
Serializability, not Serial: Concurrency Control and
Availability in Multi-Datacenter Datastores

Stacy Patterson1 Aaron J. Elmore2 Faisal Nawab2 Divyakant Agrawal2 Amr El Abbadi2

1Department of Electrical Engineering 2Department of Computer Science
Technion - Israel Institute of Technology University of California, Santa Barbara

Haifa, 32000, Israel Santa Barbara, CA 93106
stacyp@ee.technion.ac.il {aelmore,nawab,agrawal,amr}@cs.ucsb.edu

ABSTRACT
We present a framework for concurrency control and avail-
ability in multi-datacenter datastores. While we consider
Google’s Megastore as our motivating example, we define
general abstractions for key components, making our solu-
tion extensible to any system that satisfies the abstraction
properties. We first develop and analyze a transaction man-
agement and replication protocol based on a straightforward
implementation of the Paxos algorithm. Our investigation
reveals that this protocol acts as a concurrency prevention
mechanism rather than a concurrency control mechanism.
We then propose an enhanced protocol called Paxos with
Combination and Promotion (Paxos-CP) that provides true
transaction concurrency while requiring the same per in-
stance message complexity as the basic Paxos protocol. Fi-
nally, we compare the performance of Paxos and Paxos-CP
in a multi-datacenter experimental study, and we demon-
strate that Paxos-CP results in significantly fewer aborted
transactions than basic Paxos.

1. INTRODUCTION
Cloud computing has the potential to become the founda-

tion for most information technology architectures. It offers
application developers access to seemingly infinite storage,
compute, and network resources, all on a pay-per-use basis.
While the appeal of the cloud computing model is obvious
from a financial perspective, its success also depends on the
ability of clouds to provide reliable, scalable services that
support the features developers need. In particular, it is
important that cloud datastores, such as Google’s BigTable
[9] and Amazon’s SimpleDB [1], provide support for various
types of data consistency and guarantee the availability of
application data in the face of failures.

Initially, cloud datastores provided only eventually con-
sistent update operations, guaranteeing that updates would
eventually propagate to all replicas. While these cloud data-
stores were highly scalable, developers found it difficult to

create applications within the eventual consistency model
[21]. Many cloud providers then introduced support for
atomic access to individual data items, in essence, provid-
ing strong consistency guarantees. This consistency level
has become a standard feature that is offered in most cloud
datastore implementations, including BigTable, SimpleDB,
and Apache HBase [17]. Strong consistency of single data
items is sufficient for many applications. However, if several
data items must be updated atomically, the burden to imple-
ment this atomic action in a scalable, fault tolerant manner
lies with the software developer. Several recent works have
addressed the problem of implementing ACID transactions
in cloud datastores [3, 11, 12], and, while full transaction
support remains a scalability challenge, these works demon-
strate that transactions are feasible so long as the number
of tuples that are transactionally related is not “too big”.

While many solutions have been developed to provide con-
sistency and fault tolerance in cloud datastores that are
hosted within a single data center, these solutions are of
no help if the entire datacenter becomes unavailable. For
example, in April 2011, a software error brought down one
of Amazon’s EC2 availability zones and caused service dis-
ruption in the U.S. East Region [2]. As a result, major web
sites like Reddit, Foursquare, and Quora were unavailable
for hours to days [6]. And, in August 2011, lightning caused
Microsoft and Amazon clouds in Dublin [16] to go offline
for hours. In both instances, there were errors in the recov-
ery process, and it was not possible to restore a consistent
snapshot of some application data.

These recent outages demonstrate the need for replication
of application data at multiple datacenters as well as the im-
portance of using provably correct protocols for performing
this replication. In a recent work, Baker et al. describe
Megastore, Google’s approach to providing transactions in
the cloud with full replication at multiple datacenters [3].
Megastore is implemented on top of BigTable and provides
support for ACID transactions over small sets of data items
called entity groups. Megastore implements multi-version
concurrency control and uses a write-ahead log that is repli-
cated at every datacenter. The Paxos algorithm [19] is used
for this replication to ensure replica consistency in the face
of unreliable communication and datacenter outages. While
the paper presents an overview of the Megastore system,
it lacks the formality and detail required to verify its cor-
rectness. We assert that such formal analysis is needed for
cloud datastores like Megastore, especially in light of the re-
cent outages described above and the widely acknowledged
difficulties associated with understanding and implementing

Applica'on*Pla,orm*

Datacenter*1*

Client* Client* Client*Client*

Transac'on*Tier**

Key8Value*Store*
Applica'on*Pla,orm*

Datacenter*2*

Transac'on*Tier**

Key8Value*Store*

Applica'on*Pla,orm*

Datacenter*3*

Transac'on*Tier**

Key8Value*Store*

Figure 1: System architecture for transactional
cloud datastore with full replication at multiple dat-
acenters.

the Paxos algorithm [8, 20, 25].
In this work, we address the need for formal analysis of

replication and concurrency control in transactional cloud
datastores. We define and analyze several Paxos-based pro-
tocols for replication and transaction management in the
multi-datacenter setting. While we take Megastore as our
motivating example, we define general abstractions for each
of the key components, and we use these abstractions in our
protocol design and analysis. The specific contributions of
our work are:

• We provide a formal description of the Paxos protocol
for replication and concurrency control, and we prove its
correctness. Through our analysis, we also show that
the Paxos protocol, as implemented in Megastore, aborts
transactions that could be safely committed. In essence,
it acts as a concurrency prevention mechanism rather
than a concurrency control mechanism.

• We propose an enhanced Paxos protocol that we call
Paxos with Combination and Promotion (Paxos-CP). Paxos-
CP enables true transaction concurrency with the same
message per instance complexity as the original Paxos
protocol.

• We compare the performance of Paxos and Paxos-CP in
a multi-datacenter experimental study, and we demon-
strate the benefits of our enhanced Paxos protocol.

The remainder of this paper is organized as follows. In
Section 2, we give an overview of the design of the cloud
datastore including the data model and reference architec-
ture. Section 3 summarizes the theoretical foundations that
we use to analyze the correctness of the transactional cloud
datastore. In Section 4, we present the details of the trans-
action manager, including the basic Paxos commit protocol,
and we prove its correctness. In Section 5, we present our
extended Paxos commit protocol that allows for transaction
concurrency, and we prove the correctness of this extension.
We present evaluation results comparing the basic and ex-
tended Paxos commit protocols in Section 6. In Section 7,
we discuss related work, and we conclude in Section 8.

2. SYSTEM OVERVIEW
We consider a cloud platform that consists of a small num-

ber of datacenters, as shown in Figure 1. Each application
is replicated in the application platform of each datacenter.
The application uses the transactional datastore to store all

non-volatile application state, and this data is replicated at
every datacenter. Therefore, clients can access any copy of
the application at any datacenter, and the system should
appear as if there is only one copy of the application. Mul-
tiple clients can access the same application at the same
time and can use any communication method supported by
the application (e.g. TCP or UDP). We first describe the
data model for application data and metadata, and then, we
give an overview of the architecture within each datacenter.

2.1 Data Model
Application data is stored in a datastore that has a key-

value store as its foundation. Each data item consists of a
unique key and its corresponding value, an arbitrary number
of attributes (also called columns). An application specifies
which data items are transactionally related, i.e., which data
items can be accessed within a single transaction. A set of
data items that can be accessed within a single transaction
is called a transaction group and is identified by a transac-
tion group key that is unique within and across applications.
Each application can have multiple transaction groups, and
the assignment of data items to transaction groups is per-
formed a priori. For clarity of development, we assume that
every data item belongs to exactly one transaction group
and can only be accessed within the scope of a transaction.
A client may execute transactions on multiple transaction
groups concurrently, but the system does not support multi-
transaction group transactions; each transaction succeeds or
fails independent of the others, and there is no guarantee of
global serializability across transaction groups.

As discussed in the introduction, it is possible to imple-
ment ACID transactions in a cloud-scale database provided
the transactional group is not too big. What size actually
qualifies as too big depends on the datastore implementation
and physical architecture as well as the level of contention
for items in the same transaction group. We explore the
relationship between performance and level of contention in
Section 6.

2.2 Datacenter Architecture
We follow Megastore’s design whereby every datacenter is

able to process transactions as long as it is alive. This is in
contrast to a master-slave approach where a single master
datacenter handles all transactions. As shown in Figure 1,
each datacenter is divided into three logical tiers, a key-value
store, a transaction tier, and an application platform. Many
existing cloud services already provide a key-value store and
an application platform. We do not tie our system to any
single implementation; we only require that these tiers meet
the requirements outlined in the descriptions below.

Key-value store. At the foundation is a key-value store.
Physically, the key-value store is implemented by a large col-
lection of servers. However, the key-value store also provides
a naming service so that clients, in this case the transaction
tier, can access the key-value store as a single logical entity.
Many key-value store implementations exist, each with its
own approach to consistency, elasticity, and fault-tolerance.
We do not tie our approach to any one implementation; we
only require that the key-value store provides atomic access
to individual rows and stores of multiple versions of each
row. Specifically, we assume that the key-value store pro-
vides the following operations, each of which is executed
atomically.

• read(in: key, timestamp; out value): Read the value for
the row for the specified key. The read operation returns
the most recent version of the row with a timestamp less
that or equal to timestamp. If no timestamp is specified,
the read operation returns the most recent version.

• write(in: key, value, timestamp): Write the value to the
row specified by key by creating a new version of the row
with a timestamp specified by timestamp. If a version
with greater timestamp exists, an error is returned. If no
timestamp is specified, a timestamp is generated that is
greater than the timestamp for any existing version.

• checkAndWrite(in: key.testAttribute, testValue, key,
value; out: status): If the latest version of the row
has the attribute testAttribute equal to the value test-
Value, then it performs write(key, value) operation and
returns with success status. Otherwise, the operation is
not performed and an error is returned.

We note that these features are supported by many well-
known key-value store implementations, including BigTable
[9], HBase [17], and Amazon SimpleDB [1]. In each of these
operations, the timestamp parameter is a logical timestamp.
Its value is specified by the caller (in our case, the transac-
tion tier) as part of the concurrency control and replication
protocol. In Section 3.2, we explain how the timestamp is
determined.

Transaction tier. The second tier is the transaction tier.
Every transaction tier can communicate with every other
transaction tier, though communication may be unreliable.
If a message is sent from one transaction tier to another, ei-
ther the message arrives before a known timeout or it is lost.
Individual transaction tiers may go offline and come back on-
line without notice. The transaction tier is responsible for
ensuring a serializable execution for concurrent transactions
both within a single datacenter and across multiple datacen-
ters. This tier is also responsible for replicating transactions
to all datacenters.

The transaction tier implements an optimistic concurrency
control protocol. For each transaction, read operations are
executed on the datastore and write operations are per-
formed on a local copy. Only on transaction commit are the
write operations stored in the datastore. We assume that
each application instance has at most one active transaction
per transaction group.

While the transaction tier is logically a single tier, it is im-
plemented as two entities, a Transaction Client that is used
by the application instance and a Transaction Service that
handles requests from the Transaction Client. The Transac-
tion Client provides the following standard transaction API
for use by applications in the application platform.

• begin(in:groupKey): Start a new transaction on the
transaction group identified by groupKey.

• read(in: groupKey, key ; out: value): Read the value
of key from the datastore.

• write(in:groupKey, key, value): Write (key, value) to
the transactional group specified by groupKey in the data-
store.

• commit(in: groupKey ; out: status): Try to commit the
transaction. Returns the status of the commit operation,
either commit or abort.

The Transaction Client communicates with the Transaction
Service to implement the begin and read operations. If
the transaction is read-only, commit automatically suc-
ceeds, and no communication with the Transaction Service
is needed. If the transaction contains write operations, the
Transaction Client and Transaction Services communicate
to determine if the transaction can be committed and per-
form the commit and replication protocol.

The Transaction Service handles each client request in
its own service process, and these processes are stateless.
If a Transaction Client cannot access the Transaction Ser-
vice within its own datacenter, it can access the Transaction
Service in another datacenter to handle a request. Since
the Transaction Service is stateless, the number of instances
can be increased as needed to satisfy client requests. How-
ever, there is a trade-off between the number of concurrent
transactions and the number of transactions that will be
aborted by the concurrency control mechanism. We explore
this trade-off through simulations in Section 6.

Application platform. Applications are hosted within the
application platform, and each application is replicated at
every datacenter. When a client executes an application,
it runs its own copy of the application in its own thread,
e.g., the application platform acts as a multi-threaded server
that spawns a new thread to handle each client request. A
transaction is executed in a single application instance on
a single datacenter, and the state for active (uncommitted)
transactions exists only within the scope of this instance.
If an application platform becomes unavailable, its active
transactions are implicitly aborted, and their volatile state
is lost. Any data that must be available across multiple
client requests must be stored in the transactional datastore
via committed transactions.

In the next section, we give the theoretical background
necessary for analyzing the transaction tier implementation,
and we define the properties that must be satisfied for an
implementation to be provably correct.

3. THEORETICAL FOUNDATIONS
In our transactional datastore, each datacenter has its own

multi-version key-value store. Every data item is replicated
at the key-value store within each datacenter, and so, there
are both multiple copies and multiple versions of each data
item. Yet, when a client (an application instance) executes
a transaction, it should appear that (1) there is only one
copy and one version of each data item, and (2) within the
scope of its transaction, the client is the only one accessing
those data items. These two properties are captured by the
notion of one-copy serializability [5]. We implement one-
copy serializability in a multi-datacenter setting using a fully
replicated write-ahead log. We briefly formalize the concepts
of one-copy serializability and write-ahead logging below.

3.1 One-Copy Serializability
In a single copy, single version (SCSV) datastore , a trans-

action is a partially ordered set of read and write operations,
terminated by either a single commit or single abort opera-
tion. An SCSV history over a set of transactions is the union
of the operations of the transactions along with a partial or-
der. This partial order maintains the order of operations
within each transaction and specifies an order for all con-
flicting operations (two operations conflict if they operate

α! β! γ! δ!
1 2 3 4 5

Figure 2: Log for a single transaction group at a
single datacenter. The last committed transaction
is written in position 4, the read position. The next
available position is 5, the commit position.

on the same data item and at least one of them is a write).
We say that a transaction t reads-x-from transaction s if s
writes x before t reads x, and no other transaction writes x
in between those two operations.

In a multi-version, multi-copy (MVMC) datastore, when
a client performs a read operation, it reads a single version
of a single copy of a data item, When a write operation is
applied to the cloud datastore, a new version of the item
is created at one or more datacenters. An MVMC transac-
tion is a partially ordered set of read and write operations,
with their corresponding version and copy attributes, end-
ing with a single commit or a single abort operation. We
say a transaction t reads-x-from transaction s if t reads the
version of x (at one copy) that was written by s (at one or
more copies). An MVMC history is a set of MVMC trans-
actions with a partial order. The partial order obeys the
order of operations within each transaction and maintains
the reads-from relation, i.e., if transaction t reads version i
of x from transaction s at copy A, then the write of version
i at copy A precedes the read of version i at copy A, and no
other write occurs between these operations at copy A.

Definition 1. A multi-version, multi-copy history H is
one-copy serializable if there exists a single copy, single
version serial history S such that

1. H and S have the same operations.

2. ti reads-x-from tj in H iff ti reads-x-from tj in S.

Our goal is to prove that the system and protocols defined
in this paper guarantee one-copy serializability in a multi-
version, multi-copy datastore.

3.2 A Replicated Write-Ahead Log
Our system implements an optimistic concurrency control

protocol with a write-ahead log. In addition to its set of
data items, each transaction group has its own write-ahead
log that is replicated at all datacenters. The write ahead log
is divided into log positions which are uniquely numbered in
increasing order, as shown in Figure 2. When a transaction
that contains write operations commits, its operations are
written into a single log position, the commit position. Read-
only transactions are not recorded in the log. For each write
in the committed transaction, the commit log position serves
as the timestamp for the corresponding write operation in
the key-value store. While the log is updated at commit
time, these write operations may be performed later by a
background process or as needed to serve a read request.

To guarantee correct execution of transactions, we must
be sure that transactions are only written to the log if they
are correct with respect to the one-copy serializability prop-
erty. Formally, we require that our concurrency control pro-
tocol maintain the following properties.

(L1) The log only contains operations from committed trans-
actions.

(L2) For every committed transaction that contain a write
operation, all of its operations are contained in a single log
position.

(L3) An entry will only be created in a log position if the
union of this log entry and the complete prefix of the log
prior to this log entry is a one-copy serializable history.

We require that transactions are consistently replicated across
multiple datacenters. To achieve consistent replication, when
a transition commits, we replicate the new log entry at ev-
ery datacenter. The replication algorithm must satisfy the
following property.

(R1) No two logs have different values for the same log po-
sition.

3.3 Transaction Management Correctness
To guarantee correctness of our system, we need two ad-

ditional assumptions that relate to the handling of read re-
quests.

(A1) If an application writes a data item, and then subse-
quently reads that data item in the same transaction, it will
read the value it wrote in the transaction.

(A2) Within a transaction, all read operations for data
items that were not previously written in that transaction
read from the same log position; i.e., the transaction reads
the latest writes performed up through the specified read
position in the log.

We note that property (A1) is stated for convenience only;
(A1) is subsumed by property (L3), since violating (A1)
would violate one-copy serializability.

The following theorem shows that the properties defined
above are sufficient to guarantee one-copy serializability. We
provide a sketch of the proof here. The full proof can be
found in a technical report [22].

Theorem 3.1. For the transactional data store with repli-
cation at multiple datacenters, if the Transaction Tier guar-
antees properties (L1) - (L3),(R1), and (A1) - (A2), then
the datastore guarantees one-copy serializability.

Proof. Let H be a history of transactions, and let k be
the maximum log position, over all log replicas, that con-
tains a committed transaction from H. Let K be the history
formed from H by removing the operations corresponding
to read-only transactions. Define the history S to be the
sequence of operations in log positions 1, . . . , k in order. By
property (R1), no two logs contain different values for the
same log position. Therefore S is uniquely determined by
the log replicas. According to property (L1), the log only
contains operations for committed transactions, and accord-
ing to property (L2), every committed transaction that con-
tains a write operations is written to some log entry. These
two properties imply that S contains the same operations as
K. By property (L3), the log is a one-copy serializable his-
tory, and thus, S is a one-copy serializable history that is one
copy-equivalent to K (ti reads-x-from tj in S iff ti-reads-x
from tj in K).

Let T be the serial history that is one-copy equivalent
to S. We now define a serial history U that is one-copy
equivalent to H by adding the read-only transactions to T
as follows. Let j be the log position that was used for the
remote read operations, as specified by (A2), and let tj be
the last transaction in T that was written in log position j.

We form U from T by inserting each read only transaction ti
immediately after its corresponding tj . For multiple read-
only transactions that read from the same log position j,
they can be inserted in any order immediately after tj .

In the next section, we present the details of the trans-
action tier implementation and prove that it guarantees the
properties defined above.

4. THE TRANSACTION TIER
All aspects of transaction management are handled by the

two layers of the transaction tier, the Transaction Client and
the Transaction Service. Using a transaction library with a
standard API, every application instance can act as a Trans-
action Client. The Transaction Client stores the readSet
and writeSet for each active transaction. Every transaction
group has an associated Transaction Service in every dat-
acenter. The Transaction Service provides the interface to
the items in the key-value store in each datacenter.

To execute a transaction, the Transaction Client commu-
nicates with the Transaction Service in each datacenter to
perform the following transaction protocol.

1. When the application invokes begin, the Transaction

Client contacts the Transaction Service in its local datacen-
ter to determine the position of the last written log entry.
We call this the read position. The read position indicates
the timestamp to use for read operations. If the local Trans-
action Service is not available, the library contacts Trans-
action Services in other datacenters until a response is re-
ceived.

2. When an application invokes a read operation, the Trans-
action Client checks if the same key was written previously
within the transaction. If so, the last written value is re-
turned to the application. Otherwise, the Transaction Client
sends the read request, along with the read position, to the
Transaction Service. For now, we assume that the write-
ahead log is up-to-date with respect to the read position.
Later, we show how this assumption can be removed. If the
log entries up through read position have not yet been ap-
plied to the datastore, the Transaction Service applies these
operations. The Transaction Service then returns the re-
quested value. If a Transaction Service becomes unavailable,
the Transaction Client sends the read request to a Transac-
tion Service in another datacenter. Before returning the
value to the application, the Transaction Client adds the
corresponding key to readSet.

3. write operations are handled locally by the Transaction
Client by adding (key,value) to writeSet.

4. When the application invokes the commit operation, the
readSet and writeSet are combined to form the transaction
log entry. The Transaction Client communicates with all
available Transaction Services to perform the commit pro-
tocol. If the commit is successful, the transaction will be
written in the write-ahead logs. After the protocol is com-
plete, the Transaction Client returns commit or abort to
the application instance.

This implementation of read operations ensures that prop-
erties (A1) and (A2) are satisfied. What remains is to de-
fine a commit protocol that satisfies the log and replication
properties, (L1) - (L3) and (R1). Megastore uses a commit
protocol based on the Paxos algorithm, where a single in-
stance of the algorithm is used for each log entry. In Section

Transac'on)Client) Transac'on)Service)

2.)if)msg.propNum)>)nextBal)
)))))))))nextBal)=msg.ptopNum)
)))))))))Reply)with)last)vote.))

1.)Select)new)proposal)number.)
))))Send)PREPARE%msg%to)all)sites.))

3.)When)receive)last%vote)from))
))))majority)of)sites:)
))))Choose)value)based)on)responses.))
))))Send)ACCEPT%msg%with)value%to)all)
))))sites.) 4.)if)msg.propNumber)=)nextBal)

))))))))lastVote)=)msg.vote)
))))))))Reply)with)SUCCESS.))5.)When)receive)SUCCESS%from)

))))majority)of)sites:)
))))Send)APPLY)msg)with)value)to)all)
))))sites.) 6.)Write)msg.value)to)log.)

PREPARE%

LAST%VOTE%

ACCEPT%

APPLY%

SUCCESS%

Figure 3: A single instance of the basic Paxos com-
mit protocol, as executed by the Transaction Client
and the Transaction Service.

4.1, we give a formal description of such a commit proto-
col, which we call the basic Paxos commit protocol, and in
Section 4.2, we prove that this protocol guarantees one copy
serializability.

4.1 The Basic Paxos Commit Protocol
The Paxos algorithm [19] was proposed as a solution for

state machine replication in a distributed system with in-
termittent node failures and message loss. Replicas commu-
nicate with each other to reach consensus on a sequence of
values, and every site agrees on the same value for every
position in the sequence. While the Paxos algorithm can be
used to replicate a write-ahead log consisting of a sequence
of log entries, it cannot ensure that the log is a one-copy
serializable history. Therefore, to use Paxos as a commit
protocol, it is necessary to integrate a concurrency control
mechanism alongside the replication.

Megastore employs a single instance of the Paxos algo-
rithm1 to act as both a concurrency control and replication
mechanism for each log position. As stated in our transac-
tion protocol, when a transaction begins, the Transaction
Client identifies the read position to be used for all read op-
erations. When the Transaction Client attempts to commit
the transaction, it tries to commit to a specific log position,
the commit position, where commit position = read position
+ 1. All transactions that have the same read position will
try to commit to the same commit position. The Paxos com-
mit protocol is used to determine which transaction “wins”
the log entry at the commit position and also to replicate the
winning transaction to the write-ahead log at every datacen-
ter. The winning transaction receives a commit response to
its commit request. All other competing transactions re-
ceive an abort response.

A summary of the steps of the basic Paxos commit proto-
col is shown in Figure 3, and the pseudocode for the Trans-
action Service and Transaction Client are given in Algo-
rithms 1 and 2, respectively. One instance of this protocol
is executed for every log position. The Transaction Client
is responsible for running the protocol by exchanging mes-
sages with the Transaction Service in each datacenter. Each
Transaction Service stores its state for each Paxos instance

1This single instance of Paxos is more correctly called the
Synod Algorithm.

Algorithm 1: Steps of Paxos commit protocol implemented by Transaction Service for commit to log position P .

1 datastore state for log position P
2 〈nextBal, ballotNumber, value〉, initially 〈−1,−1,⊥〉

3 on receive(cid, prepare, propNum)
4 keepTrying ← true
5 while keepTrying do
6 (vNextBal, vBallotNumber, vV alue) ← kvstore.read(P)
7 if propNum > vNextBal then
8 // Only update nextBal in datastore if it has not changed since read.
9 status← kvstore.checkAndWrite(P .nextBal, propNum, P .nextBal, vNextBal)

10 if status = success then
11 send(cid, status, vBallotNumber, vV alue)
12 keepTrying ← false

13 else
14 send(cid, failure, vBallotNumber)
15 keepTrying ← false

16 on receive(cid,accept, propNum, value)
17 // Only write value to datastore if propNum corresponds to most recent update to nextBal for a prepare message.
18 status← kvstore.checkAndWrite(P.〈ballotNumber, value〉, 〈proposalNumber, value〉, P .nextBal, propNum)
19 send(cid, status)

20 on receive(cid,apply, propNum, value)
21 kvstore.write(P.〈ballotNumber, value〉, 〈propNum, value〉)

Algorithm 2: Steps of Paxos commit protocol implemented by Transaction Client on commit of value val to log
position P .

22 state
23 propNum, initially 0

24 // prepare phase
25 keepTrying ← true
26 propV al← cval
27 while keepTrying do
28 responseSet← ∅
29 ackCount← 0
30 // Loop iterations may be executed in parallel.
31 for each datacenter d do
32 send(d, prepare, propNum)
33 while no timeout do
34 (status, num, value)← receive(i, status, num, val)

reponseSet← responseSet ∪ (status, num, val)
35 if status = success then
36 ackCount← ackCount+ 1

37 if ackCount > (D/2) then
38 keepTrying ← false
39 else
40 sleep for random time period
41 propNum← nextPropNumber(responseSet, propNum)

42 // accept phase
43 propV alue← findWinningVal(responseSet, propV alue)
44 ackCount← 0
45 responseSet← ∅
46

47 Loop iterations may be executed in parallel.
48 for each datacenter d do
49 send(d,accept, proposalNumber, proposalV alue)
50 while no timeout do
51 receive(id, status)
52 if status = ‘success’ then
53 ackCount← ackCount+ 1

54 if ackCount < majority then
55 sleep for random time period
56 propNum← nextPropNumber(responseSet, propNum)
57 go to prepare phase

58 // apply phase
59 //Loop iterations may be executed in parallel.
60 for each datacenter d do
61 send(d, proposalNumber, propV alue)

62 if val contained in propV al then
63 return commit
64 else
65 return abort

66 function findWinningVal(responseSet, propV al)
67 maxProp← −1
68 winningV alue← null
69 for (status, num, val) in responseSet do
70 if (num > maxProp) and val 6= ⊥ then
71 maxProp← num
72 winningV alue← val

73 if winningV alue = ⊥ then
74 winningV alue = propV al
75 return winningV alue

76 function enhancedFindWinningVal(responseSet, propV al)
77 maxV al← value in reponseSet with max. num. votes
78 maxV otes← number of votes for maxV al

79 if maxV otes+ (D − |responseSet|) ≤ D/2 then
80 // No winning value so combine.
81 generateCombinedValue(responseSet, propV al)
82 else if (maxV otes > D/2) and

(propV al not contained in maxV al) then
83 // Another value has already won.
84 try to promote

85 else
86 // Revert to Basic Paxos function.
87 return findWinningVal(responseSet, propV al)

in its local key-value store, and it updates this state when
it receives messages from Transaction Clients according to
the rules defined by the protocol.

On a high level, in the Paxos commit protocol, concur-
rent transactions compete to get votes from the replicas.
The transaction that receives a majority of votes is written
to the commit position in the write-ahead log. The first
phase of the protocol is the prepare phase. The Transac-
tion Client execution of this phase is given in lines 24-41 of
Algorithm 2, and the Transaction Service execution is given
in lines 3-15 of Algorithm 1. When a Transaction Client
wants to commit a transaction, it first selects a proposal
number for its commit request. The proposal number must
be unique and should be larger than any previously seen
proposal number. The client then sends a prepare mes-
sage with this number to all Transaction Services (Step 1).
When a Transaction Service receives a prepare message, it
checks its local key-value to see if it has answered any pre-
vious prepare message with a larger proposal number. If
it has not, the Transaction Service responds to the current
prepare request by sending the last vote that it cast for the
commit position, i.e. the value that it voted should be writ-
ten to the log (Step 2). If the Transaction Service has not
yet cast a vote for the commit position, it sends a response
with a null vote. If the Transaction Client receives responses
from a majority of Transaction Services within the timeout
period, it can proceed to the accept phase. Otherwise, the
Transaction Client must try its prepare phase again with
a larger proposal number.

In the accept phase, the Transaction Client proposes a
value for the commit log position (lines 43-57 of Algorithm
2). The client first examines the vote information it re-
ceived from the Transaction Services to determine the pro-
posed value. The Transaction Client must select the value
that has the largest proposal number; only if all responses
have null values can the client select its own value (see [19]).
This determination is handled in the findWinningVal func-
tion (lines 66-75 of Algorithm 2). The Transaction Client
then sends the winning value to all replicas in an accept
message along with its own proposal number (Step 3). When
a Transaction Service receives an accept message (Step 4),
it checks if the proposal number is the same as the one to
which it responded with its most recent last vote message.
If so, the Transaction Service casts (or changes) its vote for
the value in the message and sends a response to the Trans-
action Client. Otherwise, the Transaction Service ignores
the message. This is shown in lines 16-19 of Algorithm 1.

The Transaction Client collects responses to its accept
messages. If it receives a success response from a majority
of Transaction Services before the timeout, it has “won” the
commit position (lines 50-57 in Algorithm 2). The client
then sends the winning value to every Transaction Service in
an apply message (Step 5 and lines 58 -61 in Algorithm 2).
If the Transaction Client does not receive enough responses
before the timeout, it must begin the protocol again from
the prepare phase with a larger proposal number. When
a Transaction Service receives an apply message, it writes
the value in that message to the commit position in the
write-ahead log (Step 6 and lines 20-21 in Algorithm 1).

We note that when a Transaction Client wins the Paxos
instance in Step 5, this does not mean that the client’s pro-
posed value will be written to the log. It means that some
proposed value, possibly from another transaction, will be

written to the log position. Each Transaction Client must
execute all steps of the protocol to learn the winning value.
The Transaction Client then checks whether the winning
value is its own transaction, and if so, it returns a commit
status to the application. Otherwise, it returns an abort
status.

An instance of the Paxos commit protocol will complete
so long as a majority of the Transaction Services are alive,
and there are only a finite number of proposals for the log
position.

Paxos Optimizations. A single instance of the Paxos al-
gorithm takes five rounds of messages. In state machine
replication, the number of rounds can be reduced to three
by designating a master replica, a unique leader that remains
in charge until it fails (see [19, 8]). In this case, clients skip
the prepare phase and simply send proposed values to the
leader. The leader decides which values are accepted and in
what order. With a single leader, communication overhead
can be further reduced by clients piggybacking new propos-
als on acknowledgements of accept messages. In the con-
text of our system, having a master replica would translate
to designating a single site to act as a centralized transaction
manager.

Megastore does not use a master replica, but instead des-
ignates one leader per log position (see Section 4.4.2 of [3]).
We employ the same approach in our system. The leader for
a log position is the site local to the application instance that
won the previous log position. Before executing the commit
protocol, the Transaction Client checks with the leader to
see if any other clients have begun the commit protocol for
the log position. If the Transaction Client is first, it can
bypass the prepare phase and begin the protocol at Step
3 with its own value as the proposed value. If the Transac-
tion Client is not first, it must begin the protocol at Step
1. This optimization reduces the number of message rounds
to three in cases where there is no contention for the log
position. For clarity, we do not include this optimization in
the pseudocode in Algorithms 1 and 2. However, we include
the optimization in the prototype used in our evaluations.

Fault Tolerance and Recovery. If a Transaction Service
does not receive all Paxos messages for a log position, it may
not know the value for that log position when it receives
a read request. If this happens, the Transaction Service
executes a Paxos instance for the missing log entry to learn
the winning value. Similarly, when the Transaction Service
recovers from a failure, it runs Paxos instances to learn the
values of log entries for transactions that committed during
its outage. If a Transaction Client fails in the middle of
the commit protocol, the transaction may be committed or
aborted.

4.2 Transaction Tier Correctness
We now prove that the transaction tier described in this

section implements one-copy serializability.

Theorem 4.1. The transactional datastore with replica-
tion at multiple datacenters, implemented using the transac-
tion protocol and basic Paxos commit protocol defined above,
guarantees one-copy serializability.

Proof. We prove the correctness of the implementation
by showing that it guarantees the necessary properties de-
fined in Section 3. With respect to the correctness of read
operations, it is clear that the implementation of the read

operations stated in the transaction protocol satisfies prop-
erties (A1) - (A2). In addition, it has been proven that
Paxos algorithm satisfies the log replication property (R1)
(see [19]).

By definition of the commit protocol, a transaction com-
mit is equivalent to the transaction’s proposed value winning
the Paxos instance, and thus, subsequently being written in
the write-ahead log. Therefore (L1) is guaranteed. In addi-
tion, Paxos guarantees a single value, in its entirety, is writ-
ten to each log position. In the Paxos commit protocol, the
value contains all the operations from a single transaction.
Therefore, if a transaction is committed, all of its opera-
tions are contained in the single log position designated by
the commit position. Thus, (L2) is also guaranteed.

What remains to be shown is that a transaction will only
be committed, and therefore, will only be added to the write-
ahead log if it does not violate one-copy serializability (prop-
erty (L3)). Let H be the one-copy serializable history cor-
responding to the transactions in the write-ahead log up
through log position k. By definition of the Paxos commit
protocol, only one transaction is written in each log posi-
tion. Therefore, we can trivially define the serial history H
that is one-copy equivalent to H to be the set of transactions
in H, ordered by their log positions. Let t be the commit-
ted (read/write) transaction with commit position k + 1.
By the transaction protocol, if t reads item x, it reads the
most recent version of x written in or before log position k.
Therefore, the history resulting from the commit of trans-
action t is one-copy equivalent to the serial history where t
is appended to the H.

While the implementation described in this section is cor-
rect, this Paxos commit protocol provides course-grained
concurrency control. If two transactions try to commit to
the same log position, one will be aborted, regardless of
whether the two transactions access the same data items. In
some sense, the basic Paxos commit protocol acts as a con-
currency prevention mechanism rather than a concurrency
control mechanism. In the next section, we show how to
extend the protocol to support concurrent read/write trans-
actions, and we prove that this extended protocol also guar-
antees one-copy serializability.

5. PAXOS-CP
In this section, we present an extended version of the

Paxos commit protocol. Our extended protocol requires no
additional messages to determine the value of an individ-
ual log position, and it enables concurrency for read/write
transactions that operate on the same transaction group
but do not contain conflicting operations. The concurrency
is achieved through two enhancements: combining concur-
rent, non-conflicting transactions into a single log position
when possible, and when combination is not possible, pro-
moting the losing, non-conflicting transactions to compete
for the subsequent log position. These enhancement involve
changes to Step 3 of the basic Paxos commit protocol.

In Step 3, the Transaction Client examines the votes that
have been already cast for the log position. To complete
Step 3, the Transaction Client must receive last vote re-
sponses from a majority of Transaction Services in order to
determine the wining value. Let D be the total number of
data centers, and let M = (bD/2c + 1) be the minimum
number of votes needed to achieve a majority. In the case
that the Transaction Client receives exactly M responses,

the Transaction Client does not know the votes of the re-
maining D −M Transaction Services, and so the only safe
action is to assume that all of the missing votes are for the
same value. If a single value has received a majority of
votes, then it is possible that some Transaction Client com-
pleted Step 5 of the protocol with this value, and that one
or more Transaction Services have written that value into
their logs. Therefore, to ensure correctness, the Transaction
Client must choose the winning value to be the one with the
maximum proposal number (See [19]).

In practice, when a Transaction Client sends a prepare
message, it will receive responses from more than a sim-
ple majority of data centers. In Paxos-CP, the Transaction
Client counts the number of votes for each value, and it uses
this response information to determine whether to combine,
promote, or continue with the basic Paxos commit protocol.
The pseudocde for the enhanced protocol is nearly identical
to that of the basic protocol. The only change is to replace
the call to function findWinningVal in Algorithm 2, line
43 with a call to enhancedFindWinningVal (lines 76- 87 in
Algorithm 2). We explain the combination and promotion
enhancements in more detail below.

Combination. Let maxV otes be the maximum number of
votes for a single value, and let |responseSet| be the num-
ber of responses received. The maximum number of votes
that any value for a previous proposal could have received
is maxV otes + (D − |responseSet|). If this number is less
than M , then no value has yet received a majority of votes.
Therefore, the Transaction Client is free to choose any value
for the proposed value in the accept message.

Instead of simply using its own value, in Paxos-CP, the
Transaction Client selects the value to be an ordered list
of transactions. To construct this list, the client first adds
its own transaction. It then tries adding every subset of
transactions from the received votes, in every order, to find
the maximum length list of proposed transactions that is
one-copy serializable, i.e., no transaction in the list reads a
value written by any preceding transaction in the list. With
this enhancement, several transactions can be written to
the same log position without violating one-copy serializabil-
ity. While this operation requires a combinatorial number
of comparisons, in practice, the number of transactions to
compare is small, only two or three. If the number of pro-
posed transactions is large, a simple greedy approach can be
used, making one pass over the transaction list and adding
each compatible transaction to the winning value.

Promotion. The combination enhancement takes advan-
tage of the window in which it is guaranteed that no value
has a majority of votes. In the promotion enhancement, the
client takes advantage of the situation when a single value
has received a majority of votes. Again let maxV otes be
the maximum number of votes for a single value for log po-
sition k. If maxV otes ≥ M , the Paxos protocol guarantees
that the value will be written in log position k. Therefore,
there is no benefit for the client to continue competing for
the log position unless its transaction is already part of the
winning value. If client’s value is not part of the winning
value for log position k, it can try to win log position k + 1
so long as doing so will not violate one-copy serializability.
If the client’s transaction does not read any value that was
written by the winning transactions for log position k, the
client begins Step 1 of the commit protocol for log position

k+1 with its own value. Otherwise, the client stops execut-
ing the commit protocol and returns an abort status to the
application. If the client does not win log position k + 1, it
can try again for promotion to the next log position if one-
copy serializability is not violated. As the number of tries
increases, there is an increased possibility that the transac-
tion will be aborted because it conflicts with a committed
transaction. In practice, this occurs after a small number of
promotion attempts, as we show in the simulation results in
Section 6.

If the client promotes its transaction to the next log po-
sition, or if it detects that it must abort, it stops executing
the Paxos protocol before sending accept messages for the
winning value. This early termination does not prevent the
winning value from eventually being written to every log. All
steps of the Paxos protocol for log position k will eventually
be completed, either by another client or by a Transaction
Service when it needs to serve a read request.

We now show that Paxos-CP guarantees the necessary
properties defined in Section 3 and thus ensures one-copy
serializability.

Theorem 5.1. The transactional datastore with replica-
tion at multiple data centers, implemented using the trans-
action protocol and extended Paxos-CP commit protocol de-
fined above, guarantees one-copy serializability.

Proof. The transaction protocol remains unchanged, so
(A1) and (A2) still hold. The replication guarantee of the
Paxos algorithm is not affected by the promotion and com-
bination enhancements. Therefore (R1) is satisfied. The
Paxos-CP algorithm also ensures that only committed trans-
actions appear in the log and that all operations from a
single transaction appear in a single log position, so proper-
ties (L1) and (L2) are also satisfied. The difference between
the basic Paxos commit protocol and Paxos-CP relates only
to (L3), the requirement that adding an entry to the log
preserves one-copy serializability of the history contained in
that log. We now show that the combination and promotion
enhancements maintain (L3).

Let H be the history in the log up through log position
k− 1, and let S be the serial history that is one-copy equiv-
alent to H. Let t1, . . . , tm be the list of transactions that
are written to the single log position k. Just as in the basic
Paxos commit protocol, creating a log entry for any single
transaction ti in the list guarantees one-copy serializability
of the log with equivalent serial history S + ti. The com-
bination enhancement ensures that the list of transactions
itself is a one-copy serializable history; i.e., for each trans-
action ti in the list, ti does not read from any tj with j < i.
This transaction list is one-copy equivalent to the serial his-
tory where transactions are ordered as they appear in this
list. Therefore, the log with entries up through k is one-copy
equivalent to the serial history S + t1 + . . . + tm, and (L3)
is guaranteed.

In the promotion enhancement, again let S be the one-
copy equivalent serial history for the log up through position
k − 1. Let tp be a transaction that first tries to commit to
log position k, but is beaten by the transaction (or list of
transactions) tw1 and promoted to try for log position k+1.
It then loses log position k + 1 to the transaction (or list
of transactions) tw2 and is promoted to try for log position
k + 2. This process repeats until tp eventually commits to
log position k + h, for some h > 0. Let tw be the list of

(a) Number of successful transaction commits, out of
500 transactions.

(b) Latency for committed transactions.

Figure 4: Transaction commits and latency for dif-
ferent numbers of replicas.

winning transactions (including tp) for log position k + h.
The one-copy equivalent serial history to the log up through
position k +h− 1 is S + tw1 + . . .+ twh−1 . In order for tp to
be promoted, it must not have read from any tw1 , . . . , twh1 ,
and in order for tp to be included in the list tw the list itself
must preserve one-copy serializability. Therefore, the log up
through position k + h is one-copy equivalent to the serial
history S+tw1 +. . .+twh−1 +tw. This proves that promotion
maintains property (L3).

6. EVALUATION
In this section, we present evaluation results of our pro-

totype implementation of the transactional datastore with
multi-datacenter replication. Our aim is to compare the
performance of the two commit protocols, the basic Paxos
commit protocol and Paxos-CP. Therefore, our focus is not
on the pure scalability of the system, but rather on the level
of transaction concurrency that each protocol allows and the
performance trade-offs between the two designs.

Our prototype uses HBase [17] as the key-value store. We
have implemented the Transaction Client and Transaction
Service (including the commit protocols) in Java. The ser-
vice is a multi-threaded Java server. UDP is used for com-
munication between the client and remote Transaction Ser-
vices. We utilize a two second timeout for message loss
detection. For communication between a client and its local
Transaction Service, we use the optimization described in
reference [3]; the client executes HBase operations directly
on its local key-value store.

We evaluate our system using the Yahoo! cloud serv-
ing benchmark (YCSB) [10]. The benchmark was initially

designed for key-value stores and provides no support for
transactions. Therefore, we use an extended version of the
framework that supports transactions and provides libraries
for generating various kinds of transactional workloads [13].
We have implemented the Application Platform as a simple
Java interface between the cloud benchmark application and
our Transaction Client.

As our evaluation is focused on the transaction tier, we
have simplified the key-value store tier by running a single
instance of HBase for each datacenter. Since there is no
transactional relationship between different entity groups,
we evaluate the transaction protocols on a single entity group
consisting of a single row that is replicated in the key-value
store in each datacenter. The attribute names and values are
generated randomly by the benchmarking framework. Each
experiment consists of 500 transactions. Transaction oper-
ations are 50% reads and 50% writes, and the attribute for
each operation is chosen uniformly at random. We have per-
formed each experiment several times with similar results,
and we present the average here.

All evaluations were performed on Amazon’s public cloud
using medium Hi-CPU instances (c1.medium) with Elas-
tic Block Storage. Experiments use between two and five
nodes, with each node in a distinct location, or datacenter.
Three nodes are in the Virginia region (in distinct availabil-
ity zones), one node is in Oregon, and one is in northern
California. A single letter for a node indicates the region:
V,O,C. Round trip time between nodes in Virginia and
Oregon or California takes approximately 90 milliseconds.
Inter-region communication, Virginia to Virginia, is signif-
icantly faster at approximately 1.5 millisecond for a round
trip. Round trip time between California and Oregon is
about 20 milliseconds.

For Paxos-CP, the combination enhancement has little ef-
fect on the performance of Paxos-CP. At most, 24 combi-
nations were performed per experiment, and the average
number of combinations was only 6.8 per experiment. We
therefore omit a detailed analysis on combinations for space
considerations. Transactions were allowed to try for promo-
tion an unlimited number of times. However, as shown in
the results below, no transaction was able to execute more
than seven promotions before aborting due to a conflict.
The majority of transactions commit or abort within two
promotions.

Number of Replicas. First, we evaluate the performance
of the two protocols in systems with different numbers of
replica sites. For each run of the experiment, each transac-
tion accesses ten attributes uniformly at random from a row
with 100 total attributes. The results, by replica count, are
shown in Figure 4. The results for replication in different
combinations of datacenters are shown in Figure 5.

In Figure 4(a), we show the commit success count for basic
Paxos and each promotion round in Paxos-CP. For the basic
Paxos protocol, the mean number of successful transaction
commits ranges from 284 out of 500 for the system with two
replicas to 292 out of 500 for the system with five replicas.
In Paxos-CP, we also see a consistent number of mean to-
tal commits (between 434 and 445 out of 500 transactions)
regardless of the number of replicas, indicating that replica
count has little effect on the commit success rate. We note
that, for Paxos-CP, the number of transactions committed
in the first round is less than the total number of commits
for the basic protocol. This result shows that the promoted

(a) Number of successful transaction commits, out of
500 transactions.

(b) Average latency for all transactions.

Figure 5: Transaction commits and average trans-
action latency for different clusters.

transactions are winning out over some first round transac-
tions. When we consider the total number of commits for
each protocol, it is evident that the promotion feature leads
to a significant increase in the number of successful commits.

Figure 4(b) shows the commit latency for Paxos and each
promotion round in Paxos-CP. The first round of Paxos-CP
has comparable latency to basic Paxos, with promotions in-
curring higher latency due the additional rounds of commu-
nication required. The latency for each additional promo-
tion round is shown by a stack of narrowing blocks. The
decrease in column width is relative to the percentage de-
crease in the number of commits compared to the previous
round. While later rounds experience higher latency, only a
small percentage of transactions experience this latency. If
increased latency is a concern, the number of promotion at-
tempts can be capped. Both basic Paxos and Paxos-CP
exhibit an increase in average transaction latency as the
number of replicas increases. While the number of message
rounds required to decide a log position does not depend on
the number of replicas, a larger number of replicas means
more messages per round. There is a increased chance of
message loss or delay when the client must contact five repli-
cas (in parallel) instead of two. We believe this contributes
to the increased latency observed in the experiments. We
note that the transaction latency of the promotion enhance-
ment is lower than would be required for the application to
retry an aborted transaction in the basic protocol since a
retry would require round trip communication to the data-
store to reread the data items in addition to the commit
protocol messages.

Figure 5 shows the same experiment as above, broken
down by different combinations of datacenters. Figure 5(a)

Figure 6: Varying total number of attributes, for
three replicas.

Figure 7: Impact of increasing concurrency, for
three replicas.

shows the number of commits by promotion round, and Fig-
ure 5(b) shows average commit latency for basic Paxos and
all rounds of Paxos-CP. Average latency for Paxos-CP trans-
actions completing with no promotions is designated by a
small dash. In transactions that involved only Virgina dat-
acenters (VV or VVV) latency is significantly lower, while
the improvement on the number of commits for Paxos-CP
remains relatively constant despite an inherent increased la-
tency due to location (VV vs. OV) and the lack of a quorum
within the same region (VVV vs. COV).

Data Contention. Next, we investigate the effects of data
contention between concurrent transactions for three replica
sites. The workload is performed by four concurrent threads
with staggered starts, with a target of one transaction per
second. Every transaction consists of ten operations, each

Figure 8: Increasing datacenter concurrency.

of which is a read or write on a random attribute in the
entity group. We vary the level of contention for individual
data items by varying the total number of attributes in the
entity group. When the total number of attributes is 20,
each transaction accesses 50% of the data items, thus yield-
ing a high level of contention. When the total number of
attributes is 500, each transaction accesses only 2% of the
data items, resulting in minimal data contention.

The results of this experiment are shown in Figure 6. We
use three nodes in the Virginia region with a single YCSB
instance. In the basic protocol, no concurrent transaction
access is allowed to an entity group regardless of the at-
tributes that are accessed in that transaction. Therefore,
the number of transactions that commit successfully is not
significantly affected by the level of data contention. For
basic Paxos, an average of 290 out of 500 transactions are
committed in the worst case (20 total attributes) and 295
out of 500 transactions are committed in the best case (500
total attributes). In contrast, Paxos-CP allows transactions
that do not conflict multiple chances to commit, resulting
in a higher commit rate. The number of transactions that
commit on the first try is similar to the results of the basic
protocol. On subsequent attempts, more commit attempts
are successful, as shown in Figure 6. The total number of
successful commits depends on the data contention. 494
out of 500 transactions committed successfully when data
contention was minimal (500 total attributes). Even in the
case of high contention (20 total attributes), 370 out of 500
transactions committed, which is 27.5% more than the best
case of the basic protocol.

Increased Concurrency. Finally, we evaluate the impact
of concurrency on the commit success rate. As we increase
the number of processes that attempt to update an entity
group concurrently, we expect the number of commits to de-
crease for both protocols due to increased competition for
log positions. In Figure 7, we show the effect of increasing
the throughput for a single YCSB instance on a VVV replica
cluster with contention on 100 attributes. Paxos-CP consis-
tently outperforms basic Paxos in terms of total commits,
though both protocols experience a decrease in commits as
throughput increases. As throughput increases, promotions
play a larger role in Paxos-CP; the increased competition
for each log position means that more transactions will be
promoted to try for subsequent log positions. We also exam-
ine concurrency effects in an experiment where each replica
has its own YCSB instance, executing transactions against
a shared entity group. In Figure 8, we operate three repli-
cas (VOC). Each YCSB instance attempts 500 transactions
over a 100 attribute entity group at a target rate of one
transaction per second. Since O and C are geographically
closer, a quorum is achieved more easily for these two nodes,
resulting in a slightly higher commit rate for their YCSB in-
stances. However, for all datacenters, Paxos-CP has at least
a 200% improvement in commits over basic Paxos, while in-
curring an increase in average latency of 100% for all rounds
and 50% increase for the first round latency.

7. RELATED WORK
As discussed in this work, Megastore provides both repli-

cation across multiple data centers and support for ACID
transactions [3]. Windows Azure also provides support for
transactions with multi-datacenter replication [7]. It per-

forms replication using a master-slave approach. In the
original work [7], replication was not performed on transac-
tion commit; rather, data was replicated every few seconds.
Therefore, the system did not guarantee consistency across
datacenters. A newer work describes Cloud SQL Server [4],
which provides transaction support and consistent replica-
tion on top of Windows Azure.

Other recent works have focussed on either transactional
support or multi-data center replication, but not both. G-
Store implements multi-item transactions where transaction
groups are created on demand [11]. Similar to our work, G-
Store is implemented on top of a key-value store, but it does
not provide replication at multiple data centers.

Google’s BigTable [9] provides single item transactions
within a single data center. BigTable relies on the files sys-
tem GFS [15] for data replication. While this replication
provides durability, there is still a problem with availability
when a BigTable node goes down.

In a recent work, Rao, Shekita and Tata describe Spin-
naker [23], a datastore with support for single item transac-
tions and replication within a single data center. Spinnaker
also uses Paxos for transaction management and replication.
Unlike our system which uses a single instance of Paxos for
each log position, Spinnaker uses a Paxos algorithm with
a master replica. A leader is elected using Zookeeper [18],
and the leader is responsible for ordering all transactions
and sending the log entries to all replicas. A leader failure
results in a new election. It is not straightforward to extend
this approach to support multi-item transactions.

We note that while a leader is alive, the full Paxos al-
gorithm behaves exactly as an atomic broadcast algorithm
with a sequencer [14]. One could envision using such a de-
sign to implement multi-item transactions with replication
using either the full Paxos algorithm or an atomic broadcast
protocol like Zab [24]. The leader could act as the transac-
tion manager, check each new transaction against previously
committed transactions (in a course grained or fine grained
manner) to determine if the transaction can be committed.
The leader could then assign the transaction a position in
the log and send this log entry to all replicas. Such a de-
sign would require fewer rounds of messaging per transaction
than in our proposed system, but a greater amount of work
would fall on a single site and could possibly be a perfor-
mance bottleneck. Exploring tradeoffs between our design
and such a leader-based approach is a subject for future
work.

8. CONCLUSION
We have presented a framework for a transactional datas-

tore where data is replicated at multiple datacenters, and we
have defined and analyzed the correctness of two transaction
management protocols based on the Paxos algorithm. We
have shown that the basic Paxos commit protocol acts as
a concurrency prevention mechanism rather than a concur-
rency control mechanism. The enhanced protocol, Paxos-
CP provides true transaction concurrency and requires the
same per instance message complexity as the original Paxos
protocol. Our experiments demonstrate that Paxos-CP
achieves a marked improvement in the commit rate over
the basic Paxos protocol. As future work, we plan to ex-
plore cloud transaction management that uses an optimized
Paxos algorithm with a long-term leader.

9. ACKNOWLEDGMENTS
This work was funded in part by NSF Grant 1053594,

the Arlene & Arnold Goldstein Center at the Technion Au-
tonomous Systems Program, a Technion fellowship, and an
Andrew and Erna Finci Viterbi Postdoctoral Fellowship.

10. REFERENCES
[1] Amazon SimpleDB, 2011. [Online; acc. 5-Oct-2011].

[2] Amazon.com. Summary of the Amazon EC2 and
Amazon RDS service disruption in the US East
Region, 2011. [Online; acc. 5-Oct-2011].

[3] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and
V. Yushprakh. Megastore: Providing scalable, highly
available storage for interactive services. In Conf.
Innovative Data Systems Research, pages 223–234,
2011.

[4] P. Bernstein, I. Cseri, N. Dani, N. Ellis, A. Kalhan,
G. Kakivaya, D. Lomet, R. Manne, L. Novik, and
T. Talius. Adapting Microsoft SQL Server for cloud
computing. In IEEE 27th Int. Conf. Data
Engineering, pages 1255–1263, 2011.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[6] M. Butcher. Amazon EC2 goes down, taking with it
Reddit, Foursquare and Quora, April 2011. [Online;
acc. 5-Oct-2011].

[7] B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav, J. Wu,
H. Simitci, et al. Windows azure storage: a highly
available cloud storage service with strong consistency.
In Proc. Twenty-Third ACM Symp. Operating Systems
Principles, pages 143–157. ACM, 2011.

[8] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
made live: an engineering perspective. In Proc. 26th
ACM Symp. Principles of Distributed Computing,
pages 398–407, 2007.

[9] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: a distributed storage system
for structured data. In Proc. 7th USENIX Symp.
Operating Systems Design and Implementation, pages
15–28, 2006.

[10] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems
with ycsb. In Proc. 1st ACM Symp. Cloud Computing,
pages 143–154. ACM, 2010.

[11] S. Das, D. Agrawal, , and A. El Abbadi. G-Store: A
scalable data store for transactional multi key access
in the cloud. In Proc. 1st ACM Symp. Cloud
Computing, pages 163–174, 2010.

[12] S. Das, D. Agrawal, and A. El Abbadi. Elastras: An
elastic transactional data store in the cloud. In
USENIX Workshop on Hot Topics in Cloud
Computing, 2009.

[13] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi.
Albatross: lightweight elasticity in shared storage
databases for the cloud using live data migration.
Proc. VLDB Endowment, 4(8):494–505, 2011.

[14] X. Défago, A. Schiper, and P. Urbán. Total order
broadcast and multicast algorithms: Taxonomy and

survey. ACM Comput. Surveys, 36:372–421, December
2004.

[15] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
google file system. In Proc.19th ACM Symp. Operating
Systems Principles, pages 29–43, 2003.

[16] A. Greene. Lightning strike causes Amazon, Microsoft
cloud outage in Europe. TechFlash, August 2011.

[17] HBase. http://hbase.apache.org, 2011. [Online; acc.
18-Jul-2011].

[18] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: wait-free coordination for internet-scale
systems. In Proc. 2010 USENIX conference, pages
11–11, 2010.

[19] L. Lamport. The part-time parliament. ACM Trans.
Computer Systems, 16(2):133–169, May 1998.

[20] L. Lamport. Paxos made simple. ACM SIGACT
News, 32(4):18–25, December 2001.

[21] K. Muthukkaruppan. The underlying technology of
messages, 2011. [Online; acc. 5-Oct-2011].

[22] S. Patterson, A. J. Elmore, F. Nawab, D. Agrawal,
and A. El Abbadi. Serializability, not serial:
Concurrency control and availability in
multi-datacenter datastores. Technical Report
2012-04, University of California, Santa Barbara, 2012.

[23] J. Rao, E. J. Shekita, and S. Tata. Using Paxos to
build a scalable, consistent, and highly available
datastore. Proc. VLDB Endow., 4:243–254, January
2011.

[24] B. Reed and F. P. Junqueira. A simple totally ordered
broadcast protocol. In Proc. 2nd Workshop on
Large-Scale Distributed Systems and Middleware,
pages 2:1–2:6, 2008.

[25] R. van Renesse. Paxos made moderately complex.
2011.

