the sets of inbound
and outbound vertices adjacent to u. Vertices with no
outbound edges are treated as if they link to all vertices.

After removing self loops from the graph, KDT
evaluates (4.2) simultaneously for all vertices using the
SpMV primitive. The iteration process stops when the
1-norm of the difference between consecutive iterates
drops below a default or, if supplied, user-defined
stopping threshold ε.

We compare the PageRank implementations which
ship with KDT and Pegasus in Figure 9. The dataset
is composed of scale 19 and 21 directed RMAT graphs
with isolated vertices removed. The scale 19 graph con-
tains 335K vertices and 15.5M edges, the scale 21 graph
contains 1.25M vertices and 63.5M edges and the con-
vergence criteria is ε = 10−7. The test machine is Neu-
mann (a 32-core shared memory machine, same hard-
ware and software configuration as in Section 4.1.2). We
used Pegasus 2.0 running on Hadoop 0.20.204 and Sun
JVM 1.6.0 13. We directly compare KDT core counts
with maximum MapReduce task counts despite this giv-
ing Pegasus an advantage (each task typically shows be-
tween 110%-190% CPU utilization). We also observed
that mounting the Hadoop Distributed Filesystem in a
ramdisk provided Pegasus with a speed boost on the or-
der of 30%. Despite these advantages we still see that
KDT is 2 orders of magnitude faster.

Both implementations are fundamentally based on
an SpMV operation, but Pegasus performs it via a
MapReduce framework. MapReduce allows Pegasus to
be able to handle huge graphs that do not fit in RAM.
However, the penalty for this ability is the need to
continually touch disk for every intermediate operation,
parsing and writing intermediate data from/to strings,
global sorts, and spawning and killing VMs. Our result
illustrates that while MapReduce is useful for tasks that
do not fit in memory, it suffers an enormous overhead
for ones that do.

A comparison of the two codes also demonstrates
KDT’s user-friendliness. The Pegasus PageRank imple-
mentation is approximately 500 lines long. It is com-
posed of 3 separate MapReduce stages and job man-
agement code. The Pegasus algorithm developer must
be proficient with the MapReduce paradigm in addition
to the GIM-V primitive. The KDT implementation is
30 lines of Python consisting of input sanitation, initial
value generation and a loop around our SpMV primi-
tive.

6

Core Task
Code

Problem Size
Count Count Scale 19 Scale 21

– 4 Pegasus 2h 35m 10s 6h 06m 10s
4 – KDT 55s 7m 12s
– 16 Pegasus 33m 09s 4h 40m 08s
16 – KDT 13s 1m 34s

Figure 9: Performance comparison of KDT and Pegasus
PageRank (ε = 10−7). The graphs are Graph500 RMAT
graphs as described in Section 4.1.2. The machine
is Neumann, a 32-core shared memory machine with
HDFS mounted in a ramdisk.

4.4 Belief Propagation Belief Propagation (BP) is
a so-called “message passing” algorithm for perform-
ing inference on graphical models such as Bayesian net-
works [37]. Graphical models are used extensively in
machine learning, where each random variable is rep-
resented as a vertex and the conditional dependencies
among random variables are represented as edges. BP
calculates the approximate marginal distribution for
each unobserved vertex, conditional on any observed
vertices.

Gaussian Belief Propagation (GaBP) is a version of
the BP algorithm in which the underlying distributions
are modeled as Gaussian [5]. GaBP can be used to
iteratively solve symmetric positive definite systems
of linear equations Ax = b, and thus is a potential
candidate for solving linear systems that arise within
KDT. Although BP is applicable to much more general
settings (and is not necessarily the method of choice for
solving a linear equation system), GaBP is often used
as a performance benchmark for BP implementations.

We implemented GaBP in KDT and used it to solve
a steady-state thermal problem on an unstructured
mesh. The algorithm converged after 11 iterations
on the Schmid/thermal2 problem that has 1.2 million
vertices and 8.5 million edges [10].

We demonstrate strong scaling using steady-state
2D heat dissipation problems in Figure 10. The k × k
2D grids yield graphs with k2 vertices and 5k2 edges.
We observed linear scaling with increasing problem
size and were able to solve a k = 4000 problem in
31 minutes on 256 cores. Parallel scaling is sub-
linear because GaBP is an iterative algorithm with
low arithmetic intensity which makes it bandwidth
(to RAM) bound. The above experiments were run
on Hopper, but we observed similar scaling on the
Neumann shared memory machine.

We compared our GaBP implementation with
GraphLab’s GaBP on our shared memory system. The
problem set was composed of structured and unstruc-

 0

 1000

 2000

 3000

 4000

 5000

 6000

 4 16 36 64 121 256 529
 0

 10

 20

 30

 40

 50

 60

S
e
c
o

n
d

s

S
p

e
e
d

u
p

Number of Cores

Time (s)
Speedup

Figure 10: Performance of GaBP in KDT on solving
a 500 × 500 structured mesh, steady-state, 2D heat
dissipation problem (250K vertices, 1.25M edges). The
algorithm took 400 iterations to converge to a relative
norm ≤ 10−3. The speedup and timings are plotted on
separate y-axes, and the x-axis is in logarithmic scale.

tured meshes ranging from hundreds of edges to mil-
lions. KDT’s time to solution compared favorably with
GraphLab on problems with more than 10,000 edges.

4.5 Markov Clustering Markov Clustering
(MCL) [36] is used in computational biology to
discover the members of protein complexes [13, 7],
in linguistics to separate the related word clusters of
homonyms [12], and to find circles of trust in social
network graphs [33, 29]. MCL finds clusters by postu-
lating that a random walk that visits a dense cluster
will probably visit many of its vertices before leaving.

The basic algorithm operates on the graph’s adja-
cency matrix. It iterates a sequence of steps called ex-
pansion, inflation, normalization and pruning. The ex-
pansion step discovers friends-of-friends by raising the
matrix to a power (typically 2). Inflation separates low-
and high-weight edges by raising the individual matrix
elements to a power which can vary from about 2 to 20,
higher values producing finer clusters. This has the ef-
fect of both strengthening flow inside clusters and weak-
ening it between clusters. The matrix is scaled to be
column-stochastic by a normalization step. The pruning
step is one key to MCL’s efficiency because it preserves
sparsity. Our implementation prunes elements which
fall below a threshold though other pruning strategies
are possible. These steps are repeated until conver-
gence, then the clusters are identified. The standard,
and KDT’s default, method is to identify the connected
components of the pruned graph as clusters. The KDT

7

Markov clustering method provides sensible defaults for
all parameters and options, but allows the user to over-
ride them if desired.

4.6 Mini-workflow Example End-to-end graph
analysis workflows vary greatly between domains, be-
tween problems, and likely even between individual an-
alysts; we do not attempt to describe them here. How-
ever, we can identify some smaller mini-workflows as be-
ing close enough to real workflows to serve as examples.
One mini-workflow, which users say is often applied to
power-law graphs resulting from relationship analysis
data, has the following steps:

1. Identify the “giant” or largest component

2. Extract the giant component from the graph

3. Find the clusters in the giant component

4. Collapse each cluster into a supervertex

5. Visualize the resulting graph of supervertices

For example, this mini-workflow could analyze
Twitter data about politics starting with all people
who subscribe to a set of political hash-tags, identify-
ing those people who care strongly about an upcoming
election, as evidenced by both sending and receiving
political tweets (the giant component), and then clus-
tering them into which candidate they associate with
most closely. In KDT this is expressed by the Python
code in Figure 2. This mini-workflow illustrates how
the KDT methods are designed to work together in se-
quence. For example, the output of cluster (a vector
of length equal to the number of vertices in the graph,
with each element denoting the cluster in which that
vertex resides) is in the same format expected by the
contract function (which contracts all vertices with
the same cluster-ID into a single vertex) and the vertex-
partition form of the nedge function. The output of this
example workflow for a tiny input graph is illustrated
in Figure 1.

5 High Level Language Interface

5.1 High Productivity for Graph Analysis KDT
targets a demanding environment – domain experts
exploring novel very large graphs with hard-to-specify
goals. Today this requires knowledge in so many
domains that only the most talented, cross-disciplinary,
and well-funded groups succeed. KDT aims not only
to enable these (non-graph-expert) domain experts to
analyze very large graphs quickly but also to accelerate
the work of graph-algorithm researchers developing the
next generation of algorithms attacking the inherent
combinatorial wall of graph analysis.

KDT delivers high productivity to domain experts
by limiting the number of new concepts and by pro-
viding powerful abstractions for both data and meth-
ods. For instance, the DiGraph class implements di-
rected graphs for distributed memory, hiding the details
of how the directed graph is represented in distributed
memory. Similarly, KDT users use the cluster method
to cluster a graph’s vertices by an (initially brief) menu
of algorithms. Detailed algorithm-specific options such
as the expansion and inflation factors for Markov clus-
tering default to appropriate values for the typical user
but enable more knowledgeable users to exercise more
control if needed. Those wanting even more control are
provided with methods that are too detailed for many
domain experts. These include access to well optimized
linear algebraic methods and additional graph methods
such as bfsTree and normalizeEdgeWeights

Our experience implementing the primary methods
of KDT may illustrate the productivity of this approach.
One of us implemented exact betweenness centrality in
Python using serial SciPy. Moving that code to run
in a distributed parallel manner with KDT required
changing the initial definitions of (e.g. variable arrays),
but much of the core code (e.g. multiplying and
adding intermediate matrices) did not change. The
changes took only 11 hours of programming time for
the BC routine itself. The resulting code runs correctly
and scales effectively to hundreds of cores. Similarly,
after initial explorations to understand the Markov
Clustering algorithm and KDT well, an undergraduate
student produced our Markov Clustering routine in only
six hours.

5.2 Organization of the Fundamental Classes
KDT’s productivity benefits extend beyond simply pro-
viding an opaque set of built-in graph algorithms. The
provided set of algorithms also serve as guides for users
who want to implement their own graph algorithms
based on our extensible primitives.

As Figure 4 illustrates, the kdt Python module
exposes two types of classes: graph objects and their
supporting linear algebraic objects. It includes classes
representing directed graphs (DiGraph), hypergraphs
(HyGraph), as well as sparse matrices (Mat) and sparse
and dense vectors (Vec). Computation is performed
using a set of pre-defined patterns:

• Matrix-Matrix multiplication (SpGEMM), Matrix-
Vector multiplication (SpMV)

• Element-wise (EWiseApply)

• Querying operations (Count, Reduce, Find)

• Indexing and Assignment (SubsRef, SpAsgn)

8

These operations are the key to KDT’s scalability. Each
one is implemented for parallel execution and accepts
user-defined callbacks that act similarly to visitors. The
pre-defined access patterns allow considerable scalabil-
ity and account for the bulk of processing time. This
allows KDT code to appear serial yet have parallel se-
mantics.

The sparse matrix and vector classes that support
the graph classes are exposed to allow complex matrix
analysis techniques (e.g., spectral methods). Directed
graphs are represented using an n× n sparse adjacency
matrix. Hypergraphs use an n×m rectangular incidence
matrix. Note that bipartite graphs can also be repre-
sented with a hypergraph. A graph’s edge attributes are
represented as the matrix’s element values while vertex
attributes are stored in vectors of length matching the
matrix dimension. KDT’s matrices and vectors can be
of several types including boolean for connectivity only,
floating point, and custom objects.

User-defined callbacks can take several forms. KDT
operations accept unary, binary and n-ary operations,
predicates, and semiring functions. Each one may be a
built-in function or a user-written Python callback or
wrapped C routine for speed.

Taken together, these building blocks and finished
algorithms provide KDT with a high degree of power
and flexibility.

5.3 Semantic graphs Users found that the initial
release of KDT lacked support for semantic graphs, i.e.
graphs whose vertices and edges have types. Semantic
graphs are valuable when data is of disparate types
(e.g. link data about communication via email, Twitter,
and Facebook) and considering different types of data
together delivers better insight. The KDT semantic
graph interface enables on the fly selection of vertices
and edges via user-defined callbacks. Computations are
only performed on selected vertices and edges. In some
situations the graph is very large and the user wants to
select most of the graph, in which case materializing the
selected graph is wasteful of memory; in other cases the
user wants to select only a small portion of the graph,
in which case materializing the smaller graph may be
more efficient. The KDT semantic graph operations
appear to be a dual for SQL’s ability to push certain
computations onto the database.

The subsequent KDT release (v0.2) defines the
notion of a filter. A filter determines whether or not a
particular vertex or edge is included in the computation.
Our filter design relies on three basic principles.

1. A user-defined predicate determines whether or not
a vertex or edge exists in the filtered graph.

def onlyEngineers(self):

return self.position == Engineer

def onlyEmailTwitter(self):

return self.type == email

or self.type == Twitter

the variable G contains the graph
G.addVFilter(onlyEngineers)

G.addEFilter(onlyEmailTwitter)

clus = G.cluster(’Markov’)

Figure 11: Clustering of a filtered semantic graph in
KDT. The vertex- and edge-filters consist of predicates
which are attached to the graph. They are invoked
whenever the graph is traversed.

2. Multiple user-defined predicates can be stacked and
the filters they define are applied in the order they
are added to the graph. Thus, both users and
algorithm developers can use filters.

3. All graph operations respect the filter. This ensures
that algorithms can be written without taking
filters into consideration at all, thus greatly easing
their design.

For example, assume that a graph contains link data
about communication between employees via email,
Twitter, and Facebook, and that a user wants to find
clusters in the graph of engineers based on email and
Twitter links. This could be implemented with filtered
KDT semantic graphs using the code in Figure 11.

We expect the semantic-graph interface to evolve as
we continue gathering feedback from KDT users.

6 HPC Computational Engines

6.1 Combinatorial BLAS The Combinatorial
BLAS [8] is a proposed standard for combinatorial
computational kernels. It is a highly-templated C++
library which serves as the current KDT backend.
It offers a small set of linear algebraic kernels that
can be used as building blocks for the most common
graph-analytic algorithms. Graph abstractions can be
built on top of its sparse matrices, taking advantage
of its existing best practices for handling parallelism
in sparse linear algebra. Its flexibility comes from the
arbitrary operations that it supports. The user, or
in this case the KDT implementor, specifies the add

and multiply routines in matrix-matrix and matrix-
vector operations, or unary and binary functions for
element-wise operations. The main data structures
are distributed sparse matrices and vectors, which are

9

distributed in a two-dimensional processor grid for
scalability.

We use the publicly available MPI reference imple-
mentation of the Combinatorial BLAS as our computa-
tional engine. We extended its interface in order to pro-
vide further capabilities, such as fully-distributed (to all
the processors) sparse vectors, sparse matrix-sparse vec-
tor multiplication, and routines akin to MATLAB R©’s
sparse and find.

The primary KDT abstractions are different from
Combinatorial BLAS abstractions. CombBLAS ex-
poses distributed-memory dense and sparse vectors and
sparse matrices and key operations on them, mostly lin-
ear algebra, required to implement combinatorial prob-
lems. KDT exposes graph abstractions such as directed
graphs, and graph operations such as ranking vertices
(e.g., betweenness centrality or PageRank), clustering,
and finding neighbors within k hops of a set of vertices;
the underlying linear algebraic implementation is not
readily visible. This shift in abstractions between the
linear-algebra worldview and the graph worldview is one
of the primary contributions of KDT. It creates usabil-
ity for domain experts while retaining performance and
customizability.

6.2 Evolution of KDT The design of KDT inten-
tionally separates its user-level language and interface
from its computational engine. This allows us to extend
KDT easily along at least two axes: an architectural
axis, and a capability axis.

On the architectural axis, we intend KDT to map
readily to computational engines that provide the func-
tionality of Combinatorial BLAS on different platforms.
We and our collaborators are currently working on
two such engines: one for manycore shared-address-
space architectures, and one for more loosely coupled
distributed-computing cloud architectures. We are also
contemplating engines that will be able to use more spe-
cialized hardware, including GPUs, FPGAs, and mas-
sively multithreaded architectures like Cray XMT [21].

On the capability axis, we are extending the set of
algorithms and primitives that underlie KDT in various
ways. Numerical computational primitives such as
linear equation solvers and spectral analysis (computing
eigenvalues, singular values, eigenvectors, etc.) are
useful in many data analysis settings, and fit naturally
into KDT’s parallel sparse matrix paradigm. We are
also exploring some other classes of graph primitives—
for example, the visitor paradigm of the Boost Graph
Library and its relatives [34, 22, 17, 4].

In many cases, enhancing KDT’s capabilities means
interfacing KDT to existing high-performance compu-
tational libraries; for example, an upcoming release of

KDT is planned to include the numerical PARPACK
library [28, 23] in its computational engine, and high-
quality high-performance libraries for other numerical
computations exist [25, 18, 20].

One of our goals is to use the KDT API as a
high-level interface to other existing high-performance
graph libraries (such as The MultiThreaded Graph
Library [4] and Parallel Boost Graph Library [17]) and
representations (such as STINGER [2]). We expect
that KDT’s high-level language interface will evolve to
permit different graph libraries to be used as back ends;
we view the current high-level Python specification as
a starting point and we are actively soliciting feedback
from users and developers to help us guide its evolution.

7 Conclusion

The Knowledge Discovery Toolbox makes truly scal-
able graph analysis accessible in a high-level language
to both domain experts and developers of graph ana-
lytics. The two key ingredients are a core set of graph
abstractions (and accompanying Python API) provid-
ing flexibility and simplicity, and a high-performance
computational back end providing scalable performance
for graphs in excess of 10 billion edges on HPC clus-
ters. The latest released version of KDT implements
the core architecture and a few alternatives for each
core operation, which are shown here to enable rapid
development of both highly performant graph-analytic
workflows and the underlying graph-analytic operations
themselves. The performance of KDT approaches that
of efficiency-level applications while being reusable for
a variety of graph-analytic workflows. In current work,
we are extending both KDT’s capabilities and the range
of hardware and software platforms on which it can be
used.

Acknowledgment

We acknowledge support from the Center for Scientific
Computing at the CNSI and MRL: a NSF MRSEC
(DMR-1121053) and NSF CNS-0960316.

References

[1] D. Bader, J. Gilbert, J. Kepner, D. Koester,
E. Loh, K. Madduri, B. Mann, and T. Meuse.
HPCS Scalable Synthetic Compact Applications #2.
http://graphanalysis.org/benchmark.

[2] D.A. Bader, J. Berry, A. Amos-Binks, D. Chavarŕıa-
Miranda, C. Hastings, K. Madduri, and S.C. Poulos.
STINGER: Spatio-Temporal Interaction Networks and
Graphs (STING) extensible representation. Georgia
Institute of Technology, Tech. Rep, 2009.

[3] D.A. Bader, S. Kintali, K. Madduri, and M. Mihail.
Approximating Betweenness Centrality. In A. Bonato

10

and F. Chung, editors, Algorithms and Models for the
Web-Graph, volume 4863 of Lecture Notes in Computer
Science, pages 124–137. Springer Berlin/Heidelberg,
2007.

[4] J.W. Berry, B. Hendrickson, S. Kahan, and P. Konecny.
Software and Algorithms for Graph Queries on Multi-
threaded Architectures. In Proc. 21st IEEE Interna-
tional Parallel and Distributed Processing Symposium,
page 495. IEEE Press, 2007.

[5] D. Bickson. Gaussian Belief Propagation: Theory and
Application. CoRR, abs/0811.2518, 2008.

[6] U. Brandes. A Faster Algorithm for Betweenness
Centrality. J. Math. Sociol., 25(2):163–177, 2001.

[7] S. Brohée and J. van Helden. Evaluation of clustering
algorithms for protein-protein interaction networks.
BMC Bioinformatics, 7:488, 2006.

[8] A. Buluç and J.R. Gilbert. The Combinatorial BLAS:
Design, implementation, and applications. The Inter-
national Journal of High Performance Computing Ap-
plications, 2011.

[9] Aydın Buluç and Kamesh Madduri. Parallel breadth-
first search on distributed memory systems. In Proc.
Supercomputing, 2011.

[10] T.A. Davis and Y. Hu. The University of Florida
Sparse Matrix Collection. ACM Transactions on Math-
ematical Software, to appear, 2011.

[11] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. In Proc. 6th Sympo-
sium on Operating System Design and Implementation,
pages 137–149, Berkeley, CA, USA, 2004. USENIX As-
sociation.

[12] B. Dorow. A Graph Model for Words and their
Meanings. PhD thesis, Universität Stuttgart, 2006.

[13] A.J. Enright, S. Van Dongen, and C.A. Ouzounis. An
efficient algorithm for large-scale detection of protein
families. Nucl. Acids Res., 30(7):1575–1584, 2002.

[14] L.C. Freeman. A Set of Measures of Centrality Based
on Betweenness. Sociometry, 40(1):35–41, 1977.

[15] A.V. Goldberg and R.F. Werneck. Computing Point-
to-Point Shortest Paths from External Memory. In
Proc. 7th Workshop on Algorithm Engineering and
Experiments (ALENEX05), pages 26–40, 2005.

[16] Graph500. http://www.graph500.org.
[17] D. Gregor and A. Lumsdaine. The Parallel BGL: A

Generic Library for Distributed Graph Computations.
In Proc. Workshop on Parallel/High-Performance
Object-Oriented Scientific Computing (POOSC’05),
2005.

[18] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J.
Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R.
Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger,
H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring,
A. Williams, and K. S. Stanley. An Overview of the
Trilinos Project. ACM Trans. Math. Softw., 31:397–
423, September 2005.

[19] U. Kang, C.E. Tsourakakis, and C. Faloutsos. PE-
GASUS: A Peta-Scale Graph Mining System - Imple-
mentation and Observations. In Data Mining, 2009.

ICDM’09. Ninth IEEE International Conference on,
pages 229–238. IEEE, 2009.

[20] G. Karypis, K. Schloegel, and V. Kumar. ParMETIS:
Parallel Graph Partitioning and Sparse Matrix Order-
ing Library. Technical report, Dept. of Computer Sci-
ence, University of Minnesota, 1997.

[21] P. Konecny. Introducing the Cray XMT. Cray User
Group meeting (CUG), 2007.

[22] L.Q. Lee, A. Lumsdaine, and J.G.
Siek. The Boost Graph Library: User
Guide and Reference Manual, 2002.
www.osl.iu.edu/publications/Year/2002.complete.php.

[23] R.B. Lehoucq, D.C. Sorensen, and C. Yang. ARPACK
Users’ Guide: Solution of Large Scale Eigenvalue Prob-
lems with Implicitly Restarted Arnoldi Methods. SIAM,
1998.

[24] J. Leskovec, D. Chakrabarti, J. Kleinberg, and
C. Faloutsos. Realistic, Mathematically Tractable
Graph Generation and Evolution, Using Kronecker
Multiplication. In PKDD, pages 133–145. Springer,
2005.

[25] X.S. Li, J.W. Demmel, J.R. Gilbert, L. Grigori, and
M. Shao. SuperLU Users’ Guide, 2010.

[26] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J.M. Hellerstein. GraphLab: A New
Parallel Framework for Machine Learning. In Confer-
ence on Uncertainty in Artificial Intelligence (UAI),
Catalina Island, California, July 2010.

[27] G. Malewicz, M.H. Austern, A.J.C. Bik, J.C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A Sys-
tem for Large-Scale Graph Processing. In Proceedings
of the 2010 International Conference on Management
of Data, SIGMOD ’10, pages 135–146, New York, NY,
USA, 2010. ACM.

[28] K.J. Maschho and D.C. Sorensen. A portable imple-
mentation of ARPACK for distributed memory parallel
architectures. In Proceedings of the Copper Mountain
Conference on Iterative Methods, pages 9–13. Citeseer,
April 1996.

[29] J. McPherson, K.-L. Ma, and M. Ogawa. Discovering
Parametric Clusters in Social Small-World Graphs. In
Proceedings of the 2005 ACM symposium on Applied
computing, SAC ’05, pages 1231–1238, New York, NY,
USA, 2005. ACM.

[30] H. Meuer, E. Strohmaier, J.J. Dongarra, and H.D.
Simon. Top500 supercomputer sites. In Proc. SC2001,
pages 10–16, 2001. http://www.top500.org.

[31] M. Najork and J. L. Wiener. Breadth-First Search
Crawling Yields High-Quality Pages. In Proceedings
of the 10th International Conference on World Wide
Web, WWW ’01, pages 114–118, New York, NY, USA,
2001. ACM.

[32] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank Citation Ranking: Bringing Order to the
Web. Technical Report 1999-66, Stanford InfoLab,
November 1999. Previous number = SIDL-WP-1999-
0120.

[33] A. Petróczi, Tamás Nepusz, and Fülöp Bazsó. Measur-

11

ing tie-strength in virtual social networks. CONNEC-
TIONS - the official journal of the International Net-
work for Social Network Analysis, 27(2):49–57, 2006.

[34] J. Siek, A. Lumsdaine, and L.Q.
Lee. Boost Graph Library, 2001.
http://www.boost.org/libs/graph/doc/index.html.

[35] Titan Informatics Toolkit. http://titan.sandia.gov.
[36] S. van Dongen. Graph Clustering via a Discrete

Uncoupling Process. SIAM J. Matrix Anal. Appl,
30(1):121–141, 2008.

[37] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Under-
standing Belief Propagation and its Generalizations.
Exploring artificial intelligence in the new millennium,
8:236–239, 2003.

12

