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ABSTRACT
Detecting information trends in online social networks is an impor-
tant problem that has attracted the attention of both the industry and
the research community in recent years. Global trends, information
items that are trendy in the entire social network, can be detected
using existing data streams techniques. However, detecting global
trends is only the first step in understanding online social networks.
As The First Law of Geography states “Everything is related to ev-
erything else, but near things are more related than distant things”.
This spatial significance has implications in various applications,
trend detection being one of them. To this end, in this paper we pro-
pose a new algorithmic tool, GeoWatch, to detect geo-trends. Ge-
oWatch is a data streams solution that detects correlations between
topics and locations in a sliding window in addition to providing
tools for analyzing topics and locations independently. The degree
of correlation as well as the sliding window size can be set to arbi-
trary values thus enabling a flexible framework. GeoWatch has the-
oretical guarantees for detecting all trending correlated pairs while
requiring only sublinear space and running time. Experiments on
Twitter show that in addition to providing perfect recall, GeoWatch
has near-perfect precision. As the Twitter analysis demonstrates,
GeoWatch successfully filters out topics without geo-intent and de-
tects various local interests such as emergency events, local politi-
cal demonstrations or cultural events.

1. INTRODUCTION
Geography plays an important role in various aspects of our lives.
As the first law of geography states “Everything is related to every-
thing else, but near things are more related than distant things” [34].
Even though, with the advent of the Web and later online social net-
works, the “virtual” distance between the Web users have dramati-
cally decreased, research shows that geographical locality still mat-
ters. Ugander et al. [37] study the social graph of active Facebook
users and show that not only are friendships predominantly across
users within the same country, but friendships between countries
are also highly modular, and apparently influenced by geography.
This locality in friend relation formation is also seen in use of lan-
guage and sentiment [30] as well as topical interests [16].

In addition to capturing interests and intentions of users in dif-
ferent localities, geographical signals can also be used to extract
relevant information from the public in crisis management [24].
Therefore, it is a critical task to develop social network analysis
tools that have a geographical focus. Most research in this area
is restricted to offline measurements to geographically characterize
social networks [7, 30]. Recently, there has been more effort in on-
line analysis of geo-trends in social networks [24, 32]. However,
these works focus on defining frameworks in which data is simply
geographically categorized while the task of discovering geo-intent
by considering the correlation between locations and topics is not
addressed. Given the large scale of data shared in online social
networks, there is need for algorithmic solutions that capture geo-
intent and detect informational trends in a scalable fashion. Our
goal in this paper is to provide such an algorithmic tool that uses
sublinear space and running time with approximation guarantees.

Trends in social networks are of high significance and a major point
of interest in both the industry [18, 19] and the research commu-
nity [23, 4, 32]. In this paper, our goal is to detect trends of true ge-
ographical nature rather than simply identifying frequent elements
in various locations. A topic of global importance incidentally also
has a high frequency of occurrence in different localities. Distin-
guishing such a topic from one that is trending in only certain local-
ities is not possible without considering the correlations between
places and topics. Therefore, in this work we focus on the problem
of identifying the correlation of information items with different
geographical places. Items that are trendy in general not for a spe-
cific location carry no geographical significance and therefore are
irrelevant from the perspective of our study.

We propose GeoWatch; an algorithmic tool for detecting geotrends
in online social networks by reporting trending and correlated location-
topic pairs. GeoWatch also captures the temporality of trends by
detecting geo-trends along a sliding window. To the best of our
knowledge, this is the first work that detects spatial information
trends in social networks by capturing correlations in a multi di-
mensional data stream. In addition, with the use of different win-
dow sizes, trends of different time granularity can be detected. Ge-
oWatch has provable accuracy guarantees even though it requires
sublinear memory and amortized running time. Such a scalable al-
gorithmic tool can be used in real large-scale social networks to re-
liably detect local interests or even crisis events in a timely manner.
Our analysis on Twitter data set shows that such geo-trend detec-
tion can be very important in detecting significant events ranging
from emergency situations such as earthquakes to locally popular
flash crowd events such as political demonstrations or simply lo-
cal events such as concerts or sports events. The fast detection of



emergency events such as the March 11 Japan earthquake indicate
the possible value of GeoWatch in crisis management.

To the best of our knowledge, this is the first work that detects spa-
tial information trends in social networks by capturing correlations
in a multi-dimensional data stream. In Section 2, we start by sum-
marizing related work. Section 3 provides analysis on the Twitter
data set used in this study. Next in Section 4 we introduce the
characteristics that an ideal geo-trend detection tool should have
and show that an exact solution is not scalable. Therefore, we pro-
pose an approximate solution, called GeoWatch, and provide proofs
of accuracy and sublinear memory and running time requirements.
This proposed framework is experimentally evaluated in Section 5.
Finally Section 6 concludes the paper.

2. RELATED WORK
This study is in the intersection of social networks research, data
streams research and geo-analysis. Here we will provide an overview
of recent studies related to these topics:

Social Networks Analysis: In recent years, there has been a num-
ber of studies that focused on information trends from various per-
spectives [2, 15, 21, 23, 4]. Kwak et al. [21] study and compare
trending topics in Twitter reported by Twitter with those in other
media, showing that the majority of topics are headline or persis-
tent news. In [23] Leskovec et al. study temporal properties of in-
formation by tracking “memes” across the blogosphere. Teitler et
al. [32] collect, analyze, and display news stories shared in Twitter
on a map interface, capturing geographical characteristics of social
networks data. However, unlike our work they focus on identifying
tweet clusters based on locations and not trend detection. Hong et
al. [16] focus on user profiling from a geographical perspective by
modeling topical interests through geo-tagged messages in Twitter.
This problem is orthogonal to the problem studied in our paper as
it focuses on user-centric modeling in an offline manner while Ge-
oWatch detects trends in an online fashion. MacEachren et al. [24]
aim to identify significant events in different localities for crisis
management. This work provides a high level framework while
we provide an efficient algorithmic tool with accuracy guarantees.
Another framework in detecting spatiotemporal topics have been
introduced in the context of online blogs [10].

Geographical information is important for recommendation sys-
tems in the context of social networks as well. This motivation has
driven a considerable effort in the research community. A recent
tutorial on location-based social networks (LBSN) discuss various
research problems in this context [40]. One such problem [39] re-
lates to identifying interesting activities to perform in a location. In
that sense it is similar to finding interesting topics being discussed
in the network. However, this technique is based on collaborative
filtering and collective matrix factorization methods and therefore
is not an online solution. Such a technique cannot respond rapidly
to fast changing information trends.

Since our goal is to provide and evaluate a tool for detecting geo-
trends in social networks, it is an important sub-task to geo-tag the
social content in an accurate manner. Geo-tagging has been suc-
cessfully addressed through NLP [13] and LDA [1] in the context
of the unstructured web. However, this task introduces new chal-
lenges in the context of social networks. Various studies have fo-
cused on geo-tagging social networks data [7, 38, 12, 3]

Data Streams: There is a large family of data streams problems

that are related to (but not the same as) our problem definition.
One significant problem studied in the context of data streams is
the frequent elements problem [8]. The algorithms for answering
frequent elements queries are broadly divided into two categories:
sketch-based and counter-based. In the sketch-based techniques
[6, 9, 20], the entire data stream is represented as a summary sketch
which is updated as the elements are processed. The counter-based
techniques [28, 25, 11] monitor a subset of the stream elements and
maintain an approximate frequency count. Although our method
relies on frequent element detection, it also requires identifying
correlations in a data set in an online manner.

There has been some effort in detecting correlations in multi dimen-
sional data streams. In particular, in [29] the authors address the
problem of fraud detection in Internet advertising networks. The
proposed solution models discovering single-publisher attacks as a
new problem of finding correlations in multidimensional data con-
sisting of two dimensions; the publisher, and the IP address of a
machine. In order to detect fraudulent behavior, they aim to detect
correlated pairs where a correlated pair is defined as one where the
IP is a frequent (or heavy-hitter) element for the publisher, and the
publisher is a frequent element for the IP. Since this technique is
a count-based solution, it only allows insertions and not deletions.
Therefore, unlike our work, it uncovers correlated items in the en-
tire data stream. For detecting trends in social networks, captur-
ing temporal aspects is crucial. Therefore, the solution introduced
in [29] is not applicable as is. Moreover, this work makes the as-
sumption that the traffic characteristics of non-fraudulent publish-
ers and IPs are stable within the analyzed window. Such an as-
sumption is not applicable in online social networks where infor-
mation trends are highly temporal. Similar to [29], GeoWatch keeps
track of correlations in a multidimensional data stream but unlike
SLEUTH [29], GeoWatch is a sketch based solution that allows for
a sliding window implementation.

In another relevant work, Lappas et al. [22] study the notion of
burstiness in documents in a spatiotemporal [27, 35] manner. While
their methodology also captures the notion of geography and time,
it focuses on data burstiness and not geo-intent. The streaming
version of the problem does not provide guarantees of optimality
(or sub-optimality) for the maximal window approach. In addition,
geography in that context is defined based on a bounding box and
not an actual location (such as city, country) which we believe is
the natural aggregation-level in defining geographical interests.

3. GEOGRAPHICAL TWITTER ANALYSIS
For our experiments we used Twitter updates from February 1st to
June 18th 2011. The data is extracted through Twitter’s public API
(GardenHose) and therefore constitutes ∼ 10% of the overall Twit-
ter updates of that time period. The average number of tweets per
day is 14.2M (with a total of 2 billion for the whole period). Af-
ter geo-tagging, a procedure described below, we obtained a total
of 378,941,219 labeled datapoints, out of which 63M also include
a hashtag. The number of users in our data set is 46M. The ge-
ographical data was obtained from [26], which contains complete
hierarchical information and coordinates for approximately 50,000
cities from all the countries and regions of the globe.

Geo-tagging Twitter Content: There are two types of geograph-
ical information that can be associated with a given tweet: the lo-
cation the tweet is shared from (geo-origin) and the location that
the tweet is about (geo-focus). While our technique can be applied
for both cases, we will focus on detecting geo-trends when loca-



tion is based on geo-origin in the rest of this paper. To identify
the geo-origin of a tweet, we utilize both the tweet and the user
location. Tweet location is provided explicitly by the Twitter API
in the form of a latitude and longitude pair. In certain cases the
city name might also be available. Even though this signal offers a
highly accurate estimation of the tweet location, it is sparse. Only
1.5% of tweets’ geo-origin are identified through this method. The
second signal, user location, is a user provided free-form text that
carries more noise [38]. We extract this information by parsing the
location string and identifying pairs of (longitude, latitude), (city-
name, region-abbreviation), (city-name, region-name), (city-name,
country-abbreviation) and (city-name, country-name). Since there
are cases where a region or a country might have the same city
name for more than one locations we choose as the best match the
one with the largest population. After obtaining the location of
a user, all his/her untagged tweets are tagged with this location,
which increases the number of tweets that are tagged according to
their geo-origin in our data set to 13%.

Geo-tagging social networks data is an active area of research. For
instance, Cheng et al. [7] study the problem of identifying city-level
location of Twitter users based on a probabilistic framework that re-
lies purely on tweet content in identifying user locations. However,
this solution requires a large number of tweets per person for high
accuracy and therefore identifying the location of a large fraction of
the population is not possible. In addition, this solution is a batch
process while our goal is to detect trends in a streaming fashion ne-
cessitating even geo-tagging to be performed in an ad-hoc manner.
Other Twitter geo-tagging studies [38, 12] suffer from low accu-
racy with a median error of 479 km per user. Instead of investing
in Bayesian models with a large margin of error, in this work we
use simple reliable methods to extract place names from tweets and
user profiles. Such a solution results in identifying the location of
a relatively smaller set of users while providing high accuracy.

Geo-tagging is an important task for other social networks like
Facebook as well. In a recent work, Backstrom et al. [3] predict
the addresses of 1.6 million Facebook users based on the addresses
of 700,000 other users. Their methodology that leverages from the
friendship graph correctly places 57.4% of users within 25 miles of
their provided locations. We do not leverage from this methodol-
ogy in this paper for various reasons. For one, their methodology
requires an expensive preprocessing phase. Since our goal is to
solve the geotrend detection in an online manner, such a technique
is troublesome in a highly dynamic setting with new users and
follow relations being formed frequently. Secondly, Facebok and
Twitter have different natures, therefore it is not clear whether the
technique would be as beneficial in the context of Twitter. While
it is an interesting research problem to compare the nature of geo-
information in Twitter and Facebook, this is not the research ques-
tion addressed in this paper. Finally, we do not leverage from friend
relations in our methodology, we believe such a solution, not rely-
ing on having access to full graph, is more accessible for imple-
mentation.

Geographical Distribution of Twitter Updates: In order to pro-
vide an overview of the geographical characteristics of our data
set, we present heat maps of locations that tweets originate from
(Figure 1(a)) and locations tweets are about (Figure 1(b)). In both
graphs, we plot every city associated with more than 10 tweets us-
ing the GeoMap tool of Google Charts. The color and size of cities
are proportional to the number of tweets. The two figures resemble
each other but there are certain distinctions. For instance, Japan is

(a) Tweets in Cities

(b) Tweets about Cities

Figure 1: Heat Map for # of tweets in/about cities of the world

denser in Figure 1(b) due to the Japan earthquakes that took place
within the time period captured in our data set. On the contrary, a
drop in significance can be observed for countries such as Indone-
sia when comparing the tweets in cities to tweets about cities. This
difference is due to the fact that Indonesia is a highly active country
in Twitter [17], while there are no important events taking place in
its cities that would result in people mentioning them. Note that we
also analyzed the number of users per location and the results were
similar to Figure 1(a).

Characterizing geo-correlation of twitter “friends” : To further
demonstrate the usefulness of geo-analysis we analyzed the cor-
relation between friends and their location. Instead of using the
static “following” relation to define friendship, we denote the users
which mutually interact (mention each other) as “friends”. Due
to space limitations, we omit various details of this analysis and
note that approximately 57.4% of “friends” reside in the same city
while about 62% of users have at least one friend in the same city.
These results show locality in friendship relations in Twitter con-
firming earlier work [37]. Research shows that this local behavior
in friendship formation extends also to more dynamic behavior, i.e.
topical interests [16]. In these circumstances, it becomes vital to
detect such local interests. Given that interests evolve over time, it
is also crucial to carry this task in an online manner. This task is
exactly what GeoWatch addresses.

4. DETECTING GEO-TRENDS
In this section, our goal is to identify the characteristics that com-
prise a useful geo-trend detection tool. We aim to define which
locations, topics as well as correlations are necessary and sufficient
to report to provide a rich geo-trend detection tool. These charac-



teristics lead to the three main premises of our algorithmic design.

A basic geo-trend detection tool should provide a high level overview
of the popularity of locations and topics. Such a tool should answer
queries such as “What fraction of the mentions in the current time
window are about topic tx (or from location li)?” efficiently and ac-
curately. This notion can be formalized by the following premise:

PREMISE 1. The frequency of any topic tx and any location li
in the current time window should be reported in an accurate and
timely fashion.

This premise ensures tracking global trends in the social network.
Not only can one identify the interesting topics but also keep track
of most active geographical locations in the network. This task
can be achieved by traditional heavy hitters approaches and has
already been addressed to a large extend in recent research. In this
paper, we aim to reach beyond that and identify geo-trends that
provide the link between the topics and locations by capturing the
correlation between the two. Consider a stream consisting of pairs
(li, tx) where li is the geo-origin of a tweet and tx is the topic of
the tweet. In this context, geo-trends can be captured through the
following premise:

PREMISE 2. All significantly correlated location-topic pairs can
be retrieved at any particular time in an efficient and accurate man-
ner. A location-topic pair (li, tx) is significantly correlated if at least
φ fraction of all mentions from location li are about topic tx and at
least ψ fraction of all mentions about topic tx are from location li.

Consider the stream {(l1, t1),(l2, t1),(l3, t1),(l1, t2),(l1, t3),(l2, t3),
(l2, t3)}. Assume that φ = ψ = 0.5. The only correlation that will
be reported based on Premise 2 is (l2, t3). For instance correlation
(l1, t2) is not reported even though l1 is a heavy hitter for t2 since
t2 is not central to the interests of l1, at least based on the threshold
setting φ = 0.5. A similar filtering can be observed for the cor-
relation (l3, t1) since t1 is a global trend, appearing equally in all
three locations and hence, l3 is not special in any geographic sense
for topic t1. Through this premise, the geo-trend detection tool
captures the interests of different localities and provides means for
serving important applications such as crisis management.

Note that, we rely on parameters φ and ψ rather than relying on the
definition of statistically significant correlation. Statistical analysis
can compute the association strength between a pair of location and
topic by comparing their expected and observed frequencies. The
χ2 statistic is a classical method that is widely used for this type of
analysis. While, the notion of statistical significance [14] is an in-
teresting and useful concept, the application of statistical methods
such as χ2 test would rejected most null hypotheses, i.e. a location-
topic pair not being correlated, due to the large sample size [5].
This would result in unmanagable or even meaningless correlations
being detected. Therefore, we believe leaving the choice of φ and ψ

to be determined based on the specific application is more practical
and useful compared to the detection of statistically significantly
correlated location-topic pairs. However, we still believe further
investigation in the line of identifying new statistical methods for
capturing correlations is an interesting problem and aim to work on
this as future work.

One of the important characteristics of a useful trend detection tool
is its ability to filter out insignificant information. Therefore, given

the large number of locations and topics as well as their zipfian dis-
tribution of popularity, a scalable and useful trend detection tool
should also filter out unpopular correlations. Consider a hypothet-
ical location li consisting of only one user who uses a highly un-
common hashtag hx. If there are no restrictions on the significance
of locations the pair (li,hx) would be reported as a correlated pair.
Given the Zipfian nature of popularity of locations and topics, it
is easy to see that the list of correlations involving such locations
would grow large. In order to avoid reporting an unmanageably
large list of location-topic correlations, there should be a lower
bound on the importance of a given location for it to be reported
by the geo-trend detection tool. This leads us to the final premise
of our algorithm:

PREMISE 3. Geo-trend detection should identify a list of “all”
and “only” the locations that are at least θ-frequent in the current
time window and limit the reported correlations to such locations.

A θ-frequent location in a window of N elements is a location that
occurs at least θN times where 0 ≤ θ ≤ 1. Through this premise,
geo-trend detection is guaranteed to capture significant locations
while also keeping the number of reported locations at a manage-
able size. Such a requirement also filters out locations for which
there is not enough data to infer the geographical interest. Given
that Premise 2 dictates a correlation to be reported only if both the
location and the topic are heavy-hitters for each other, Premise 3
also ignores unpopular topics by eliminating unpopular locations.
This is because unpopular topics cannot be frequent for popular
locations; the only locations tracked for correlations.

So far we defined geo-trends where locations represent the geo-
origin of information. A similar definition could be constructed to
detect the correlations in a stream of pairs (l j,ty) where l j is the geo-
focus of a tweet and ty is the topic of that particular tweet. In this
case, from Premise 2, the location-topic pair (ly, ty) is significantly
correlated if at least φ fraction of all mentions about location li are
also about topic tx and at least ψ fraction of all mentions about topic
tx are about location li. Also note that the correlations reported are
filtered due to Premise 3 meaning no correlation whose geo-focus
is a location with less than θ ∗N occurrences in a window of N
elements is reported. This way the list of correlated pairs are kept
at a manageable size.

In the following sections we will first provide the formal problem
definition that addresses the three premises introduced here. Next
we will prove that all location-topic pairs need to be tracked for
an exact solution which introduces scalability challenges which are
addressed through our proposed technique, GeoWatch, that requires
sublinear memory and processing time.

4.1 Problem Definition
We denote the set of all topics as T = {t1, t2, ...,} and the set of
all locations as L = {l1, l2, ...}, |T | and |L| denote the number of
topics and locations respectively. Since tweets are restricted to at
most 140 characters long, Twitter users use hashtags to convey their
thoughts in a compact manner [31]. Therefore, we choose hashtags
to capture topics in this study. As for the definition of locations, we
focus on cities since this resolution allows capturing local interests
while not being too small as to result in meaningless correlations.
This choice also allows us to map our findings to real events that
happen in different cities of the world. In the following sections
we will assume that the number of distinct hashtags and locations



are known in advance and do not change. However, in a highly
dynamic setting such as social networks, the set of topics itself is
also dynamic. We note that our solution also works for such cases
by simply creating larger sketches as the data range grows [20].

Given a stream S of location-topic pairs of the form (li, t j) and
three user defined frequency thresholds θ, φ, and ψ in the interval
[0, 1]; our goal is to keep track of (i) the frequencies F(li) (F(tx))
of all locations li (topics tx) and (ii) all pairs (li, tx) s.t. F(li) >
dθNe, F(li, tx) > dφF(li)e, and F(li, tx) > dψF(tx)e in the current
time window. Here F(li, tx) is the number of pairs on topic tx from
location li; F(li) is the number of the pairs from li in the current
time window; and F(tx) is the number of pairs on tx. The window
size can be set in terms of maximum number of elements or an
actual time window such as an hour or a day. In the latter case, the
number of elements N in the current window is defined by the user.
Since frequency of each topic and location is tracked, Premise 1
is satisfied. As all the correlated pairs are determined, Premise 2
is captured by definition. And finally, by setting the requirement
F(li) > dθNe we address Premise 3.

4.2 Exact Solution
An exact solution that solves the problem described in Section 4.1
requires keeping track of all possible pairs in a given window. We
will prove this statement, by focusing on Premise 2 alone. The full
solution that also satisfies Premises 3 and 1 is at least as hard.

THEOREM 4.1. Any exact solution for the problem of detecting
geo-correlated trends in a sliding window requires keeping exact
and complete information about all pairs in the given window.

PROOF. Given a stream S = {..., ti+1, ti+2, ..., ti+m, ...} and a win-
dow size m, construct a 2-dimensional stream as follows, S′ =
{...,(l1, ti+1),(l1, ti+2), ...,(l1, ti+m), ...}, by appending some loca-
tion l1 as the first value for all pairs. An answer to the query about
correlations at time step i+m in the constructed stream with thresh-
olds φ and ψ = 1− 1

m and θ = 1 can be directly translated into an
answer to a query about frequent elements in the original stream
with threshold φ. Therefore, answering the correlated geo-trend
query in S′ is equivalent to answering frequent elements query in S
which requires complete information about all elements.

Next we focus on the implications of Theorem 4.1. There are over
50K cities and over 2.3M unique hashtags in our dataset which re-
sults in over 115 billion different possible pairings. It is also im-
portant to consider the rate at which information is shared in social
networks. For instance, there are on average 140 million tweets
shared on Twitter per day [36]. It is easy to see that as the number
of topics and locations become large, the exact solution of keep-
ing track of all possible pairs of locations and topics becomes in-
feasible. Therefore, we next propose our method with sub-linear
memory and processing requirements.

4.3 GeoWatch
Given the infeasibility of the exact solution, we now propose Ge-
oWatch that requires a sublinear memory and amortized running
time while still providing accuracy guarantees. The main idea be-
hind GeoWatch is to limit the number of monitored locations by
tracking those that are at least θ-frequent and to further limit the
number of monitored topics by tracking a topic tx only if tx is φ-
frequent for at least one location and track ψ-frequent locations for

each such topic. Given that there can be at most d 1
θ
e θ-frequent lo-

cations at a given time, each of which can have up-to d 1
φ
e topics that

are φ-frequent, the number of elements to track can be bounded by a
small number. As we will demonstrate later on, in order to provide
accuracy guarantees, GeoWatch relaxes the number of locations to
track from d 1

φ
e to d 1

φ−ε
e where ε� θ.

4.3.1 GeoWatch Data Structures
An overview of the structure of GeoWatch is provided in Figure
2. In this section we briefly describe GeoWatch and its subcom-
ponents. As can be seen from Figure 2, GeoWatch consists of two
main components. Location-StreamSummary-Table is a hashtable
that contains a StreamSummaryli structure for each location li that
has a current estimated relative-frequency of at least θ. Note that
the estimated relative-frequency is never an underestimation, there-
fore all location with at least θ relative-frequency are guaranteed to
be in Location-StreamSummary-Table. In order to provide a solu-
tion in a sliding window where deletions as well as insertions of el-
ements need to be supported, Location-StreamSummary-Table also
includes a sketch structure. This sketch structure is maintained to
keep track of frequencies of locations in a sliding window by allow-
ing both insertion and deletion operations [20]. StreamSummaryli
monitors the φ-frequent topics for location li. Since deletions need
to be supported to maintain the list of φ-frequent topics as well,
this summary structure is also maintained through a sketch-based
solution. Consider a case where a pair (li, tx) that expired is to be
deleted from the data structures. In this case, StreamSummaryli
should only be updated to reduce F(li, tx) if (li, tx) occurred after
StreamSummaryli was created. Therefore StreamSummaryli also
includes a time-stamp T Sli recording the time it was created. In the
case where the window size is set based on the maximum number
of elements rather than real time, the time-stamp will be based on
a discrete notion of time that is based on the sequence number of
mention pairs in stream S.

The second component given in Figure 2 is the Topic-StreamSummary-
Table, a hashtable that monitors the topics that are potentially cor-
related with at least one location and a sketch structure to keep
track of the topic frequencies. Through such an implementation,
Premise 1 can also be addressed. The topics in this table are deter-
mined by the topics that appear in at least one StreamSummaryli for
location li that is θ-frequent in the current window. For each such
topic tx in Topic-StreamSummary-Table, there is a data-structure
pair < Counttx ,StreamSummarytx > where countx is the number
of locations tx is φ-frequent for and StreamSummarytx monitors
the ψ-frequent locations for topic tx. StreamSummarytx will be
maintained as long as countx is positive. As soon as this number
reaches 0 for topic tx, the structure StreamSummarytx is deleted
freeing the space used by < Counttx ,StreamSummarytx >. Similar
to stream summary structure for locations, StreamSummarytx in-
cludes a time-stamp T Stx of when StreamSummarytx was created.

An important sub-component of GeoWatch that is leveraged in both
Location-StreamSummary-Table and Topic-StreamSummary-Table
is the sketch structure. This structure consists of a hashtable, S[m][h],
along with h hash functions. Given a range of elements from 1 to
M, an item k in this range has a set of h associated counters and
these counters are increased (or decreased) when encountering an
insert (or delete) operation of element k. Clearly, the values for
m and h should be set such that the collisions are minimized and
guarantees can be given for bounds on overestimation. It has been
shown that, e

ε
. ln(−M

ln p ) counters are needed to estimate each item



Figure 2: Overview of GeoWatch Data Structures: Location-StreamSummary-Table (on the left) keeps track of φ-frequent topics for
θ-frequent locations. Topic-StreamSummary-Table (on the right) keeps track of ψ-frequent locations for each topic that is φ-frequent
for at least one location. Here the third most important topic for location Loc1 is T2 and the second most important location for topic
T2 is Loc1

with error no more than εN in a window of size N with probability
p by setting m = e

ε
and h = ln(−M

ln p ) [20].

Given that the φ-frequent topics for a given location li are tracked
only after li becomes θ-frequent and a topic tx is tracked only after it
becomes φ-frequent for at least one location, we need to show how
GeoWatch satisfies Premises 3, 1 and 2. To this end, we first give
the intuition as to how these premises are still satisfied under our
approximation. Premises 3 and 1 are relaxed to allow for a small
error ε and to be guaranteed probabilistically. For this purpose, Ge-
oWatch requires two additional parameters ε and p in addition to
the parameters θ, φ and ψ as described in Section 4.1. The parame-
ter ε captures the allowed error rate while p captures the probability
of remaining within this error rate.

In reference to Premise 1, instead of guaranteeing to capture the
relative frequency of each topic and location exactly, GeoWatch
guarantees that for any topic tx and any location li, its true relative-
frequency is overestimated by no more than ε with probability p but
never underestimated. Note that theoretically, the ε and p values
used to determine the error for locations and topics could poten-
tially be distinct values. In this paper, for ease of presentation we
choose the same ε and p values for locations and topics. Also, in
reference to Premise 3, even though an exact counter for each loca-
tion is not kept, through the use of the sketch structure in Location-
StreamSummary-Table, GeoWatch guarantees detecting all loca-
tions li s.t. F(li) ≥ θN. It also guarantees that no location l j s.t.
F(l j) < (θ− ε)N is reported. Lastly, the relative frequencies of lo-
cations are overestimated by no more than ε with probability p but
never underestimated.

In reference to Premise 2, GeoWatch guarantees capturing all trend-
ing correlated pairs of locations and topics rather than all correlated
pairs. Here the notion of trending refers to non-decreasing signif-
icance. Most importantly, GeoWatch satisfies this premise deter-
ministically which guarantees perfect recall values. While it is im-
portant to capture correlations in general, the more important task
is to detect trending correlations, i.e. correlations that have an in-

creasing value over time. For instance, consider two hypothetical
correlations (Los Angeles, #405Traffic) and (Los Angeles, #earth-
quake). Traffic in 405 freeway in Los Angeles is a general topic
of interest resulting in a stable interest in the topic. In contrast, a
recent hypothetical earthquake would result in increasing interest
and therefore increasing value of correlation. While capturing both
cases is important, it is crucial to guarantee capturing the latter.
Even though GeoWatch is only guaranteed to capture the trending
correlations, as we will demonstrate in Section 5 it in fact captures
all correlated pairs for various θ,φ and ψ settings. Similarly, even
though there are no guarantees on the precision performance, as we
show in Section 5, GeoWatch provides near-perfect precision.

4.3.2 GeoWatch Operations
There are three operations that are allowed at a given point; insert,
remove and report operations. Each incoming stream element of
the form (li, tx) needs to be inserted into the data structure. As the
sliding window moves along, expired mentions should be removed.
Note that a sliding window can be set either in terms of number of
elements to be maintained or the period of time defined in terms of
minutes, hours, days etc. The pseudo-code for insert and remove
operations are provided in Algorithms 1 and 2. Due to space limi-
tations, we omit the pseudocode for the report algorithm that goes
through the structures and reports correlated pairs.

In Algorithm 1, lines (1-15) perform updates due to the occur-
rence of li. Lines (1-8) capture the steps that need to be taken
to incorporate the addition of the new mention in location li. If
tx becomes φ-frequent for location li after this insertion, Topic-
StreamSummary-Table needs to be updated to increase the number
of locations tx is trendy for. If this count was zero before this op-
eration, a new StreamSummarytx will be created with timestamp ts
and counter 1. Since the number of items increase with an insert
operation, it is possible that a location whose frequency is stable
becomes θ-infrequent. Lines (9-12) remove such items and con-
sequently updates the Topic-StreamSummary-Table for topics that
were φ-frequent for such locations. Decreasing Countty also entails
removing StreamSummarytx if the counter becomes 0. Similarly,



Algorithm 1 Insert (li, tx, ts)
1: F(li)← F(li)+1
2: if li turned θ-frequent then
3: Create StreamSummaryli with timestamp ts for location li
4: if li is θ-frequent then
5: Fli(tx)← Fli(tx)+1
6: if tx turned φ-frequent for li then
7: StreamSummaryli = StreamSummaryli ∪{tx}
8: Increase Counttx
9: for all l j turned θ-infrequent do

10: for all ty ∈ StreamSummaryl j do
11: Decrease Countty
12: Delete StreamSummaryl j

13: for all ty turned φ-infrequent for location li do
14: StreamSummaryli = StreamSummaryli \{ty}
15: Decrease Countty
16: F(tx)← F(tx)+1
17: if tx ∈ Topic-StreamSummary-Table then
18: Ftx(li)← Ftx(li)+1
19: if li turned ψ-frequent for tx then
20: StreamSummarytx = StreamSummarytx ∪{li}
21: for all l j turned ψ-infrequent for tx do
22: StreamSummarytx = StreamSummarytx \{l j}

since the number of mentions in location li increased, there could
be topics whose frequency is stable and yet became φ-infrequent.
Such cases are handled through lines (13-15). Starting from line 16,
the changes to Topic-StreamSummary-Table are performed to cap-
ture the mention about topic tx. First, the value of tx is increased
irrespective of the topic being tracked or not to satisfy Premise 1.
Next if tx is already being tracked, StreamSummarytx is updated to
capture the new mention from location li.

In Algorithm 2 we present the steps that need to be taken upon
a remove operation. Here Lines (1-11) are for incorporating the
reduction in the mentions from li while Lines (12-17) are for incor-
porating the deletion of tx. Note that when an element is deleted
the total number of elements in the given window decreases. In
this case, there could potentially be a location l j whose frequency
is stable yet becomes θ-frequent. In order to avoid checking the fre-
quency of each currently θ-infrequent location with every remove
operation which would hurt the efficiency of GeoWatch, we omit
the creation of such StreamSummaryl j . Even if such a summary
were to be created, the set of topics in it would be empty. There-
fore there is no penalty in omitting this action, the next time there is
a mention from l j, this stream summary will be created. The same
is true for topics becoming φ-frequent for li, or locations becom-
ing ψ-frequent for tx. All such operations are omitted for efficiency
purposes, while preserving precision and the described guarantees.

It is a important task to obtain bounds on memory and running
time as well as the performance guarantees for GeoWatch. Next
we present such proofs, starting with runtime bounds for insert and
remove operations, and then with the memory requirements for sat-
isfying Premises 3-to-2. Finally, we prove that GeoWatch is guar-
anteed to capture all trending correlated pairs.

4.3.3 Running Time and Memory Requirements
Memory Requirements: A feasible geo-trend detection solution
should be sub-linear in its space usage given the large scale of data.

Algorithm 2 Remove (li, tx, ts)
1: F(li)← F(li)−1
2: if li is θ-frequent then
3: if T S(StreamSummaryli)≤ ts then
4: Fli(tx)← Fli(tx)−1
5: if tx turned φ-infrequent for li then
6: StreamSummaryli = StreamSummaryli \{tx}
7: Decrease Counttx
8: if li turned θ-infrequent then
9: for all ty ∈ StreamSummaryli do

10: Decrease Countty
11: Delete StreamSummaryli

12: F(tx)← F(tx)−1
13: if tx ∈ Topic-StreamSummary-Table then
14: if T S(StreamSummarytx)≤ ts then
15: Ftx(li)← Ftx(li)−1
16: if li turned ψ-infrequent for tx then
17: StreamSummarytx = StreamSummarytx \ li

In this section we provide proofs that GeoWatch is sub-linear in
both the number of locations and topics.

THEOREM 4.2. The method requires O( e
ε∗(θ−ε) (ln(− |T |

ln(p) ) +
ln(− |L|

ln(p) )
φ−ε

)+ 1
(θ−ε)(φ−ε)(ψ−ε) ) memory.

PROOF. There are two main substructures: location table and
topic table. The location table consists of the main sketch struc-
ture that tracks occurrences of locations in the window and requires
ml ∗hl counters. In order to fulfill Premise 3 that entails estimating
the frequency of locations with error no more than εN with prob-
ability p, ml = e

εl
and hl = ln(− |L|ln pl

) [20]. At a given time there

are up to d 1
θ−εl
e locations being tracked for which a list of top

topics should be maintained. For each of these d 1
θ−εl
e locations,

mlt ∗hlt counters are required for the sketch structure s.t. mlt = e
εlt

and hlt = ln(− |T |ln plt
) since pairs also need to be maintained to sat-

isfy Premise 2. For each location, up to d 1
φ−εlt
e topics are tracked.

The second main substructure is for keeping track of important
topics. The topics table consists of the main sketch structure that
tracks occurrences of topics in a given window and requires mt ∗ht
counters. In order to fulfill Premise 1 that entails capturing topic
frequencies correctly, these values should be set as mt = e

εt
and

ht = ln(− |T |ln pt
). For each tracked topic, a list of locations needs to

be tracked. Since there are at most d 1
θ−εl
e locations tracked and

for each location there are at most d 1
φ−εlt
e topics tracked, there

are at most d 1
θ−εl
ed 1

φ−εlt
e distinct topics in the topic table. For

each of those topics, mtl ∗ htl counters are required for the sketch
structure s.t. mtl = e

εtl
and htl = ln(− |L|

ln ptl
) since pairs also need

to be maintained to satisfy Premise 2. In addition, there are at
most d 1

ψ−εtl
e locations tracked and for each topic. Adding all those

together, and simplifying the system by setting all ε{l,t,lt,tl} = ε

and p{l,t,lt,tl} = p, in total, the memory requirement sums up to

O( e
ε∗(θ−ε) (ln(− |T |

ln(p) )+
ln(− |L|

ln(p) )
φ−ε

)+ 1
(θ−ε)(φ−ε)(ψ−ε) ).



Running time requirements: There are two possible update op-
erations at a given time: an insert or a remove of a location-topic
pair. Both of these operations have amortized log-linear running
time. Due to space limitations, we skip the proof for the remove
operation and note that it is very similar to the proof provided for
the insert operation as provided below:

THEOREM 4.3. The amortized running time for an insert oper-
ation in GeoWatch is O(log(− |T |

log(p) )+ log(− |L|
log(p) ))

PROOF. The steps that need to be taken for an insert are given in
Algorithm 1. Line 1 requires updating the sketch structure which
entails h = log(− |L|

log(p) )) operations. Lines 2-3 create an empty
stream structure if li becomes θ-frequent with the insertion of the
new item. This clearly is a constant time operation. In the case
where li was (or became) θ-frequent (Lines 4-8), StreamSummaryli
needs to be updated to include the addition of tx. This entails up-
dating StreamSummaryli and possible insertions/deletions of the
φ-frequent topics for li. Even with a conservative setting for the
sketch structure that assumes all topics can be mentioned at a given
location, the sketch update requires h = log(− |T |

log(p) ) operations
and the updates to the substructure is amortized-constant time. For
the locations that have become θ-infrequent (Lines 9-12), the dele-
tion operation is also constant time, however, with a non-constant
number of such topics, the number of operations can become quite
large. Since a location can only be deleted as many times as it is
inserted to the stream summary and since by construction, a lo-
cation l j is inserted into the summary only when there is a tuple
(l j, ty), we can conclude that the deletion operation has amortized
constant time. Lines (13-15) requires amortized constant time for
the same reason. In order to keep track of frequent global-level
topics, sketch structure for topics is updated regardless of the topic
being tracked or not requiring h = log(− |T |

log(p) ) operations (Line
16). If topic tx is being tracked (Lines 17-22), StreamSummarytx
has to be updated which entails updating the sketch structure for
tx(Line 18: h = log(− |L|

log(p) ))), adding li to StreamSummarytx if
it became ψ-frequent (constant time) and deleting locations that
became infrequent for tx (amortized constant time). Adding all
those operations together, amortized processing time for an insert
is O(log(− |T |

log(p) )+ log(− |L|
log(p) ))

4.3.4 GeoWatch Accuracy Guarantees
Although GeoWatch monitors the traffic of locations and topics ap-
proximately, its accuracy is very high. As we prove in Theorem
4.4, GeoWatch has guaranteed perfect recall in detecting trending
correlated pairs, where trending is defined based on non-decreasing
relative frequency. We show in Section 5 that GeoWatch in practice
succeeds in detecting all correlated pairs rather than only those that
are trending. It also has a near perfect precision.

THEOREM 4.4. At any given time ts, all trending correlated
pairs of the time window ending at ts are reported by GeoWatch.

PROOF. Consider a particular time window that spans over the
period [ts−w, ts], where ts is the end of the window and w is the
time window size and includes N tuples. We now show that for
any trending correlated pair (li, tx), in this time period, is guaran-
teed to be captured. We loosely define a pair (li, tx) with increasing

frequency in a given time window as trending. In that perspec-
tive, G[ts′,ts](li, tx) ≤ G[ts−w,ts](li, tx) where ts−w ≤ ts′ ≤ ts and

G[ts1,ts2](li, tx) =
F[ts1 ,ts2 ](li,tx)
F[ts1 ,ts2 ](li)

and F[ts1,ts2](li, tx) denotes the number
of occurrences of the tuple between the time frames ts1 and ts2
and F[ts1,ts2](li) denotes the number of occurrences of location li.
Similarly, capturing the trending characteristics of the (li, tx) pair,

H[ts′,ts](li, tx)≤H[ts−w,ts](li, tx), where H[ts1,ts2](li, tx) =
F[ts1 ,ts2 ](li,tx)
F[ts1 ,ts2 ](tx)

.

Since (li, tx) is a trending correlated pair, by definition F(li) ≥ θN
and therefore li is guaranteed to be tracked, let the time li starts be-
ing tracked be denoted by tsli s.t. 0≤ tsli ≤ ts. Given the trending
property, G[tsli ,ts]

(li, tx)≥G[ts−w,ts](li, tx)≥ φ∗F[ts−w,ts](li). There-
fore, topic tx will also be tracked at a time tslt ≤ ts which means tx is
guaranteed to be captured in the topics table. Since H[tslt ,ts](li, tx)≥
H[ts−w,ts](li, tx) ≥ ψ ∗F[ts−w,ts](tx), location li will also be tracked
for topic tx. Given the trending property, such frequencies will only
increase in time guaranteeing that by ts, the pair will sustain its
correlated property.

With the sublinear memory and running time requirements as well
as the accuracy guarantees, GeoWatch is a practical tool to detect
geo-trends in social networks.

5. EXPERIMENTS
In this section, we provide a detailed experimental analysis of Ge-
oWatch. First, we demonstrate the value of such data analysis by
focusing on the types of topics and locations that are detected by
GeoWatch. Next we evaluate the effect of parameters θ,φ,ψ as
well as the window size on the accuracy and efficiency of Ge-
oWatch (sensitivity analysis). Throughout those experiments we
chose ε = 0.0004 and p = 0.99 to allow for small error.

5.1 Geo-correlation and Twitter Analysis
In this section, in addition to evaluating the correlations detected by
GeoWatch, we address the following two questions: Are there top-
ics that carry a higher geo-significance? and Are there locations
that cause or exhibit local topical interests? These two questions
can be answered through the analysis enabled by GeoWatch. To
address the first question, in Figure 3(a) we show the relation be-
tween the geo-significance of topics and the total number of times
they are mentioned in the data set measuring their global impor-
tance. The geo-significance of a topic is measured in terms of the
fraction of all the correlated pairs it appears in the entire stream.
We chose a time window of 24 hours in this experiment and set
θ = 0.005,φ = ψ = 0.05. GeoWatch provides means for reporting
correlated pairs at any given time. For this experiment we chose 10
minutes as the reporting window, i.e. every ten minutes the corre-
lated pairs at that particular time are reported. Note that the report-
ing window and the time window are two distinct values. The time
window refers to the length of the sliding window while the report-
ing window reflects how frequently the report operation is called to
determine the current list of correlations.

For ease of viewing, we eliminated all hashtags that had no corre-
lations reported, which reduced the number of data points drasti-
cally from over 2 million to approximately 250. This indicates that
even though there is a large number of topics discussed in social
networks, there is only a small number of topics that carry signif-
icance in different localities. There are various hashtags that have
high global significance while being much less important as a ge-
ographical trend such as #ff, #np, #jobs (represented by squares in



(a) Hashtags

(b) Cities

Figure 3: Geo-significance vs. trendiness of hashtags and cities

Figure 3(a)). For instance, #ff refers to “follow friday” and is a pop-
ular hashtag used in Twitter. Similarly, #jobs, referring to issues
related to jobs, is a common hashtag that is of interest to Twitter
users in the global scale. Unlike these topics that are of interest to
the entire network, hashtags such as #jan25, #egypt, #googlenewsjp
(represented by stars in Figure 3(a)) are a lot more significant as a
geographical trend. The first two of these hashtags relate to recent
uprisings in Egypt while #googlenewsjp is mostly used to discuss
issues about the Fukushima earthquake in April 2011.

We performed a similar analysis to capture which cities carry geo
significance, i.e. cities whose residents are interested in local top-
ics. For this purpose we plot the number of correlations a given city
appears in versus the number of tweets originating from that partic-
ular city. As can be seen from Figure 3(b), the static representation
of a city measured by the number of tweets originating from it,
is not representative of the geo-significance of that place. For in-
stance, there is a relatively small number of tweets originating from
Cairo but due to those tweets being mostly about local events (the
recent political uprising) they have a high geo-significance. An-
other city with a large number of geo-correlations is Santiago. Ex-
amples of detected correlations for this city include sports related
hashtags (e.g. #bielsa) and cultural events and TV programs (e.g.
#wewantsupershowinlatinoamerica). On the contrary, we see that

Jakarta, a city where a large number of identified users reside, does
not appear in a large number of correlations, meaning that users
from this area are in general less concerned about local events.

The analysis provided so far focused on the cumulative geo-significance
of topics and locations but GeoWatch provides a more useful tool
that can capture geo-significance of topics or locations along a tem-
poral dimension as well by detecting correlations along a sliding
window. There is a large number of interesting topics detected at
particular points in time but do not appear in Figures 3(a) or 3(b)
due to their short lived activity. A few examples include: Iwaki
aftershock on April 11, as well as the main Japan earthquake on
March 11. On these days the hashtag #earthquake is detected to be
correlated with Tokyo due to a large number of Twitter users from
Tokyo mentioning this topic. Such behavior signals that GeoWatch
can be used in crisis management as it detects the emergency event
in a fast and automated manner. However, local interests detected
by GeoWatch are not only limited to emergency events. GeoWatch
also provides a good depiction of the population pulse at a given
location. Not only can the political interests of a population be
captured as in the case of correlated pairs, such as (Cairo, #Jan25),
but it can also capture other, more casual interests. For instance, a
large number of correlated pairs involving Soccer teams appear in
British cities, especially compared to other cities of the world, indi-
cating a high British interest in this sport. Examples of this type of
correlation include (Notttingham, #NewCastle) or (Liverpool, #lfc).

Local and short lived events, such as political demonstrations and
cultural events, are also among the topics captured by GeoWatch.
As an example, the correlated pair (Madrid, #11m) is captured due
to the demonstrations in Madrid on the anniversary of bombings
that happened on March 11 2004, killing 191 people. Examples of
detected cultural events include the correlated pair (Austin, #sxsw)
that is due to the SXSW festival on March 16 2011 in Austin. Other
correlation pairs appear in the general form of (city, #city). This
is due to the fact that Twitter users use hashtags to geo-tag and
organize important information, especially in the case of emergen-
cies [33]. Note that the correlations detected are currently restricted
by the use of hashtags as topics. As future research direction, we
aim to investigate determining significant keywords in tweets and
using them as topics as well.

The Value of Detecting Correlations: So far we have focused on
correlations between locations and topics as a measure of trend sig-
nificance. One simple way of studying geographical trends, how-
ever, is to employ per-city analysis to capture top topics in each lo-
cation irrespective of the importance of these topics in other local-
ities. Per-city analysis is easier to implement yet can contain noisy
information, i.e. topics that are trendy in general and carry no ge-
ographical significance. In order to analyze how much such noise
exists in Twitter, we performed various experiments in which we
compared trends detected by GeoWatch to those detected by per-
city analysis. The experiments were performed for various θ,φ and
ψ settings which consistently gave similar results. Here we provide
an overview of the results obtained in a particular setting where
θ = 0.005 and φ = 0.05. In this case, the trends detected through
the simple scheme are simply topics that were at least φ-frequent for
any of the θ-frequent locations. This list of topics clearly contains
at least as many location-topic pairs as GeoWatch which further
filters this list using the parameter ψ to find correlations.

The trends detected through per-city analysis can potentially con-
tain topics that are globally important and does not carry geo-intent.



In order to test the degree to which this happens, we compare the
number of locations for a given topic that appear trendy in Ge-
oWatch and in location based top-k, for ψ = 0.05,0.1 and 0.2. The
results show that the average of this value in the entire data set is
between 1.4 to 1.7 times larger in location based top-k compared
to GeoWatch. This indicates that by ignoring the value of correla-
tions, location based top-k is not able to disentangle the connection
between geographies and topics and therefore reports topics that
are global trends (e.g. #ff) as local ones.

While a list of trends containing non-local topics can result in in-
formation overload, the degree to which this information overload
affects comprehension is also contingent on the ordering at which
the results are presented. For instance, if in the list of location
based top-k results, topics with real geo-intent (i.e. geo-correlated
location-topic pairs) are presented on the top of the list, the effect of
information overload can be negligible. Therefore, next we study
the performance of location based top-k results based on the order-
ing of the results. For this purpose, we compute the average pre-
cision of the set of pairs reported by location based top-k, ordered
by the frequencies of the pairs, in capturing the real correlations as
defined in Section 4.1. Here we present the results obtained by set-
ting θ = 0.005 and φ = 0.05 and varying ψ between 0.05 and 0.2.
The results show that the average precision quickly degrades from
0.51 to 0.2 as ψ increases. The small average precision shows that
the real geo-intents captured by the correlations would be buried
under a large amount of noise created by simple techniques such as
detecting frequent topics per location.

5.2 The Accuracy of GeoWatch
We first start by examining the number of correlated pairs detected
with varying values of φ and ψ. As can be seen in Figure 4, increas-
ing φ and ψ drastically decreases the number of correlated pairs.
Evaluating the effect of changing φ, the other two parameters were
set to θ = 0.005 and ψ = 0.05, while varying φ between 0.005-to-1.
Similarly, evaluating the effect of changing ψ, the other parameters
were set as θ = 0.005 and φ = 0.05 while varying ψ between 0.005-
to-1. The difference is more significant for small φ values, which
indicates that it is less likely for the entire population to be inter-
ested in only one topic, while it is far more likely that there is only
one (or few) location(s) that is interested in a given topic. Note that
this artifact is somewhat created by design; the limitation of θ fil-
ters extremely inactive locations with few users whose interest can
be extremely focused. These experiments provide a guide to the
right choice of φ, ψ and θ values since one can make parameter
choices based on the number of correlations that they aim to cap-
ture at a given time. However, we would like to point out that the
proper settings for these values are dependent on the social network
studied as well as the specific application. Therefore, our goal is to
provide a general framework that can meet different needs rather
than defining one set of parameter settings that is globally optimal.

Next we examine how varying the values of φ and ψ affects the
recall and precision of GeoWatch. As stated in Theorem 4.4, Ge-
oWatch is guaranteed to capture all the trending correlated location-
topic pairs, where trendiness is defined based on a non-decreasing
frequency function. In this section, we show two important find-
ings: first, GeoWatch succeeds in capturing correlated location-
topic pairs that do not necessarily follow this strict distribution and
second, in addition to recall, GeoWatch ’s precision is very high.
As shown in Figures 4(c) and 4(d), GeoWatch has a perfect recall
rate over various settings for φ and ψ values while the precision
rate is slightly affected by increasing φ. The results provided in

Figure 4(c) are obtained by setting the time window to 24 hours,
θ = 0.005 and ψ = 0.05 and varying φ. Similarly, the results pro-
vided in Figure 4(d) are obtained by setting the time window to 24
hours, θ = 0.005 and φ = 0.05 and varying ψ. Due to space limita-
tions we omit the figures showing the behavior of GeoWatch with
varying θ values. The analysis shows that the number of correlated
pairs drops drastically with increasing θ.

5.3 Space and Time Efficiency of GeoWatch
Space Efficiency of GeoWatch: In Figure 5(a), we provide a com-
parison between the exact solution and GeoWatch. The space com-
parison is based on the number of counters used by the two meth-
ods. For the exact solution this value would be equivalent to the
number of unique elements while for GeoWatch it captures the
number of elements maintained in the trending lists as well as the
memory used for the sketches. Results provided in Figure 5(a)
are based on the settings θ = 0.05, φ = ψ = 0.1 but we note that
the general trend is similar for various other settings as well. Ge-
oWatch provides means for defining the window size in terms of
actual time or the number of elements to be maintained. For the
purpose of this experiment, as our goal is to capture how well the
algorithms scale, the window size is defined based on the number
of elements. The recent numbers published by Twitter claim an
average of 140 million tweets per day [36]. Therefore a geo-trend
detection mechanism that is aimed to capture daily trends should
process 140 million elements on average. We performed experi-
ments setting the window size to 1, 2.5, 5, 7.5, 10, 15 and 20 mil-
lion respectively and used linear regression to capture the memory
usage when this number reaches 140 million. This point is marked
by a dashed vertical line in Figure 5(a). Memory usage of the exact
solution is comparable to GeoWatch for small window sizes. How-
ever, as the window size gets larger, memory requirements of the
exact solution get larger while GeoWatch is unaffected.

Time Efficiency of GeoWatch: In satisfying Premises 3, 1 and 2,
GeoWatch answers three types of queries at any particular time: re-
porting on frequencies of locations (Premise 3), frequency of topics
(Premise 1) and reporting on correlated pairs (Premise 2). The ef-
ficiency of GeoWatch in answering queries relating to Premises 3
and 1 can be directly inferred from the results of heavy-hitters ap-
proaches and more specifiacally the sketch based method we use as
a building block [20]. Due to space limitations, we omit such anal-
ysis and focus on the efficiency of GeoWatch in reporting correlated
pairs. The three types of operations of interest are; insert, remove
and report. In Figure 5(b), we present a similar analysis to the one
presented for the space usage with identical settings for the parame-
ters of the system (θ = 0.05,φ = ψ = 0.1), while we note that the re-
sults are similar for other settings. As the number of elements in the
time window increases, the time required to report on the correlated
pairs increases linearly for the exact solution while GeoWatch is not
affected. Similar to Figure 5(a), we mark the 140 million point that
corresponds to the average number of tweets per day. The results
show that the exact solution does not scale. Also note that this lin-
ear fit is under the assumption of limitless memory. In reality as
the number of elements increase in the given window, the memory
required for the exact solution increases drastically. Implementing
the exact solution in a real system with memory limits would result
in thrashing which in turn increases run time drastically. Similar
analysis was performed to test the efficiency of update methods.
Unlike with the report method, these methods scale nicely with in-
creasing window size for both exact solution and GeoWatch. As
the window size increases, resulting in specific elements remaining
in the lists for longer periods, update methods involve updating al-
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Figure 4: Effect of φ and ψ in the average number of correlated pairs detected by GeoWatch and accuracy measures

(a) Memory Usage (b) Report Running Time

Figure 5: Memory usage and Running Time comparison

ready existing structures more often than creating and destroying
counters, resulting in such a performance. In general, our exper-
iments show that update performance of GeoWatch is comparable
to the exact solution, but for certain parameter settings the exact
solution slightly outperforms GeoWatch. Note however, that this
analysis is performed assuming unlimited memory. By increasing
memory for the exact solution, update methods would also result
in thrashing and consequently worse running time, while such an
increase is not warranted for GeoWatch.

6. CONCLUSION
Geography plays an important role in our lives, shaping the friend-
ships we form, and the interests we develop. The significance of
geography in data analysis is clear since “...near things are more
related than distant things” as the first law of geography states.
Such significance incidentally also exists in the virtual extension
of our daily lives; online social networks where users tend to be-
friend people and talk about events that are close-by. However,
studying social networks through geo glasses goes well beyond a
simple intellectual exercise. Recent events have shown that online
social networks can be used in the case of a crisis to first detect the
emergency event and later to deliver important information to inter-
ested users. Due to the large amount of noisy data shared on social
networks, the detection of such significant local events becomes a
non-trivial problem. Therefore, it is a critical task to provide large-
scale data analysis tools that analyze social networks from a geo-
graphical perspective and detect such local events or interests in an
online manner by also capturing the temporal aspects of informa-
tion trends. This undertaking is the main focus of our study.

To this end, in this work we studied the online detection of geo-
correlated information trends, i.e. identifying correlated location-

topic pairs along a sliding window in a social data stream. We
showed that the exact solution for such a problem requires keep-
ing track of all possible pairs of location-topic pairs which is in-
feasible due to the large scale of data. Therefore, we introduced
GeoWatch: an approximate solution that requires only sub-linear
memory and running time while guaranteeing to capture all trend-
ing correlations. We experimentally studied the value, accuracy and
efficiency of GeoWatch in Twitter and showed that this tool pro-
vides a manageable list of interesting location-topic pairs including
crisis events such as earthquakes, or local events such as political
demonstrations, concerts or sports events. The experiments show
that GeoWatch scales well with increasing amount of data while the
exact solution suffers from such an increase. In addition, the exper-
iments show that, in addition to perfect recall measures, GeoWatch
also has a high precision.

Even though in our experiments we apply GeoWatch to detect trends
in Twitter, the tool is generic enough to be used in other social net-
works as well. Similarly, the topics, as defined based on hashtags in
this study, or locations, defined based on cities, can be redefined. In
fact, topic detection of information items shared in social networks
is an important open problem which can reshape how a topic is to
be defined in GeoWatch. Similarly, locations of interests can be re-
gions, countries or simply arbitrary polygons on a map. GeoWatch
can easily be used to detect geo-trends in all those resolutions. An
important future work in this context is to detect hierarchical geo-
trends by capturing the right resolution in which a topic is trending
in an online manner. Although multiple GeoWatch structures can
be used in parallel to address this problem, our future goal is to
investigate if there are more compact ways in which hierarchical
geo-trend detection can be performed.
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