UNIVERSITY OF CALIFORNIA
Santa Barbara

Automated Configuration and Deployment of
Applications in Heterogeneous Cloud
Environments

A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
in
Computer Science
by
Chris Bunch

Committee in Charge:
Professor Chandra Krintz, Chair
Professor Amr El Abbadi

Professor John Gilbert

November 2012

UCSB Technical Report 2013-02

The Dissertation of
Chris Bunch is approved:

Professor Amr El Abbadi

Professor John Gilbert

Professor Chandra Krintz, Committee Chairperson

November 2012

Automated Configuration and Deployment of Applications irt¢degeneous Cloud

Environments

Copyright © 2012
UCSB Technical Report 2013-02

by

Chris Bunch

Dedication and Gratitude

| dedicate this dissertation to my family: my wife, Alexaadmy parents, Aisha and
David, my brother, Michael, and my grandparents, Connie aratl€, for their un-

conditional support and encouragement throughout alestagmy education.

| am deeply grateful to Chandra Krintz for all of the suppotidance, mentorship, and

help that she has provided during the entire process.

| would like to thank John Gilbert and Amr EI Abbadi for sergion my Ph.D. com-

mittee.

| am grateful to Khawaja Shams and Mike Aizatsky for being mgnitors during my

internships at JPL NASA and Google, respectively.

Finally, | would like to thank the staff, faculty, and fellogvaduate students at the Com-
puter Science department at UC Santa Barbara for their sugpdthe opportunity to

pursue this work.

Acknowledgements

The text of Chapter8-6is in part a reprint of the material as it appears in the canfee
proceedings listed below. The dissertation author wastingapy researcher while the
co-author listed on each publication directed and supedvise research which forms

the basis for these chapters.

Chapter 3: Publication [L5] in the 5th IEEE/ACM International Conference on Utility
and Cloud Computing (UCC 2012).

Chapter 4: Publication [L9] in the Special Issue on Data Intensive Computing in the
Clouds (DataCloud 2012).

Chapter 5: Publication 0] in the Special Issue on Interoperability, Federationnkea
works and Application Programming Interfaces for Infrasture-as-a-Service (laaS)
Clouds (in submission).

Chapter 6: Publication L8] in the 13th IEEE/ACM International Symposium on Clus-

ter, Cloud and Grid Computing (CCGrid 2013) (in submission).

Education

2012

2012

2007

Experience

2007 - 2012

2011

2010

Awards

2008

Curriculum Vitee
Chris Bunch

Doctor of Philosophy in Computer Science,

University of California, Santa Barbara.

Master of Science in Computer Science,

University of California, Santa Barbara.

Bachelor of Science in Computer Science,

California State University, Northridge.

Graduate Research Assistant,

University of California, Santa Barbara.

Intern,

Google, San Francisco, CA.

Intern,

Jet Propulsion Laboratory, Pasadena, CA.

Certificate of Teaching Excellence,

University of California, Santa Barbara.

Vi

Publications

Chris Bunch and Brian Drawert and Navraj Chohan and Andres RiafitoChandra
Krintz and Linda Petzold: “MEDEA: A Pluggable Middleware sSgm for Interop-
erable Program Execution Across Cloud Fabrids.'the Journal of Grid Computing
Special Issue: Interoperability, Federation, Frameworksl @pplication Programming
Interfaces for laaS Clouds, 2013 (in submission)

Chris Bunch and Brian Drawert and Navraj Chohan and Chandra KaimtizLinda
Petzold: “Exodus: An Application Programming Interface foost-Aware, Cloud-
Aware Program Executionfh the 13th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing (CCGrid), 2013 (in submission)

Chris Bunch and Brian Drawert and Navraj Chohan and Andres RiafitdoChandra
Krintz and Linda Petzold: “MEDEA: A Pluggable Middleware sSsgm for Portable
Program Execution.In the 27th IEEE International Parallel & Distributed Prossing
Symposium (IPDPS), 2013 (in submission)

Chris Bunch and Vaibhav Arora and Navraj Chohan and Chandrazaimd Shashank
Hegde and Ankit Srivastava: “A Pluggable Autoscaling Seevior Open Cloud PaaS
Systems.”In the 5th IEEE/ACM International Conference on Utility and @iioCom-
puting (UCC), 2012

Navraj Chohan and Anand Gupta and Chris Bunch and Sujay Sundardu@handra
Krintz: “North by Northwest: Infrastructure Agnostic andafastore Agnostic Live
Migration of Private Cloud Platforms.In the 4th USENIX Conference on Hot Topics
in Cloud Computing (HotCloud), 2012

Navraj Chohan and Anand Gupta and Chris Bunch and Kowshik Paakasd Chandra
Krintz: “Hybrid Cloud Support for Large Scale Analytics anc&/Processing.In the
3rd USENIX Conference on Web Application Development (Wed)App12

Chris Bunch and Brian Drawert and Navraj Chohan and Chandra KaimiizLinda
Petzold and Khawaja Shams: “Language and Runtime Suppofuftmmatic Config-
uration and Deployment of Scientific Computing Software @vkrud Fabrics.”In the
Special Issue on Data Intensive Computing in the Clouds (Dataf)| 2012

vii

Chris Bunch and Navraj Chohan and Chandra Krintz: “Supportiagdthent and Data
Consistency Strategies using Hybrid Cloudsa.the IEEE Aerospace Conference, 2012

Chris Bunch and Chandra Krintz: “Enabling Automated HPC / DasalDeployment
via the AppScale Hybrid Cloud Platformlh the 1st Workshop on High-Performance
Computing meets Databases (HPCDB), 2011

Navraj Chohan and Chris Bunch and Chandra Krintz and Yoshihiseuda: “Database-
Agnostic Transaction Support for Cloud Infrastructurés.the 4th International Con-
ference on Cloud Computing (CLOUD), 2011

Chris Bunch and Navraj Chohan and Chandra Krintz and Khawaja Shideptune:
A Domain Specific Language for Deploying HPC Software on Cl&latforms.” In
the 2nd Workshop on Scientific Cloud Computing (ScienceCl@ad)l (Best Paper
Award)

Chris Bunch and Jonathan Kupferman and Chandra Krintz: “Adii@ud DB: A
RESTful Software-as-a-Service for Language Agnostic AstesDistributed Datas-
tores.”In the International Conference on Cloud Computing (ICST Cloud®p2010

Sylvain Hale and Taylor Ettema and Chris Bunch and Tevfik Bultan: “Elimimgti
Navigation Errors in Web Applications via Model Checking &whtime Enforcement
of Navigation State Machines.In the 20th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2010

Chris Bunch and Navraj Chohan and Chandra Krintz and Jovan Cholgadoaathan
Kupferman and Puneet Lakhina and Yiming Li and Yoshihide Nman“An Evaluation
of Distributed Datastores Using the AppScale Cloud Platfoitmthe 3rd International
Conference on Cloud Computing (CLOUD), 2010

Navraj Chohan and Chris Bunch and Sydney Pang and Chandra KndtNagy
Mostafa and Sunil Soman and Rich Wolski: “AppScale: ScalabttOpen AppEngine
Application Development and Deploymenkd the International Conference on Cloud
Computing (ICST CloudComp), 2009

Field of Study: Computer Science

viii

Abstract

Automated Configuration and Deployment of Applications
in Heterogeneous Cloud Environments

Chris Bunch

Cloud computing is a service-oriented approach to distethaomputing that pro-
vides users with resources at varying levels of abstract@oud infrastructures pro-
vide users with access to self-service virtual machinesthigs can customize for their
applications. Alternatively, cloud platforms offer usarfully managed programming
stack that users can deploy their applications to and seatesut user intervention.
Yet challenges remain to using cloud computing systemsteftdy. Cloud services are
offered at varying levels of abstraction, meter based odeespecific pricing models,
and expose access to their services via proprietary APIs.raitses the barrier-to-entry
for each cloud service, and encourages vendor lock-in.

The focus of our research is to design and implement reséaothto mitigate the
effects of these barriers-to-entry. We design and implénoeis that service users in
the web services domain, high performance computing dgnaaid general-purpose
application domain. These tools operate on a wide varietiafd services, and au-
tomatically execute applications provided by users, sotti@user does not need to

be conscientious of how each service operates and metertheRuore, these tools

leverage programming language support to facilitate mapressive workflows for
evolving use cases.

Our empirical results indicate that our contributions arkedo effectively execute
user-provided applications across cloud compute senfroes multiple, competing
vendors. We demonstrate how we are able to provide userstaoth that can be
used to benchmark cloud compute, storage, and queue semwatieout needing to first
learn the particulars of each cloud service. Additionalg, are able to optimize the
execution of user-provided applications based on codippeance, or via user-defined

metrics.

Contents

Acknowledgements Y
Curriculum Vitee Vi
Abstract X
List of Figures Xiv
List of Tables XVviii
1 Introduction 1
1.1 ThesisQuestion. 5
1.2 Dissertation Organization 8

2 Background 9
2.1 Application Execution via Static Resources. 9
211 WebServices. 10

2.1.2 Scientific Computing. 12

2.1.3 Limitations 14

2.2 Application Execution via Dynamic Resources. 15
2.2.1 Programmatic Cloud Interaction. 16

2.2.2 Automated Service Deployment 17

2.2.3 Limitations 20

3 A Pluggable Autoscaling Service for Open Cloud PaaS Systesm 26
3.1 Introduction and Motivation L. 27
3.2 Design. 30
3.21 RoleSystem 30

Xi

3.2.2 Using Role Metadata to Support Pluggable Autoscaling . 34

3.3 Framework Instantiations. 35
3.3.1 HAand QoS-Aware Autoscalers 36
3.3.2 ACost-aware Autoscaler. 38
3.3.3 Manual Administrator Intervention 40

3.4 Experimental Evaluation. 42
3.4.1 Methodology 42
3.4.2 Experimental AutoscalerResults. 43
3.4.3 Experimental MetricsResults. 46

35 RelatedWork 49

3.6 Summary and Conclusions. 51

Language and Runtime Support for Automatic Configuration ard Deploy-

ment of Scientific Computing Software over Cloud Fabrics 53
4.1 Introduction and Motivation L. 54
42 Neptune. 56
4.2.1 Syntaxand Semantics. 57
4.2.2 DesignChoices. 62
4.3 Implementation.o 65
43.1 Cloud Support 67
432 JobData 72
4.3.3 Employing Neptune for HPC Frameworks 75
4.3.4 Employing Neptune for Cloud Scaling and Enabling Hybri
Clouds. 95
435 Limitations 97
4.3.6 Extensibility.o 99
4.4 Evaluation. 100
4.4.1 Methodology 100
4.4.2 ExperimentalResults 103
443 VMReuseAnalysis 115
45 RelatedWork 118
4.6 Summary and Conclusions. L. 120

MEDEA: A Pluggable Middleware System for Interoperable Program Ex-

ecution Across Cloud Fabrics 122
5.1 Introduction and Motivation 123
5.2 Design. 126
5.3 Implementation. 133
5.3.1 Pluggable Queue Support. 134
5.3.2 Pluggable Compute Support 135

Xii

5.3.3 Pluggable Storage Support 141

54 Evaluation. 141
5.4.1 Pluggable Queue Evaluation 142
5.4.2 Computational Systems Biology Evaluation 145
5.4.3 Programming Language Shootout Evaluation. 150

55 Extending MEDEA 156
5.5.1 Automatic PollingviaFutures. 158
5.5.2 Inlining Task Execution. 160
5.5.3 Batch Task Execution 163
554 CachingSupport. 165

56 RelatedWork 167

5.7 Summary and Conclusions. 170

6 Exodus: An Application Programming Interface for Cost-Aware, Cloud-

Aware Program Execution 172
6.1 Introduction and Motivation 173
6.2 Design. 175
6.3 Implementation. 179
6.3.1 Application Programming Interface. 180

6.3.2 Cloud-Aware Program Execution. 182

6.3.3 Pluggable Optimizers 187

6.4 Evaluation. 189
6.4.1 Scientific Application Evaluation 190

6.4.2 General-Purpose Application Evaluation. 196

6.4.3 ErrorAnalysis. 197

6.5 RelatedWork 200
6.6 Summary and Conclusions. 202

7 Conclusion 204
7.1 Contributionsand Impact. 207
7.2 Future Research Directions 212
Bibliography 218

Xiii

List of Figures

3.1 A sample placement layout for the AppScale PaaS, wheregér has
explicitly requested a single Load Balancer, three AppSsrvand three
Database roles. The AppCaching, Service Bus, and Metad&s aicd im-
plicitly added by the AppController if not explicitly placed
3.2 Placement strategy used for the experiments in SectdbrChe node
is used to host each role, to maximize the impact of failurethe AppScale
PaaS.
3.3 Average time for the HA autoscaler to recover from the lafsa single
node running the AppServer role within the AppScale Paa&; the Ama-
zon EC2 laaS. Recovery time also indicates if a hot spare wéalaleavhen
the failure was detected.
3.4 Average time for AppScale to serve 40,000 web requestetBython
(Left) and Java (Right) Guestbook applications. We conditeccase when
the QoS autoscaler is off (the default before this work), nviies on (our
contribution), and when we proactively start a hot sparega$ed by the
QoS autoscaler. Each value represents the average of fise run.

4.1 AppScale cloud platform with Neptune configuration aegldyment
SUPPOIt. o
4.2 Plots showing statistical results from StochKit st@titasimulations
of the heat shock model. (Left) Comparison of probability signhis-
tograms from two independent ensembles of trajectorias tla histogram
distance between them. The histogram self-distance istosggtermine the
confidence for a given ensemble size. (Right) Time-series plothe mean
(solid lines) and standard-deviation bounds (dashed)liioe$wo biochem-
ical Species.

Xiv

33

42

44

47

67

4.3 Two plots of the DFSP example model of yeast polarizatifireft)
Temporal-Spatial profile of activated G-protein. Stocitasimulation re-
produces the noise in the protein population that is inheiethis system.
(Right) Overlay of three biochemical species population®sgthe yeast

cell membrane: the extra-cellular pheromone ligand, t@nid bound with
membrane receptor, and the G-protein activated by a bowegter. . . . 92
4.4 Average running time for the Power Method code utilizmMBI over
varying numbers of nodes. These timings include running t@® reported

by M PI_Wtime and do not include NFS and MPI startup and shutdown
times. 104
4.5 Average running time for the n-queens code utilizing MRtl X10

over varying numbers of nodes. These timings include runtime as re-
ported byM PI_Wtime andSystem.nanoTime, respectively. These times

do not include NFS and MPI startup and shutdown times.. 106
4.6 Average running time for WordCount utilizing MapReducerovary-

ing numbers of nodes. These timings include Hadoop MapRedudEmes

and do not include Hadoop startup or shutdown times. 107
4.7 Average running time for the Thread Ring code utilizingIM#0, and

UPC over varying numbers of nodes. These timings only irekexkcution
times reported by each language’s timing constructs. 109
4.8 Average running time for the Thread Ring code utilizingIN¥10, and

UPC over varying numbers of threads. These timings onlyohelexecution
times as reported by each language’s timing constructs. 110
4.9 Average running time for the Thread Ring code utilizing IMRL0,

and UPC over varying numbers of messages. These timingsimeilyde
execution times as reported by each language’s timing agist 111
4.10 Average running time for the single node Thread Ring addieing

MPI and Erlang over varying numbers of threads. These tisamdy include
execution times as reported by each language’s timing agoist 112
4.11 Average running time for the DFSP code over varying rensiof
nodes. As the code used here does not have a distributechgyritmings

here include the time that AppScale takes to distribute wimdach node and
merge the individual results. 114
4.12 Average running time for the dwSSA code over varying bers of
nodes. As the code used here does not have a distributecheyritmings

here include the time that AppScale takes to distribute wmdach node and
merge the individual results. 116

5.1 Overview of the design of the MEDEA execution model. 128

XV

5.2 Deployment strategy used for the n-body simulation berazk to eval-

uate different pull queue technologies. 143
5.3 Average dequeue time for the Python n-body simulatidmerwtask

data is stored in Azure Storage Queue, Google App Engindlsgpeue,
RabbitMQ, and SQS. Each value shown here represents thegaveiréen

FUNS. 146
5.4 Running time for execution of SSA simulations in Amazon EIEf)

and Microsoft Azure (right), when a varying number of workare utilized.
Each value represents the average of five runs. Note that#éxésxs on a
logarithmicscale. 148
5.5 Running time (left) and monetary cost incurred (right)dwecution of

a varying number of SSA simulations in Amazon EC2, Microsaftife, and
Google App Engine. Each value represents the average otinge r. . . . 149
5.6 Average running time for implementations of the n-bodgdhmark in
different programming languages. Only the time taken t@wetethe task is
considered here. This does not include the time taken toagegke system,
enqueue the task, dequeue it, or the final result in the redadéestore. Each
value represents the average overtenruns. 152
5.7 Running time for execution of n-body simulations writienPython

(left) and Java (right), using Amazon EC2, Google App Engered Mi-
crosoft Azure. Note that both axes are on logarithmic scales 157
5.8 Average end-to-end time to run inlined and non-inlinesks for the
Python MapReduce WordCount code for varying numbers of Mds tasd

a single Reduce task. Each value here represents the avéfagerons. . 163
5.9 Average time to dispatch requests in a batched fashidnaanon-
batched fashion for the Python MapReduce WordCount code figinga
numbers of Map tasks. Each value here represents the avadregeruns. . 166
5.10 Average time taken to execute a varying number of WordChlap
tasks, when the baseline system is used, when batch tas@rsigopnabled,

and when batch task support and caching is employed. Eacht kate rep-
resents the average of fiveruns.. 167

6.1 An overview of how Exodus abstracts away cloud laaSacten via

the AppScale cloud platform.. L. 179
6.2 Running time (left) and cost incurred (right) for exeoantiof DFSP
simulations in Amazon EC2. We vary the optimizers used todwalesappli-
cation execution between the cost-focused optimizer,ithe-focused opti-
mizer, and an optimizer that sets= 0.5. Each value represents the average
of five runs. Note that in (left), both axes are on a logarithstale, and in
(right), the x-axis is on a logarithmicscale. 191

XVi

6.3 Running time (left) and cost incurred (right) for exeontof dwSSA
simulations in Amazon EC2. We vary the optimizers used tocalesappli-
cation execution between the cost-focused optimizer,ithe-focused opti-
mizer, and an optimizer that sets= 0.5. Each value represents the average
of five runs. Note that in (left), both axes are on logarithsgales, and in
(right), the x-axis is on a logarithmicscale. 194
6.4 Running time for execution of WordCount (left) and Grepgt{t) ap-
plications in Amazon EC2. We fix the optimizer to focus on ojiting cost
incurred, and vary the number of Map tasks executed. Eacie vapresents

the average of five runs. Note that both axes are on logagthoales. . . . 198

XVii

List of Tables

1.1 Design space in automated application execution. 6

3.1 A listing of the roles within the AppScale PaaS and thenogpmurce
technologies that implementsthem.. 29
3.2 Average CPU and memory footprint consumed by the Pytharg, J
and Go AppServers while in a steady state. Each value rajisgtbe average
oftenruns.. L 48
3.3 Time and monetary cost incurred for the cost-aware sdbetb utilize
Amazon EC2 on-demand and spot instances. These results teéleaver-

age of ten runs, with thel. | ar ge instance type in the AWS East Coast

FeQION. 49
4.1 Parallel efficiency for the Power Method code utilizing Mver vary-
ing numbersofnodes. 105
4.2 Parallel efficiency for WordCount using MapReduce oveyimgrnum-
bersofnodes.. 108
4.3 Parallel efficiency for the Thread Ring code utilizing MRILO, and
UPC over varying numbersofnodes. 108

4.4 Parallel efficiency for the DFSP code over varying numsloénodes. 115
4.5 Parallel efficiency for the dwSSA code over varying nurelod nodes. 115
4.6 Costto run experiments for each type of Neptune job, withvaithout

reusing virtual machines.. 117

5.1 Average monetary cost (in U.S. dollars) incurred to hettenchmarks
shown in Figure 5.6 via a per-second pricing model. Thests cody include

the cost incurred for the virtual machines used. Each vadlows here rep-
resents the average cost incurred overtenruns.. 154

XViii

5.2 Monetary cost incurred to run the n-body simulation cedewn in
Figure 5.7 across Amazon EC2, Google App Engine, and Mictdsaire.
Costs are assessed on a per-hour basis for Amazon EC2 and dfiékosre,
and on a per-minute basis for Google App Engine. The valugeptted for
the Python Google App Engine simulation reflects only thetregpensive
simulation size (all others are identical to the Java Goégle Engine sim-
ulation).

6.1 A comparison of the time taken to execute the DFSP apjlican
the Amazon EC2 public cloud with estimates provided by Exbpusfilers
(NaiveCPUProfiler and RemoteCloudProfiler)..
6.2 A comparison of the time taken to execute the dwSSA agipbic in
the Amazon EC2 public cloud with estimates provided by Exbfusfilers
(NaiveCPUProfiler and RemoteCloudProfiler)..

XiX

197

Chapter 1

Introduction

Cloud computing is a service oriented approach to distribatanputing wherein
vendors lease resources to users on a metered, pay-peasise bhis enables com-
panies to quickly acquire resources (e.g., virtual madhisorage) and release them
when they are no longer needed. To date, cloud computing bagynbeen seen in use
by web service companies, who can use this elasticity toieequachines in response
to increased web traffic, without having to pay the full castthose machines.

In response to the increasing number and low cost of cloudcgeofferings, other
communities are investigating the feasibility of cloudwsess within their domains.
One such community are computational scientists, whaatdomputational resources
to simulate, investigate, and experiment with scientifacpsses. These processes may
rely on data collected with “traditional” scientific deviée.g., microscopes, chemical
interactions), but may be modelled via computer to betteleustand the underlying

phenomena involved.

Chapter 1. Introduction

Yet using cloud services for scientific computing is a fanirtrvivial undertaking.
Scientists may not have the same levels of experience witfigroing, debugging,
installing, and maintaining complex programs as a fulletigystem administrator, and
the time it would take to acquire this experience is time ttmatld otherwise be spent
furthering their own scientific research. Furthermore hia tase of student scientists,
these workers are transient in nature, and the focus thatpheinto their research
tends to come at the expense of a proper knowledge transfeess. This results in a
longer learning curve for new students, and makes it mofiedlifto properly evaluate
new cloud technologies. The primary quantities that mustdsesidered to make this

evaluation are:

e The capabilities of the service to useNot all services are identical offerings,
and can operate at varying layers of abstraction and regiffiexing amounts
of maintainence. Infrastructure-as-a-Service (laayroffys, such as Amazon
EC2 [2] and Google Compute EngindT{], provide access to virtual machines,
metered on a per-hour basis. At a higher level of abstraetasis Platform-as-a-
Service (PaaS), which provides access to full runtime statkese stacks can of-
fer the traditional three tier-web deployment strategyvimch users can present
web pages to users from one or more application serverg atat retrieve data
via a persistent database, and cache frequently accestsedRtaviders, such

as Google App EnginedH], deny users access to individual machines, but in-

Chapter 1. Introduction

stead enable users to focus only on their applications, iwtie provider then
can scale on the user’s behalf. Finally, Software-as-&i&e=(SaaS) providers

offer end-users a single application that they can confitprrtheir needs.

e The cost model of the service to uséAs a motivating example, consider virtual
machine (laaS-level) services. Amazon EC2 and Google Conimgme meter
on a per-hour basis, while Microsoft Azuréd] meters on a per-wall-clock-hour
basis. Alternatively, Google App Engine meters on a perut@rbasis. These
varying cost models must be taken into consideration tomize the cost in-
curred to use cloud resources. Resources that are meterefinen granularity
(shorter amounts of time) encourage users to acquire meoeirees, use them
immediately, and release them, while resources meteredunser granularities
(longer amounts of time) encourage users to acquire lessiness and spread

out resource usage over that quantum.

e The application programming interfaces (API) that exist to mnnect the user’s

application to the cloud service.Cloud vendors provide first-party library sup

port to access their services for users of certain, but nopedgramming lan-
guages. Third-party support exists for a wider array of progning languages,
but often lags behind first-party support in terms of featats and overall qual-

ity. This means that the program the scientist is develogngt guaranteed to

Chapter 1. Introduction

be compatible with all cloud services, and that an invesbganust be launched
to determine which services (and which APIs within eachisej\can be utilized

within the language that the scientist’s application isten in.

Once the scientist decides which of these services they wwautilize, they must
then implement and maintain their system utilizing eachhef ¢hosen technologies.
If transitioning off of an existing system, then the scishtnust port their system to
the new technology. The time and engineering costs that bese invested in learn-
ing each of these technologies is not directly transfeerédobther technologies: while
other competitors may be abstractly similar (i.e., Amaz&@2End Google Compute
Engine both offer virtual machines), in practice their ABie incompatible, requiring
an expert to refactor the code base when porting to othercestv Finally, the sci-
entist must spend additional time to transfer the knowleafgleow to maintain their
application (which now utilizes a new set of services) withess.

The above process results in the creation of a system thptimiaed for, and thus
only supports, a single scientific application. This systequires a system adminis-
trator to maintain, and is not reusable for other applicegidn practice, this is because
systems are not typically designed to be automatically gardid and deployed. This
would require the system to be made general-purpose, tdesaditrary programs to
be deployed, and may do so at the cost of the performance tdchapplications (as

application-specific information may be lost in the geneeadion process).

4

Chapter 1. Introduction

As a result of trends between cloud service offerings, icseasingly common for
scientists to leverage several cloud products to solvegiesproblem, and to not gen-
eralize their application to service other, possibly edatproblems. Therefore, these
solutions tend to lackutomationwith respect to botltonfigurationanddeployment
and are dependent (or “locked-in”, in the cloud vernaculgn certain vendor’s of-
ferings. These offerings are heterogeneous in terms cfeghaces offere¢e.g., virtual
machines at the laaS layer, runtime stacks at the PaaS ky@m@pplications at the
SaaS layer), therost modelge.g., per-minute metering, per-hour pricing, or per-API-
request pricing), and thiaterfaces(tied to one or more programming languages) that

can be utilized to access them.

1.1 Thesis Question

The primary research question that we explore in this digBen can be stated as

follows:

How can we enable scientific applications to be executed arddgstems,
by automatically configuring and deploying applicationsass cloud of-
ferings that vary based on the type of service offered, cogeremployed,
and APIs via which services are exposed?

To answer this question, we design, implement, and evabgae source Platform-
as-a-Servicesolutions that automatically configure and deploy applcest from vari-

ous application domains. Our goal is to execute applicatiotelligently, considering

5

Chapter 1. Introduction

Domain Language / Platform Support
Web Services AppScale B)
High Performance Computing Neptune §)
Arbitrary Applications MEDEA (5), Exodus 6)

Table 1.1: Design space in automated application execth@ainwe investigate. Each
row lists the domain that this work addresses as well as thei@o that we design,
implement, and evaluate our support for. In parentheseshew the chapter number
that describe the corresponding systems that we contribute

both how to execute applications as well as how to optimatlysd with respect to
performance, cost, or user-defined metrics. We leveraggrgmuming language sup-
port to simplify how users specify that programs should bewia cloud services, and
investigate PaaS support fareb service applications, high performance computing
applications, and general purpose applications

Table 1.1 summarizes thelesign spacehat we cover with this dissertation. A
primary goal of this work is to providpluggablesystems that expert users can impart
information into, that can then be automatically leverafmdnon-expert users and
the community at large. The aim is to provide a research toal tan be used to
evaluate cloud service offerings for applications whosgeulying usage patterns may
vary greatly between one another.

Another key goal of our research is to provigegramming language suppott
enable Turing-complete specifications of scientific workBo This enables scientists
to dynamically indicate when their computations have fiagho consult expert users

via e-mail or other existing infrastructures (as data setg be too complex to analyze

Chapter 1. Introduction

in a purely programmatic fashion), or to run certain compaite only as long as they
can be done quickly or inexpensively.

This work aims to target a diverse array of application doarmaio maximize the
impact of the systems contributed here. We design and imgemppScale (Chap-
ter 3) to aim at targetting web service applications to improwe @uality-of-Service
that they provide to users while minimizing the cost incdrte do so. We direct our
focus to high performance computing applications, whiatmf@ crucial core of sci-
entific applications and have, to-date, been primarily uised outside of the context
of cloud systems. We intend to simplify their often compleplbyment via expres-
sive programming language support, and do so without saiogfperformance, via the
Neptune domain specific language (Cha@llerThis enables users to write programs
that interactively investigate the results of their expents, and launch new experi-
ments in response to these results. Finally, MEDEA and Ex¢@napter$ and6,
respectively) are our efforts to target general-purpogdicgiions, widening the reach
of our contributions and maximizing the types of scientisearch that can be per-
formed. We intend to do so while preserving the ease of ugestirentists (and users
at large) have come to expect from their systems, and whédegoving the research
contributions of our systems that serve web service and pggformance computing

applications.

Chapter 1. Introduction

1.2 Dissertation Organization

We organize the remainder of this dissertation as follows. B&gin by providing
background information, discussing terminology, stdt#éhe-art systems, open prob-
lems, and limitations in automatically configuring and ashg applications across
cloud systems in Chapt@r Chapters3—6 describe the four systems that we contribute
to address our thesis question and that represent sepaiats m the design space
shown in Tablel.1l In this table, the parenthesized values correspond tohapter
numbers that detail solutions for the domain in questionchEaf these four chap-
ters motivate the particular problems they aim to solve;udis how they are designed
and implemented to solve these forward new types of sciembte fperformed, eval-
uate applications that their systems support, discussetelaork, and conclusions.
Chapter3 focuses on web service applications, while Chagteicuses on high perfor-
mance computing applications. Arbitrary applicationsdiseussed in Chaptetsand

6. Chapter7 summarizes our contributions and discusses future rdseagctions.

Chapter 2

Background

In this chapter, we provide background on, and survey the-stiathe-art in, mid-
dleware systems that are used to automatically configureepldy applications in the
web services and scientific computing domains. Of partraatarest to us are systems
deployed on statically allocated resources (e.g., gridsters) as well as on dynam-
ically allocated resources (e.g., clouds). We overvievemé@dvances in automatic
program execution and deployment as well as the limitatfonsad in each of these

systems.

2.1 Application Execution via Static Resources

In this section, we overview systems that allow for the awttad configuration and
deployment of programs in the context of statically acqlinesources. These resources

may be classified as grids or clusters, but fundamentallgtates in size: users access

Chapter 2. Background

a fixed number of machines, which can only change due to theeimdle of a system
administrator (occurring infrequently). We provide bakgnd on systems harnessing
these resources, in the context of web services and saeoifnputing, and discuss

their limitations.

2.1.1 Web Services

Web services are offered by organizations to both intenm@lkexternal-facing users,
with resources typically hosted on-premise or in an orgation-owned datacenter.
Users tend to be served web traffic via the standard, theeed@ployment strategy,
in which users access a load balancer (first tier), whichesthhem to one or more
application servers (second tier), which store/retriestad/ia one or more database
servers (third tier). Each of these three tiers has perfoce@haracteristics (with re-
spect to CPU, memory, and I/O usage) and usage patterns fphextaléhe behavior of
its accessing tier.

The widespread usage of web services has led to a numbetwasektacks emerg-
ing solely to support it. The perhaps most well-known is theuk-Apache-MySQL-
PHP (LAMP) stack, which provides users with a fully open seustack that is there-
fore free to use. Best practices and additional softwaregpek have since emerged
that try to simplify the configuration and deployment pracks LAMP-stack applica-

tions, and to try to extend the range of programs supportétkistack.

10

Chapter 2. Background

Chef [26] and Puppet76] are two efforts that aim to simplify application configura-
tion and deployment through the use of domain specific lagesiaUsers write scripts
(“recipes” in Chef and Puppet’s nomenclature) that desonheh software should
be installed, how to install it, and how to deploy it. Thesstsyns work on a single
machine as well as in distributed environments. Althoughpdifying the deployment
process, these systems still require the presence of anterae, who must optimally
place and configure their components as well as maintain Chigpet themselves in
a distributed environment.

Research efforts have taken a largely orthogonal approaties® domain spe-
cific languages, and have instead aimed to improve resowageuwithin each tier
and across tiers9p] utilizes results from queueing theory to model the thieeseb
deployment strategy as three queueing systems, each withothin production and
consumption rates. Their system does not support the LABIEksbut supports a sim-
ilar stack through the use of Apache as the load balancercdbas the application
server (hosting applications written in the Java programgntanguage), and MySQL
as the database server. They contribute scaling algoritbinssenarios when each tier
can and cannot benefit from the use of hot spares to elagt®edle up and down,
as long as the applications supported have been “well-pd3fdnd generate accurate

heuristics for their algorithms.

11

Chapter 2. Background

In practice, profiling these applications to acquire theseristics is a non-trivial
task. One effort that addresses this problemlB.[This work argues that the only
way to properly profile an application is to instrument iteguction environment, and
use that data to determine when to scale resources up and tlowieu of the scalers
proposed by92], [12] uses hot spares as a safeguard if their autoscaler congames
many resources for profiling purposes (which would othesvesive too few resources

available to users).

2.1.2 Scientific Computing

Grid computing services are offered by organizations tdr tinéernal users with
resources typically hosted on-premise or in an organigationed datacenter. System
administrators determine which software packages araliedtand supported on these
machines, which can be programmatically acquired andsetehy users. These sys-
tems have largely been utilized for scientific computingligggions, with a specific
emphasis on the field of high-performance computing (HPC).

The most well-known interface to machines hosted in a gritiesPortable Batch
System (PBS)715]. PBS enables users to acquire machines hosted within aeyid,
ecute one or more programs on them, and release those macfihe Simple API

for Grid Applications (SAGA) 60] project aims to fulfill a similar goal, but instead of

12

Chapter 2. Background

requiring users to learn a new job description language/iges APIs within the Java,
C, and Python programming languages to facilitate greats-e&use.

Extensions in this space have been largely concerned withnelng the types of
programs that can be run and with improving resource utibmavhen a large number
of programs are run. BatchPipes and Swafi[provide users with the ability to “chain”
the execution of many programs together and specify inpendgencies amongst pro-
grams via XML, while systems like Pegas@4] can consume these workflow descrip-
tions and attempt to optimize their execution for some sahetrics (e.g., end-to-end
execution time, grid resource usage). Both of these systamsitlize “community
grid” systems like Condord0], wherein idle resources (e.g., terminals in a university
that are not in use by students) are employed by the grid fecwgion of submitted
jobs, until a user resumes use of their terminal (at whicitptihie job is checkpointed
and aborted).

Other efforts have focused on restricting the runtime staaptimize shared clus-
ter usage, or altering the runtime stack to focus on noritioacl hardware profiles. In
the former category are projects like MesbB§]|[which limits the runtime stack to MPI
and Hadoop MapReduce programs, to attempt to improve CPWaiidn on company-
owned clusters. In the latter category are the Anyscale Mask Computing En-
gine (AME) [99] and StratUm 73]. AME seeks to resolve engineering difficulties that

have arisen from deploying grid software onto superconpuig taking into account

13

Chapter 2. Background

supercomputer-specific information, while StratUm impdens a meta-scheduler to

dispatch biochemical computing applications across omeare community grids.

2.1.3 Limitations

Mainstream cluster and grid offerings to date offer matafénsare solutions, pro-
viding stable access to on-premise hardware. In the coofeptoviding automated

application deployment, these systems possess the falipkay limitations:

e Resources are statically utilized within grid and clustestegns. System admin-
istrators may add and remove resources, but this is a rel\atiare event, and
more relevantly, resources can not be added or removedgmogatically. In the
context of web applications, this means that users try tadadmwntime by pro-
visioning for the maximum amount of traffic they could face (g@posed to the
current amount of traffic they face). This causes resoucé® twasted during

non-peak hours.

e Software stacks must be maintained by system adminissratepremise. In
the context of HPC applications, this means that users cindeploy applica-
tions written in supported frameworks (and only certairsiars of those frame-
works), even if other frameworks offer better performance aewer versions

of supported frameworks are available. Furthermore, systéministrators are

14

Chapter 2. Background

responsible for maintaining the health and availabilitytiod cluster or grid it-
self. End-users with sufficient technical knowledge or eysexpertise have no

mechanisms to alleviate this, even at smaller scales.

Extant systems have begun to address these limitationsillangg virtualization.
This technology enables machines to be emulated as progkamsn as virtual ma-
chines, and when architecture support for virtualizat®®emabled, virtual machines
suffer little performance degradation compared to their-wiotualized counterparts.

The following section details how the grid and cluster cotmmJfields have evolved
by utilizing virtualization to create a new field of study,dwmn as cloud computing.
This field is still in its infancy, but many of the software eifings detailed here (e.g.,
SAGA, Swift) have already begun to support cloud servicesnable programs to be

configured and deployed automatically.

2.2 Application Execution via Dynamic Resources

In this section, we overview systems that allow for progratiminteraction and
deployment of programs in the context of dynamically acegliresources. These re-
sources may be classified as Infrastructure-as-a-Seaigdsor Platform-as-a-Service

clouds, which provide scalable access to virtual machimdslbsoftware stacks, re-

15

Chapter 2. Background

spectively. We provide background on systems harnessesgtresources, detail what

application domains they serve, and enumerate their liomst

2.2.1 Programmatic Cloud Interaction

Cloud computing services are offered by vendors to the poblia pay-per-use ba-
sis or within private institutions, often hosted on-premi¥hese services are typically
classified at two tiers: Infrastructure-as-a-Service S)aand Platform-as-a-Service
(PaaS). At the laaS layer, virtual machines are offered &susUsers receive root-
level access to these machines, and have both the freedortih@médsponsibility to
utilize them correctly for their needs. Public offeringsdgpically scale to as many
machines as the end user can afford, while private offesogke as far as the total size
of the on-premise deployment.

The Amazon Elastic Compute Cloug] | often abbreviated to simply Amazon EC2,
is the oldest and most well-known laaS offering. Machinethwiifferent hardware
profiles (“instance types” within the EC2 nomenclature) dfered to users and are
metered on a per-hour basis. For example, a user who usegla siachine for an
hour and a half would be charged for two full hours of use. AomaZC2 offers virtual
machines in an on-demand fashion as well as in an auctioe-stiering, known as
Spot Instances3]. In contrast to the on-demand instance offering, the pghe¢a user

pays for a Spot Instance is not constant, but instead is sénigzon in an opaque

16

Chapter 2. Background

fashion, based on excess machine capacity. Users plactbitiese instances, and as
long as the user’s bid exceeds the price set by Amazon, tleegranted access to the
machines in question. Spot Instances tend to cost less thdbeand instances, but
can be reclaimed by Amazon at any time, limiting the typegpliaations that can use

them effectively.

A number of software packages provide interfaces to Amazo8 tr users of
different programming language$.ot o[13] provides this functionality for users of
the Python programming language, while the RightScale G&8jdulfil this role for
the Ruby programming language. Furthermore, while the SA&Rdroject originally
targetted grid interaction, it has been repurposed siremtioduction of Amazon EC2

to also interact with it.

2.2.2 Automated Service Deployment

While l1aaS offerings provide low-level access to virtual imaes in an on-demand
fashion, Platform-as-a-Service (PaaS) offerings prositiable access to a fully cus-
tomized software stack. PaaS offerings vary in the typesutdszaling mechanisms
that are exposed to end users, in a manner proportional tudtemizability of hosted
programs.

For example, Google App Enginé4] provides a PaaS offering that originally only

hosted applications written in Python 2.5. Furthermoréy areb applications could be

17

Chapter 2. Background

hosted on Google App Engine, and only API calls on Googlegelibt could be used.
In practice, this disallows file system access, socketiomeabr the persistence of data
in any fashion other than a Google-hosted database or agnharmsiching layer. Web
responses were also initially limited to 30 seconds in lengthis restricted runtime
environment forces the web server to be stateless and ftsrpemce to be predictable,
allowing Google App Engine to easily scale any hosted appba, regardless of its
actual content. Furthermore, this scaling can be perforireatparently, without the
need for the user to indicate scaling rules (which they mayrifamiliar with or be un-
gualified to instruct Google’s closed source platform onpc8 its initial introduction,
Google App Engine has expanded to also support applicaioitten in the Java and
Go programming languages, with similar runtime restrit$io

Alternatively, Microsoft Azure TQ] provides a PaaS offering that allows users to
host applications of any programming language, withoutfricg®ns. For automated
scaling to occur, a rule language is exposed to users, who tmers dictate a series
of rules that indicate to the platform when resources shbeldcaled up or scaled
down. As the platform can be running code in any languagese¢héng rules cannot
be tied to user-specific code, and must rely on conditionslvinvg the state of Azure-
hosted services. In practice, this means that applicatianscale up or down based on
CPU and memory usage of hosted VMs, or the state of the queust@madje services

provided by Microsoft Azure (e.g., scale up if the storagevise has been accessed

18

Chapter 2. Background

more than X times in the last Y minutes). This increases theusrtof complexity
that the end user has to deal with to properly host applicatan this platform, but
correspondingly increases the variety in the types of apptins that can be hosted.
The Nimbus projectgl] provides two offerings that are aimed at bringing the types
of automated service deployment offered by a PaaS to laa8&wsysThe first offering,
cl oudi ni t . d, provides an API that can be utilized to launch and configareises
in a cloud laaS. Users write scripts that utilizkoudi ni t . d to acquire virtual ma-
chines and use them in their applications. In contrast,elcersd offering, the Nimbus
Context Broker, shifts the complexity of writing scripts tdliae virtual machines onto
the cloud laaS itself. The user can then simply ask for a tumfigured”, specialized
virtual machine, and the Context Broker will acquire a “vaiillbase virtual machine
and customize it accordingly. Both offerings do not providéacaling, and thus may
not be true PaaS offerings, but attempt to bridge the gapdetwaaS and PaasS.
Conversely, ElastisizebpB] does offer a PaaS-like system that attempts to automat-
ically deploy Hadoop MapReduce program$][to Amazon EC2, in a manner similar
to Amazon Elastic MapReducd][Both systems provide automated configuration and
deployment for Hadoop MapReduce, but Elastisizer adds déjgebto intelligently
place Map and Reduce tasks on virtual machines based on CPUrmeml/O load.
Another offering that allows for automated program exemutvithin a cloud PaaS

is the Google App Engine Pipeline AR1g]. Users write Python or Java code (as is re-

19

Chapter 2. Background

quired by Google App Engine) and indicate which functiorestarbe chained together,
in a manner similar to that of the workflow systems detailevmusly. The core differ-
ence comes in that users write code in a Turing-completaukzgeg allowing dynamic
workflows that can consult humans (e.g., via e-mail or irnsta@ssaging services) if
the data to analyze is too complex for a program to analyzgealo

In a similar manner to the workflow systems utilized for stally acquired sets of
resources (e.g., grids and clusters), Amazon also proadeskflow service that har-
nesses EC2 to run computations. This service, known as Am@irople Workflow
Service (SWF)T], enables users to statically define workflows, which are tee-
cuted on machines hosted within Amazon or on-premise (wmckt be administered

manually).

2.2.3 Limitations

Mainstream cloud offerings to date offer a valuable firspsteoffering unprece-
dented amounts of raw compute capacity to the communityrgé Iée.g., scientists,
system administrators, end-users). However, these offeas a whole tend to fall into

one of the two following ideologies:

e Generalize, at the cost of specializationCloud Infrastructure-as-a-Service of-
ferings tend to fall into this category, in which users arfei&d root-level virtual

machine access and have the ability to do anything, but qoesgly are required

20

Chapter 2. Background

to do everything to produce a scalable solution. This reguirsers to become
system administrators (an often difficult and costly endeaa&nd produce solu-

tions that are not extensible to inclusion or use by othensot artifacts.

e Specialize, at the cost of generalizatiorCloud Platform-as-a-Service offerings
tend to fall into this category, in which users are offerep@c#fic software stack
and cannot modify it in any way. This alleviates users of tinelbn of becoming
system administrators, but now requires users to (1) etaltitheir application
can run within the allowed software stack, and (2) rewritgrtapplication to run

effectively on the cloud platform.

Some work has been done by othe28][to provide a “middle-ground” between
these offerings, wherein the platform is customizable agtdsystem administration is
not the user’s responsibility. Yet the ability to customthe software stack in these
offerings comes at the cost of auto-scaling, and requiranéxhon-free solutions to
partially mitigate this issue. The requirements for a stdtthe-art research cloud plat-

form should therefore incorporate at least some of theviolig goals and features:

e Open source.As a research tool, the ability to modify the platform at wildkes
it feasible as a tool for conducting scientific experimeiitsis requires us to pro-

duce a tool that is open to the public, and that anyone caratise,cost to them,

21

Chapter 2. Background

to test and validate our theories through rigorous experiraed observation,

and give users the ability to create and test their own thsori

e One-button deployment. The research tool will only be useful to users if it is
simple to utilize. Any barriers-to-entry will preclude usdrom harnessing this

tool, and thus is detrimental to their ability to use it asiastfic tool.

e Extensible to different software stacks. The research tool should not require
users to conform to it, but instead, conform to the user'gifams in a reasonable
fashion. The initial offering may not support every softe/atack, but is open to

customization by the community-at-large.

e Extensible within supported software stacks.The research tool should enable
sufficiently interested users to customize it to add donspieeific library support

(e.g., for high performance computing, for image procepsats they require.

e Auto-scale for supported software stacks.Extending the research tool to add
additional functionality should not come at the cost of hgsautoscaling capa-
bilities, and thus the tool should be able to acquire andsgleloud resources to

best serve user requests.

e Pluggable to different cloud services.Harnessing the resources of a single set

of cloud resources encourages vendor lock-in, which hahagortability of

22

Chapter 2. Background

supported applications. It is thus imperative that theasdetool be able to run
on resources hosted in public clouds (off-premise) or peicdouds (on-premise),

which may possible provide differing APIs.

Prior work in this field tends to provide a small subset of éhe=quirements, and
no single offering satisfies all of these requirements. Qulyethe key limitations of

existing work are:

e Many offerings are sold as commercial-off-the-shelf (COp&)ducts or are re-
motely hosted by the vendor, so their source code is not ap@mspection or
extension. This precludes their use as the primary res¢aothas it harms the
ability to run experiments that are repeatable over longogsrof time (as the
vendor is incentivized to improve or otherwise alter theirvices to better serve

their customers).

e Ease of installation and use has not, to date, been a first-faature of existing
offerings. This means that the sheer complexity of existafjware has come
with a correspondingly complex installation process. Hampers the ability to
utilize these tools as a vehicle for scientific research, leaglbeen a barrier-to-

entry for all but the most technically savvy system admiaists.

e Platforms-as-a-Service, by their very definition, offealable access to full soft-

ware stacks. As the majority of mature PaaS offerings aréetosithin a ven-

23

Chapter 2. Background

dor’s datacenter(s), this places the onus of securing tmeshines on the ven-
dor, and disincentivizes them to experiment with a widesyaof software stacks,
programming languages, and libraries. Similarly, the@nisncentive to only re-
lease features that will be used by the majority of custommaeking them less
attractive to use by researchers (who may want to experiateait layers of the

software stack, and do not have the same budget as an esgerpstomer).

e Platform-as-a-Service offerings tend to restrict the sufgal software stack to
enable autoscaling. Alternatively, some offerings chat&ereverse decision:
to disable autoscaling to enable a wider array of softwaaekst A first-class
research tool should seek to provide both autoscaling ang mhan a single
software stack, and investigate how to do so in the genesal (@ that it can be

adopted, evaluated, and improved upon by others).

e Commercial vendors are monetarily incentivized to createkdin”, and create
incompatible APIs and cost models for what are conceptigiftylar services
(e.g., FIFO queues). This makes it difficult for even expeers to determine
which services are the best for their application and usatfenm. Furthermore,
due to the rapidly evolving nature of these applicationsictviservices may be
“best” (e.g., w.r.t. price, performance, ease of use) mayge over time, and the

cost of changing from one provider to another (via refacgrsystem adminis-

24

Chapter 2. Background

tration, etc.) tends to greatly outweigh the cost of payirayarfor services from
the original vendor. This disincentivizes competition angst cloud vendors,
especially the vendor who maintains the largest marketes{vaino can simply
dictate which APIs should be used, instead of creating ofis ith other ven-

dors).

The systems described in Chaptgrd, andS address these limitations by designing
and implementing pluggable middleware systems that ereaiplert users to inject their
own software stacks and autoscale them as desired. Oncear eger does this, users
at all skill levels can take advantage of this work in theimomgsearch or commercial

applications.

25

Chapter 3

A Pluggable Autoscaling Service for
Open Cloud PaaS Systems

In this chapter, we present the design, implementation,esmatluation of a plug-
gable autoscaler within an open cloud platform-as-a-ser(f?aaS). We redefine high
availability (HA) as the dynamic use of virtual machines &ef services available to
users, making it a subset of elasticity (the dynamic usertiai machines). This makes
it possible to investigate autoscalers that simultangaadiiress HA and elasticity. We
present and evaluate autoscalers within this pluggabkersythat are HA-aware and
Quality-of-Service (QoS)-aware for web applications tertin different programming
languages, automatically (that is, without user intenaent Hot spares can also be
utilized to provide both HA and improve QoS to web users. Witihhe open source
AppScale PaaS, utilizing hot spares within the HA-awar@sadgler can reduce the

amount of time needed to respond to node failures by an averag8%, and can in-

26

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

crease the amount of web traffic that the QoS-aware autossahes to users by up to
32%.

As this autoscaling system operates at the PaaS layer, llest@a control virtual
machines and be cost-aware when addressing HA and QoS.faileerere augment
these autoscalers to make them cost-aware. This cost a¥gareses Spot Instances
within Amazon EC2 to reduce the cost of machines acquired By, & exchange for
an increase in startup time. This system facilitates thedtigation of new autoscaling
algorithms by others that can take advantage of metricsgedwby different levels of

the cloud stack (laaS, PaaS, and SaaS).

3.1 Introduction and Motivation

While cloud laaS and PaaS systems have seen sizable incinassage, they
have also suffered from a number of outag8g] [45], with some lasting several
days @1] [55]. The remedy to the problem of single-datacenter failuessrécom-
mended by laaS vendors) is to utilize resources across plautiatacenters, and to
use autoscaling products (e.g., RightScale, CloudWatchiodge fault detection, re-
covery, and elasticity. Yet to make these offerings genguabose, for use with ser-
vices written in any programming language, the metrics wittich these products

can autoscale are limited and statically defined. In practitese systems are usually

27

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

rule-based and can scale on coarsely-defined, VM-leveleseincluding CPU usage,
memory usage, and system load. Furthermore, the closedespature of these offer-
ings makes them inextensible and precludes their use byotnencinity at large (e.g.,
researchers, developers, system administrators) torpegotoscaling on applications
written in different programming languages, based on appbn-specific metrics.

As a motivating example, consider a typical applicationizitig an laaS and a
LAMP stack. Once this application becomes popular, theldpee or system admin-
istrator needs to manually scale this application out bydharhich (at the bare min-
imum) requires them to become experts at scaling load batanapplication servers,
and database nodes. By contrast, if the application itsal ai the PaaS layer, then
the burden of autoscaling is removed from the developer &ukd onto the PaaS ven-
dor. Furthermore, the runtime restrictions that PaaS peogi enforce mean that the
application itself does not need to be modified to facilistaling.

We mitigate the problem of autoscaling by reinterpretinghtavailability (HA) un-
der the vell of elasticity, and proposingptuggableautoscaling service that operates
within at the PaasS layer. Operating at the PaaS layer entil@desitoscaling tool to use
high-level, application-specific metrics (e.g., databas@&P| usage) as well as low-
level, cloud-specific metrics (e.g., hypervisor or clouaSacheduling decisions). Fur-
thermore, because the autoscaling tool operates at thel®@gaSit can perform both

inter-VM scaling and intra-VM scaling. Additionally, weeddt to utilize the Google

28

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

Role Name Implemented Via
Load Balancer hapr oxy
AppServer | Modified AppServer,
Database Pluggable[16]
AppCaching mencached
Service Bus | VMWare RabbitMQ
Metadata Apache ZooKeeper
AppController Ruby daemon

Table 3.1: A listing of the roles within the AppScale PaaS #rm&open source tech-
nologies that implements them.

App Engine PaaS, so that our autoscaling service can opmrdtes one million active
applications that currently run on Google App Engiiig][

This work targets the AppScale and Eucalyptié$] [cloud systems, but the tech-
niques detailed here are extensible to other PaaS/laa&systAppScale, originally
detailed in P8 and extended in16][27], is an open source implementation of the
Google App Engine APIs. This enables any application writte Google App Engine
to execute over AppScale without modification. As AppScsaitegen source, itis exten-
sible to other application domains; ihq], it was extended to support high-performance
computing (HPC) frameworks, including MP4§] and X10 R5]. AppScale runs over
the Amazon EC2 public cloud laaS as well as the Eucalyptusfarieloud laaS, an
open source implementation of the EC2 APIs.

We begin by detailing the design of our pluggable autosgaervice and its im-
plementation within the open source AppScale PaaS. We tf&dnate autoscalers that

implement support for HA, Quality-of-Service (QoS), andgicawareness. We discuss

29

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

this support within the open source Eucalyptus laaS as welvar the closed source

Amazon EC2 laaS. We then discuss related work and conclude.

3.2 Design

This work redefines HA as the acquisition of virtual machitedkeep services
available to end-users, making it a special case of elgstitie acquisition and release
of virtual machines). We discuss how we use this idea withtioad PaasS to provide
HA via elasticity and our implementation of this idea in thgea source AppScale
PaaS. We then detail the pluggable autoscaling system thab&ale enables, along
with a number of autoscalers that can be used within AppSogleovide HA, Quality-

of-Service (QoS), and cost awareness for hosted applitatio

3.2.1 Role System

The goal of our work is to use elasticity to implement HA. Tgpart this aim
within a cloud Paas, it is necessary to support HA for the doftware stack that a
cloud PaasS provides for its users. The approach that we takimthe AppScale PaaS
is what we call aole systemwhere each part of the software stack is designated by a
uniquerole that indicates what responsibilities it takes on and howausd be “started”

(configured and deployed) and “stopped” (its tear-down @sef. Scripts are included

30

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

in the AppScale code base that indicate how each role caraltedtand stopped, as
needed. A list of the roles supported by the AppScale Paa8 ftinctionality, and the
open source software packages that implement these releetriled in Tabl&.1

Roles are started and stopped on each node by a Ruby daemonthamggpCon-
troller. Users detail the “placement strategy” (a map iatigy which nodes run each
set of roles) for their AppScale deployment and, using afsssmmand-line tools, pass
this information to an AppController. The AppController thegnds this information
to all other AppControllers in the system, and starts all ties for its own node. Be-
cause the AppController itself is “role-aware”, start armpstcripts can take advantage
of this to enforce dependencies between roles. A commomdepey is the reliance
of the AppServer on the Database, AppCaching, and Servicedes, which are all
required for the AppServer to start correctly.

As an example of how users specify roles in their placemeategty, consider the

following AppScale configuration file (specified in the YAMR§] format):

:load_balancer:
— node-1
capp.server:

— node-2

— node-3

31

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

— node—4
:database:
— node-5
— node-6

— node-7

Here, the user has specified that they wish to have a singtedakncer role, three
application server roles, and three database roles. Thifsigcwation file is used by
the AppControllers to generate the AppScale deployment showigure3.1 Note
that users need not indicate here which cloud laaS they ran as this is abstracted
away from them and whatever cloud laaS credentials they ranekiéable to AppScale
are used to acquire resources. This role system greatlliBeapconfiguration and
deployment for the user, as it is the PaaS’s responsibdigdminister these services.
In this scenario, the user has not specified where the AppGgcBervice Bus, and
Metadata roles should be run, so the AppControllers place theomatically to enable
the system to start correctly. This behavior can be ovanrtddail if all roles are not
explicitly specified, or customized to allow researchergaasider the performance
implications of running more instances of each distributed in the AppScale PaaS.
Each role that runs within the AppScale PaaS (except the dd&arole) writes

metrics about its usage to the Metadata role. Within AppScilis service is im-

32

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

Load Balancer

AppServer
AppCaching
Service Bus

AppServer,
memcached,
rabbitmq

AppServer,
memcached,
rabbitmq

AppServer,
memcached,
rabbitmq

Database
Metadata

Cassandra,
ZooKeeper

Cassandra,
ZooKeeper

Cassandra,
ZooKeeper

Figure 3.1: A sample placement layout for the AppScale Pa&8re the user has ex-
plicitly requested a single Load Balancer, three AppSenaerd three Database roles.
The AppCaching, Service Bus, and Metadata roles are impliadided by the App-
Controller if not explicitly placed.

plemented via Apache ZooKeeper, an implementation of the$#5] algorithm
based on Google’s Chubby servi@?]. To maintain correctness for data stored within
ZooKeeper, a quorum must be achieved on read and write resgsesa majority of

nodes running the Metadata role must always be alive anadidi

33

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

3.2.2 Using Role Metadata to Support Pluggable Autoscaling

Storing metrics about every role within the AppScale Paa&blkes any role to
gather metrics about the current state of the AppScale geqaot. As the AppCon-
troller role is responsible for starting and stopping alleatroles within its node, we
extend it here to make it also responsible for maintainihgogs within its node. Fur-
thermore, we make AppControllers responsible for mainmgirilA within the App-
Scale PaaS as a whole. Specifically, after each AppContsiéets all the roles neces-
sary for its own node, it creates a persistent connectioh thi2 Metadata service (an
ephemeral link in ZooKeeper terminology), so that it if that node ever faile link
will be disrupted and every other AppController will be n&diof its failure.

Every AppController then enters a heartbeat loop, whererfopas the following

activities:
e \Write its own metrics to the Metadata service.

e Ask theautoscalerif new nodes should be spawned, and if so, how many are

required and the roles they should take on.

e Acquire that many nodes, start the AppController role on eddhem, and in-

struct each AppController which roles it should start.

Theautoscaleris a thread within the AppController that is responsible fakmng

scaling decisions within the AppScale PaaS. Because it c@sathe Metadata service,

34

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

it can view metrics about any role and any node within the AigksPaaS, and because
it runs within the AppController, it can spawn new nodes via timderlying laaS and
configure them accordingly. Specifically, the types of nestthat are available to the

autoscaler are:

e Application-level metrics: Information about hosted Gleog§pp Engine applica-
tions, including their CPU, memory, I/0O, and APl usage (algtastore, caching,
e-mail). The number of application servers serving eaclicgin is also avail-

able, as well as the average request latency.

e PaaS-level metrics: Information about the virtual mackihesting AppScale.
This includes the CPU, memory, disk, and network 1/0 usageach enachine,
as well as role-specific statistics (e.g., Load Balancer ejshtgetadata usage)
and historical data about previous scheduling decisioms, (e times/dates of

previous node failures).

3.3 Framework Instantiations

The pluggable autoscaling system designed here can maksgsdecisions based
on application and PaaS-level statistics. We next detail bertain combinations of
these metrics can be utilized to implement autoscalingralgos to serve complemen-

tary use cases within the AppScale PaaS.

35

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

3.3.1 HA and QoS-Aware Autoscalers

One autoscaler supported within AppScale is HA. This aatlesqolls the Meta-
data service for a list of all the nodes that have registasedf as being alive, and looks
for persistent connections named after each of those ntfdas; of those connections
are missing (e.g., because a node has failed), then thecalgogolls the metadata
service to see which roles that node was hosting and rethetsrtformation to the
AppController's main thread. The AppController then spawodeas to take the places
of each failed node, with each failed role.

Another autoscaler that is supported within AppScale is @urcement. This au-
toscaler service polls the Metadata service for data regdoy the Load Balancer role
(implemented by theapr oxy daemon) about how many requests have been served in
the lastt seconds (a customizable value that defaults to 10 secomdsa¢h AppServer
and how many are currently enqueued over thetlastonds. It then uses an exponen-
tial smoothing algorithm to forecast how many requests peekfor the next seconds,

via the following formulae:

TQZO;QU:O (31)
ripr=axr g+ (1—a)*r (3.2)
Qi1 =a*xq_ 1+ (1 —a)x*q (3.3)

36

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

wherer refers to the number of requests served, and wheeders to the number of
requests enqueued.sif ; or ¢;,, exceed a customizable threshold (defaulting for
each), then the autoscaler decides that an AppServer nebdsatlded within the sys-
tem. If there is enough CPU and memory free on any node cwranthing (metrics
reported by each AppController), then the AppServer is adated currently running
node. The CPU and memory thresholds vary for AppServers fardift program-
ming languages because the CPU and memory footprints diffeifisantly between
the Python, Java, and Go AppServers, as evaluated in S&cdh

If there is not enough CPU and memory free on any currentlyinghnode, the
autoscaler reports that a new node needs to be spawned tarhdgipServer role.
This autoscaler considers both intra-VM scaling (scalinigpw a node) and inter-VM
scaling (scaling among nodes), in that order. Intra-VM isgatlecisions are consid-
ered every minute, while inter-VM scaling decisions aresidared every 15 minutes
(customizable values).

This autoscaler also uses the above formulae to scale ApgSatown. Ifr;.; or
q:+1 fall below a customizable threshold (defaultingstéor each), then the autoscaler
determines that an AppServer needs to be removed from its asdhere is not enough
traffic to justify the CPU and memory footprint that it consiuane

Finally, it is important to stress that we are not limited be tuse of a single au-

toscaler within the AppScale PaaS. For scenarios when rhare dne autoscaler is

37

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

used, each autoscaler is invoked in the order that the &@ssgprovides. In the open
source branch of AppScale that we extend as part of this weekdefault to utilizing

both the HA-aware and QoS-aware autoscalers. Additionlé/open, pluggable na-
ture of the autoscaler proposed here makes it amenable t@gh@mount of existing

research on resource schedulifg][95][86][69].

3.3.2 A Cost-aware Autoscaler

As AppScale operates at the PaaS layer, it is responsibtedacquisition and uti-
lization of laaS resources (e.g., virtual machines). Tioeeg we have the opportunity
to provide an autoscaler that can make decisions with nbpgréormance in mind, but
also monetary cost. For example, Amazon EC2 charges usensasrhaur basis. If the
QoS-aware autoscaler described previously were to dduadedsources it acquires are
no longer needed, it would terminate them without realizhvag keeping the resources
until the end of the hour is free under the Amazon pricing nhoaled that there is no
gain from terminating them before this hour price boundary.

We therefore augment the HA-aware, QoS-aware autoscatdrwishin AppScale
to also be cost-aware in the following ways. Whenever a resowould normally be
terminated by the QoS-aware autoscaler, it is insteadveglief all of its roles (that
is, the stop scripts are called for each role it runs) and tuerbecomes a hot spare.

This hot spare can then be utilized by the HA-aware autost@alguickly respond to a

38

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

node failure or by the QoS-aware autoscaler to quickly redpo increased web traffic.
As we always run the HA-aware autoscaler before the QoSeamatioscaler, the HA-
aware autoscaler gets priority over these machines, lmib#havior can be reversed if
desired.

Amazon EC2’s standard offering provides users with instaricean on-demand
fashion. However, they do also offer an auction-style pobd8pot Instances3[(Sl),
which users acquire by placing bids. If the bid that the uszrgs is above the market
price for a particular instance type (classified by CPU and org)n then the user
wins the auction and gets the instance. If the market pricd¢afgd by Amazon in an
opaque fashion) ever rises above the user’s bid, then tben@sis reclaimed and the
user is refunded for any partial hours used. As these instacan cost substantially
less than the standard, on-demand instances, we proposeaxare autoscaler. This
autoscaler is able to automatically place bids and utiliag@& both the HA autoscaler
and the QoS autoscaler. To avoid losing instances to risiagkeh prices, the cost-
aware autoscaler searches through a history of succes$fuites and bids 20% above
the average Sl price paid (a customizable metric). We etaline performance and
monetary cost impacts on the AppScale PaaS in Se8t

The HA-aware, QoS-aware, and cost-aware autoscaler is speced as part of
this research. Future work will examine a Azure-aware aaties that takes its pricing

model into account, as well as the inclusion of Google’s naaSl offering, Compute

39

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

Engine B7], which abstractly works in a similar fashion as the Amazod Microsoft

offerings but has different prices associated with the nmeshit offers.

3.3.3 Manual Administrator Intervention

While the pluggable autoscaling system and sample autosgaleposed in this
work do provide automated resource management within theSéale PaasS, there
may be conditions where a cloud administrator may wish téoper manual scaling.
In these scenarios, the cloud administrator typically lemesknowledge or metrics
that the autoscaler is not aware of and needs to scale up sotnaf ghe system.

For example, a company hosting an application may aggedgsharket their appli-
cation to the public and thus expect a steep increase ottré¥finile the QoS autoscaler
above (or variations of it) may be able to reactively deahwifite increased amount of
traffic, it may drop some traffic before it finishes scaling Ujerefore, the company
may want to proactively add AppServers or Database nodese their application.

This work addresses this category of use cases by expasiogcaling as a ser-
vice, enabling administrators to proactively scale the systprmaneeded. Specifically,
we extend the AppScale command-line tools (similar congajytto the EC2 tools for
AWS) with a new toolappscal e- add- nodes. Users give this tool a YAML file
that indicates the placement strategy for the new nodesmaraner identical to that

used when starting up AppScale normally. If a user wishegieesthe use case pre-

40

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

viously described and add two AppServers and two Databadesnohey could give

appscal e- add- nodes the following placement strategy:

:node—1:
— appserver
:node—2:
— appserver
:node—3:
— database
:node—4:

— database

Users need not learn and specify all the dependencies farrede Although the
user above did not specify where the Service Bus should rtime iRppServer requires
it to run on the same node, the AppController will configure degloy it automatically.
Alternatively, users who want to add virtual machines to @p3cale deployment but
may not be certain where they could be best utilized can §pibeit the role bepen,

making it a hot spare that the AppControllers can assign tolas needed.

41

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

Load Balancer

AppServer
AppCaching
Service Bus

AppServer,
memcached,
rabbitmq

Database
Metadata

Cassandra,
ZooKeeper

Figure 3.2: Placement strategy used for the experimentgdtidh 3.4. One node is
used to host each role, to maximize the impact of failuresherAppScale PaaS.

3.4 Experimental Evaluation

We next empirically evaluate our proposed autoscalersnvippScale. We begin

by presenting our experimental methodology and then désousresults.

3.4.1 Methodology

To evaluate the pluggable autoscaler system put forth lsywbrk, we use sample
Google App Engine applications provided by Google. We ugg@dementations of the

standard Guestbook application written in Python and Jdayen each request to this

42

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

application, it queries the database for the most recernis @osl displays them to the
user. This application is indicative of Google App Enginelagation usage as a whole,
as it utilizes the Datastore and Memcache APIs to serve gatancically to users.

We host this application on AppScale via the placementegiygashown in Fig-
ure 3.2 We intentionally minimize the number of roles implemegteach service to
maximize the impact of scaling decisions and node failurethe system as a whole.
We also utilize Cassandra to implement the Database rolé,isshie default within

AppScale.

3.4.2 Experimental Autoscaler Results

To evaluate the HA autoscaler, we run AppScale within Amaz@2 and kill the
AppServer running the Python and Java Guestbook applieatiigure3.3 shows a
breakdown of how long it takes for the HA autoscaler to recdnem this failure. As a
majority of the time is spent acquiring a new virtual macHnoen EC2, we also use the
appscal e- add- nodes tool to proactively add a hot spare to the system, and find
that it significantly reduces the time needed to recover fi@tares. The presence of a
hot spare does not have a significant impact on the other pihasegure3.3, however.
Furthermore, as the price of ar.. | ar ge instance (the instance type we use in these
experiments) is currently $0.32/hour, having a hot sparayd present increases the

hourly cost to run this AppScale deployment by 33%, from 6Q@®$1.28. In practice,

43

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

IN
o
=]

I Failure Detection Time
[Node Acquisition Time ||
[I Node Initialization Time

I Role Startup Time

w

al

o
T

w

o

o
T

N

a

o
T

=

o

o
T

=

o

o
T

a1
o
T

Autoscaling Time (seconds)

o

Without Hot Spare With Hot Spare

Figure 3.3: Average time for the HA autoscaler to recoveniiihe loss of a single
node running the AppServer role within the AppScale Paa8r tve Amazon EC2
laaS. Recovery time also indicates if a hot spare was availaben the failure was
detected.

the additional $0.32 incurred to have a hot spare availabli&ely to be insignificant
compared to the opportunity costs due to lost business fnremadded downtime.

To evaluate the QoS autoscaler, we use the Apache Benchnohfit]ito dispatch
40,000 web requests to the Python and Java guestbook ampie&70 concurrently),
and measure how long it takes for AppScale to serve thesesejurhe results of five
runs of this experiment are shown in Figu#&. The first bar in each graph measures
the time for AppScale to process the 40,000 web requesteuithe QoS autoscaler,

as a baseline set of values.

44

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

The second bar in each graph uses the QoS autoscaler andomsiglers inter-
VM scaling. It performs significantly better for the Pythoné&stbook application (but
not for the Java Guestbook application). For both applceti the high request rate
and high number of users enqueued at the load balancer dau§p6 autoscaler to
quickly acquire more nodes to run AppServer roles, whicliin allows more requests
to be served at a time. However, the Java AppServer is fagtetalthe performance
difference between the Java and Python languages, andvhépaServer is able to
use multithreading, while the Python AppServer is limite@tsingle thread. Although
the QoS autoscaler attempts to alleviate this problem byngd&ippServers within a
virtual machine, it is only able to do it up to a limit (the aadile CPU and memory on
that machine).

Paradoxically, the faster Java AppServer processes tl®@Qyeb requests be-
fore the newly spawned AppServers can have a significantdtmince the simi-
larities between Java QoS-off and Java QoS-on). To redwephAwning time of
these AppServers and increase their impact, we usappscal e- add- nodes
command-line tool to add a hot spare to the AppScale deployfefore running
Apache Benchmark. The results, shown in the third bar, datsignificant improve-
ment for both the Python and Java Guestbook applications \aheot spare is used.
Like in the HA autoscaler, the constant presence of a hoespareases the cost to run

the AppScale deployment, but is far less than the costs afiéssiost due to downtime.

45

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

Finally, the fourth bar utilizes the QoS autoscaler to ordyfprm intra-VM scaling.
It performs similarly to the scenario where the inter-VM Iscas utilized with a hot
spare, and incurs a lower monetary cost (due to not needempdhspare). Work is
ongoing to consider the performance implications of uhbzthe inter-VM scaler and

intra-VM scaler simultaneously.

3.4.3 Experimental Metrics Results

We next move on to the gathering and reporting of metricsnagiitionally consid-
ered by autoscaling algorithms, and their use in ongoingares$ into autoscalers used
by the pluggable autoscaling solution proposed here. W liiggexamining the CPU
and memory footprint of the Python, Java, and Go AppSerwvensse information is
stored automatically in the Metadata service. The AppCdatrqueries the operating
system every 30 seconds for this information (a customézigibérval), and the average
of ten of these queries for steady-state AppServers is sioWable3.2

We begin by noting that the Go AppServer within AppScaleizgd the Python
AppServer as a proxy for RPC calls, so the Go AppServer alwaygires a Python
AppServer to be present. TalBe2 shows both the CPU and memory taken for the
standalone Go AppServer and its combined footprint in itglpction form, when it

requires the Python AppServer. As the standalone Go Appsearemory footprint is

46

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

. :
S |

S 2000f

S [

O 1800}

@

& 1600 I

% |

D 1400t

“" 1
S i

2 1200 I T
D i

o 1000

Q@ goo}

p—

% 600}

2 o0t

©

S 200}

}—

No Scaling Inter-VM Scaling With Hot Spare Intra—VM Scaling

2000

1200

—~+

—

800

600 i

HH

400

200

Time to Serve Requests (seconds)

No Scaling Inter-VM Scaling With Hot Spare Intra-VM Scaling

Figure 3.4: Average time for AppScale to serve 40,000 welests to the Python
(Left) and Java (Right) Guestbook applications. We condidercase when the QoS
autoscaler is off (the default before this work), when it /s (our contribution), and

when we proactively start a hot spare to be used by the QoScalér. Each value
represents the average of five runs.

a7

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

Language | CPU Footprint (%) Memory Footprint (%)
Python 0.00+ 0.00 2.40+ 0.00
Java 0.64+ 0.08 8.10+ 0.00
Go 0.00+ 0.00 0.10+ 0.00
Go+Python 0.00+ 0.00 2.504+ 0.00

Table 3.2: Average CPU and memory footprint consumed by thiedRy Java, and Go
AppServers while in a steady state. Each value represents/érage of ten runs.

significantly less than the Python AppServer memory foatpwe are examining how
to remove the dependency on the Python AppServer.

For both the Python and Go AppServers, its steady-stateresgquo CPU footprint
and a significantly smaller CPU and memory footprint than th&AppServer. How-
ever, as Figur@.4 demonstrated, this smaller footprint may have come at tperese
of the ability to handle a production web service workload.

An alternative metric that is simple yet powerful for a Pdager autoscaler to mea-
sure is virtual machine startup time compared to cost ieclirHere, we use our cost-
aware scheduler to acquire Amazon EC2’'s on-demand instamze$Spot Instances
(Sls) automatically (betting 20% above the market priceharmanner described pre-
viously), and report both the time taken for the instancdsomt up and the monetary
cost incurred for one hour’s use of these machines. TaBlshows the average results
of running this experiment ten times.

Table 3.3 shows two clear trends. First, on-demand instances cancugrad ex-

tremely quickly, with low variance in both the time and casturred to utilize these

48

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

Instance Type Time to Acquire Instances (sec)Monetary Cost ($
On-Demand 37.03+ 1.36 0.3200+ 0.0000
Spot 411.31+103.61 0.0299+ 0.0002

Table 3.3: Time and monetary cost incurred for the cost-aveaheduler to utilize
Amazon EC2 on-demand and spot instances. These resultd thfle@verage of ten
runs, with theml. | ar ge instance type in the AWS East Coast region.

machines. Second, the Sis take an order of magnitude loagequire, but cost an
order of magnitude less. This makes Sls an ideal target tebe as hot spares within
the AppScale PaaS, to be aggressively spawned and usediteriéd amount of time

needed to recover from failures or ensure a higher QoS.

3.5 Related Work

This work proposes and implements a pluggable autoscatihgien that can be
utilized for fault tolerance as well as elasticity. The feetdf fault tolerance and elastic-
ity have been well-studied, and a number of research etioetsonceptually similar to
the work proposed here.

The VGrADS [77] and MODISAzure 66] projects are two research efforts aimed
at providing fault tolerance to e-Science applicationsnmg over cloud resources.
VGrADS is aimed at using cloud resources according to gridmating’s best prac-
tices, where resources are acquired in bulk, utilized, awhdded. That is the opposite

mentality of the work performed here, where cloud resouacescquired and used ac-

49

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

cording to cloud computing’s best practices, where ressuere acquired elastically,
as needed. The difference is notable in a public cloud enment where resources are
not free, as compared to the grid environment (where laigaals are available for use,
free of charge). Accordingly, VGraDS does not consider that of utilizing the Ama-
zon EC2 laaS, whereas we are cognizant of it and consider ¢hef &pot instances to
reduce the price that end-users pay. MODISAzure is simgilanly interested in how
clouds can be utilized for their end-users (in their caseMicrosoft Azure laaS), and
is not concerned with the cost of actually using these ressur

CloudScale 86] and [92] focus on developing new elasticity techniques for web
applications. Two main differences exist between theseésvand the pluggable au-
toscaler system proposed here. First, this work is the fiegtwe know of to actually
run within a cloud PaaS. Despite its name, CloudScale doasinetithin a cloud laaS
or Paas, but instead utilizes virtual machines managedd}{ém hypervisor (which is
necessary but not sufficient for cloud computing2][also targets machines running
over Xen, but does not use it as a mechanism for researcimgapstead to focus on
elasticity algorithms customized for the three-tier wepldgment strategy (load bal-
ancer, application server, and database). Second, tHests e not seek to provide a
pluggable autoscaling solution for researchers to experiwith and test with. They

seek to provide novel autoscaling algorithms, and thus doompete with the system

50

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

proposed here. Work is ongoing to adapt the algorithms megan these works as
autoscalers and evaluate their effectiveness within theS&ple PaasS.

Cloud vendors have also proposed products and solutiong tieghes of fault tol-
erance and elasticity for their users. Amazon EC2 and Midtdsaure both provide
users with virtual machine-level high availability by alygarunning a hot sparelfl],
although this leaves the responsibility of utilizing thachine in the user’s application
to the user. RightScal@§], enStratus40], Scalr [84], and Kaavo $9] seek to provide
high availability and elasticity through virtual machiteel metrics (CPU, memory,
disk usage), and if the user utilizes LAMP stack componéheshealth of those com-
ponents can also be utilized when making scaling decisiofet.these systems are
closed source systems, often only allowing simple rulestatilized to make scaling
decisions (e.g., scale up if load exceeds 30%). In conttaspen pluggable autoscal-
ing system proposed here is extensible to the years of sthgdeasearch done by the

community at large and provides new avenues of researchgerti@med.

3.6 Summary and Conclusions

The flexible role system and pluggable autoscaler impleetkinére abstracts away
the complexities of deploying and managing applicatiors$ritiuted across machines

in cloud services. The motivation behind this pluggabl®scaler is to enable users to

51

Chapter 3. A Pluggable Autoscaling Service for Open Cloud Paafems

experiment with the vast array of research on autoscalidgeaperimentally validate
how the performance and cost of autoscalers for their agijdic and specific work-
loads. We utilize this pluggable autoscaler to implementdh8l QoS autoscalers, and
make them cost-aware when running in a public cloud. We atalthe performance
of the HA and QoS autoscalers under varying workloads, fatiegtions written in
different programming languages. This pluggable autesqaiovides users with the
ability to easily test autoscalers for their applicatioasd to quantify how scaling de-
cisions impact their application’s performance and costatrs to the user that hosts
it.

The text of this chapter is, in part, a reprint of the mateaalit appears in 15].

52

Chapter 4

Language and Runtime Support for
Automatic Configuration and
Deployment of Scientific Computing
Software over Cloud Fabrics

In this chapter, we present the design and implementatiddeptune, a simple,
domain-specific language based on the Ruby programming d@eguNeptune auto-
mates the configuration and deployment of scientific so#wieameworks over dis-
parate cloud computing systems. Neptune integrates sufipoMPIl, MapReduce,
UPC, X10, StochKit, and others. We implement Neptune as avaodt overlay for
the AppScale cloud platform and extend AppScale with supieorelasticity and hy-
brid execution for scientific computing applications. Nep imposes no overhead on
application execution, yet significantly simplifies the Bggtion deployment process,
enables portability across cloud systems, and promotésifoavoidance by specific

cloud vendors.

53

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

4.1 Introduction and Motivation

Beyond the differences between clouds and grids, there age tharriers to the
adoption of cloud computing for the execution of distrilaljteluster-based, scientific
applications. First, cloud systems currently in use haenlgesigned for the execution
of applications from the web services domain. As a resulkeldpers must imple-
ment additional services and frameworks to support appdics from other domains.
Such infrastructure (tools, services, packages, libsapeesents challenges to efficient
reuse, and requires non-trivial installation, configuatiand deployment efforts to be
repeatable. Second, cloud systems today are vastly dilzetseen one another, and
code written for one system is not easily portable to otheualsystems, despite us-
ing common services and APIs provided by the cloud systerffierdig interfaces can
impose large learning curves and lead to lock-in — the irntglib easily move from
one cloud system to another. Third, the self-service naifictoud infrastructures re-
quire significant user expertise to manipulate, contrad, @mstomize virtual machines
(the execution unit of cloud infrastructures), making thaaccessible to all but expert
users 7.

The goal of our work is to reduce the real-world impact of eéhbarriers-to-entry
and to facilitate greater use of cloud fabrics by the sdientiomputing community.

This is also part of an effort to enable a cost-effective cotapon alternative to that

54

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

of the cluster that is still viable for large scale scientfioblems. Toward this end,
we present and evaluate Neptune, a domain-specific langoagetomatically con-
figuring and deploying disparate cloud-based services pptications. Neptune is a
high-level language that is a superset of Rudjj,[a dynamic, open source program-
ming language that is easy to learn and facilitates progranproductivity. Neptune
adds to Ruby a series of keywords and constructs that devslope to describe a com-
putational job at a very high level. Neptune executes any Ruole using the Ruby
interpreter and uses this job description along with a s@Rifcalls to build, configure,
and deploy the services, libraries, and virtual machinessgary for the distributed ex-
ecution of complex scientific applications and systems olard platforms. Neptune
abstracts away all of the low level details of the underlyohgud platforms (and by
extension, cloud infrastructures) and provides a singieple interface with which de-
velopers can deploy their applications. Neptune thus esadpplication portability
across clouds and precludes lock-in to any single cloud aenllloreover, develop-
ers can use Neptune to employ multiple clouds concurrehyligr{d cloud computing),
without application modification.

To enable this, Neptune interfaces to the AppScalg £8, 64] cloud platform.
AppScale is a distributed, scalable software system thadses a set of popular cloud
service APIs (based on those of Google App Engine), and éaeaver the Amazon

Web Services and Eucalyptugl] clouds.

55

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

In this paper we present the design and implementation ofuxepas well as a set
of AppScale extensions that enable automatic configuratimhdeployment of scien-
tific applications. These extensions include dynamic mtséion of virtual machines,
placement of application and cloud service componentsinvithitual machines for
elasticity, and hybrid cloud computing. We extend AppSaaith a set of popular
software systems that are employed by a wide range of siteeaypiplication domains,
such as MPI, UPC, and MapReduce for general-purpose HPC, agswvalbre science-
specific toolkits such as StochK&3] for stochastic biochemical simulation, DFS38]
for spatial stochastic biochemical simulation, and dwS$H# for the estimation of rare
event probabilities. Moreover, Neptune’s design makesaightforward for users to
add additional frameworks, libraries, and toolkits.

In the sections that follow, we describe the design and implgation of Nep-
tune, and our extensions to the AppScale cloud platform.N&fe empirically evaluate
Neptune using distributed HPC frameworks, stochastic lsitimn applications, and

different placement strategies. We then present relateld amal conclude.

4.2 Neptune

Neptune is a domain-specific language that gives cloud gt developers the

ability to easily configure and deploy computational sceesoftware over cloud sys-

56

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

tems. Configuration refers to writing the configuration filesttHPC software requires
to execute in a distributed fashion, while deployment eterstarting HPC services
in the correct order, to enable user code to be executed uNeiperates at the cloud
platform layer (runtime system level) so that it can contnélastructure-level entities

(virtual machines) as well as application components aodcdctervices.

4.2.1 Syntax and Semantics

The Neptune language is a metaprogramming extension of thg Rrogramming
language. As such, it is high-level and familiar, and cartlage a large set of Ruby
libraries to interact with cloud infrastructures and phaths. Moreover, any legal Ruby
code is also legal within Neptune programs, enabling useusé Ruby’s scripting ca-
pabilities to quickly construct functioning programs. Tiegerse is also true: Neptune
can be used within Ruby programs, to which it appears to useadibrary that can be
utilized in the same fashion as other Ruby libraries.

Neptune uses a reserved keyword (denoted throughout thiswiathenept une
keyword) to identify services within a cloud platform. Lédéeptune code obeys the

following syntax, where represents the empty string:

S — neptune :type = T

T — mpi, M1 | x10, M1 | upc, M1 | mapreduce, R1

57

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

T — erlang, E1| ssa, S1| appscale, P1

T — set—acl, Al | get-acl, G1 | get—output, Ol | compile, C1

M1 — :code = ’location’, M2

M2 —> :nodesto_use = int, M3
M3 —> :output = ’'location’, M4
M3 —> :output = ’location’, M5

M4 —> :procsto_use = int, M5

M5 — K1 | e

R1 — :input == ’'location’, R2
R2 — :output = ’location’, R3
R3 — :nodesto_use = int, R4
R4 — :mapreducejar = 'location’, R5

R5 — :main = ’'classname’, R6

R6 —> K1 | e

E1 — :code = ’'location’, E2

E2 — :output = ’'location’, E3

58

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

E3 — :nodesto_use = int, E4

E4 —> K1 | e

S1 —> :nodesto_use = int, S2
S2 — :tar = ’'location’, S3
S2 —> :tar = ’location’, S4
S3 — :simulations = int, S5
S4 —> :trajectories > int, Sb
S5 —> :output = ’location’, S6

S6 — K1 | e

K1 — :storage = ’'appdb’,

K1 —> :storage > ’'s3’, K2

K1 — :storage = ’'gstorage’', K2
K1 — :storage = ’'walrus’, K2

K2 — :EC2ACCESSKEY => ’'key’, K3
K3 — :EC2SECRETKEY => ’'key’', K4

K4 — :S3 URL => ’'url’

59

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

P1 — :nodesto_use = {P2}, P3

P2 — :cloud int = int, P3

P3 — :add.component > ’'load_balancer’, P4
P3 — :add.component = ’appengine’, P4

P3 —> :add.component > 'database’, P4

P4 — :time_neededfor => float

Al — :output = ’location’, A2

A2 — :acl = ’public’

A2 — :acl = ’'private’

Gl — :output = ’'location

O1 — :output = ’'location’, 02

O1 — :output = ’'location

02 — :saveto_local = ’'location’

Cl — :code = ’'location’, C2

C2 —> :main = ’'file ', C3

60

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

C3 — :output = ’location’, C4

C4 — :copyto = ’location

The semantics of the Neptune language are as follows: edidiNegptune program
consists of one or moneept une invocations, each of which indicate a job to runin a
cloud. Thet ype marker indicates the name of the job (e.g., MPI, X10), andsoa
ciated with a set of parameters that are necessary for tlea givocation. This design
choice is intentional: not all jobs are created equal, anilevgdome jobs require little
information be passed, other job types can benefit greatiy fncreased information.
As a further step, we leverage Ruby’s dynamic typing to entildeypes of parameters
to be constrained by the developer. If the user specifies &iNegob but fails to pro-
vide the necessary parameters, Neptune informs them whianmeters are required
and aborts execution.

The value that the invocation returns is also extensiblebpwefault, a Ruby hash
is returned, whose items are job specific. In most casedhdisis contains a key named
: success whose Boolean value corresponds to whether or not the resuesteded.
Other scenarios allow for additional parameters to be dedu For example, in the
scenario where the invocation asks for the access policg fmarticular piece of data
stored in the underlying cloud platform, there is an addaidkey named acl whose

value is the current data access policy.

61

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

Finally, when the user wishes to retrieve data via a Neptobe the invocation
returns the location on the user’s filesystem where the ¢wegoube found. Work is in
progress to expand the number of failure messages to give meee information about
why particular operations failed (e.g., if the data storagzhanism was unavailable
or had failed, or if the cloud platform itself was unreactlaibl a reasonable amount of
time), to enable Neptune programs written by users to becomest, and to adequately
deal with failures at the cloud level. The typical format afser’'s Neptune code is thus
of the following form:
result = neptune :type >= :mpi,

:code = ‘/code/powermethod’,
:nodesto_use = 4
if result[:success]
puts ‘Your MPI job is now in progress.’
else
puts ‘Your MPI job failed to start.’

end

4.2.2 Design Choices

It is important to contrast the decision to design Neptuna dsmain specific lan-

guage with other configuration options that use XML or otherkap languagesp).

62

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

These languages work well for configuration but, since theyrmt Turing-complete
programming languages, they are bound to their particidacigion model. In con-
trast, Neptune’s strong binding to the Ruby programming lagg enables users to
leverage Neptune and its HPC capabilities to easily inaatedt into their own codes.
For example, Ruby is well known for its Rails web programmiragpework B2], and
Neptune’s interoperability enables Rails users to easiywspinstances of scientific
software without explicit knowledge of how Neptune or theestific computing soft-
ware operates.

Markup and workflow languages are powerful in the types ofatation that they
enable. Similarly, Neptune allows arbitrary computatiorbé connected and chained
to one another. The following example shows how the outpatBpReduce job can
be used as the input to a X10 job. Here, the MapReduce job pesdugraph repre-
senting links between web pages, while the X10 code takegythph and performs a
shortest-path algorithm from all nodes to one another. Astivee does not automati-
cally resolve data dependencies between jobs, we manwglly the execution of the

X10 job until after the MapReduce job has completed and géseits output.

neptune :type = :mapreduce,
sinput = ‘/rawdata/webdata’,
output = ‘/output/mrgraph’,

:mapreducejar = ‘/code/graph.jar’,

63

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

main = ‘main’,

:nodesto_use = 64

wait for the mapreduce job to finish
loop {
result = neptune :type = :get—output,
output = ‘/output/mrgraph’
if result[:success]
break
end

sleep (60)

neptune :type = :mpi,

sinput = ‘/output/mrgraph’,
output = ‘/output/shortestpath ’,
:code = ‘/code/ShortestPath’,

:nodesto_use = 64

64

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

To enable code reuse, we allow operations to be reused antggle Neptune job
types. For example, retrieving data and setting ACLs on datdveo operations that
occur throughout all the job types that Neptune supportsusTthe Neptune runtime
enables these operations to share a single code base fonphementation of these
functions. This feature is optional: not all software pag&may support ACLs and
a unified model for data output, so Neptune gives developersption to implement
support for only the features they require, and the abititeverage existing support as

needed.

4.3 Implementation

To enable the deployment of Neptune jobs, the cloud platfoust support a num-
ber of primitive operations. These operations are simdathbse found in computa-
tional grid and cluster utilities, such as the Portable B&gktem ¥5. The cloud
platform must be able to receive Neptune jobs, acquire ctatipnal resources to exe-
cute jobs on, run these jobs asynchronously, and place tpataf these jobs in a way
that enables users to retrieve them later or share them widr asers. For this work,
we employ the AppScale cloud platform to add these capisilit

AppScale is an open-source cloud platform that impleméetSSoogle App Engine

APIs. Users deploy applications using AppScale via eitteataf command-line tools

65

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

or a web interface. An AppScale cloud consists of one or matillited database
components, web servers, and a monitoring daemon (the Agpsllen) that coordi-
nates services across nodes in the AppScale cloud. Appifgalkements a wide range
of datastores for its database interface via popular opercedechnologies. As of its
most recent release (AppScale 1.5), it includes suppoHBase, Hypertable, MySQL
Cluster, Cassandra, Voldemort, MongoDB, MemcacheDB, ScatartsAmazon Sim-
pleDB. AppScale runs over virtualized and un-virtualizeastér resources as well as
over the Amazon EC2 and Eucalyptus cloud infrastructure® fiilh details of App-
Scale are described i28, 16).

The execution of a Neptune job follows the pattern shown gufg4.1 The user
invokes thenept une executable on a Neptune script they have written, whichlteesu
in a SOAP message being sent to the Neptune runtime (a seplaread in AppScale’s
AppController service). In the case of a compute job, the Neptruntime acquires
nodes to run the code over, configures them for use, and esethé code, storing the
output for later retrieval. In the case of a data input or atijpb, the Neptune runtime
stores or retrieves the data via the datastore.

In this section, we overview the AppScale components thatirmpacted by our
extensions enabling customized placement, automatiingcand Neptune support,

the AppScale command-line tools and the AppController

66

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

AppScale Cloud Platform (running over EC2 or Eucalyptus)

Neptune
Runtime

Neptune program
(User's Laptop)

Cloud
Services

Distributed
Datastore

MPI/ X10
jobs

Figure 4.1: AppScale cloud platform with Neptune configisratind deployment sup-
port.

4.3.1 Cloud Support

Our extensions to AppScale facilitate interoperation \W#ptune. In particular, we
modify AppScale to acquire and release machines used fopetation, and to enable
static and dynamic service placement. To do so, we modifydamponents within

AppScale: the AppScale Tools and the AppController.

AppScale Tools

The AppScale Tools are a set of command-line tools that dpeet and admin-
istrators can use to manage AppScale deployments and afomtis. In a typical de-
ployment, the user writes a configuration file specifying ahhnode in the system is

the “master” node and which nodes are the “slave” nodes. r Bsidhis work, this

67

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

meant that the master node always deployed a Database Naskzatabase Peer for
peer-to-peer databases) and AppLoadBalancer to handleoatelincoming user re-
guests, while slave nodes always deployed a Database Slaafabase Peer) and
AppServers hosting the user’s application.

We extend this configuration model to enable users to praaidenfiguration file
that identifies which nodes in the system should run eaclhicegf®.g., Database Master,
Database Slave, AppLoadBalancer, AppServer). For exampérs can specify that
they want to run each service on a dedicated machine by.itéddérnatively, users
could specify that they want their database nodes runninthersame machines as
their AppServers, and have all other components runningnamthar machine. We
also allow users to designate certain nodes in the systeropen®, which tells the
AppController that this node is free to use for Neptune joldsofespare).

We extend this support to enable hybrid cloud deploymentmi@cale, in which
nodes are not limited to a single cloud infrastructure. Hesers specify which nodes
belong to each cloud infrastructure, and then export enuent variables that corre-
spond to the credentials needed for each cloud. This is dpmertor the styles used
by Amazon EC2 and Eucalyptus. One potential use case of thischgloud support
is for users who have a small, dedicated Eucalyptus deployared access to Ama-
zon EC2: these users could use their Eucalyptus deployméedttand optimize their

code, and deploy to Amazon EC2 when more nodes are neededar8inileptune

68

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

users can use hybrid cloud support to run jobs in multipldavidity zones simultane-
ously, providing them with the ability to run computation@sse as possible to their
data. For scenarios where the application to be deployedtia mompute-intensive
application (e.g., web applications), it may be benefidansure that instances of the
application are served in as many availability zones asilplesgo ensure that users
always have access to a nearby instance. This deploymategtrgives users some
degree of fault-tolerance, in the rare cases when an enaiiahility zone is down or

temporarily inaccessibles].

AppController

The AppController is a monitoring service that runs on evargenin an AppScale
deployment. It configures and instantiates all necessawces, which typically in-
volves starting databases and running Google App Enginecappns. AppControllers
also monitor the status of each service it runs, and perdigisend heartbeat messages
to other AppControllers to aggregate this information. lireatly queries each node
to learn its CPU, memory, and hard drive usage, although ktensible to collecting
other metrics.

Our extensions enable the AppController to receive and staledl RPC (via SOAP)
messages from Neptune and to coordinate Neptune actigitiesss other nodes in

an AppScale deployment. Computational jobs and requestsutput data run asyn-

69

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

chronously within AppScale, and do not block the user’s Neptcode. All Neptune
requests are authenticated with a secret established viimg AppScale, and are
performed over SSL to prevent request sniffing.

If running in hybrid cloud deployments, AppScale spawns mvaes for each cloud
in which the user has requested machines, with the credketiia the user has pro-
vided. Any hot spares (machines indicated as “open”) areiesd) before new nodes
are spawned. The AppController records which cloud each meactins in, so that
Neptune jobs can ask for nodes within specific cloud or moaa thne cloud. Addi-
tionally, as cloud infrastructures currently meter on alpaur basis, we have modified
the AppController to be cognizant of this and reuse virtuathiges between Neptune
jobs. Within AppScale, any virtual machine that is not rungna Neptune job at the
55-minute mark is terminated; all other machines are reddareanother hour.

Administrators query AppScale via either the AppScale Sawlthe web interface
provided by the AppLoadBalancer. These interfaces informiastrators about the
jobs in progress and, in hybrid cloud deployments, whicludtare running which
jobs. These interfaces do not actually run Neptune jobs teract with them, but
simply describe their status as reported to them by the AppGlitar.

A perk of offering this service at the cloud platform layethsit the platform can
profile the usage patterns of the underlying system and aora@iagly (since a well-

specified set of APIs are offered to users). We provide cugtdrte scheduling mecha-

70

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

nisms for scenarios when the user is unsure how many nodescarieed to achieve op-
timal performance. This use case is unlikely to occur fohhjiguned codes, but more
likely to occur within HTC and MTC applications, where thedeomay not be as well
tuned for high performance. Users only need specify how nmaaes the application
can run over, a required parameter because Neptune doegnfminp static analysis
of the user’s code, and oftentimes specific numbers of nogeszguired (e.g., pow-
ers of two). Neptune then employs a hill-climbing algorittondetermine how many
machines to acquire: given an initial guess, Neptune aegtirat many machines and
runs the user’s job, recording the total execution time &er use. On subsequent job
requests, Neptune tries the next highest number of node$obows this strategy until
the execution time fails to improve. Our initial release atline provides scheduling
based on total execution time, total cost incurred (e.gjuiae more nodes only if it
costs less to do so), or a weighted average of the two. Thiaviomhis customizable,
and is open to experimentation via alternative schedulers.

More appropriate to scientists using cloud technologig¢lesability to automati-
cally choose the type of instance acquired for computat@oud infrastructure providers
offer a wide variety of machines, referred to as “instange$y, that differ in terms of
cost and performance. Inexpensive instance types offerclespute power and mem-
ory, while more expensive instance types offer more compateer and memory. If

the user does not specify an instance type to use, Neptuhautoimatically acquire a

71

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

compute-intensive instance. A benefit of this strategy as §ince these machines are
among the more expensive machines available, the virtuethima reuse techniques we
employ amortize their cost between multiple users for jblas do not run in 60-minute

increments (the billing quantum used in Amazon EC2).

AppServer

The AppServer is a modified version of the Google App Engin& $iitat runs a
user’s App Engine application. Applications can be writteRython, Java, or Go, and
can utilize APIs that provide a variety of features, inchglstorage capabilities (via
the Datastore and Blobstore) and communication capabiltia Mail and XMPP).

For this work, we modify the AppServer to add an additional:Alfe Neptune API.
This API allows users to initiate Neptune jobs from within pARngine applications
hosted on AppScale, and thus provides a mechanism by whibhapglications can
execute high performance computation. This also opens up tdRjreater audiences
of users, including those who want to run their codes frorfetght types of platforms

(e.g., via their smartphone or tablet computer).

4.3.2 Jobh Data

Clouds that run Neptune jobs must allow for data stored reljntaebe imported

and used as job inputs. Jobs can consume zero or more filepws,itut always

72

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

produce exactly one piece of output, a string containingstbadard out generated by
the executed code. Neptune refers to data as three-tupteng@ sontaining the job’s
identification number, a string containing the output of jiile and a composite type
indicating its access policy. The access policy used wikeptune is similar to that of
the access policy used by Amazon’s Simple Storage Serg|ca [particular piece of
data can be tagged as either private (only visible to the theg¢uploaded it) or public
(visible to anyone). Data is by default private but can bengea by the user, via a
Neptune job. Similarly, data is referenced as though it vere file-system: paths
must begin with a forward-slash (/) and can be compartrakzed into folders in the
familiar manner. The data itself is accessed via a GoogleEmpne application that is
automatically started when AppScale starts, and can bedstoternally via AppScale
or externally via Amazon S3. This allows jobs to automalycsdve their outputs in any
datastore that AppScale supports, or any service that iscARIpatible with Amazon
S3 (e.g., Google Storage, Eucalyptus Walrus). The Neptrogram to set the ACL of

a particular piece of data to be public is:
neptune :type = ‘set—acl’,
;output = ‘/mydata/nqueensoutput’,
racl = ‘public’
Just as a Neptune job can be used to set the ACL for a piece ofaddptune job
can also be used to get the ACL for a piece of data:

73

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

acl_data = neptune :type = ‘get—acl’,
output = ‘/mydata/nqueensoutput’

puts ‘The current ACL is:’ + acldata[: acl]

Retrieving the output of a given job is also done via a Neptobe By default, it
returns a string containing the results of the job. As mabg j@turn data that is far too
large to efficiently be used in this manner, a special parantatn be used to instead
indicate that it should be copied to the local machine. Thiewang Neptune code

illustrates both use cases (note that#heharacter is Ruby’s comment character):

for a job with small output

result = neptune :type = ‘get—output’,
output = ‘/mydata/boo’

puts ‘Output is: ' + result[:output]

for a job with much larger output
result = neptune :type = ‘get—output’,
:output = ‘/mydata/booe-large ',
:saveto_local = ‘/shared/boelarge.txt’
if result[:success]

puts ‘Output copied successfully.’

end

74

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

4.3.3 Employing Neptune for HPC Frameworks

To support HPC applications within cloud platforms, seyvice-izehem for use
via Neptune. Specifically, Neptune provides support for MI0, MapReduce, UPC,
and Erlang, to enable users to run arbitrary codes for éiffecomputational models.
While these general purpose languages and frameworks aid teethe scientific
community as a whole, Neptune also seeks to engender supparthe biochemical
simulation community. These groups of HPC perform simafaivia kinetic Monte
Carlo methods (specifically, the Stochastic Simulation Atga), and often need to
run a large number of these simulations (on a minimum ord&é9fto gain statistical
accuracy. Neptune supports use of StochKit, a general parB&A implementation,
as well as DFSP and dwSSA, two specialized SSA implementtio

As users may not have these libraries and runtimes instialtzdly, Neptune also
provides the ability to remotely compile their code (regdifor the non-SSA computa-
tional models), and is extensible to support non-compuénsive application domains,

such as web services.

MPI

The Message Passing Interface (MRI§][is a popular, general purpose computa-
tional framework for distributed scientific computing. Thmst popular implementa-

tion is written in a combination of C, C++, and assembly. Imptatations exist for

75

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

many other programming languages, such as Fortran, Jay&yahon. AppScale em-
ploys the C/C++ version, enabling developers to write codéleeof these languages
to access MPI bindings within AppScale. The developer ussgstiNie to specify the
location of the compiled application binary and output datal this information is sent
from Neptune to the AppController.

Following the MPI execution model, one compute node is degigd as a master
node, and all other nodes are referred to as slave nodes. abEmmode starts up
NFS on all nodes, mounts a shared filesystem on all slave pagesrpdboot on its
own node, and executes the user’s code on its nodepiig&xec, piping the output
of the job to a file on its local filesystem. Once it has compuletbe master node runs
npdal | exi t and stores the standard output and standard error of théh@lbgsults)
in the database that the user has requested, for latevedtrien example of how a user

would run an MPI job is as follows:

neptune :type = :mpi,
:code = ‘/code/powermethod’,
:nodesto_use = 4,

output = ‘/output/powermethod. txt’

In this example, we specify the location where the compilediecto execute is lo-
cated (stored via a previous Neptune job). The user alsoatel how many machines

are required to run their MPI code and where the output of dbeshould be placed.

76

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

Note that this program does not use any inputs, nor need te terany files on disk as
part of its output. Neptune can be extended to do so, if nacgsd/e also can designate
which shared file system to use when running MPI. Currentlyswsport NFS and are
working on support for the Lustre Distributed File Systegf][

We also note that many HPC applications require a high padace, low latency
interconnect. If running over Amazon EC2, users can acqghisevia the Cluster Com-
pute Instances they provided, and in Eucalyptus, a cloudeahysically constructed
with the required network hardware. If the user does not lzeess to this type of
hardware, and their program requires it, their program mdfeisfrom degraded per-

formance, or may not run at all.

X10

While MPI is suitable for many types of application domainse @emand in com-
puting has been to enable programmers to write fast, seatafgle using a high-level
programming language. In addition, as many years of resd@ge gone into opti-
mizing virtual machine technologies, it is also desiralded new technology to be
able to leverage this work. In this spirit, IBM introduced t§&0 programming lan-
guage B5], which uses a Java-like syntax, and can execute trandpacer either a

non-distributed Java backend or a distributed MPI back&he. Java backend enables

77

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

developers to develop and test their code quickly, andzatiiava libraries, while the

MPI backend allows the code to be run over as many machinég asér can acquire.
As X10 code can compile to executables for use by MPI, X10 gsbgeducible to

MPI jobs. Thus the following Neptune code deploys an X10 ataale that has been

compiled for use with MPI:

neptune :type = :mpi,
:code = ‘/code/NQueensDist’,
:nodesto_use = 2,

output = ‘/output/nqueensx10.txt’

With the combination of MPI and X10 within Neptune, users tawially write
algorithms in both frameworks and (provided a common ouipumat exists) compare
the results of a particular algorithm to ensure correctaessss implementations. One
example used in this paper is the- queens algorithm BQ], an algorithm that, given
an chess board of size x n, determines how many ways queens can be placed
on the board without threatening one another. The folloviiegtune code illustrates
how to verify the results produced by an MPI implementatigaiast that of an X10

implementation (assuming both codes are already storedtedynt

run mpi version

neptune :type = :mpi,

78

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

:code = ‘/code/MpiNQueens’,
:nodesto_use > 4,

output = ‘/mpi/nqueens’

run x10 version

neptune :type = :mpi,

:code = ‘/code/X10NQueens’,
nodesto_use = 4,

;output = ‘/x10/nqueens’

wait for mpi version to finish
loop {
mpi_data = neptune :type>= ‘output’,
routput = ‘/mpi/nqueens’
if mpi_data[:success]
break
end

sleep (60)

79

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

wait for x10 version to finish
loop {
x10_data = neptune :type >= ‘output’,
output = ‘/x10/nqueens’
if x10_data[:success]
break
end

sleep (60)

if mpi_data[:output] == x1Qdata[: output]
puts ‘Output matched!’
else

puts ‘Output did not match.’

end

Output jobs return a hash containingguccess parameter, indicating whether or
not the output exists. We leverage this to determine wheodhgute job that generates

this output has finished. Theout put parameter in aout put job contains a string

80

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

corresponding to the standard out of the job itself, and veeRugy’s string comparison

operator £€=) to compare the outputs for equality.

MapReduce

Popularized by Google in 2004 for its internal data procesi3], the map-reduce
programming paradigm (MapReduce) has experienced a rem@rgad renewed inter-
est. In contrast to the general-purpose message passiagigrarembodied in MPI,
MapReduce targets embarrassingly parallel problems. Usexsde input, which is
split across multiple instances of a user-defined Map foncflhe output of this func-
tion is then sorted based on a key provided by the Map funcéiod all outputs with
the same key are given to a user-defined Reduce function, wypatally aggregates
the data. As no communication can be done by the user in theaMidReduce phases,
these programs are highly amenable to parallelization.

Hadoop provides an open-source implementation of MapRetthateuns over the
Hadoop Distributed File System (HDF$(. The standard implementation requires
users to write their code in the Java programming languabie whe Hadoop Stream-
ing implementation faciliates writing code in any programgilanguage. Neptune
has support for both implementations. Users provide a Jaave file (JAR) for the
standard implementation, or Map and Reduce applicationthioiStreaming imple-

mentation.

81

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

AppScale retrieves the user’s files from the desired datagedocation, and runs
the job on the Neptune-specified nodes in the system. Incp&atj the AppController
contacts the Hadoop JobTracker node with this informaaod, polls Hadoop until the
job completes (indicated by the output location having aatéten to it). When this
occurs, Neptune copies the data back to a user-specifietibloc&rom the user’s per-
spective, the necessary Neptune code to run code writtérthgtstandard MapReduce

implementation is:

neptune :type = :mapreduce,

sinput = ‘/input/input—text.txt’,
coutput = ‘/output/mroutput.txt’,
:mapreducejar = ‘/code/example.jar’,
“main = ‘wordcount’,

:nodesto_use = 4

As was the case with MPI jobs, the user specifies where thd tophe MapRe-
duce job is located, where to write the output to, and wheeectbde to execute is
located. Users also specify how many nodes they want to rin ¢bde over. App-
Scale normally stores inputs and outputs in a datastorgpa@ts or Amazon S3, but
for MapReduce jobs, it also supports the Hadoop DistributkedIystem (HDFS). This

can result in Neptune copying data to HDFS from S3 (and versa)), but an extra pa-

82

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

rameter can be used to indicate that the input already eristBFS, to skip this extra

copy operation.

Unified Parallel C

Unified Parallel C B8] is a superset of the C programming language that aims to
simplify HPC applications via the Partitioned Global Adske&Space (PGAS) program-
ming model. UPC allows developers to write applicationd thee shared memory
in lieu of the message passing model that other programnainguiages offer (e.g.,
MPI). UPC also can be deployed over a number of runtimes; safrttfeese backends
include specialized support for shared memory machinesstisas optimized perfor-
mance when specialized networking equipment is availdbRC programs deployed
via Neptune can use any backend supported by the underliong platform, and as
we use AppScale in this work, three backends are availab&e SMP backend, opti-
mized for single node deployments, the UDP backend, foribiged deployments, and
the MPI backend, which leverages the mature MPI runtime.

UPC code can be deployed in Neptune in a manner analogouattoftbther pro-
gramming languages. If a UPC backend is not specifiedMalkeef i | e with the user’'s
code, the MPI backend is automatically selected. As we haxgded our code with
the MPI backend, the Neptune code needed is identical toused in MPI deploy-

ments:

83

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

result = neptune :type >= :mpi,
:code = ‘“/ring—compiled/Ring’,
:nodesto_use = 4,
:procs.to_use = 4,

output = ‘/upc/ring—output’

inspect is Ruby’s method to print a hash

puts result.inspect

As shown here, users need only specify the location of thewgable, how many
nodes to use, and where the output should be placed. We etttendPI| support
that Neptune offers to enable users to specify how many psaseshould be spawned.
This allows for deployments where the number of processgeeester than that of the
number of available nodes (and are thus overprovisioned,can take advantage of

scenarios where the instance types requested have mora $ivagle core present.

Erlang

Erlang B] is a concurrent programming language developed by EncHsat uses
a message passing interface similar to that of MPI. WhileratifeC offerings try to
engender a larger user community by basing their languayeitax, semantics, or

runtime on that of C or Java (e.g., MPI, UPC, and X10), Erlangsdaot. The stated

84

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

reason for this is that Erlang seeks to optimize the useds @t the single assignment
model, which enables a higher degree of compile-time opttion than the model
used by C-style languages.

While Erlang’s concurrent programming constructs extendistributed comput-
ing, Erlang does not provide a parallel job launcher analsgo those provided by
MPI (via npi exec), Hadoop MapReduce, X10, and UPC. These job launchers do
not require the user to hardcode IP addresses in their ceds,raquired by Erlang
programs.

Due to this limitation, we support only the concurrent peagming model that
Erlang offers. We are currently investigating ways to audtenthe process for the
distributed version. Users write Erlang code witimed n method, as is standard Erlang
programming practice, and this method is then invoked bEScale cloud platform
on a machine allocated for use with Erlang.

The Neptune code needed to deploy a piece of Erlang code iisistmthat of the

other supported languages:

neptune :type = :erlang,

:code = ‘"/ring—compiled/ring.beam’,
output = ‘/erlang—output.txt’,

:nodesto_use = 1

85

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

In this example, we specify that we wish to use a single ndaepath on the local
filesystem where the compiled code can be found, and whewitpat of the execution

should be placed.

Compilation Support

Before MPI, X10, MapReduce, UPC, or Erlang jobs can be run, tegquire the
user’s code to be compiled. Although the target architecftire machines that App-
Scale runs over) may be the same as the architecture thatithist has compiled
their code on, it is not guaranteed to be so. It is thereforessary to offer remote
compilation support, so that no matter what platform the uses, whether it be a 32-
bit laptop, a 64-bit server, or even a tablet computer thatehtext editor and internet
connection, code can be compiled and run. The Neptune cogéred to compile a

given piece of source code is:

result = neptune :type = :compile,
:code = ‘"/ring’,

:main = ‘Ring.x10",

output = ‘/output/ring’,

:copyto = ‘"/ring—compiled’

puts result.inspect

86

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

This Neptune code requires the user to indicate only whesie tode is located
and which code is the main executable (as opposed to beitgaaylior other ancil-
lary code). Scientists may providekef i | es if they like. If they do not, Neptune
attempts to generate one for them based on the file’s extensits contents. Neptune
cannot generateakef i | es for all scenarios, but can do so for many scenarios where

the user may not be comfortable with writingrakefi | e.

StochKit

To enable general purpose SSA programming support for tsstignNeptune pro-
vides support for StochKit, an open source biochemical kitran software package.
StochKit provides stochastic solvers for several variafithe Stochastic Simulation
Algorithm (SSA), and provides the mechanisms for the ststtaimulation of ar-
bitrary models. Scientists describe their models by spegjfthem in the Systems
Biology Markup Language (SBML)FE]. In this work, we simulate a model included
with StochKit, known aseat - shock- 10x. This model is a ten-fold expansion of
the system that models the heat shock respongesamerichia coli[39]. Figure4.2
shows results from a statistical analysis on an ensemblienofi@ted trajectories from
this model.

Typically scientists utilizing the SSA run a large numbersohulations to ensure

enough statistical accuracy in their results. As the nunobermulations to run may

87

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

120

1001 I data set 1

I data set 2

80

[2]
5
8 60f Euclidian d=0.038 Manhattan d=0.100 -
et
£
40t 8
20 1
0 — ‘ ‘
-10 0 10 20 30 40 50 60 70
Bin Centers
Br=—t———

-~ - — _

| - Index 4

population

Figure 4.2: Plots showing statistical results from Stod¢dfochastic simulations of
the heat shock model. (Left) Comparison of probability dgnbkistograms from
two independent ensembles of trajectories, and the hestoglistance between them.
The histogram self-distance is used to determine the cordel®or a given ensemble
size. (Right) Time-series plots of the mean (solid lines) statndard-deviation bounds
(dashed lines) for two biochemical species.

88

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

not be known a priori, scientists often have to run a numbesirafilations, see if the
requested confidence level has been achieved, and if thisdhagcurred, the process

repeats. The Neptune code required to do this is trivial:

confidenceneeded = 0.95

i =0

loop {

neptune :type = :ssa,
nodesto_use = 4,
:tar = ‘/code/ssa.tar.gz’
:simulations = 100000,

coutput = ‘/mydata/run-#{i}’

wait for ssa job to finish

loop {

ssadata = neptune :type>= ‘get—output’,
coutput = ‘/mydata/run—#{i}’

if ssadata[:success]

break

end

sleep (60)

89

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

confidenceachieved = ssadata[:output]
if confidenceachieved-confidenceneeded
break
else
puts ‘Sufficient confidence not reached.’
end

i +=1

To enable StochKit support within Neptune, we automatydalitall StochKit within
newly created AppScale neptune/images by fetching it frolmcal repository. It is
placed in a predetermined location on the image and mad&bleato user-specified
scripts via its standard executables. It is possible toirequsers to run a Neptune
: conpi | e job that would install StochKit in an on-demand fashion, \»et elect to
preinstall it, to reduce the number of steps required to r8toahKit job. Additionally,
while forcing a compilation step is possible, the user'scBkit code often consists of
biochemical models andl@ash script, which do not need to be compiled to execute

and thus do not fall under the domain of eonpi | e job.

90

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

As StochKit does not run in a distributed fashion, the App@algr coordinates the
machines that the user requests to run their SSA computdtmrthe example above,
in which four nodes are to be used to run 100,000 simulatideptune instructs each

node to run 25,000 simulations.

DFSP

One specialized SSA implementation supported by NeptutieiBiffusive Finite
State Projection algorithm (DFSF34], a high-performance method for simulating spa-
tially inhomogenous stochastic biochemical systems, sgdhose found inside living
cells. The example system that we examine here is a biologiodel of yeast po-
larization, known as the G-protein cycle example, shown3#.[Yeast cells break
their spatial symmetry and polarize in response to an exdHalar gradient of mating
pheromones. The dynamics of the system are modeled usirgidtleastic reaction-
diffusion master equation. Figude3 shows visualizations from stochastic simulations
of this model.

The code for the DFSP implementation is a tarball contail@ngnguage source
and an accompanyingakef i | e. The executable produces a single trajectory for each
instance that is run. As this simulation is a stochasticesysein ensemble of indepen-
dent trajectories are required for statistical analysis0Q0 trajectories are needed to

minimize error to acceptable levels. The Neptune code rieedein this is:

91

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

molecules

{ ,'
j “‘ .‘% l |

AL
oy

\

100

space time

0.9
0.8
0.7F
0.6
(M " I]
05} ‘ e M‘h\ (NNL "

0.4} iyt

Normalized Concentration

03} i

0.2 f
‘ Ligand

— — — Bound Receptor
— — — Activated G-Protein

0.1F

-8 -6 -4 -2 0 2 4 6 8
space

Figure 4.3: Two plots of the DFSP example model of yeast maton. (Left)
Temporal-Spatial profile of activated G-protein. Stocttasimulation reproduces the
noise in the protein population that is inherent to thiseyst(Right) Overlay of three
biochemical species populations across the yeast cell mamab the extra-cellular
pheromone ligand, the ligand bound with membrane receptat,the G-protein ac-
tivated by a bound receptor.

92

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

status = neptune :type>=:ssa,
nodesto_use = 64,

:tar = ‘/code/dfsp.tar.gz’,

output = ‘/outputs/ssaoutput’,
:storage > ‘s3’7,

:EC2 ACCESSKEY => ENV[‘S3_ACCESSKEY'],
:EC2SECRETKEY => ENV[‘S3_.SECRETKEY'],
:S3URL => ENV[‘S3.URL'],

:trajectories = 10000,

puts status.inspect

In this example, the scientist has indicated that they wastun their DFSP code,
stored remotely atcode/ df sp. t ar. gz, over 64 machines. The scientist here has
also specified that their code should be retrieved from Ame&® with the provided
credentials, and that the output should be saved back to &ma32. Finally, the scien-
tist has indicated that 10,000 simulations should be rure Stbrage-specific parame-
ters used here are not specific to DFSP or SSA jobs, and caredewih any type of
computation.

To enable DFSP support within Neptune, we automaticalltalhsupport for the

GNU Scientific Library (GSL) when we generate a new AppScalage. The user’s

93

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

DFSP code can then utilize it within its computations in tame fashion as if it were
installed on their local computer. Neptune does not culrgmbvide a general model
for determining library dependencies, as versioning aBliles can make this problem
difficult to handle in an automated fashion. However, Neptdoes allow an expert
user to manually install the required libraries a singlectiamd enable the community

at large to benefit.

dwSSA

Another specialized SSA implementation we support witheptdine is the dwSSA,
the doubly weighed SSA coupled with the cross-entropy ntethbhe dwSSA is a
method for accurate estimation of rare event probabilitiesochastic biochemical sys-
tems. Rare events, events with probabilities no larger thah, often have significant
conseqguences to biological systems, yet estimating thadst® be computationally
infeasible. The dwSSA accelerates the estimation of theaseavents by significantly
reducing the number of trajectories required. This is aqad@ied using importance
sampling, which effectively biases the system toward therdd rare event, and re-
duces the number of trajectories simulated by several safanagnitude.

The system we examine in this work is the birth-death proskesn in B1]. The
rare event that this model attempts to determine is the pitifyathat the stochastic

fluctuations of this system will double the population of tteemical species. The

94

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

model requires the simulation of 1,000,000 trajectorieadourately characterize the
rare event probability. The code for this example is a caliptg of source files written
in R (for model definition and rare event calculations) andaC €fficient generation of
stochastic trajectories). The Neptune code needed to eudvii$SA implementation is
identical to that of DFSP and StochKit: users simply suph8irtown tarball with the
dwSSA code in place of a different SSA implementation. AheheSSA simulation
takes a trivial amount of time to run, we customize it to tedk®an input, the number
of simulations to run. This minimizes the amount of time wdsdetting up and tearing
down the R environment.

To enable dwSSA support within Neptune, we automaticaklyath support for the
R programming language when we generate a new AppScale im&gealso place
the R executables in a predetermined location for use by épleSand Neptune and
use R’s batch facilities to instruct R to never save the usesikspace (environment)

between R executions, as is the default behavior.

4.3.4 Employing Neptune for Cloud Scaling and Enabling Hybrid

Clouds

Our goal with Neptune is to simplify configuration and depi@nt of HPC ap-
plications. However, Neptune is flexible enough to be usetth wiher application

domains. Specifically, Neptune can be used to control thingcand placement of

95

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

services within the underlying cloud platform. Furthereaif the platform supports
hybrid cloud placement strategies, Neptune can control $ewices are placed. This
allows Neptune to be used for both high throughput computitC) and many task
computing (MTC). In the former case, resources can be clainoed multiple cloud
infrastructures to serve user jobs. In the latter case, eptan be used to serve both
compute-intensive jobs as well as web service programs.

To demonstrate this, we use Neptune to enable users to nhascalle up a running
AppScale deployment. Users need only specify which compidhey wish to scale up
(e.g., the load balancer, application server, or databarserd and how many of them
they require. This reduces the typically difficult problefnsoaling up a cloud to the

following Neptune code:

neptune :type = :appscale,

:nodesto_use = {:cloudl = 3,
:cloud2 = 6},

radd.component > ‘appengine’,

:time_neededfor => 3600

In this example, the user has specified that they wish to adglapplication servers
to their AppScale deployment, and that these machines &aedeor one hour. Fur-
thermore, three of the servers should be placed in the fiosidcthat the platform is

running over, while six servers should be placed in the sectoud. Defining which

96

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

cloud is the “first cloud” and which cloud is the “second clbigldone by the cloud
administrator, via the AppScale Tools (see Section 4.THis type of scaling is useful
when the amount of load in both clouds is known: here, thiseful if both clouds are
over-provisioned, but the second is either expecting gragdffic in the near future or
is sustaining more load than the first cloud.

Scaling and automation are only amenable to the same degrée ainderlying
services allow for. For example, while the Cassandra dateddbsvs nodes to be added
to the system dynamically, users cannot add more nodes system than already exist
(e.g., in a system witlV nodes, no more thaN — 1 nodes can be added at a tim24].
Therefore, if more than the allowed for number of nodes aexled, either multiple
Neptune jobs must be submitted or the cloud platform musirélikis complexity into

its scaling mechanisms.

4.3.5 Limitations

Neptune enables automatic configuration and deploymenbfokare by a cloud
platform to the extent that the underlying software allolss thus important to make
explicit scenarios in which Neptune encounters difficsltias they are the same sce-
narios in which the supported software packages are notanteto being placed in a

cloud platform. From the end-users we have designed Neptuzie, we have experi-

97

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

enced three common problems that are not specific to Neptunealwstributed systems

(e.g., clouds, grids) in general:

e Codes that require a unique identifier, whether it be an |Pessdsr process name
to be used to locate each machine in the computation (e.dti-mode Erlang
computations). This is distinct from the case where the é&aork requires IP
addresses to be hardcoded, as these frameworks (like MRiptdequire the

end-user’s code to be modified in any way or be aware of a nteleddress.

e Programs that have highly specialized libraries for energibut are not free /
open-source, and thus are currently difficult to dynamycatiquire and release

licenses for.

¢ Algorithms that require a high-speed interconnect thatinum cloud infrastruc-
ture that does not offer one. These algorithms may suffen legraded perfor-
mance or may not work correctly at all. The impact of this cambtigated by
choosing a cloud infrastructure that does provide such tmiong (e.g., Cluster
Compute Instances for Amazon EC2, or a Eucalyptus cloud witkiai network

hardware).

We are investigating how to mitigate these limitations ag paour future work.
For unique identifiers, it is possible to have Neptune takarampeter containing a list

of process identifiers to use within computation. For ligegdssues, we can have

98

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

the cloud fabric make licenses available on a per-use bagigScale can then guide

developers to clouds that have the appropriate licensekdarapplication.

4.3.6 Extensibility

Neptune is designed to be extensible, both in the types ofjgported and the
infrastructures that it can harness. Developers who wistdtb support for a given
software framework within Neptune need to modify the Neptlanguage component
as well as the Neptune runtime within the cloud platform tlegieives Neptune job
requests. In the Neptune language component, the deveiepés to indicate which
parameters users need to specify in their Neptune code [eyg. input and output
should be handled), and if any framework-specific pararaetbould be exposed to
the user. At the cloud platform layer, the developer needsltbfunctionality that can
understand the particulars of their Neptune job. This oftanslates into performing
special requests based on the parameters present (or)abseiNeptune job request.
For example, MapReduce users can specify that the input becctspm the local file
system to the Hadoop Distributed File System. Our impleateat within AppScale
skips this step if the user indicates that the input is alygadsent within HDFS. Once
a single, expert developer has added support for a job tygrenaNeptune and App-
Scale, it can then be automatically configured and deploy@ddcommunity at large,

without requiring them to become an expert user.

99

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

4.4 Evaluation

We next use Neptune to empirically evaluate how effectiviedysupported services
execute within AppScale. We begin by presenting our expamtad methodology and

then discuss our results.

4.4.1 Methodology

To evaluate the software packages supported by Neptunesevbanchmarks and
sample applications provided by each. We also measure steotounning Neptune
jobs with and without VM reuse.

To evaluate our support for MPI, we use a Power Method impigat®n that, at
its core, multiplies a matrix by a vector (the standdt Vec operation) to find the
absolute value of the largest eigenvalue of the matrix. V\d®sé this code over more
standard codes such as the Intel MPI Benchmarks becausts iatesmber of the MPI
primitives working in tandem, producing a code that showlales with respect to the
number of nodes in the system. By contrast, the Intel MPI Berecksnlargely mea-
sure interprocess communication time or the time taken $omgle primitive operation,
which is likely to scale negatively as the number of nodesaase (e.g., barrier oper-

ations are likely to take longer when more nodes partic)paide use a 6400x6400

100

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

matrix and 6400x1 vector to ensure that the size of the nestrevenly divides the
number of nodes in the computation.

For X10, our evaluation uses an NQueens implementationgbylalvailable from
the X10 team that is optimized for multiple machines. To easusufficient amount
of computation is available, we set = 16, thus creating a 16x16 chessboard and
placing 16 queens on the board. For comparison purposedMfthwe also include
an optimized MPI version publicly made available be the axglof [80]. It is also set
to use a 16x16 chessboard, using a single node to distritarteacross machines and
the others to perform the actual work involved.

To evaluate our support for MapReduce, we use the publiclijadola Java Word-
Count benchmark, which takes an input data set and finds théemoh occurrences
of each word in that set. Each Map task is assigned a seriegesffrom the input text,
and for every word it finds, it reports this with an associatednt of one. Each Reduce
task then sums the counts for each word and saves the reshi tmutput file. Our
input file consists of the works of William Shakespeare aplpéeno itself 500 times,
producing an input file roughly 2.5GB in size.

We evaluate UPC and Erlang by means of a Thread Ring bencharatlcompare
them to reference implementations in MPIl and X10. Each cog#ements the same
functionality: a fixed number of processes are spawned ogarea number of nodes,

and each thread is assigned a unique identifier. The firsadipasses a message to the

101

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

next thread, who then continues doing so until the last threeeives the message. The
final thread sends the message to the first thread, connélgrreads in a ring-like
fashion. This is repeated a given number of times to comheterogram’s execution.

In our first Thread Ring experiment, we fix the number of messagde sent to
100 and fix the number of threads to spawn to 64. We vary the ruofinodes to use
between 1, 2, 4, 8, 16, 32, and 64 nodes, to determine therpen@e improvement
that can be achieved by increasing the amount of availaligatation power.

In our second Thread Ring experiment, we fix the number of ngess® be sent to
100, and fix the number of nodes to use at 8 nodes. We then v@nuthber of threads
to spawn between 2, 4, 8, 16, 32, and 64 threads, to deterh@rimpact of increasing
the number of threads that must be scheduled on a fixed nurhbexahines.

Our third Thread Ring experiment fixes the number of nodes¢aus nodes, and
fixes the number of threads to use at 64 threads. We then vanutinber of messages
to send between 1, 10, 100, 1000, and 10000, to determineetii@mance costs of
increasing the number of messages that must be sent arceiddsttibuted thread ring
in each implementation.

For our SSA codes, DFSP and dwSSA, we run 10,000 and 1,006i00ations,
respectively, and measure the total execution time. Asioresd earlier, previous work
in each of these papers indicate that these numbers of gsiondare the minimum that

scientists typically must run to achieve a reasonable acgur

102

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

We execute the non-Thread Ring experiments over differentustyc AppScale
cloud deployments of 1, 4, 8, 16, 32, and 64 nodes. In all c&seh node is a Xen
guestVM that executes with 1 virtual processor, 10GB of ¢s&ximum), and 1GB of
memory. The physical machines that we deploy VMs to execite8\processors, 1TB
of disk, and 16GB of memory. We employ a placement strategyiged by AppScale
where one node deploys an AppLoadBalancer (ALB) and Databese(PBP), and
the other nodes are designated as “open” (that is, they catalmeed for any role by
the AppController as needed). Since no Google App Enginecgtjans are deployed,
no AppServers run in the system. All values reported henesgmt the average of five
runs.

For these experiments, Neptune employs AppScale 1.5, MPICBIApl, X10
2.1.0, Hadoop MapReduce 0.20.0, UPC 2.12.1, Erlang R13BODFRS implemen-
tation graciously made available by the authors of the DF&fepR6], the dwSSA
implementation graciously made available by the authots@tiwSSA papeidl], and

the StochKit implementation publicly made available onphgect’s web site§9].

4.4.2 Experimental Results

We begin by discussing the performance of the MPIl and X10 Pðod codes
within Neptune. We time only the computation and any neggssammunication re-

quired for the computation; thus, we exclude the time ta N&S, to write MPI con-

103

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

figuration files, and to start prerequisite MPI servicesuFaeg .4 presents these results.

Table4.1 presents the parallel efficiency, given by the standard ditam

T
E=-L (4.1)
pT,

where E denotes the parallel efficiency; denotes the running time of the algorithm

running on a single node,denotes the number of processors used in the computation,

and7, denotes the running time of the algorithm runningpgorocessors.

300

—~
3
250
g \
S ! ot
2 200, T
N \ -
) \ I
E 150 J
" — | /
(o 1 S/
o 100} y
c ! /
— | /
c Ll I /
c i ~ _/
S 50 ~u
e
O Il Il Il Il Il
0 10 20 30 40 50

60 70

Number of Nodes

Figure 4.4: Average running time for the Power Method codbzuntg MPI over
varying numbers of nodes.

These timings include runningetias reported by
M PI _Wtime and do not include NFS and MPI startup and shutdown times.

Both Figure4.4and Table4.1show clear trends: speedups are initially achieved as

nodes are increased to the system, but the decreasingspafédiiencies show that this

104

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

Table 4.1: Parallel efficiency for the Power Method codeizitiy MPI over varying
numbers of nodes.

of Nodes| MPI Parallel Efficiency
4 0.9285
8 0.4776
16 0.3358
32 0.0488
64 0.0176

scalability does not extend up through 64 nodes. Furthexntbe running time of the
Power Method code increases after using 16 nodes. Analgsig YAMPIR [93], a
standard tool for MPI program visualization, shows thatdbkective broadcast calls
used are the bottleneck, becoming increasingly so as thé@wuof nodes increase in
the system. This is an important point to reiterate: singetiige simply runs supported
codes on varying numbers of nodes, the original code’sérwtiks remain present and
are not optimized away.

The MPI and X10 n-queens codes encounter a different typeatihg compared to
our Power Method code. Figure5shows these trends: the MPI code’s performance
is optimal at 4 nodes, while the X10’s code performance isngdtat 16 nodes. The
X10 n-queens code suffers substantially at the lower nusndiemodes compared to its
MPI counterpart; this is likely due to its relatively new Westealing algorithm, and is
believed to be improved in subsequent versions of X10. Brassio the rationale for the
larger standard deviation encountered in the X10 test. Wepmarallel efficiencies for

this code because the MPI code dedicates the first node tdinate the computation,

105

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

which precludes us from computing the time needed to runcibile on a single node

(a required value).

3000

—S— MPI

—~
%) - — X10
© L
o 2500 }
o |
D \
2

& 000"
N |
(] |
£ 1500[
= |1
O 1000 \
IE \ $
c E\v\ -
% 500 : \%_b__,_..—a-i’
x

0 ‘ ; ; ; ; ;

0 10 20 30 40 50 60 70

Number of Nodes
Figure 4.5: Average running time for the n-queens codeziuigi MPl and X10
over varying numbers of nodes. These timings include runtime as reported by
M PI _Wtime andSystem.nanoTime, respectively. These times do not include NFS
and MPI startup and shutdown times.

MapReduce WordCount experiences a superior scale-up cothjpaoeir MPI and
X10 codes. This is largely because this MapReduce code izl by Hadoop and
does not communicate between nodes, except between the MaReduce phases.
Figure4.6 and Table4.2 show the running times of WordCount via Neptune. As with

MPI, we measure computation time and not the time incurradisg and stopping

Hadoop.

106

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

1600

B viool
L)
- 1400 \
S |
1200}
o I
) ‘l
&1000 :
a) |
& 800 |
= |
= 600} ‘\
g’ |
‘= 400f '\
[i\
S 200} R
T \'“—-——.—-————-———~~l
0 ‘ ‘ ‘ ‘ ‘ ‘
h 10 20 30 40

50 60 70

Number of Nodes

Figure 4.6: Average running time for WordCount utilizing MRgduce over varying

numbers of nodes. These timings include Hadoop MapReduceémeas and do not
include Hadoop startup or shutdown times.

Figure4.6 and Table4.2 show opposing trends compared to the MPI results. With
our MapReduce code, we see consistent speedups as more roddsded to the sys-
tem, although with a diminishing impact as we add more nodekd system. This is
clear from the decreasing parallel efficiencies, and asdtagfore, these speedups are
not related to MapReduce or MPI specifically, but are due tgptiograms evaluated
here. WordCount sees a superior speedup compared to the Fieterd code due to

the reduced amount of communication and larger amountsmpatation. We also see
smaller standard deviations when compared with the PowghddeMPI code, as the

communication is strictly dictated and optimized by thetime itself.

107

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

Table 4.2: Parallel efficiency for WordCount using MapRedwser @arying numbers
of nodes.

of Nodes| Parallel Efficiency
4 0.8455
8 0.5978
16 0.5313
32 0.3591
64 0.3000

Table 4.3: Parallel efficiency for the Thread Ring code utiizMPI, X10, and UPC
over varying numbers of nodes.

of Nodes| MPI X10 UpPC
1 1.0000| 1.0000 1.0000
2 0.5000| 0.5000 0.5000
4 0.4518| 1.1251 0.0014
8 0.3068| 1.2663 | 5.6904e-04

16 0.1955| 1.6518 | 2.0528e-04
32 0.1189| 1.9190 | 7.0025e-05
64 0.0642| 25.1618| 9.8221e-06

In our first Thread Ring experiment, we measure time takenrid 400 messages
through a ring of 64 threads. We vary the number of nodes uswdeen 1, 2, 4, 8, 16,
32, and 64. Figurd.7 shows the amount of time taken for implementations written i
X10, MPI, and UPC, while Tabld.3 shows the parallel speedup achieved. Both the
MPI and X10 codes improve in execution time as nodes are adtlbdle the X10 code
achieves a better parallel efficiency than the MPI code, anisaverage one to three
orders of magnitude slower. The reason behind this has bg#aimed by the X10
team: the X10 runtime currently is not optimized to handiensgios where the system

is overprovisioned (e.g., when the number of processesdsate number of nodes).

108

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

2500

—o— MPI
%) — —X10
© - —-UPC
C 2000(F 1
(@]
(&) |
(B] I
< |
~ 1500
Q) |
= |
- |
— 1000 4
S
-E \
C 500f ~\F
3 \
x g
0 B —a- :‘\E:‘::':":‘?E'="“—"'="=- —r'-ﬁ
0 10 20 30 40 50 60 70

Number of Nodes

Figure 4.7: Average running time for the Thread Ring codezutdy MPI, X10, and
UPC over varying numbers of nodes. These timings only irelkexkcution times re-
ported by each language’s timing constructs.

This is confirmed by the scenario in which 64 nodes are usem, bee system is not
overprovisioned and runs in an equivalent amount of timéadvtPl code. The UPC
code exhibits a very different scaling pattern comparedh¢oMPI| and X10 codes: as
it relies on synchronization via barrier statements, isrgoickly when the number of
nodes is small, and becomes slower as the number of nodesses:.
Our second Thread Ring experiment fixes the number of nodas atédian value

(8 nodes), and measures the amount of time needed to send ds¥ages through
thread rings of varying sizes. Here, we vary the sizes betv@ed 6, 32, 64, and 128

threads. The results of this experiment for the X10, MPI, @R codes are shown in

109

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

1200

—6&— MPI

~
8 — — X10
2 1000 - — upc|]
c
(@] B
o 7/
m i Ve
&8 800 /
7/
(b} -
£ 600})
[s
/
—)
O 400 B
C P
c 7/
c R
5 i ' «
= 200 =
x -
0 b @""/’g i P Sy T et —+
0 20 40 60 80 100 120 140

Number of Threads

Figure 4.8: Average running time for the Thread Ring codezutdy MPI, X10, and
UPC over varying numbers of threads. These timings onlyghelexecution times as
reported by each language’s timing constructs.

Figure4.8. As expected, all codes become slower as the size of thedthire@agrows.
The overall execution time is fastest for the MPI code, fo#d by that of the UPC
and X10 codes. The reason for these differences is identidabt given previously:
the UPC code relies on barriers. As the number of threadsasess, it becomes more
expensive to perform these barrier operations. The X10 oalso overprovisioned in
most cases, so it slows down in these scenarios as well. lsc#m@ario when it is not
overprovisioned (e.g., when there are 8 threads and 8 naiiesX10 code performs

on par with the MPI code.

110

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

120 T
— —6&— MPI
% - —X10
L ——UPC|/J
c 100
o
0
80
2 oF
N—r” s
o 7
E 60 STt
=
@ 40+ /'/
§= P
c -
S 20 . St
e v

4000 6000 8000 10000 12000

Number of Messages

0 2000

Figure 4.9: Average running time for the Thread Ring codezutdy MPI, X10, and
UPC over varying numbers of messages. These timings onllydaexecution times
as reported by each language’s timing constructs.

Our third Thread Ring experiment fixes the number of nodeseatrtidian value (8
nodes) once again and measures the amount of time needexdita ga&rying number of
messages through the thread ring. Specifically, we vary tinger of messages to be
sent between 1, 10, 100, 1000, and 10000 messages for thé&/MR10and UPC codes.
Figure4.9shows the results of this experiment: for all codes, exdgdne single mes-
sage scenario, the time to send additional messages iasrgasarly. Unlike the other
benchmarks, the X10 and UPC codes perform within an orderaginitude of the MPI
code. For the X10 code, this is because all machines arepn@lisioned (specifically

because we run 8 threads over 8 nodes), avoiding the penioerdegradation that the

111

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

other experiments revealed. The UPC code also maintaisedy close performance
to the MPI and X10 codes due to the low number of nodes: thedosrmwhich are the
bottleneck of the UPC code, are inexpensive when a relgtsrelll number of nodes

are used.

~
o

—&— MPI
——Erlang

N w B a [o2]
o o o o o
T T T T T

Running Time (seconds)

0 0 20 30 20 50 60 70
Number of Threads

Figure 4.10: Average running time for the single node Thieaxd) code utilizing MPI
and Erlang over varying numbers of threads. These timindys ionlude execution
times as reported by each language’s timing constructs.

To evaluate the performance of our Erlang code, we compar&ang Thread
Ring implementation with that of our MPI code deployed oveimgle node. We fix
the number of messages to send at 1000 and vary the numbereatishthat make
up the ring between 4, 8, 16, 32, and 64. The results of thieraxent are shown

in Figure4.10 The Erlang code scales linearly, and performs two to thrders of

112

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

magnitude faster than the MPI code for all numbers of threesied. This is likely
due to Erlang’s long history as a concurrent language ahtWigight threading model,
which makes it highly amenable to this experiment. SimylavPI is designed to be
a distributed programming language, and as we have seem iattier experiments,
suffers performance degradations when overprovisionegl ak& looking into support
for Threaded MPI (TMPI) 85], which provides optimizations for the concurrent use
case shown here.

We next analyze the performance of the specialized SSA pasksupported by
Neptune. This includes the specialized implementatioasgnt in DFSP and dwSSA,
which here focus on the yeast polarization and birth-deattiets discussed previously.

Like the MapReduce code analyzed earlier, DFSP also benefitsdarallelization
and support via Neptune. This is because the DFSP impletr@mtssed has no in-
ternode communication during its computation, and is enalsamgly parallel. In the
DFSP code, once each node knows how many simulations tohrem work with no
communication from other nodes. Figuse2 and Table6.1 show the running times
for 10,000 simulations via Neptune. Unlike MapReduce and,MPich provide dis-
tributed runtimes, our DFSP code does not, so we time altaot®ns once AppScale
receives the message to begin computation from Neptunkthatresults have been

merged on the master node.

113

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

w
&

= n
= o1 N 2] w
T T T

Running Time (seconds)

0 10 20 30 40 50 60

Number of Nodes

70

Figure 4.11: Average running time for the DFSP code overiagrgumbers of nodes.
As the code used here does not have a distributed runtimegtrnere include the time
that AppScale takes to distribute work to each node and nteggmdividual results.

Figure6.2and Tables.1 show similar trends for the DFSP code as seen in MapRe-
duce WordCount. This code also sees a consistent reductiamiime as the num-
ber of nodes increase, but retains a much higher paralleiexfty compared to the
MapReduce code. This is due to the lack of communication witbmputation, as the
framework needs only to collect results once the computasicomplete, and does not
need to sort or shuffle data, as is needed in the MapReduceviaieAs less com-
munication is used here compared to WordCount and Power Ml codes, the
DFSP code exhibits a smaller standard deviation, and aatdiwviation that tends to

decrease with respect to the number of nodes in the system.

114

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

Table 4.4: Parallel efficiency for the DFSP code over varyinmbers of nodes.

of Nodes| Parallel Efficiency
4 0.9929
8 0.9834
16 0.9650
32 0.9216
64 0.8325

Table 4.5: Parallel efficiency for the dwSSA code over vagyiambers of nodes.

of Nodes| Parallel Efficiency
4 0.7906
8 0.4739
16 0.3946
32 0.2951
64 0.1468

Another example that follows similar trends to the DFSP dedee other Stochastic
State Algorithm, dwSSA, shown in Figuel2and Table4.5. This code achieves a
reduction in runtime with respect to the number of nodes ensysstem, but does not
do so at the same rate as the DFSP code, as can be seen threugiveh parallel
efficiencies. This is because the execution time for a sidgi8SA trajectory is much
smaller than a single DFSP trajectory, which results in a@dime setting up and

tearing down the R environment.

4.4.3 VM Reuse Analysis

Next, we perform a brief examination of the costs of the eixpents in the previous

section if run over Amazon EC2, with and without the VM reusghteques described

115

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

600

a
o
o

N
o
=)

T

N

o

o
T

Running Time (seconds)

0 10 20 30 40 50 60

Number of Nodes

70

Figure 4.12: Average running time for the dwSSA code oveyimarnumbers of nodes.
As the code used here does not have a distributed runtimegtrnere include the time
that AppScale takes to distribute work to each node and nteggmdividual results.

previously. The VMs are configured with 1 virtual CPU, 1 GB ofmuey, and a 64-bit
platform. This is similar to the Amazon EC2 “Small” machinpéy(1 virtual CPU, 1.7
GB of memory, and a 32-bit platform) which costs $0.085 perho
Each PowerMethod, MapReduce, DFSP, and dwSSA experimeam ifsve times
atl, 4,8, 16, 32, and 64 nodes to produce the data shownreattide each NQueens
experiment is run five times at 2, 4, 8, 16, 32, and 64 nodes. &vgate the cost of
running these experiments without VM reuse (that is, by actgthe needed number
of machines, running the experiments, and then poweringp t&) compared to the

cost with VM reuse (that is, by acquiring the needed numbenadhines, performing

116

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

Table 4.6: Cost to run experiments for each type of Neptungwathh and without
reusing virtual machines.

Type Cost with | Cost without
of Job VM Reuse| VM Reuse
PowerMethod | $12.84 $64.18
NQueens(MPI)| $12.92 $64.60
NQueens(X10) $13.01 $64.60
MapReduce | $13.01 $64.18

DFSP $35.70 $78.63
dwSSA $12.84 $64.18
| Total | $100.32 | $400.37 |

the experiment for all numbers of nodes, and not poweringntb# until all runs com-
plete). Note that in the reuse case, we do not perform reusebe experiments. For

example, the Neptune code used to run the experiments f&{i0&Queens code is:

[2,4,8,16,32,64].each{ |i|
5.times { |j|
neptune :type = :x10,
:code = ‘/code/NQueensDist’,
:nodesto_use = i,

coutput = ‘/nqueensx10/#i }/#{}’

Table 4.6 shows the expected cost of running these experiments witwathout

VM reuse. In all experiments, employing VM reuse greatlyuass the cost. This is

117

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

largely due to inefficient use of nodes without reuse, as nsaeyarios employ large
numbers of nodes to run experiments that only run for a fwactf an hour (VMs
are charged for by AWS by the hour). All of the experiments pkéer DFSP also
cost roughly the same because they use similar numbers offoBt$-of computation
within AWS and thus are similarly priced. We see much greaaeiation in time and

cost on a per-minute or per-second pricing model insteadpefdnour pricing model.

4.5 Related Work

An early version of this work was presented at the Workshoaientific Cloud
Computing (ScienceCloud) and was entitled “Neptune: A Donsgacific Language
for Deploying HPC Software on Cloud Platformd7. The work developed by others
that is most similar to Neptune &d oudi ni t . d from Nimbus p1]. cl oudi nit. d
provides an API that users employ to automatically launanfigure, and deploy
nodes in a cloud infrastructure. In contrast to Neptwiepudi ni t . d’s program-
ming model places the onus of configuration and deploymerthemuser who writes
cl oudi ni t. d scripts. Neptune takes an alternate approach, hiding thplexity
behind correct configuration and deployment.

Other works exist that provide either language support foua infrastructures

or automated configuration or deployment, but not both. &ftrmer category ex-

118

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

ist projects like SAGA §0], the RightScale Gems/f] and bot o [13]. SAGA en-
ables users to write programs in C++, Python, or Java thaticttevith grid resources,
with the recent addition of support for cloud infrastruetumteraction. A key differ-
ence between SAGA and Neptune is that SAGA is conceptuatliigded to work with
grid resources, and thus the locus of control remains wihufer. The programming
paradigm embodied here serves use cases that favor a staitenof nodes and an un-
changing environment. Conversely, Neptune is designed tk axeer cloud resources,
and can elastically add or remove resources based on threemeént. The RightScale
Gems andot o are similar to SAGA but only provide interaction with cloudfrias-
tructures (e.g., Amazon EC2 and Eucalyptus).

In the latter category exist projects such as the Nimbus Qoleoker [61] and
Mesos p6]. The Nimbus Context Broker automates configuration and ¢eptmt of
otherwise complex software packages in a matter simildradbdf Neptune. It acquires
a set of virtual machines from a supported cloud infrastmecand runs a given series of
commands to unify them as the user’s software requires. Q@ouaky, this is similar
to what Neptune offers. However, it does not offer a languagevhich it can be
operated, like Neptune and SAGA. Furthermore, the NimbuadRBroker, like SAGA,
does not make decisions dynamically based on the undergnagonment. A set of
machines could not be acquired, tested to ensure a low laensts, and released

within a script running on Nimbus Cloud Broker. Furthermotedoes not employ

119

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

virtual machine reuse techniques such as those seen widptuNe. This would require
a closer coupling with supported cloud infrastructureseruse of a middleware layer
to coordinate VM scheduling, which would effectively presa cloud platform.

Like the Nimbus Context Broker, Mesos also automates confiigmrand deploy-
ment of complex software packages, but aims to do so for onigra specific set of
packages (MapReduce, MPI, Torque, and Spark). It requinegosted packages to
be modified, and once they are “Mesos-aware”, they can bieaditowards goals of
better resource utilization for the cluster as a whole artteb@erformance for indi-
vidual jobs. Mesos also positions itself in the cluster catimy space, in which jobs
can dynamically scale up and down in the number of nodeslibgiuse, but where the
cluster as a whole must be statically partitioned. Clustemiatrators can manually
add or remove nodes, but the size of the cluster as a whols terdmain static. This
is in contrast to the cloud model employed by Neptune, whegentimber of nodes is

in flux and is controllable by Neptune itself.

4.6 Summary and Conclusions

Neptune provides users with a domain specific language tsitaats away the
complexities of deploying and utilizing high performanaanputing services within

cloud platforms. The motivation behind Neptune is to enalslers to program with

120

Chapter 4. Language and Runtime Support for Automatic Confiigewrand Deploy-
ment of Scientific Computing Software over Cloud Fabrics

HPC frameworks without first having to learn how to instathh@igure, deploy, and
maintain the often complex runtimes associated with thesadworks. Neptune aims
to achieve this goal by repurposing the AppScale cloud @latfto automatically con-
figure and deploy HPC frameworks, on behalf of the user, wieal rmaly indicate how
many nodes are required to execute their application. Wea&eaNeptune by utilizing
sample applications from the MPI, X10, MapReduce, UPC, arahgrtjeneral-purpose
HPC frameworks, as well as StochKit, DFSP, and dwSSA, st@ieapplications that
serve the computational systems biology community. Nepmables users to utilize
these HPC frameworks over varying numbers of nodes withmahieffort, simply,
uniformly, and scalably.

The text of this chapter is, in part, a reprint of the mateaalit appears in19].

121

Chapter 5

MEDEA: A Pluggable Middleware
System for Interoperable Program
Execution Across Cloud Fabrics

In this chapter, we present MEDEA, an execution model fooimattically execut-
ing programs, written in various programming languagegady over disparate cloud
fabrics. MEDEA abstract away the details of cloud-basedyanm execution by pro-
viding language support (to enable applications to be ognatically described) as
well as runtime support that abstracts away implementagpmtific details of cloud-
based queuing, compute, and storage services. To faeititass-cloud interoperability,
MEDEA plugs a wide range of compute, storage, and FIFO quéeergys into this
system, including those provided by Amazon Web Servicesyddpft Azure, Google
App Engine, and AppScale. By doing so, MEDEA relieves dewelsf the burden
of having to become experts with each cloud system on whief #ish to run. To

investigate the potential of MEDEA, we employ the systemaarumber of different

122

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

use cases in which we compare and contrast supported cloudsms of price and

performance using various applications, domains, andraroging languages.

5.1 Introduction and Motivation

Both laaS and PaaS systems export programmatic access t@ aamige of scal-
able services via well-defined APIs. Increasingly, thegmebed technologies are sim-
ilar across cloud offerings and include storage, FIFO gsgeaped execution services.
Although such technologies simplify distributed appliocatdeployment, their APIs,
language bindings, performance, scale, and cost modeisffall significantly across
clouds.

The plethora of laaS and PaaS options, implementationsiestidictions makes it
challenging and time consuming for new and expert users &bikietermine which set
of services is best for a particular application, for sominiteon of “best” (e.g., price,
performance, scale, ease of use). Moreover, once userseh®ervice and code their
application to that interface and configure it for that sgstéhey become “locked in”

As a motivating example, consider a typical user who wisbesart utilizing cloud
services. They must first evaluate which cloud services tisi to use in their ap-
plication, which can be at varying layers of abstraction esglire differing amounts

of maintainence. Once the user decides which services thaytw utilize, they must

123

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

then implement and maintain their system utilizing eacthefd¢hosen technologies. If
transitioning off of an existing system, then the user most fheir system to the new
technology. The time and engineering costs that the usenbested in learning each
of these technologies is not directly transferrable to oteehnologies: while other
competitors may be abstractly similar (i.e., Amazon EC2 anddgke Compute Engine
both offer virtual machines), in practice their APls areampatible, requiring an ex-
pert user to refactor the code base when porting to otheicestinally, the user must
spend additional time to transfer the knowledge of how tortad their application

(which now utilizes a new set of services) with others.

This work attempts to alleviate these problems by proposingnteroperable,
portable, reusable execution model for cloud systemsUsing this model, which
we call MEDEA, users describe the execution environment@if programs in a high
level scripting language. This metadata includes dethitgibthe program (name, exe-
cutable, arguments, etc.) and the user’s account cretiefaiaeach cloud they wish to
use. This scripting language support then communicatdstiret MEDEA deployment
engine. This deployment engine is a software overlay thabves an abstract interface
for managing jobs in FIFO queues, for executing jobs, anghéssisting program out-
put and profile information in cloud storage so that it can &gilg accessed by users,

post-execution.

124

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

The deployment engine plugs in different cloud servicestwide the implementa-
tion of these operations. By doing so, MEDEA is able to dephwteary programs over
different cloud systems without requiring modificationte programs themselves, pro-
viding interoperability between supported cloud serviddsat is, we offload the com-
plexities of using different compute, storage, and queaadkervices onto MEDEA.
As a result, developers can use MEDEA-compatible servwasaid lock-in, to com-
pare and contrast different cloud offerings (their resivits, costs, performance, etc.),
and to evaluate hybrid cloud deployment of their applicadijceasily and portably.

To implement MEDEA, we leverage the open source AppScaledgbbatform [L6,
27] and the Neptune HPC configuration langua@@].]| The plugins that we integrate
into the MEDEA deployment engine include compute, storage, FIFO queue ser-
vices from Amazon Web Service8][Microsoft Azure [70], Google App Engine44],
and AppScale. To investigate the potential of MEDEA, we apphe system for a
number of different use cases in which we compare and carsaported plugins in
terms of price and performance using various applicatidosjains, and programming
languages.

In summary, we contribute:

e A pluggable cloud software overlay that automates configaraand deploy-
ment of applications over cloud compute, storage, and qaenaces provided

by Amazon, Google, Microsoft, and on-premise clouds. Thigpert enables

125

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

developers to evaluate and switch between different clemdces without mod-

ifying their applications.

e Scripting language support to simplify interaction witle thluggable software

overlay that enables the construction of dynamic workflowssers.

e An experimental evaluation of a variety of software paclsa@ieom scientific
as well as general-purpose application domains) acrosspheutioud vendors,
which investigates the performance and the monetary costried to execute

applications via popular cloud services.

In the sections that follow, we present the design and impteation of the MEDEA
execution model. We describe how we plug in different cloe/ises with MEDEA.
We then investigate the cost and performance of a numberffefeht use cases en-
abled by MEDEA, empirically evaluate its use in differenbhg cloud configurations,
and for programs written in different languages. We theruds related work and

conclude.

5.2 Design

By unifying cloud program execution under the MEDEA execuitiodel, we aim
to make existing user code interoperable between dispelmatd services. Pushing the

complexity of cloud services into an abstract softwaredagduces the complexity that

126

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

must be present in user-facing code. This also increasésildy, reduces lock-into a
particular vendor’s services, and enables users to ben&hhmer applications without
needing to become experts with each technology they wishlizeu In this work, we

focus on providing such support for three different and cammioud services:

e Compute services for execution of user code

e Storage services for data persistence

e Queue services which provide a FIFO queue abstraction

The MEDEA execution model uses a combination of these tleegces to manage
and execute programs over supported cloud fabrics. Moredvdoes in a way that
hides the details of the implementation of each servicehabusers can employ them
for execution of their programs without having any knowleag direct experience with
them — users need only have credentials for each cloud shesvis use.

We depict the design of the MEDEA execution model in Figbie The MEDEA
execution model consists of two components. The first igp8og language support
that enables developers to specify the execution envirahared deployment prefer-
ences for their programs. The second is a deployment erfganeltugs in cloud service
support to execute applications. We first overview the MEB¥EApting language sup-

port and then describe the MEDEA deployment engine.

127

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

(M)essage
a Task

Deployment
Engine

Scripting Support
(On User's Laptop)

(A)ccess result

(A)ccess result
(E)nqueue of task

a Task

Compute
Services

Storage
Services

Queue
Services

(

D)equeue Store resul
a Task (E)xecute of task
a Task

Figure 5.1: Overview of the design of the MEDEA execution rlod

To make the use of these services portable and simple, theBMERripting sup-
port consists of a single function with which users spedify program they wish to
run, its inputs, location, and executable (if any), as wsltlee names of the service
plugins they wish to employ for compute, storage, and qugeulime type of programs
that MEDEA currently supports are those that take zero orenaoguments as inputs,
that communicate only with persistent services, and thaegge output through the
standard output and standard error streams.

Consider a user who wishes to run a Python n-body simulatickniazon EC2,
store its output in Amazon S3J], and have workers in EC2 poll for tasks (here, the
n-body simulation is the task) via Amazon SQ&. [Normally they would need to
become familiar with the APIs of each service, their priangdels, and best practices.

Once this is done, the user is then locked-in to these thme&ss. In contrast, using

128

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

a domain specific language to specify the execution enviemtiof a program reduces

the amount of work required to execute the following code:

result = babel(
:executable = "python”,
:code = "/home/user/nbody.py”,
:compute > "ec2”,
:storage > "s3”,

‘queue > "sQgs”)

puts result.stdout

puts result.stderr

The formal syntax of calls tbabel is as follows, where represents the empty
string:

S — babel B | babel T1

B — :executable = ’'binary’, C

C — :code = ’'location’', A

129

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

A — ‘rargv = "arguments”, E

A — :rargv = ["arguments”], E

E — :compute > ’ec2’, S
E — :compute > ’azure’, S
E — :compute > ’'app—engine’, S

E — :compute > ’euca’, S

S — :storage = ’'appdb’, Q

S —> :storage > 's3’, Q

S —> :storage > ’'waz—storage’', Q
S — :storage = ’'gstorage’, Q

S — :storage = ’'walrus’, Q

Q — :queue = ’rabbitmq’, O1
Q — :queue > ’'sqs’, O1
Q — :queue > ’'azure—q’, O1

Q — :queue > ’'gae—pull—qg’, O1

130

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

Ol — :instancetype = 'machine’, O2 | e
02 — :maxnodes = int, O3 | e

O3 — :worker = ’inline’ | e

T1 — :type = ’output’, T2

T2 — ’output’™ => ’location’

Users indicate what binary executes their program in thacclmmpute service,
where the code to execute is located on their local machmewdich compute, stor-
age, and queue services should be used. Users also proeiderédentials to each
service as environment variables or as additional parameode can be written in
any language, as long as the compute service has the comecy mstalled to exe-
cute it. Our library support for this function validates sh&mitter's cloud credentials
and verifies that the user’s code exists on their local coerpu®nce this is done, it
packages this information and sends it to the MEDEA deplowreagine.

The object that is returned from callsli@abel can be used to manually poll for the
result of the job. To execute the program using a differentise, the developer need
only change the value of a function argument for the comitgage, and/or queue
services. For example, changing the value cbnput e above fromec?2 to azur e,

causes MEDEA to execute the program in Microsoft Azure exstaf Amazon EC2.

131

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

The returned object provides methods that store the tassiislard output and stan-
dard error streams. MEDEA also profiles the execution ofdéis& and returns various
performance metrics to the user as a field in this objectaat adat a. This latter
support enables users to extend their scripts to intereatyat differences between the
multiple cloud services to compare and contrast them andetotify the most appro-
priate one for their application.

We implement the MEDEA scripting language support by repsiqpg Neptune, a
domain specific language that automates the configuratidndaployment of high-
performance computing applications. Our extensions implg this new function
(function semantics, and library support) to facilitateextion of arbitrary user pro-
grams. Prior to this work, the implementation of Neptuneyailowed for a special-
ized, statically chosen set of HPC frameworks to be confajarel deployed. Arbitrary
programs could not be executed, even if the compute senvjqmosted it, as the original
implementation required an expert user to dictate how eachdwork executes code
(e.g., to run MPI, users must first start NFS, mount a shareslytem, start the MPI
Process Daemon, and so on). In contrast, this work enabjesxacutable installed on

a compute service to be utilized automatically by our sorgplanguage support.

132

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

5.3 Implementation

The MEDEA scripting language support communicates withMDEA deploy-
ment engine. The deployment engine provides a software bt abstracts away
common services required for execution of arbitrary prograver cloud compute,
storage, and queue services. We plug in actual cloud sertacthis layer to provide
the implementation for each of these operations.

The MEDEA deployment engine employs two key abstractioms: Task Manager
(which delegates tasks to clouds) and the Task Worker (wénelcutes the task). This
scripting language support and deployment engine perfaersteps (which form the

acronym MEDEA) to execute programs portably:

1. the scripting language support (M)essages the Task Mamdth the program to

execute, described by a MEDEA script,
2. the Task Manager (E)nqueues the task to a queue service,
3. a Task Worker (D)equeues a task from a queue service,
4. a Task Worker (E)xecutes the task,

5. the developer (A)ccesses the result of the task from tbea computer (from

within a MEDEA script).

133

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

We implement the MEDEA deployment engine as a web servickinthe App-
Scale cloud platform. This platform automatically deplaysl starts the MEDEA de-
ployment engine when an AppScale cloud is instantiated. [é¢e@ovide plugins into
the deployment engine’s abstractions for each serviceu@ueompute, and storage)

that implement the necessary functionality.

5.3.1 Pluggable Queue Support

When a Task Manager receives a request to run a task from atuesemines the
. queue parameter in the user’s task to determine which cloud queai¢aisk should

be placed on. Acceptable values are:

"rabbi t ng" for RabbitMQ, hosted within AppScale (the default)

"sqs" for Amazon Simple Queue Service (SQS)

"azure-q" for Microsoft Azure Queue Service

"gae- pul | - g" for Google App Engine’s pull queue

These queues provide a scalable FIFO queue service whergdtin be pushed to
or popped from. The Task Manager employs the Factory desitjarp, thus, as long as
supported queues implement a common API (push/pop), tHeMasager can access

them without needing to be concerned with their underlymglementation details.

134

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

Once the Task Manager uses a QueueFactory to get a connedti@mnecessary queue
service, it pushes the task to that queue service and redarasknowledgement to the
user’s local computer that the task has been started.

Task Workers periodically query the Task Manager for a lfstlbthe queues that
tasks can be found on, as well as the cloud credentials nd¢edertess each queue.
This is necessary because two users may have differentnti@deo the same queue
service. Each Task Worker uses the same QueueFactory aaské/fanager to get a

connection to each queue service and pops off one item of par&ore on its machine.

5.3.2 Pluggable Compute Support

After pushing the task onto the specified queue service, das& Mlanager ensures
that Task Workers are running in the specified compute ser¥or example, if a user
has specified that a task should be executed in Amazon EC2agleManager will
ensure that one or more Task Workers are running in Amazon HG%rovide this
functionality, the Task Manager keeps metadata about th&bauof workers in each
cloud and utilizes a ComputeFactory to interact with clouchpate services, based on

the value of the conput e parameter in the user’s task. Acceptable values are:

e "ec2" for Amazon EC2, hosted within AppScale (the default)

e "azure" for Microsoft Azure

135

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

e "app-engi ne" for Google App Engine

e "euca" for Eucalyptus

For Amazon EC2, the Task Manager uses the EC2 command-lirettodiynami-
cally spawn or terminate virtual machines. Once virtual hivaes have been spawned,
a Task Worker is started on it, who then polls the Task Manfogexork as previously
descibed. The Task Manager is also cost-aware, so it dogsmuhate Task Workers
once they have completed a task. Because Amazon EC2 charggseothaur basis,
the Task Manager terminates Task Workers only near the etitediour, and only if
they are not in use at that time.

Amazon EC2 enables users to remotely log into machines aedtlyiexecute pro-
grams via the familiar Linux progranssh andscp. In contrast, Microsoft Azure
and Google App Engine do not support this functionality, asi& deploys Windows
virtual machines, and App Engine does not allow access thaksted machine at all.
To enable interoperable program execution, we contribuit i on, a tool that auto-
matically generates Task Workers that execute user-pedvagbplications in different
cloud execution systems. Oration takes, as inputs, the wthe cloud to execute the
application in, the name of the function to execute, and #raaof the file that func-

tion can be found in, and then constructs a “cloud-readyk Vasrker that utilizes best

136

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

practices from that cloud to execute the user’s prograns Task Worker implements
the following API:
1. PUT /task: Given a function name and its inputs, runs the functionestais

output for later retrieval.

2. GET /t ask: Given the name of the task, checks to see if the task iswtifiing,

has completed, or has failed.

3. PUT / dat a: Given a location to store data and the data to store, sageiatia

for later use.

4. GET / dat a: Given a location to read from, returns either the given ditia

exists) or a null value (if it does not exist).

For Microsoft Azure, Windows virtual machines are procuf@slopposed to Linux
virtual machines in Amazon EC2), so the bootup script we mhelstarts by installing
language support for each runtime we wish to execute tasks(ly default, this sup-
ports Python and Java, but is extensible to other languagdg)rosoft Azure also
follows a per-hour pricing model, butin contrast to AmazdiX:it is a per-wall-clock-
hour pricing model. The following process is used to implatMdEDEA support on
Microsoft Azure:

1. the scripting language support (M)essages the Task Mamatih the program to

execute, described by a MEDEA script,

137

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

2. the Task Manager uses Oration to construct a Microsofté&zompatible Task
Worker and uploads it to Microsoft Azure. The Task Managent(E)nqueues
the task by performing BUT /t ask on the remotely-hosted web application,
which will schedule a background task with the Microsoft omws Azure Queue
Service API. If the task requires any files as inputs, the akager usePUT
/ dat a calls to move inputs from the datastore specified to the Wusdazure

Storage Service.

3. the Task Worker (D)equeues the task and spawns up workgoerforming a

POST /t ask to the application server.

4. the Task Worker (E)xecutes the task and stores the ouigtite Azure Storage

Service, a key-value datastore that uses a get/put ingerfac

5. the developer (A)ccesses the result of the task from tbea computer (from
within a MEDEA script). The Task Manager retrieves the rebylperforming a

CGET / dat a on the remotely-hosted web application.

Finally, the Google App Engine PaaS provides autoscalind,does not allow its
users to programmatically dictate the number of instartasatre used. It also employs
a restricted runtime that can only execute tasks writterythéh, Java, and Go, so we
provide specialized Task Workers in those languages tousdtython, Java, and Go

tasks. Google App Engine charges on a per-minute pricingein@g opposed to the

138

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

per-hour pricing model employed by Amazon EC2 and Microsafirk. The following

process is used to implement MEDEA support on Google Appringi

1. the scripting language support (M)essages the Task Mamatih the program to

execute, described by a MEDEA script,

2. the Task Manager uses Oration to construct a Google ApmErapmpatible
Task Worker and uploads it to Google App Engine. The Task Mganahen
(E)nqueues the task by performing?®T /t ask on the remotely-hosted ap-
plication, which will schedule a background task with theoGle App Engine
Task Queue API. If the task requires any files as inputs, tis& Wanager uses
PUT / dat a calls to move inputs from the datastore specified to the Goagp

Engine Datastore.

3. the Task Worker (D)equeues the task and spawns up workegperorming a

PCST /t ask to the application server.

4. the Task Worker (E)xecutes the task and stores the ouigptiie Datastore API,

an object datastore that uses a get/put interface.

5. the developer (A)ccesses the result of the task from tbeal computer (from
within a MEDEA script). The Task Manager retrieves the rebylperforming a

CET / dat a on the remotely-hosted web application.

139

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

Regardless of where the task executes, the Task Worker tsollexfollowing data

as outputs and metadata from the task:

e The standard output produced by the task.

e The standard error produced by the task.

e The time taken to execute the task.

e The time taken from when the Task Manager received the taském the task

finished executing.

e The time taken to retrieve the code and inputs from the dataservice.

e The time taken to dequeue the task off the queue service.

e Information about the processors on this machine (the atstd/ pr oc/ cpui nf o).

¢ Information about memory on this machine (the contentgufoc/ mem nf o).

¢ Information about disk usage on this machine (the resudt of- h).

The types of data collected is extensible. In particularaveglooking to extend this
system with information about the cost incurred to run tisk tance cloud providers
make this information available programmatically (as gggubto performing estimates

or downloading bills from a web page, as is currently done).

140

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

5.3.3 Pluggable Storage Support

Once a Task Worker finishes executing one or more tasks, staiStorageFactory
to get access to a supported storage service. The usertgglighich storage service is

to be used via thest or age parameter, with acceptable values being:

e "appdb" for the datastore hosted within AppScale (the default)
e "s3" for Amazon Simple Storage Service (S3)

e "waz- st orage" for Microsoft Azure Storage Service

e "gstorage" for Google Cloud Storage

e "wal rus" for Eucalyptus Walrus

The Task Worker then stores three files in the specified stosagrice, containing
the standard output of the task, the standard error of tlke &asl the task’s metadata
(performance profile). At this point, if the user’s scriptasses thbeabel function’s

return value, the calls will succeed and return this infdrarato the user.

5.4 Evaluation

We next use our support for MEDEA within AppScale to empificavaluate how

effectively tasks execute within cloud laaS and PaaS oifsti We begin by evaluating

141

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

our pluggable queue support, continue by evaluating a ctatipnal systems biology
application, and conclude by evaluating implementatidric@n-body benchmark ap-

plication.

5.4.1 Pluggable Queue Evaluation

We begin by using the pluggable queue support that the MEDe&wion model
enables to compare the performance and cost of differenticjoieue offerings. We
investigate one internal and four external pull queue sesri RabbitMQ (internal to
AppScale), Amazon SQS, Microsoft Azure Storage Queue, aahl@ App Engine’s
pull queue. We employ Amazon S3 as the storage service fortaak and deploy an
AppScale cloud over Amazon EC2, in the manner shown in FigizeSpecifically, we
instruct AppScale to automatically deploy a single virtorchine instance as the Task
Manager, and in all of our Neptune job requests, we indid¢aterto more than two Task
Workers should be dynamically acquired and used (to lingtrttonetary costs we can
incur). The Task Manager creates Task Workers whenevetattethat the number
of tasks waiting to be executed in all queues is non-zero.Tesk Workers, we utilize
Amazon’sn. 4x| ar ge instance type, each of which has 8 virtual cores and 68GB of
memory. This instance type is one of the more powerful mashaffered by Amazon,

and costs $1.60 per hour to lease.

142

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

Message Access

Task
Manager

Enqueue

Datastore

AWS, GAE, or AppScale Cloud (In Amazon EC2) Amazon S3
Azure Public Cloud

Figure 5.2: Deployment strategy used for the n-body sinmardienchmark to evaluate
different pull queue technologies.

143

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

For this evaluation, we run ten instances of our n-body satmh program (ten
tasks) in parallel and report the time that Task Workers dpiegueuing tasks from the
gueue. Note that the task’s payload is nearly constant fayueues used, and only
varies when more or fewer credentials are needed to accesgidue. The Neptune

code that we run for each queue to dispatch the tasks andt ygoresulting time

incurred is:

task.info = []
10.times { |i|

task info << babel(params)

task.info.each { |task|
if task.returnvalue != 0
abort('*Analysis failed: ' +
task.stderr)
end

puts task.queugop_time ()

The results of running this code for our n-body simulatioreach of the four sup-

ported queues is shown in Figuge3. RabbitMQ performs the best, because Task

144

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

Workers in EC2 always have a RabbitMQ server running on theallmachine and
thus either need only talk to it or to another machine in th@®3qale deployment a
short distance away. This improves performance but at teeafdfault-tolerance: in
the rare case of an availability zone failing in Amazon EC2yauld also cause our
RabbitMQ servers to fail with it. Conversely, Amazon SQS andrgsoft Azure Stor-
age Queue have added fault-tolerance, but perform an ofaeagnitude slower than
RabbitMQ, but outperform Google App Engine’s pull queue.sTikilikely due to the
latency between our Task Workers and Google App Enginelsgoeiue.

These results should not be considered a final evaluatiovadéale cloud queuing
services, as such services are constantly upgraded anegexad improve over time.
However, since AppScale can be used at any time, users cdoeitnjo snapshot the
current performance of the various queue offerings, ewaltlat tradeoff against the

cost of using the queue, and choose any queue implementatidemand.

5.4.2 Computational Systems Biology Evaluation

We next evaluate the compute engine offerings that are eddiy making App-
Scale MEDEA-compatible. The application we use for thiglgtis a Stochastic Sim-
ulation Algorithm (SSA) 2. SSA is form of kinetic Monte Carlo simulation used
extensively in computational systems biology. These #lgois are embarrassingly

parallel and probabilistic in nature, and require a largeiber of independent simula-

145

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

o
w
T

o
N
al

o
)

o
i

Dequeue Time (seconds)

0.05 i Il
! I
0 .
Azure GAE RabbitMQ SQS

Figure 5.3: Average dequeue time for the Python n-body sitiarl, when task data is
stored in Azure Storage Queue, Google App Engine’s pull guBabbitMQ, and SQS.
Each value shown here represents the average of ten runs.

tions to be executed to achieve an acceptable level oftitatiaccuracy. The specific
algorithm we focus on is the Diffusive Finite State ProjentAlgorithm (DFSP) 86,
which simulates spatially inhomogeneous stochastic leiogbal systems. In our study,
this algorithm is used to simulate a model of the mating pfmene induced G-protein
cycle in budding yeast. We employ this application becatiseicanonical example of
a compute and data-intensive eScience workflow, thus allpws to illustrate the per-
formance and cost benefits of executing scientific appboatvia cloud-based systems.

However, it is also an example of an application that is noted wervice and thus is

146

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

not likely to have a user-written MVC interface (which theskdMlanager automatically
constructs).

Our evaluation considers the Amazon EC2 laaS, Google ApprengaaS, and
Microsoft Azure laaS. For the laaS offerings, we must mdguddoose the number of
instances (virtual machines) that execute tasks, so weiexget with the performance
and cost implications of using 1, 2, 4, and 8 workers. For tlhedgk App Engine
PaasS, users cannot dictate the exact number of instancesusel (as it dynamically
scales up and down in response to user traffic). To provideradaparison, we
use tharl. smal | instance type within Amazon EC2, the Small instance typeiwith
Microsoft Azure, and th&1 instance type within Google App Engine. These instances
minimize the cost incurred to end users, and provide a caalpamount of CPU and
memory between one another.

Figure5.4 shows the time taken to run a varying number of tasks withira2om
EC2 and Microsoft Azure, for varying numbers of workers. Asimerease the number
of simulations, we see a roughly linear increase in the amoiutme taken to execute
these tasks. We also note a standard deviation proportiotia¢ number of tasks run.
For Amazon EC2, this is due to the performance variabilityasks that execute within
it, a result that has been confirmed by the works of othEDE[62]. As we increase the
number of workers used to execute tasks, we also note a porréisig speedup in the

total execution time. Note that the x-axis is on a logarithsuale.

147

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-

ecution Across Cloud Fabrics

18000 .
P — = —1 Worker
) 16000 —x— -2 Workers |4
e —x— -4 Workers
g 14000 —x— 8 Workers | |
(&)
Q 12000
)]
@ 10000F R
E 7
7/
-|: 8000} y
//
O) 6000 7 i
£ . =
C 4000t L7 - ,
Ve — -
@ 20001 AP
== ;.’E.g—;;-;fi B)
0% -)
10 10 10
Number of Simulations
18000 ,
P — -~ —1 Worker
V) 16000 —x— 2 Workers |1
= —x— -4 Workers
S 14000 —x— 8 Workers | |
(&)
@ 12000
n
N
@ 10000F T
- .
.= 8000f < i
l_ e g %
7 e
O) 6000 A |
£ 2O
7 -
C 4000 -]
C Ve s _ -
: // pe _ _ - %
x 2000 T e T T
0 e = === 2 ;“g-//

Number of Simulations

Figure 5.4: Running time for execution of SSA simulations ma&zon EC2 (left) and
Microsoft Azure (right), when a varying number of workerg attilized. Each value
represents the average of five runs. Note that the x-axis @slogarithmic scale.

148

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

— = — App Engine
4000 —x— - Azure (8 Workers) |
—x—-EC2 (8 Workers)

Running Time (seconds)

2000 -
Ve
e X
1500 P /,///I’
4 .///
1000} T
Ve Py -
Ve ‘//'//
500 F L F
<
R
Oﬁﬂ[)_ ‘1 ‘Z
10 10 10

Number of Simulations

A 1.5
(7] -
s — ~ — App Engine
© —x— - Azure (8 Workers)
6 —x—-EC2 (8 Workers)
(A
N 1 I
- Ve
) e
= P
e s
[Vp] s
(@) e—— i —— Hom o
@) g
0.5 7
> L7
et 7
© p
- P
(O] ;
c R
O E_ -7
2 0" 0 ‘ 1 ‘ 2
10 10 10

Number of Simulations

Figure 5.5: Running time (left) and monetary cost incurreght) for execution of a
varying number of SSA simulations in Amazon EC2, MicrosoftuAz, and Google
App Engine. Each value represents the average of five runs.

149

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

Figure 5.5 shows the time taken and the cost incurred when using thennosxi
number of workers in Amazon EC2 and Microsoft Azure (here, 8kers) and com-
pares it with Google App Engine, which autoscales and dotallwov us to dictate the
exact number of workers to use. We note that Google App Engenorms the best
of the three engines compared here, and because of its patengiricing model, costs
less than the other offerings for the lower numbers of sithda. Amazon EC2 and
Microsoft Azure both cost the same, which is simply the pateight machines for a
single hour. All three cost a similar amount when the tota&loexion time approaches

an hour, which agrees with the per-hour pricing model engiddyy Amazon EC2 and

Microsoft Azure.

5.4.3 Programming Language Shootout Evaluation

In the previous sections, we showed that the MEDEA executtiodel can be used
to enable programs to be executed simply and easily ovearditpcloud systems. In
this section, we use AppScale’s MEDEA support to compar@émormance and cost
of using different programming language implementatiohgrograms over different
public cloud fabrics.

It can be useful to test the performance of a given langualiehitself evolves into
numerous versions over time. Additionally, creators of & peogramming language

may wish to compare the performance of their language wihlrgbrogramming lan-

150

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

guages on a set of reference implementations. In the spitieoComputer Language
Benchmarks Gamé[], we can use AppScale (augmented with MEDEA) to provide a
community cloud PaaS that can be used to benchmark algarithtin implementations

in different languages on various cloud compute, storage gqaieue services.

We evaluate AppScale’s MEDEA support in this use case inrei§ue. Here,
we have taken eleven implementations of the n-body sinmidienchmark fromd1],
written in programming languages of varying programmingpdams, type checking
systems, and other language-level design and implementadditails. This data shows
that most of the implementations of this benchmark perforithiv the same order
of magnitude, with the exceptions of Python and Ruby, whidtiope two orders of
magnitude slower than the others. These results are rougtdgreement with the
values published byo[l].

While the MEDEA execution model provides users with suppaortdifferent pro-
gramming languages and different programming modelss@ ahables users to inves-
tigate and understand the monetary costs of using a patiprdgramming language in
a public cloud setting. Moreover, it enables users to ingats the costs of the different
pricing models employed by public cloud vendors.

For example, the cost to run the n-body benchmark in diffel@myuages using
AppScale over Amazon EC2 is shown in Tabld. We consider both the cost to run

each benchmark via an hourly pricing model (the standard@red by Amazon) and a

151

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

1175 4388
25 ! T ! ! T I
) A
5 S e
ym + . Y I I I IR
.g 15_+ + EFIRLED
- ——
-‘510-
X
L
Sk [—_ N c |- |
'% @© N c|l S
S G||<|| &8
= % 3+ Ello (ﬁc © SHESI=AIE]
<|lo||O|2lo]lz||B|lo|la]|&||A

o]

Figure 5.6: Average running time for implementations of thbody benchmark in
different programming languages. Only the time taken t@etesthe task is considered
here. This does not include the time taken to message thensyshqueue the task,
dequeue it, or the final result in the remote datastore. Ealtlevvepresents the average

over ten runs.

152

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

per-second pricing model (similar to the per-minute pgaimodel employed by Google
App Engine). For the hourly pricing model, all of the benchkseemployed ran within

a single hour (except for Ruby), and thus cost $1.80 to runRiedxy, it took more than

an hour to run, so we were assessed charges for two hours @utation, a total of

$3.60. If Amazon were to employ a per-second pricing modekf@wn in the table),
the results exhibit larger differences between languagentdogies. Specifically, C is
the cheapest, with Fortran, Java, Scala, and Ada closébwiiolg it. Python and Ruby
perform the slowest, costing one to two orders of magnitudeerto run.

AppScale, with MEDEA support, thus provides users with d tat they can use
to measure the costs of running their application in a giasgliage or under the dif-
ferent pricing models employed by cloud vendors. Such ai®ahportant for the
investigation of new pricing models and to assess applicatosts when pricing mod-
els change.

Next, we consider the performance and cost of running thiedPyand Java n-body
simulations in Amazon EC2, Google App Engine, and Microsaftie. We elect to
use only Python and Java (as opposed to all the languageswsarhplementations
for) because Google App Engine only supports programsemriti Python, Java, and
Go. Here, we utilize al. | ar ge instance in Amazon EC2, 4 instance in Google

App Engine, and aixt ra Smal | instance in Microsoft Azure. We vary the number

153

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

Language| Cost Per Task

Ada $0.0076+ $0.0002
C $0.0069+ $0.0002
C# $0.0105+ $0.0000
Fortran | $0.0073+ $0.0003
Go $0.0105+ $0.0000
Haskell | $0.01204 $0.0000
Java | $0.0075+ $0.0000
OCaml | $0.0110+ $0.0000
Python | $0.5876+ $0.0057
Ruby | $2.1944+ $0.0198
Scala | $0.0075+ $0.0000

Table 5.1: Average monetary cost (in U.S. dollars) incutieedun the benchmarks
shown in Figures.6via a per-second pricing model. These costs only includedise
incurred for the virtual machines used. Each value showa regresents the average
cost incurred over ten runs.

of bodies to simulate betweénx 10* and5 x 107, and run each simulation ten times,
reporting the average and standard deviation.

The average running time for the n-body simulation bencknesshown in Fig-
ure5.7. Amazon EC2 performs the fastest at the lower number of bddissnulate
because it does not dispatch workers to a queue and backeadesservice - it simply
runs them as it receives them. At the higher number of bodissmulate, the queue
and storage service time no longer dominates the total érectiime, and the three
services perform roughly the same to one another. We welgeit@run the Python
n-body simulation a5 x 107 bodies, because our instances used more than 512MB of
memory (the maximum memory allowed fb4 instances) and were killed by the App

Engine runtime. Even without this memory restriction, ittlehave likely taken more

154

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

than 10 minutes to execute (the maximum time allowed for gemknd tasks to exe-
cute within Google App Engine) and still have been killed by Google App Engine
runtime.

The average cost to run the n-body simulation benchmarkas/ishn Table5.2
Amazon EC2 and Microsoft Azure charge users on a per-hous,baisd because all
of the n-body simulation times for the Python and Java impgletations ran in less
than an hour, we were charged for a full hour in these systerhss was $0.32 for
amil. | ar ge instance in Amazon EC2, and $0.02 forlaxt ra Snmal | instance in
Microsoft Azure. Google App Engine charges on a per-minatgd) and because all
of the Java n-body simulation times ran in less than a minuewere charged for
a full minute in Google App Engine (as opposed to a full houAmazon EC2 and
Microsoft Azure). As we used the most expensive instance ifyjisoogle App Engine
(theF4 instance type), we were charged $0.0013 for the minute tngbrmgram took
to execute. We used the same instance type for our Pythomygimulation, but as
the larger number of bodies to simulate took more than asimghute to execute, we
were charged for more than a single minute of time. Tak®?shows the cost incurred
by simulating5 x 107 bodies.

These cost values are not intended to reflect the optimad cbstinning the n-body
simulation code in Amazon EC2, Google App Engine, and Micito&pure. We could

have picked instance types that cost less within each oétpesviders, which could

155

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

| Cloud Service \ Cost |

Amazon EC2 $0.3200+ $0.0000
Google App Engine (Java) | $0.0013+ $0.0000
Google App Engine (Python) $0.0049+ $0.0006
Microsoft Azure Worker Roles $0.0200+ $0.0000

Table 5.2: Monetary cost incurred to run the n-body simafattode shown in Fig-
ure5.7 across Amazon EC2, Google App Engine, and Microsoft Azuret<are as-
sessed on a per-hour basis for Amazon EC2 and Microsoft Aanceon a per-minute
basis for Google App Engine. The value presented for thedPy@oogle App Engine
simulation reflects only the most expensive simulation &leothers are identical to
the Java Google App Engine simulation).

have then increased the total execution time for each, wtoald have then increased
the cost incurred (depending on the pricing model used). &stlwe case for the cloud
gueue services, implementations of MEDEA provides usetis avsystem that can be
used to snapshot the performance and cost of using a cloSdda®aaS system to

execute their code.

5.5 Extending MEDEA

The MEDEA execution model enables cloud interoperabildy $upported pro-
grams. In this section, we consider extensions to this mindklcilitate greater porta-
bility across and ease of use of cloud systems. The extensuwenconsider in the
subsections that follow include simplifying the use of thEIEA scripting language
component via a parallel future construct, task inliningp@ssing the queuing sys-

tem in some cases), making task deployment more efficieriiatizhing, and utilizing

156

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

— — = — Amazon EC2
(72 —x—Google App Engine
_CCJ 10 —x— - Microsoft Azure E
3 =
@ 10 ////
L L7
e
v ., E
E 10 P
Lo
[/%j/ g
Dyl - —F -
il R
IE //
c ., =
S 10 -
m //
? 1 1 1 1
10" 10° 10° 10
Number of Bodies Simulated
40 T
— — = —Amazon EC2
N el —x— - Google App Engine | |
-8 —X— - Microsoft Azure
8 30t
3
< 25y /
(0] 7/
E 20 7’/ R
— K&
— K A
o A
c K
- — K / /
c o I
= S ,
: 5lF— — — = — T T /
- X /
e R
0 A; _— e 1—57 — = ‘6 ‘7
10 10 10 10

Number of Bodies Simulated

Figure 5.7: Running time for execution of n-body simulationgten in Python (left)
and Java (right), using Amazon EC2, Google App Engine, andddaft Azure. Note
that both axes are on logarithmic scales.

157

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

caching on Task Workers to eliminate unnecessary data&vetriThroughout this sec-
tion, we also consider the impact of these optimizationshengopular MapReduce
programming model, popularized i83], with an emphasis on the single embarrass-

ingly parallel applications that this model supports.

5.5.1 Automatic Polling via Futures

We begin by considering ways to improve the use of the MEDE#S0g language
component for distributed, multi-cloud application deptent. Towards this end, the
result of an invocation obabel () returns an object that encapsulates information
about the task’s execution. Users can poll for the outpuheftask from within a
MEDEA script, to determine when a task has completed. The E&Bcript for doing

so would look similar to the following:

result = babel(params)
output params = params.dup
outputparams|:type] = "output”
loop {
if babel(outputparams)[:done]
break
end

sleep (10)

158

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

}

puts result.stdout
puts result.stderr

puts result.metadata

To automate the process of polling (reducing the amount ak&aiser must per-
form) and to enable the script to do other work while waitiog the task to finish
(e.g. execute more tasks), we investigate implementind &ieel function as a fu-
ture b1, 98, 97]. A future is a simple and elegant programming languagetcocisthat
enables developers to introduce asynchronous compuiatmtheir programs.

To enable this in our scripting language support, we modié/design and imple-
mentation of thebabel function to return a future for the object (the task’s result
instead of the object itself. Whemabel is invoked, a background thread is spawned
that dispatches a message to the MEDEA Task Manager, polts fautput, and blocks
if the user calls any of its methods or accesses any of itsfledfiore the task has com-
pleted. We employ Ruby’s metaprogramming features to impt@nmplicit future
semantics for théabel function, so users need not know that the object they are ac-
cessing is a future. The previous example, which used gpléan be rewritten when

futures are used, as follows:

result = babel(params)

159

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

puts result.stdout # this will block until
puts result.stderr # the task completes

puts result.metadata

5.5.2 Inlining Task Execution

MEDEA provides a task execution model that utilizes a distied queue service to
pass information between the Task Manager and Task Worketdor short-running
tasks, the overhead incurred by storing tasks in a queue mkpnger than running the
task immediately within the Task Manager. Therefore, webnasers to specify the
value of: wor ker to bei nl i ne to indicate that the task should be “inlined” - that
is, it should not follow the standard MEDEA execution modaeid instead should be
immediately executed inline within the Task Manager.

To evaluate the benefits and drawbacks of task inlining in MEDwe deploy a
set of tasks that count the number of words in an input corgusguhe map-reduce
programming modeld3]. Here, each Map task performs a word count on the works
of William Shakespeare (roughly 5MB in size), and each Redask aggregates the
results from each Map task. Our extensions to the MEDEA 8ongganguage support
that facilitate the use of futures enables supported progta be “chained” together in

a manner similar to that of a workflow system, except thatsiiggem is fully Turing-

160

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

complete, as opposed to the XML-based systems that mosflawrkystems employ.
Here, we pass the output of each Map task as an input to theRedhce task. The

MEDEA script for this MapReduce job looks like the following:

commonparams ={

:storage > "s37,

:queue = "sqQs”,
rinstancetype = "m2.4xlarge”,
:max.nodes = 3,

:worker = "inline”

map._params = commorparams.dup

map_params|[:code] = "/.../wc.py”

map.params|[:argv|] ["/...] shakespeare . txt”]

num_mappers.times{ |i|

paramlist << map.params

}

map.tasks = babel(paraniist)

161

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

outputs = maptasks.map{ |task]|
task.outputlocation

}

reduceparams = commorparams.dup

reduceparams|[:code] = "/.../reduce.py”

reduceparams|[:argv] = outputs

reducetask = babel(reducgarams)

In this experiment, we vary the number of Map tasks dispatatieen inlining is
used and when it is not used, and report the results in Fig@erhe data shows that
when we inline a small number of tasks, inlining performddrethan the non-inlined
case, but as we inline more tasks, it causes a near-lineedalen on the system (as all
inlined tasks are run on the Task Manager, who runs themllggrie the non-inlined
case, the number of tasks we run are smaller than the numhbgaitdble cores, so the
total execution time is roughly constant.

As part of ongoing and future work, we are investigating hovatitomatically de-
tect when a task can and should be inlined vs deployed viaaiienty system. Such
support will remove the burden from the programmer to dewaiden it is best to do so.
Since the MEDEA Task Manager collects performance dataasiddehavior, we will

use this information to guide this inlining functionalityat we currently have in place.

162

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

o)
o

‘ ‘
— = —Inline
—x—-Not Inline | |

/}/{
i::}f;:ii 2 %

~
o
T

(o2}
o
T

o
o
T

X
o
/
oy
]f
[BAN
(N
X b
\ N
\

N
o
T
AN

Running Time (seconds)

o

2 10

o

4 6 8
Number of Map Tasks

Figure 5.8: Average end-to-end time to run inlined and mdiméd tasks for the Python
MapReduce WordCount code for varying numbers of Map tasks asiinigée Reduce
task. Each value here represents the average of five runs.

As afirst step, we augment the Task Manager to automaticdihei up to one task per

core on its node (to avoid CPU thrashing from overprovisigriasks).

5.5.3 Batch Task Execution

As many real-world use cases need to run more than a singlettes ability to
batch task invocations can be useful. Our next MEDEA extensierefore facilitates
batch task invocation.

To enable this, we modify the invocation babel to take advantage of Ruby’s

duck typing capabilities so that it can receive either a Rubghh(a single task invo-

163

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

cation) or a Ruby array of hashes (multiple task invocati@sarguments. In case
of the latter, the multiple task requests are dispatchedtahce to the MEDEA Task
Manager within AppScale, and a Ruby array of futures of tagkatb is returned as
a result. A code example that runs ten n-body simulationsaagl App Engine and

prints their outputs is:

tasks = []
10.times { |i|
tasks << babel(params)
}
tasks.each{ |task]|

puts task.stdout

That example dispatches 10 tasks individually to MEDEA texecuted, and prints
the result of each task. Alternatively, the 10 tasks couldibpatched in a single batch

request as follows:

paramlist = []
10.times { |i|

paramlist << params

164

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

tasks = babel(paranlist)
tasks.each{ |task|

puts task.stdout

Figure 5.9 shows the performance improvements that are possible fatohing
requests for the Python MapReduce WordCount code. When onhgke $Viap task is
used, the two systems perform roughly equally. Howevehastimber of tasks to run
increases, batching the tasks into a single request savgaificant amount of time.
The amount of time spent is linear in the number of tasks ih bases, as the MEDEA
scripting language checks that the inputs and code to rumalee remote datastore
(or copy them to the datastore if they are on the local disig,taat the output location

specified does not exist (to avoid accidentally overwritngsting data).

5.5.4 Caching Support

Many use cases, such as those in the MapReduce programmauigmay can exe-
cute many instances of a single program (here, the Map prggra a single machine.
Our final MEDEA extension is therefore concerned with providcaching for pro-

grams and inputs on machines.

165

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

=
(=)

—_ — =~ —Batch
) 14k —x— - Not Batch | |
©
-
8 12t o
_
& o
101 X
7
o) x
e 8 o7
- — /x /I
3] //*‘ e
c 4 P -
Qo o
Q 2k /j//
@) *
0 i i
0 2 10

4 6 8
Number of Map Tasks

Figure 5.9: Average time to dispatch requests in a batch&dda and a non-batched
fashion for the Python MapReduce WordCount code for varyimgbers of Map tasks.
Each value here represents the average of ten runs.

To implement caching support, whenever Task Workers woatdally download
a program or an input file, they first check to see if they haeefille already stored
locallyin/ var / cache/ nedea. If so, they do not attempt to download the file again
(otherwise, they download the file from the remote datasisresual).

Figure5.10shows the results of executing WordCount Map tasks over tkelina
MEDEA system, as well as the performance improvements tt@irovhen we batch
the tasks into a single request. Finally, we also considepérformance improvements
of using batching as well as caching the Map program and jistifile (the works of

William Shakespeare). Although batching does improvegreréince (by 23% at 64

166

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

1400

—_ — - — Baseline
(2] —x— - Optimized Batching
T 1200 —x— - Optimized Batching + Caching |1
c
S I
O 1000} e
Q p
2} -
N e
800 7
2 PR
= g -
- -
i~ 600f - i
= T
(@] g g
I e

S 00t SR 7
c - x =
c PR T
S 200f P R
a4 e =E T

0 ¥ % i i i i

0 10 20 30 40 60

50
Number of Map Tasks

Figure 5.10: Average time taken to execute a varying numbé&ioodCount Map tasks,
when the baseline system is used, when batch task supposlieel, and when batch
task support and caching is employed. Each value here eysethe average of five
runs.

Map tasks), adding caching support has a much greater iropaotal execution time
(by 65% at 64 Map tasks). This is because the input file is 5MBize, so not re-
downloading it for every Map task reduces the normal “dowadl@xecute” process to

simply “execute”.

5.6 Related Work

The MEDEA execution model builds upon and expands upon thésvof oth-

ers. Primarily, MEDEA is implemented by repurposing App8and Neptune. App-

167

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

Scale enables automatic deployment of Google App Enginécagipns written in
Python, Java, and Go, and Neptune expands this to supporapjpliCations written in
MPI [48], UPC [38], X10 [25], KDT [67], and others. The implementation of MEDEA
via AppScale and Neptune goes further by enabling autonetecution of programs
written in any programming language, across compute, goi@nd queue services of-
fered by Amazon, Google, and Microsoft. Furthermore, odemsions automatically
collect and expose metadata about the program, allowing usevrite programs that
guantify the performance characteristics of the progrdreg execute.

MEDEA is inspired in part by the YCSB proje@&(] and its successor, YCSB+%4].
These projects enable users to benchmark popular nomredatlatastores (e.g., HBage],
CassandraZ3d]) on a consistent workload to provide information aboutrthaderlying
performance characteristics. MEDEA goes a step in an oottagdirection: instead
of providing a system that can be used to benchmark datastoeesingle cloud laaS,
implementations of MEDEA can be used to benchmark comptaeage, and queue
services tied together in a single cloud laaS or PaaS, aradibs a hybrid cloud.

Elastisizer 53] provides users with the ability to automatically acquiea$ re-
sources and run tasks over them, and like Neptune, providasguage-like inter-
face to abstract away resource usage. Elastisizer diffens MEDEA in two critical
ways. First, Elastisizer can run only Java tasks that comfiar the Hadoop MapRe-

duce framework / programming model, whereas our implentiemtaf MEDEA can

168

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

run tasks written in any programming language, in any prognang model. Secondly,
Elastisizer’'s declarative language serves a differenigae than Neptune does. Elasti-
sizer enables users to query the system about the perfoenaditiveir tasks for certain
data sets, while Neptune enables users to specify the taskselves and chain them
together with other tasks.

Other offerings provide either a library or runtime compaingmilar in nature to
MEDEA. At the library level, the Google App Engine Pipelin€®K46] offers devel-
opers writing Python or Java applications the ability toichtagether functions that
should be asynchronously executed. Pipeline differs froBDEA in that it is not a
published work and that its primary implementation runs oclased runtime stack
within Google’s infrastructure. Furthermore, arbitraapguages are not supported, as
the Google App Engine runtime stack only supports appbegatiwritten in Python and
Java that use whitelisted APIs. Finally, only functionstthere uploaded with the
user’s application can be executed (that is, arbitrary &ythr Java functions cannot be
uploaded and executed).

In a similar vein, Pegasu84] and Swift [35] allow users to specify an execution
plan (typically in XML) to connect programs together. In t@st to our language sup-
port, these execution plans are not Turing-complete, wprelrents them from being
used in scenarios where the result of a computation can eausditrary piece of code

to be executed or require some type of human interactioncfwiniay be the case when

169

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

an expert user is needed to analyze the result of a commitatiurthermore, these
systems are not designed to be pluggable in nature: thaydmtely to utilize a single,
statically owned set of resources to run applications.

Workflow systems execute and connect programs togethematitlly, which is
conceptually similar to what MEDEA offers. AME$], Condor PQ], StratUm [73],
and Amazon Simple Workflow Service (SWH) pre recent works that seek to address
this problem, for differing domains. AME is designed to runsupercomputers, where
millions of cores may be present, while Condor and StratUtizatgrids, which do
not provide elasticity and thus do not allow users to dynaihiacquire nodes. While
Amazon SWF does operate within a cloud environment, it isigpeed to the Amazon
cloud, which encourages lock-in to Amazon’s compute, gf@rand queue services.
Furthermore, the specification language that connects etatipn together in Amazon
SWEF is not Turing-complete, limiting the types of computatitbat can be run in a

manner similar to Pegasus and Swift.

5.7 Summary and Conclusions

MEDEA provides users with an execution model whose impldatem automati-
cally deploys applications to compute, storage, and quensacgs offered by popular

cloud laaS and PaaS systems. The motivation behind MEDE® lieduce the com-

170

Chapter 5. MEDEA: A Pluggable Middleware System for Interade Program Ex-
ecution Across Cloud Fabrics

plexity with learning the myriad APIs, cost models, and lpgattices needed to utilize
these cloud services effectively. To achieve this goal, MBDeverages the Neptune
domain specific language and uses it to provide users withiagreomplete language
that they can program in to detail what services should drettieir application, and
not have to be concerned about learning how to execute tpglication. Our evalu-
ation of MEDEA shows that, while cloud systems may performilsirly for a given
piece of code, they can vary greatly with respect to the prézes pay to run their code
in these systems, due to the pricing models that clouds enfGEDEA enables users
to evaluate these systems easily for their own applicatiang enables users to com-
pare and to contrast the performance and cost of each of $kegees, as the services
and their applications evolve over time.

The text of this chapter is, in part, a reprint of the mateaalit appears in 20].

171

Chapter 6

Exodus: An Application Programming
Interface for Cost-Aware,
Cloud-Aware Program Execution

In this chapter, we present Exodus, an application progragmterface for auto-
matically estimating the total execution time and cost inedi to execute applications
via cloud Infrastructure-as-a-Service offerings. Exodbstracts away the details of
cloud-based program execution by providing library supporenable users to pro-
grammatically dictate (via a Turing-complete languagey kmoptimally execute their
applications. Exodus provides optimizers that schedybdiagiion execution based on
performance as well as cost, and considers heterogenesusgce types provided by
the Amazon EC2 public cloud and the Eucalyptus private cl@&yddoing so, Exodus
provides users with the ability to estimate how long it walké and how much it will
cost to execute their application over cloud resourcesowit first needing to become

an expert in each cloud service that they wish to utilize. Mvestigate the potential of

172

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

Exodus by employing it for computational systems biologplagations (where scien-
tists are typically not cloud experts) written in low-leaid high-level programming
languages. Exodus is able to predict total execution tinta 246-16% error for the

applications surveyed, when optimizing for total exeautione or cost.

6.1 Introduction and Motivation

The myriad types of cloud service offerings and instancegyihat each provider
offers makes it challenging and time consuming for new anEeebusers alike to de-
termine which cloud, instance type, and how many instangestyare optimal for their
application. Furthermore, what is “optimal” varies fromeouser to another, and can
include minimizing overall cost incurred, minimizing thetal amount of time needed
to execute the user’s code, or a variety of user-defined esdgig., execution must fin-
ish before a particular deadline). The complexity of estintahow much it will cost
to run in the cloud is therefore often done in an ad-hoc manygically resorting to
back-of-the-envelope style calculations, which in pi@etan be extremely inaccurate.

This work attempts to reduce this complexity by proposingapplication pro-
gramming interface for cloud-aware program executionthat can consider perfor-
mance, cost, or user-defined metrics. This interface, wivetcall Exodus, profiles

bag-of-tasks applications and automatically determihesdeal instance type to use.

173

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

Optimization is performed based on total execution timenetary cost, or via user-
provided metrics. After determining which resources argnagl to execute a user’s
application, Exodus executes the application without ugervention.

Applications can be executed in the Amazon EC2 public cloudi@sas in on-
premise Eucalyptus clouds. In both cases, Exodus autcaigtietermines how to
use resources optimally to execute a user’s applicatioth,uges the AppScale cloud
platform [16] [27] to automatically configure and deploy applications. To lenpent
the Exodus API, we leverage the Neptune HPC configuratiogulage 19| [21]. To
investigate the potential of Exodus, we employ the systera fumber of different use
cases, in which we compare and contrast scientific and gememaose applications in
terms of performance, price, and a weighted average of thartwwhe Amazon EC2
public cloud.

In summary, we contribute:

e The design of an application programming interface thabksausers of any
programming language to automatically determine whichal@sources are op-

timal for their application, for some user-provided defomtof “optimal”.

e An implementation of this API in the Neptune domain specifinguage, that

automatically executes applications via Amazon EC2 and Iipiues.

174

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

e An experimental evaluation of bag-of-tasks applicationsfcomputational sys-
tems biology as well as general purpose applications, dstrading how Exodus
is able to automatically determine the instance types readd the number of
instances needed to minimize the cost to execute thesegonegor maximize

their performance via popular cloud infrastructures.

In the sections that follow, we present the design and impfeation of Exodus.
We describe how we provide an API that is able to determine twoaptimally exe-
cute a user’s program, for various definitions of “optimate then investigate the cost
and performance of executing programs via Exodus by evatuatientific and gen-
eral purpose applications written in different programgnismnguages. We then discuss

related work and conclude.

6.2 Design

By providing a solution at the level of an application prograimg interface (API),
we aim to abstract away the complexities associated withamus performance man-
agement of user-provided applications. This enables uedisus on programming
their applications, instead of having to spend time to bexzamexpert on each cloud

service they wish to potentially use. This also increase$iegiion portability, as appli-

175

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

cations can be executed over supported clouds without mgedimanually port their

application from one cloud to another. In this work, we fooagroviding an API that:

e Estimates the total execution time and monetary cost ofudkegra user’s appli-

cation via a cloud laaS

e Uses time and cost estimates to optimize the execution oEgsuspplication,

via standard or user-defined metrics

¢ Is aware of the differing types of hardware profiles (“instatypes”) offered by
cloud laaS vendors, specifically how they vary with respegédrformance and

cost

e Automatically executes applications via a cloud laaS

Our realization of this API in Exodus is designed to accostpthe above to facil-
itate cloud program execution that is both cost-aware anfdfeance-aware, and can
leverage existing research that schedules applicatiedan performance character-
istics [94] [11]. The latter feature is designed to provide a “pluggabletirojzer, to
serve use cases where application-specific metrics drevarilerlying execution.

One such use case is a deadline: a scientist may have a pap#indet a certain
time, and needs the execution of their experiments to fingsbrb that deadline, re-

gardless of the cost incurred. Alternatively, a company maye a budget that they

176

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

have allocated for use with public clouds, and may want t@ebtecas many programs
as they can without exceeding that budget. Other use casgs\vobve over time, so
our API must be pluggable to accommodate user-providedaaetr

The Exodus API consists of a single function call that useveke to specify the
execution environment, deployment preferences for theigiam, and credentials for
each cloud laaS they wish Exodus to consider. The executisimoement includes
information about where the program is stored locally, teofisarguments to invoke the
program with, and (if necessary) the name of the executhbaleshould be used to run

the program. The formal syntax of callsegodus is as follows:

S — exodus E

E — :executable = ’'binary’, C

C —> :code = 'location, A

A — rargv = "arguments”, N

A — :argv = ["arguments”], N

A — :argv = Proc.new{ |i| user code}, N

N — :num.tasks = int, O

177

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

O — :optimize_-for => :performance, M
O — :optimize_for == :cost, M

O — :optimize_-for == Proc.new{ |t, c| user code}, M

M — :max.instances = int, |1

I1 — :clouds.to_use = [I12]
12 — :AmazonEC2, 12| :AmazonEC2

|12 — :Eucalyptus, 12| :Eucalyptus

The execution of invocations to Exodus follows the pattéroven in Figure6.1
Once the user’s program invokes Exodus, the runtime valgdtdie parameters that
specify their execution environment, deployment prefeesn and cloud credentials.
Then the runtime dispatches a message to a specializedesenning within the App-
Scale cloud platform, which is then charged with the taskcoiding virtual machines
in each cloud the user specifies, with the given credenfldis.application is then ex-
ecuted, the result of the job (its standard output and stdrefaor) saved to the cloud
storage service that the user requests, and is retrieveddyus and passed to the user

(if their program requests it).

178

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

run(params)

User calls
exodus()

AppScale

{ euca-run-instances
4

Eucalyptus
(Private)

ec2-run-instances

Amazon EC2
(Public)

retrieve code/inputs,
save outputs

Figure 6.1: An overview of how Exodus abstracts away cloablanteraction via the
AppScale cloud platform.

6.3 Implementation

Exodus provides an application programming interface evsithat abstracts away
how to optimally deploy applications via cloud Infrastruet-as-a-Service offerings.
Our implementation of this API in the Neptune domain sped#itguage, itself a su-
perset of the Ruby programming language, facilitates theoti3ering-complete pro-
grams to execute programs (as opposed to XML-based or adecbsolutions). This
enables users to deploy their applications and take anpia@tions based on their re-
sulting outputs. For example, scripts that interact witlodixs can e-mail the outputs
of their code to a user for expert analysis, or integrate witter libraries to perform

statistical analysis on a user’s behalf.

179

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

We detail the types of parameters that Exodus API calls reghow profiling in-
formation is generated, and how this information is hareéss optimally decide how

to execute user-provided applications.

6.3.1 Application Programming Interface

Our implementation of the Exodus API provides users of thptiilee domain spe-
cific language with a single function call, namegodus, that users invoke to spec-
ify the execution environment, deployment preferenced,@adentials for each cloud
laaS they wish Exodus to consider. Specifically, the follgyyparameters are required

to specify the execution environment that the user’s codelghrun under:

1. : code - The location on the local filesystem where the user’s cotteceted.

2. . ar gv - An Array of Strings that represents the arguments thatlshmipassed
when the code is executed. Any files specified here are copibe remote cloud

service prior to code execution.

Users must then specify deployment preferences for theilicgtion, which in-

clude:

1. : numt asks - The number of times that Exodus should execute this code in a

cloud service, for bag-of-tasks applications.

180

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

2. :optim ze_for - The definition of how to optimally execute the user’s appli-
cation. Users may provide the Ruby Symbol (String constamisy f or mance
to indicate that their application should be executed askiias possible, or
. cost to indicate that their application should be executed aspeesively as
possible. Users may also provide a Function (a Proc in Rubyenctature) that
is given Exodus’ projected total execution time and costiired as inputs, and
returns a Float, which our optimizer will attempt to minimiamongst the in-

stance types available.

3. : max_i nst ances - The maximum number of instances that should be utilized
to execute a user’s code over. By default, 19 instances asess@at upper limit
for Amazon EC2 (since 20 instances are the maximum number@as@cquire
without contacting Amazon beforehand, and one instancedkcdted within
AppScale to application management), but a user may wisimibthe number

of instances employed to execute their applications.

Additionally, users must also specify credentials for eclold laaS that they wish
Exodus to consider executing programs over. This is donéheiacl ouds_t o_use
parameter, which can includéAmaz onEC2 for the publicly available Amazon Elastic

Compute Cloud andEucal ypt us for an on-premise Eucalyptus cloud.

181

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

Both of the clouds that we currently support require simil@dentials to be spec-
ified, including certificates, private keys, and access k&odus validates that each
set of credentials given are able to access the cloud sdrefoee attempting to execute
the user’s application.

For applications that require unique identifiers or seedsaodom-number gener-
ators, executing a number of identical applications viadtssowould produce identical
results. To better serve these applications, we amendahgv parameter to also ac-
cept a Function from users. This function is invoked onceefary task that Exodus
should execute, and receives the sequence ID of this task.efhbles applications to
seed their random-number generator with the sequence I[Praagice unique results

in their applications.

6.3.2 Cloud-Aware Program Execution

Once a user invokesxodus in their Neptune script, the Neptune runtime (ex-
tended in this work to support Exodus API calls) checks tafse code has profiling
data available. The current implementation checks on tba lidesystem for this in-
formation, but is extensible to utilize remotely availabtrirces. If no profiling data is
found, the Neptune runtime then invokes the profiler thatuher has specified. This

work contributes two profilers: NeeCPUProfiler and RemoteCloudProfiler.

182

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

The Neptune runtime implements NaCPUPTrofiler by invoking one or more copies
of the application locally (once by default) to generats fiiofiling information, noting
both the total execution time (average execution time ifetban one run is performed)
and the speed of the CPU on the local machine. This inform&iamitten to the local
filesystem for future deployments.

The Neptune runtime then examines thel ouds_t o_use parameter, and for
each cloud specified, determines which instance type, amchuimber of machines
for that instance type is optimal to execute the desired rurobinvocations of the
user’s program. It begins executions by estimating thd etacution time needed to
execute numt asks programs on each instance:

s num_tasks X ty

top = v (6.1)

wheret,, represents the time required (in seconds) to execatent asks programs
onn machines, withy processors each, andrepresents the time needed to execute one
program on one machine with one processor. To estimate toertof time needed
to execute one program on each instance type, we scale #diesharution time of the

profiled application to the CPU speed of each instance type:

cpu Xt
tremote _ PUremote local (62)

CPUjocal

183

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

wheret,...... represents the estimated time to execute the user’s apptican a CPU
at a clock speed afpu,.cote MHz, andt,,..; represents the time needed to execute the
user’s application locally on a CPU at a clock speedpaf, .., MHz.

Our optimizer estimates the total execution time via Equneii 1 for each instance
type, when between 1 and a maximumadx) number of instances are utilized. Our
application executor within the AppScale cloud platforndidates a single node to
manage applications.

Next, our optimizer estimates the cost incurred for eactaim type, and for be-
tween 1 andnax instances at each instance type to execute the user's apomicThis

cost estimate is given by:

Cnp = Ceiling(t,,, 3600) X n X ¢1 geo (6.3)

wherec,, represents the estimated cost to utilizenstances, each with processors,
with a cost ofc; g2 U.S. dollars for one hour of use. This pricing model is specifi
to the per-hour metering that Amazon EC2 employs, and isyeaddptable to the cost
model that Google App Engine employs (per-minute, with aimum charge of 15

minutes) as follows:

Cnp = Maz(15 % 60, Ceiling(t,,,60)) X n X ¢1.car (6.4)

184

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

For the Eucalyptus laaS offering, we assume that it is hostedremise, and is
offered freely to all users. This means that wecséb 0.

Once we have calculateg,, andc,, for each instance type, for each number of
instances we can acquire, we compute an “aggregate scatefatttors in both total

execution time and cost incurred:

Snp = Oy + (1 — a)cpy (6.5)

where s, represents the aggregate score for executing our coderougstances,
each withp processors, and is a value between zero and one that indicates whether
we should bias the calculation towards being performaifieete/e or cost-effective.
For the case when a user indicatept i m ze_f or => : cost, the optimizer sets
a = 0, thus considering only cost in Equati@i5. Similarly, if a user indicates
coptim zefor => :performance, the optimizer setex = 1, thus consider-
ing only total execution time (performance) in Equatb. Users may also explicitly
statea’s value.

The Neptune runtime then calculates the aggregate scorafdr instance type,
for each number of nodes available, for each cloud that tlee wsshes to execute

code over. It finds the minimum value, and ifeconmend_only => true is set,

185

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

reports the projected execution time and cost, aggregate,secommended instance
type and number of nodes, and cloud to use.

Instead of scaling solely on CPU speed, asv&PUProfiler does, we also provide
RemoteCloudProfiler. RemoteCloudProfiler sends a SOAP messdhge AppScale
cloud platform that instructs it to acquire one of each instatype within each cloud
the user has specified to use, and records the total executierio execute one invo-
cation of the user’s program. This process is not free inipahbuds: for the Amazon
EC2 public cloud, profiling an application that executes sslthan one hour on all in-
stance types would charge the end-user $6.71. Work is ogg¢oirtilize Spot Instances
to reduce this cost, although this is only applicable for ZoraEC2, and would sig-
nificantly increase profiling time (as Spot Instances areahsays immediately made
available).

If : recomrend_onl y is not set (or is set tbal se), then the Neptune runtime
proceeds to execute the user’s application. To do so, ittagts: numt asks Nep-
tune tasks and executes them, via the AppScale cloud ptatfas detailed in21]).
The Exodus API then returns an Array of lengthumt asks, which users can access

to query the standard output and standard error of theirprog,

186

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

6.3.3 Pluggable Optimizers

To leverage the vast array of existing literature on progogotimization as well
as to support unique use cases with Exodus, we provide aghggptimizer within
Exodus. To that end, Exodus enables users to specify theiramgregate scoring
function that should be executed in lieu of the one in Equei®. The user’s function
must receive two inputs: the projected total execution @me the projected cost. The
user’s function should return an Integer or Float value,lsd the Neptune runtime
can attempt to find the minimum aggregate score across esatanae type, for each
number of nodes available.

As an example, consider the use case where a user wishes tteeruapplication
and does not wish the total cost to exceed one dollar. Thecoséd invoke the Exodus

API as follows, to serve this use case:

exodus (
:code=>"/home/user/gprotein.dfsp”,
coptimize_-for=>Proc.new|time, cost

if cost > 100 # cents

return INFINITY

else

return cost

187

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

end

Here, the user passes in a function that overrides theibwolptimizers provided by
Exodus. This function is fairly straightforward: if the estted cost exceeds one dollar,
it returns a score of infinity, effectively eliminating thastance type and number of
instances from being considered for execution. In all otaeses, it simply returns the
cost to execute the code, so the least expensive instaneatgbnumber of instances
will still be considered.

A similar use case encountered by scientists is the desgreoute an application
by a certain deadline, but still try to do so as inexpensiasypossible. We can thus

amend the previous example to serve that use case as follows:

exodus (
:code=>"/home/user/gprotein.dfsp”,
coptimize_for=>Proc.new|time, cost
if Time.now + time > DEADLINE
return INFINITY
else

return cost

188

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

end

This example returns a score of infinity (eliminating thistance type and number
of instances) if the projected time would cause the user $s thieir deadline, and if not,
we return the projected cost. Therefore, this example giteto minimize cost while
meeting the deadline. If we replacedst witht i ne in that example, it would instead

attempt to minimize only the time spent, possibly incurrangubstantially larger bill.

6.4 Evaluation

We next use our implementation of Exodus to empirically extd how well it
optimizes program execution within cloud laaS offerings.c&dese Exodus is imple-
mented via the Neptune domain specific language, it is alldévage the open source
AppScale cloud platform to automatically configure and exe@rograms over laaS
resources. We begin by evaluating Exodus’ ability to salesburces and execute sci-
entific and general-purpose applications, and then proteadalyze the accuracy of

Exodus’ profilers.

189

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

6.4.1 Scientific Application Evaluation

We begin by using the optimizer that Exodus provides to compiae performance
and cost of different laaS offerings when executing sdiergipplications. We inves-
tigate two scientific applications that use a specific typ&inétic Monte Carlo algo-
rithm (known as the Stochastic Simulation AlgorithA?]), as these applications are
representative of probablistic applications that scaatexecute. These applications
are from the field of computational systems biology, and ireqailarge number of in-
dependent simulations to be executed (due to their pratimbiiature) to achieve an
acceptable level of statistical accuracy.

The two scientific applications we focus on here are the Bl Finite State Pro-
jection Algorithm (DFSP) 36] and the doubly weighted SSA coupled with the cross-
entropy method (dwSSA)3[l]. DFSP simulates spatially inhomogeneous stochastic
biochemical systems. The application that we test here ®@a@FSP to simulate a
model of the mating pheromone induced G-protein cycle irdnglyeast. The dwSSA
is a method for accurate estimation of rare event probagsilih stochastic biochemical
systems; the application employs dwSSA to simulate thé4oieiath process described
in [31]. In this process, there is a rare event that can occur thdtlds the population of
the chemical species; accurately characterizing the ramet's probability is the goal

of the application.

190

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

—_ — = — Optimize For Cost
(2} —x— - Balanced Optimizer
'g —x— - Optimize For Time
3
10°F E
S -
D Pk
2 -
o 7
_g 102' - -
= -
(@)] Phe
= -
C -~ - - - - /%
(- . _ - I _
e = e .
10° 10" 10°
Number of Simulations
20 T
— =~ — Optimize For Cost
18 —x— - Balanced Optimizer |4
/(-/)\ 1 —X— - Optimize For Time
|-
S 1af
o *
A 121 -
0 1 -7
. _ - Ve
- e g
= 8 - P
+— > -
U) 6 /v/ Ve
o ~ s
- Ve
O 4 o .
.7 e
2 -7 -
- s
beZ — — ——— === = >
0 o - — . 2
10 10 10

Number of Simulations

Figure 6.2: Running time (left) and cost incurred (right) éaecution of DFSP simula-
tions in Amazon EC2. We vary the optimizers used to scheduyécaion execution
between the cost-focused optimizer, the time-focusedropgr, and an optimizer that
setsa = 0.5. Each value represents the average of five runs. Note thégfth poth
axes are on a logarithmic scale, and in (right), the x-axia logarithmic scale.

191

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

For our first experiment, we execute 1, 10, and 100 DFSP strantavia Amazon
EC2, and measure how long it takes to do so when we optimizepplication to run
quickly (o« = 1), run inexpensivelyq¢ = 0), and a balance of the twaex(= 0.5).
We execute each of these experiments five times and repoawvdrage and standard
deviation. Here, we consider only the time spent executsfgs and omit the time
spent dispatching simulations from Neptune, processiagtim AppScale (hosted in
EC2), and storing their results in S3.

The results of our DFSP evaluation are shown in Fige As expected, the opti-
mizer that focuses on fast execution performs the fastasgtlihe greatest cost to the
user, as it acquires 1 of the most expensive instarccesy] ar ge in Amazon EC2) to
execute 1 simulation, 10 instances to execute 10 simukataord 19 instances (the max-
imum that we can acquire from Amazon without contacting themequest more) to
execute 100 simulations. Similarly, the optimizer thatfees on executing code inex-
pensively accrues the smallest costs, but executes comlersdlman the other optimizers.
This is because it always acquires 1 of the least expensstanoesr(l. smal |).

Figure 6.2 shows interesting behavior for our optimizer that sets- 0.5. With
respect to total execution time it performs similarly to fherformance-focused op-
timizer, but it is able to execute code at less cost to the. uéis is because the

NaiveCPUProfiler estimates total execution time to be linedah WiPU speed, so it

192

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

incorrectly estimates that the fastest instance type in Zme&C2 is proportionally
faster than their slower (and cheaper) counterparts.

We next move on to evaluating our support of the birth/deatdehvia the dwSSA.
We increase the number of simulations we perform heidter execution of our R
script, and vary the number of simulations we perform betwigg, 10°, and107. We
use the same three optimizers from the DFSP evaluationsifogwn executing code
quickly, inexpensively, and a balance of the two. This castpuires a unique seed to
be passed to it to seed its random number generator, so waldheeprevious Exodus

APl invocation as follows to pass in this seed:

exodus (

executable="Rscript”,
:code=>"/home/user/runcewssa.r”,
cargv=Proc.new{ |i]| [i] },
optimize_for=>:cost,

snum_tasks=NUM_TASKS

Strictly speaking, this is not truly random (as simulatisaseive monotonically
increasing numbers as their seeds), and we could replaith rand() to instead call
the pseudo-random number generator. However, this woatéase the complexity of

the underlying code, as we would now have to make sure the vaturned by-and|()

193

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

—~ — = — Optimize For _Co_st
) 10°F —x— - Balanced Optimizer |
-g —X— - Optimize For Time
o .
O -
q) - _ -
N -
~ -
v -7
E 10 Phd —=x
- — _ - ~ -
l— P ~ /V;./
(@) P - B 5./
E P - B ;./
C - g // -
cC - //
) 2 -z
m 10 =T

—v—‘lﬂ-‘.& - 1

10 10° 10

Number of Simulations

20
— =~ — Optimize For Cost
18 —x— - Balanced Optimizer |4
A]_G —X— - Optimize For Time
d
S 1af
o —]
O 12}
o) 10 e
D I 7
~ -
4+ e
v 6 Pt
@) Pl
o 4r /'/b
2t -7
—e P
e A 7
10 10 10

Number of Simulations

Figure 6.3: Running time (left) and cost incurred (right) éxecution of dwWSSA simu-
lations in Amazon EC2. We vary the optimizers used to scheajybication execution
between the cost-focused optimizer, the time-focusedropgr, and an optimizer that
setsa = 0.5. Each value represents the average of five runs. Note thégfth poth
axes are on logarithmic scales, and in (right), the x-ax@isa logarithmic scale.

194

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

was a seed not passed to any other simulation (as then thiagona would return the
same result, and not provide unique simulation data).

The results of executing the dwSSA simulation in Amazon E@2saiown in Fig-
ure 6.3 Here, we see that the performance-oriented optimizer lamaptimizer that
balances performance and cost choose the same instan@ntypember of instances,
so they cost the same for all simulations and perform roughtylarly. We see the
same expected trends as we did for the DFSP simulation imé#g2 the performance-
oriented optimizer executes code the fastest, but at tleegtcost to the user, and the
cost-oriented optimizer executes code at the least expertise user, but in the slowest
amount of time.

The primary difference with respect to the cost-orientetinoger is that, unlike
with DFSP, the cost-oriented optimizer does not always fiokthe smallest instance
types for all executions. This is because it projects thal etecution time for the 100
programs to execute (where each program perfariissimulations) at being greater
than an hour to execute, and thus could use a single machiseveral hours or several
machines for two hours. Our tie-breaking mechanism contespiay here: whenever
there are multiple instance types and number of instane¢sliarge equally, the cost-

focused optimizer chooses the option that performs thegast

195

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

6.4.2 General-Purpose Application Evaluation

We continue by comparing the performance and cost of the Am&C2 public
cloud to execute general-purpose applications. We irgastitwo applications here,
originally proposed by the seminal MapReduce paf8&}, [the WordCount and Grep
benchmarks, written in the Python programming languageh@®riginal Google pa-
per indicates, these applications are representativeogir@ms written in the MapRe-
duce programming paradigm. For the WordCount benchmark, age ps input the
works of William Shakespeare, and allow it to count the nundi@ccurences of each
word in that input corpus.

For the Grep benchmark, we again pass as input the works bakviShakespeare,
and ask the user to tell us which words they would like the berark to search for. In
this evaluation, we only ask Grep to return lines that conté word “Hamlet”. The
Exodus API invocation for this benchmark is as follows (vdgpet s() is the Neptune

function that queries the user for a line of input):

exodus (
executable="python”,
:code=>"/home/user/grep.py”,
cargv=>["/tmp/input.txt”, gets()],

optimize_for=>:cost,

196

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

Simulations| Execution Time| Naive (Error) | Remote (Error)
1 3.56s 1.68 s (52%)| 3.63s (2%)
10 3.45s 1.68 s (51%)| 3.63s (5%)
100 17.86s 8.84 s (50%)| 19.12 s (7%)

Table 6.1: A comparison of the time taken to execute the DFfpRcation in the Ama-
zon EC2 public cloud with estimates provided by Exodus’ peosiNave CPUPTrofiler
and RemoteCloudProfiler).

:num_tasks=NUM_TASKS

The results of executing the WordCount and Grep applicatiordmazon EC2
are shown in Figuré.4. Here, we see a linear relationship between the number of
tasks executed and the total execution time. This is to beatgd, as the cost-oriented
optimizer estimates that the total execution time will bgsl¢han one hour for both
the WordCount and Grep applications, and thus always pickstbnsmal | instance.
Therefore, this one instance simply polls Amazon SQS forammrk and executes the

varying number of Map tasks in serial.

6.4.3 Error Analysis

We next move on to evaluating how effective ExodusW&PUProfiler and Re-
moteCloudProfiler are at correctly estimating total exesutime and cost. We perform
this analysis for the DFSP application with the performaodented optimizer, and the

dwSSA application with the cost-oriented optimizer, in &reazon EC2 public cloud.

197

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

— — ~ — Optimize For Cost
5
c e
O 2 //
O 107} -
q) g
) -7
p — e
7
O] e
& 7
" — e
= -
(@) I 7
10+
C e
-E //
C -7
re
- e
@ s
b
10° 10" 10°

Number of Simulations

10)]
/(-I)\ |7 ~ — Optimize For Cost
©
C
(@]

D x
1 -

10 7
)
£
— -7
O 10° //I
= -7
c -7
c _ -

- Phe
x 1; -7

10 10" 10

Number of Simulations

Figure 6.4: Running time for execution of WordCount (left) aekp (right) applica-
tions in Amazon EC2. We fix the optimizer to focus on optimizowst incurred, and
vary the number of Map tasks executed. Each value reprethengserage of five runs.
Note that both axes are on logarithmic scales.

198

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

Simulations| Execution Time| Naive (% Error) | Remote (% Error
1 160.45 s 101.94 s (36%) | 145.50 s (9%)

10 1594.27 s 1019.44 s (36%)| 1455.04 s (9%)

100 12504.72's | 10194.43 s (18%) 14550.40 s (16%

Table 6.2: A comparison of the time taken to execute the dwSPAlication
in the Amazon EC2 public cloud with estimates provided by Eddoprofilers
(NaiveCPUProfiler and RemoteCloudProfiler).

We begin by evaluating Exodus’ profilers with the DFSP agian, shown in
Table6.1 We note that, as expected, the performance-oriented zgtiralways picks
the fastest instance typesl(. x| ar ge), and uses as many instances as possible to
execute the given simulations (1, 10, and 19 instances fb0,1and 100 simulations,
respectively). However, we note that the profilers diffgngicantly in their estimates
for the total execution time. The MaeCPUPTrofiler has an average error of 51% when
estimating DFSP execution time, but is able to do so at notodse user. In contrast,
the RemoteCloudProfiler provides a significantly smallerradhe user (4.67%), but
costs $6.71 to the user to execute (one hour of time on eatanoesin Amazon EC2).

We continue by evaluating Exodus’ profilers with the dwsSAlegation, shown in
Table6.2 We again note that, as expected, the cost-oriented ogtimalzvays picks
the cheapest instance typed (smal |), and uses one of them to executé and10°
simulations. However, due to the significant error if\M&PUProfiler’'s estimation of
the total execution time (30%, on average), it incorreatigammends to utilize three

instances in the case ®6” simulations. It does so, believing that they will finish in

199

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

3398.15 seconds (thus charging the user for three compuutes-lof time), but due to
this estimation error, actually executes for 4494.96 sdspwhich on three machines
charges the user for two hours on each machine, or six corfoutes of time. The Re-
moteCloudProfiler, in contrast, provides a significantlyéowstimation error (11.33%,
on average) and instead utilizes one instance for four haherging the user a total
of four compute-hours (albeit at an increased cost to thetogarofile the application

itself).

6.5 Related Work

The Exodus application programming interface builds upwh @pands upon the
work of others. Exodus was implemented by repurposing th@ue domain specific
language, which provides users with a Turing-completeuage to specify how pro-
grams should be executed in clouds. The actual executiomesktprograms is then
handled by the AppScale cloud platform. This is becauseatsSHevel offering au-
tomatically manages, configures, and deploys laaS-legslurees. This work goes
further with Neptune and enables it to predict the perforceaand cost incurred to run
a user’s application.

RO-BURST P4] aims to solve the problem of cost estimation in a similamvei

as Exodus. However, RO-BURST differs from Exodus in thregcali ways. First,

200

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

while RO-BURST claims to solve the problem of cost estimationlaaS vendors
(specifically citing Amazon EC2), their evaluation does nsé @any cloud services.
Instead, it assigns a cost to the owner of the datacentewvéry enachine that they
would have to purchase to execute the given workload (at &08erver or hard drive).
This style of cost estimation ignores the various instalypes and pricing models
popularized by Amazon EC2, which is considered when exegudjpplications via
Exodus.

Second, RO-BURST cannot perform cost estima#asriori, and requires intense
workload characterization. Each of the twenty workloadfO# were run for twenty
days, and analyzed every five minutes to gather the 5,760pod#@its used to perform
RO-BURST's cost estimation. In contrast, Exodus is able tonage total execution
time and performance with only a single, local executiorhefuser’s program, and can
significantly reduce the error of this estimate by utiliziclgud resources (at a minor
cost to the user).

Third, it is not clear how users interact with RO-BURS34]does not explain how
users interface their programs to it and receive cost etgsgnand is not designed to
be extensible with respect to how a user’s code can be otniln contrast, Exodus
provides a clear API that estimates the cost of executingedsuapplication, and, be-
cause itis implemented via a Turing-complete language/iges users with the ability

to provide application-specific optimizers. This engesdmimpport for a wider array of

201

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

use cases than is currently possible, and facilitates ggreaperimentation with opti-
mizers on a per-application basis.

Alternatively to RO-BURST, 11] provides and evaluates a middleware offering
that is able to execute MapReduce programs over local ctustadt in the Amazon
EC2 public cloud. It considers time deadlines and cost bsdgkén executing a user’s
MapReduce program. Three primary differences separatetiiisfrom Exodus. First,
[11] only targets MapReduce programs, while Exodus can execytaplication that
eventually terminates, regardless of programming pamadi§econd, 11] considers
only cost or execution time exclusively of one another, @/liikodus is able to balance
the two or enable a user to plug in their own function to otenprogram execution.
Third, [11] does not consider heterogeneous resource types in Amazandad limits
itself to the fastest, most expensive resource type in Am&Zo2 (c1.xlarge), which is

not well-suited to use cases where minimizing cost is patarno

6.6 Summary and Conclusions

Exodus provides users with an APl whose implementationnraatically deter-
mines which cloud resources are optimal to use for theiriegipbn, as well as how
many resources to utilize. The motivation behind Exodus ietluce the complexity

associated with opaque cost models for the wide array ofce=rwoffered by cloud ven-

202

Chapter 6. Exodus: An Application Programming InterfaceGost-Aware, Cloud-
Aware Program Execution

dors. To serve this goal, Exodus enables users to define whanbial” means to them
by writing functions in a Turing-complete language, prorglusers with the ability to
optimize execution on an application-specific basis. Wéuata how Exodus is able to
effectively recommend resource usage for scientific an@igdipurpose applications,
serving a variety of use cases. Exodus is transparentlgratied with the Neptune
domain specific language and automatically utilizes the @gape cloud platform to
harness laaS-layer resources in Amazon EC2 and Eucalypitleuivuser interven-
tion. This engenders efficient use of cloud resources withemuiring users to become
an expert with each cloud technology they wish to consideceting their applications
over, and saves users time and money when executing thdicatpms.

The text of this chapter is, in part, a reprint of the mateaalit appears in 1§].

203

Chapter 7

Conclusion

In this dissertation, we investigate how to simplify the ldgment of scientific ap-
plications on cloud systems, which offer differing sergceeter via competing pricing
models, and provide programmatic access via vendor-spédtfis. Cloud services are
seeing increased usage for a number of reasons. First, sdovides offer simple access
to a number of familiar abstractions, including computerage, and queue services.
These services are made available to the public at a prdyiangprecedented scale.
Second, cloud services charge on a pay-per-use basisdprgvisers with potentially
vast amounts of resources for only as long as they wish to gathém. This allows
scientists to temporarily acquire large numbers of compoides for their computa-
tions without needing their organization to permanentlguae and maintain them.
Similarly, it provides scientists with the ability to exjpaent with a small number of
resources, at a proportionally lower cost to their orgaiopa Third, cloud services ex-

pose access to resources to users via first-party APIs dingvscientists with a simple

204

Chapter 7. Conclusion

way to access these services, if their application is writtea language compatible
with those APIs.

The goal of our work is to utilize the automated configuratod deployment capa-
bilities that cloud Platform-as-a-Service (PaaS) offerbenefit scientific applications.
We investigate new techniques to further this end at botlrdes-level and at the pro-
gramming language level. More specifically, we design, am@nt, and evaluate PaaS
solutions that automatically configure and deploy applicest from various application
domains. These extensions are described in detail in Clsa®térand provide new

PaaS and programming language support for cloud-basedtexeof:

e Web-enabled applications.We design and implement a pluggable autoscaler at
the PaaS layer, and thus has access to information at thre aumtime stack on
each machine that hosted applications execute over. This@ler can there-
fore make scaling decisions based on Infrastructure-laf@mation (pertaining
to virtual machines), Platform-level information (periaig to load balancers,
application servers, and databases), and Software-lefggination (pertaining
to the hosted applications themselves). We leverage oggphle autoscaler to
provide high availability, enforce Quality-of-Serviceguerements for hosted ap-
plications, and to do both of these in a cost-aware fashidms dost awareness
can be utilized to reduce the cost incurred to host apptinafi by colocating

critical services on a smaller number of nodes.

205

Chapter 7. Conclusion

e High performance computing applications. To facilitate greater ease of use
when deploying HPC applications, we develop a hybrid Paag§famming lan-
guage solution, named Neptune. Neptune provides a programianguage
that scientists can write Turing-complete scripts in toldgpheir applications
to supported clouds, as well as PaaS-level support thatratitcally acquires
resources, configures them, executes their applicatiorsreleases those re-
sources. Neptune’s PaaS-level support considers the amilsof cloud ser-
vices when acquiring and releasing resources, enablimyress to be used as
hot spares. This reduces the amount of time needed to exprageams and

amortizes the cost of resources over repeated executions.

e General purpose applications. We design a specialized program execution
model, named MEDEA, whose PaaS-level implementation aaticaily incor-
porates compute, storage, and queue services from popaolet vendors. This
enables scientists to evaluate their applications ovesetservices without need-
ing to become familiar with the intricacies and best pragiof each service, and
facilitates portability of these applications betweernviemss. Exodus provides
programming language support that predicts how to besuéxecscientist’s ap-
plications, based on performance, cost, or user-definedasnieiVe investigate
how to leverage MEDEA's PaaS-level implementation to gathis information

for scientists automatically, and for a wide array of cloedvices.

206

Chapter 7. Conclusion

Finally, we provide detailed empirical evaluations of oalusions and show that
they enable scientific applications to be executed in theseebice, high performance
computing, and general purpose application domains. litiaddthe automation with
respect to application configuration and deployment at #s&SRand programming lan-

guage levels facilitates greater ease of use by scientists wsing cloud services.

7.1 Contributions and Impact

In this section, we summarize our main contributions andudis their impact.
Our primary contribution is Platform-as-a-Service andgpaonming language support
within and across cloud compute, storage, and queue dffgrwhich enable automatic
configuration and deployment of applications in the web iservhigh performance
computing, and general purpose domains. Other contrisitibat we make in this
dissertation include performance and cost awareness sbeth@pplications, increased
portability of applications between otherwise incomplatilmfrastructure-as-a-Service
vendors (including on-premise offerings), and somethisg.e

The results of our research have been appeared in the pmogsad high-quality,
peer-reviewed conferences and journals. Combining thereated configuration and
deployment capabilities that Platform-as-a-Service @¢loamputing offers with the

ease of use and expressitivity of a Turing-complete prograng language has never

207

Chapter 7. Conclusion

been investigated in the literature before. In particudar, original Neptune publica-
tion was granted the Best Paper Award at HPDC's ScienceClowtilasits novelty
and on the strength of its contributions.

Besides their scientific impact, our contributions have aificant practical value.
The systems produced as part of our research have beenegklaad actively main-
tained as open source projects since their inception. Te da¢ AppScale PaaS has
been downloaded over 10,000 times and has an active wosdugdr community. In

summary, the key contributions we make with this dissencdi:

e A pluggable autoscaling systemWe contribute an open source, pluggable au-
toscaler that runs at the cloud PaasS layer. By realizing highiability (HA) as
being part of maintaining an elastic cloud PaaS, we are alfget/zide an extensi-
ble autoscaling solution that adds both HA-awareness dsaw€)oS-awareness
for web applications. We find that utilizing hot spares witlnur system can
decrease the amount of time needed to recover from cerfa@s ©f failures by
an average of 48%, with a slight increase in the monetarytbasthe end-user
incurs. Similarly, a slight increase in monetary cost catiéeed to ensure a
higher QoS to end users, with an increased performance o 32% for the

applications tested.

We also contribute a cost-aware autoscaler that is abledoreatically save users

91% for the instances utilized in the AppScale PaaS for theadare or QoS-

208

Chapter 7. Conclusion

aware autoscalers, albeit with an order of magnitude iseréathe amount of
time needed to respond to failures or low Qo0S. We contriblitefahese au-
toscalers to the open source AppScale code base, to engewldypes of re-
search as well as the inclusion and experimentation ofiegistaling algorithms

within cloud PaaS systems.

e A domain specific language to automate program executionle develop and
implement Neptune, a Domain Specific Language (DSL) thatatts away the
complexities of deploying and using high performance caingservices within
cloud platforms. We integrate support for Neptune into Aggd&, an open-
source cloud platform and add cloud software support for, M0, MapReduce,
UPC, Erlang, and the SSA packages StochKit, DFSP and dwSSgtuhe al-
lows users to deploy supported software packages ovemganyimbers of nodes

with minimal effort, simply, uniformly, and scalably.

We also contribute techniques for placement support of corapts within cloud
platforms, while ensuring that running cloud software donet negatively im-
pact other services. This entails hybrid cloud placemaestirtigues, facilitating
application deployment across cloud infrastructures autimodification. We
implement these techniques within AppScale and provideirsghaupport that

allows users to share the results of Neptune jobs, and taghuldta to the scien-

209

Chapter 7. Conclusion

tific community. The system is flexible enough to allow usersause Neptune

job outputs as inputs to other Neptune jobs.

e An execution model for heterogeneous cloud executioiVe develop MEDEA,
an execution model whose implementation automaticallyayspuser programs
to cloud laaS and PaaS systems (compute, storage, and qreioses), without
requiring that users modify their applications. To providis pluggable service,
MEDEA repurposes an open source cloud PaaS and domain spacguage to
enable arbitrary programs to be deployed and executed. mGplementation of
MEDEA encapsulates such programs automatically so thgtdéwe be executed
over a wide variety of cloud systems, and can execute pragampremise or
off-premise in Amazon EC2, Google App Engine, Microsoft Agzuor some

combination.

We experiment with and evaluate MEDEA's implementatiomgsa number of
different programs, programming languages, benchmankis,ise cases. We find
that while cloud systems may perform similarly for a giveeqa of code, they
can vary greatly with respect to the price users pay to ruir tegle in these
systems, due to the pricing models that clouds enforce. allvéhe MEDEA
execution model significantly simplifies and makes clou&laad PaaS systems

portable and reusable through abstraction and a cloud Be&s With our

210

Chapter 7. Conclusion

implementation of MEDEA, users can “snapshot” the perfaroeaand cost of
their programs in cloud systems, and run them where it i@$astr cheapest to

do so.

e A cost and performance aware application programming inteface. We con-
tribute Exodus, an application programming interface jA#hose implementa-
tion in the Neptune domain specific language automaticatgmnines how to
optimally execute user programs over cloud laaS systenersuisay decide that
“optimally” executing their program means that it shouldéecuted quickly,
inexpensively, or via user-provided metrics. Enablingsi$e provide these met-
rics via a Turing-complete language improves the expieggiof the optimizer
itself, and provides users with the ability to optimize extamn on a application-

specific basis.

We experiment with and evaluate Exodus’ implementatiomgisi number of
different scientific applications, written in differentqgramming languages and
solving non-trivial biochemical problems. Exodus is aldeorrectly select the
optimal instance type and number of instances for its perémce and cost-
oriented optimizers with 2%-16% error for the applicatiaaluated in this
work. Furthermore, we find that there is a significant, butrdgifiable and pre-

dictable, difference between the number of machines andimadype to use

211

Chapter 7. Conclusion

when executing applications quickly or inexpensively. &x® provides the abil-
ity to estimate this quantitg priori, without requiring users first to become an
expert with each cloud laaS system that they wish to consixisruting their ap-
plication over. This increases the portability of their bggttions, enabling users

to execute their programs wherever it is fastest or cheapeist so.

Our contributions advance the state-of-the-art in Platfas-a-Service cloud com-
puting primarily by enabling scientific applications to beseuted over cloud services,
which provide differing services, assess fees via uniquangy structures, and sup-
ply users with access to their services by means of prograimRI| support. Our
contributions include techniques and implementations liaae the potential to im-
pact scientists, end users, cloud vendors, as well as oksraroperating within the

Infrastructure-as-a-Service and Platform-as-a-Sewacemunities.

7.2 Future Research Directions

In this section, we identify several avenues for future aesle work. Our con-
tributions described in this dissertation motivate andlifate designing and building
new systems that further advance the state-of-the-artomdcPlatform-as-a-Service,
Infrastructure-as-a-Service, programming languages bayond. We discuss a num-

ber of research directions that we believe are worth expdobiased on our empirical

212

Chapter 7. Conclusion

results and observations as well as design and implementaitiuition that we have
gained while developing the systems we described in ChaptéraNe overview both
extensions to our contributions and completely new researgjects along with their
potential impact.

The pluggable autoscaling system provided by AppScale eaa $tarting point
for a number of different research paths. We identify anéflyrioverview the most

interesting and promising ones below.

e Pluggable autoscaling for applications outside the web seices domain.Au-
toscaling systems have been well investigated for web aeypplications, and
for programs within specialized frameworks. The MapRedue®m@mmming
model, and its open source implementation in Hadoop MapRedogarticu-
lar have benefitted from research on how to serve progranisdimform to its
requirements. Yet an investigation has not been done tdeaatoscalers from
previous research systems to be interchanged (or “plugggai combined in
a manner similar to that which is done with AppScale’s pludgautoscaling
system. Such a system would foster greater research, cadin, and use of
the autoscalers themselves as scientific tools, whereis cosld be minimized
or a specified Quality-of-Service could be maintained fgopsurted, possibly

general-purpose, applications.

213

Chapter 7. Conclusion

e A language for autoscaling.Domain specific languages are becoming increas-
ingly common, in response to programming languages withepfulmetapro-
gramming capabilities. The Ruby programming language itiquaar provides
both high writability and metaprogramming constructs thate facilitated its
use for web service applications (e.g., Sina8d],[Slim [88]), process moni-
toring (e.g., God43]), and role-playing games that execute within interactive
terminals (e.g., Dwemthy’'s Array3[/] for the Interactive Ruby Shell). Yet the
literature has not, to date, seen the use of a domain speaifgriage that aids
users in designing, implementing, and evaluating autess&br applications of
any domain. APIs and rule-based systems currently are gedvior autoscal-
ing, but do not provide the flexibility or fine-grained scalinapabilities that a

Turing-complete PaaS-level language solution could stippo

e Autoscaling based on service placement at the laaS layefhe pluggable au-
toscaler that this work contributes operates at the Platas-a-Service layer,
which is abstracted away from the underlying Infrastruetas-a-Service. This
lack of cooperation between the PaaS and laaS layers mesdribePaaS could
aggressively spawn virtual machines to provide high alditg, but the laaS
could be oblivious of this goal and place these virtual maesion a single hard-
ware rack. This would then defeat the purpose of providirg lavailability, as

the system is reliant on the survival of the hardware raaifitdf the pluggable

214

Chapter 7. Conclusion

autoscaler could instead communicate with the laaS layérirohicate where

virtual machines should be placed, then end users couldrizedsmore reliably.

We believe that leveraging domain specific languages toigeosimple, power-
ful interactions with Platform-as-a-Service offeringsh{eh in turn can automatically
configure and deploy applications across hybrid cloud depémts) can be extended
further. Below, we describe a number of potential reseangttions that seem worth

exploring and may lead to interesting results.

e Adaptive profiling for application execution. Executing applications locally to
predict performance encountered in cloud compute serciaases errors in the
predictions given by our Exodus system. One way we mininhie error is to
execute the profiling runs on the actual cloud compute ressuthus acquiring
a more accurate performance profile. However, this solusomlid only if in-
stances within a given instance type perform similarly,chHL0] and [62] have
shown is not always the case. Therefore, future work is reeéaeadaptively
schedule application execution among machines that aeriggbd as being the

same by a cloud vendor but in reality perform significanti§edently.

e Cost-aware fault tolerance for application executionResearch has been done
that details how execution can be performed in a fault-tsiemanner for a num-

ber of classes of applications. Yet these works have notideresl what the

215

Chapter 7. Conclusion

monetary cost of fault-tolerance is — that is, the cost tonta@& more resources
as hot spares or to have speculatively executing tasks.efidrer a system that
could optimally heal from faults with respect to cost (pgrhat the expense of
performance) would be a beneficial research tool for exegutientific applica-

tions.

e Budgetting Exodus programs as a wholeWhile the Exodus system does pro-
vide users with the ability to indicate that executed praggahould cost no more
than a certain limit, it does not provide the ability to penfothis in aggregate.
What this means is that scientists cannot specify their lifdgall of their com-
putations, and must individually break their budget dowto ichunks for each
application to run. Providing users with the ability to rumé€tions (which them-
selves could execute more than one application via clowdcsss) with a budget
on all computations that it executes would alleviate thisbpgm, and relieve
scientists of the burden of breaking up their budget if mbemtone set of appli-

cations needs to be run.

e Deadlines for Exodus programs. Conceptually similar to setting a program-
wide cost budget, scientists also need to be able to spdwtytheir program

should complete by a certain deadline. Research is needaddstigate how to

216

Chapter 7. Conclusion

minimize the amount of error in Exodus predictions and tmsuee that execu-

tion plans can be produced that obey these deadlines.

In summary, this dissertation work open up several prorgisgsearch opportuni-
ties in Platform-as-a-Service cloud computing. Moreotlegy lay the foundation for
further improvements in cloud service offerings, cost naalysis, and API interop-
erability, as well as automation and negotiation of the dskese services across cloud

providers.

217

Bibliography

[1] Apache HTTP Server Benchmarking Tool.
" http://httpd.apache.org/docs/2.0/programs/ab.html”.

[2] Amazon Elastic Compute Cloud (Amazon EC2htt p: // aws. anazon.
coni ec2/.

[3] Amazon EC2 Spot Instance$http://aws.amazon.com/ec2/spot-instances”.

[4] Amazon Elastic MapReduce. http://aws. amazon. conl
el asti cnapreduce/ .

[5] Amazon Simple Storage Service (Amazon S3)t p: / / aws. anazon. cont
s3/.

[6] Amazon Simple Queue Service (SQShttp://aws.amazon.com/sgs”.
[7] Amazon Simple Workflow Service (SWF).http://aws.amazon.com/swf”.
[8] Amazon Web Servicedt t p: // aws. amazon. coni .

[9] J. Armstrong, R. Virding, C. Wikstirm, and M. Williams. Concurrent Program-
ming in ERLANG, 1993.

[10] S. K. Barker and P. Shenoy. Empirical evaluation of lajesensitive application
performance in the cloudMMsys pages 35-46, 2010.

[11] T. Bicer, D. Chiu, and G. Agrawal. Time and cost sensitis&aeintensive comput-
ing on hybrid clouds. IfProceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (ccgrid 20C2GRID 12,
pages 636—643, Washington, DC, USA, 2012. IEEE Computer §ocie

[12] P. Bodik, R. Griffith, C. Sutton, A. Fox, M. I. Jordan, and D. Ratterson. Au-
tomatic exploration of datacenter performance regime®raiceedings of the 1st
workshop on Automated control for datacenters and clpdd3DC '09, pages
1-6, New York, NY, USA, 2009. ACM.

218

"
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
"
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
"
"
http://aws.amazon.com/

Bibliography

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Boto. " http://code.google.com/p/boto/".
Building fault-tolerant applications on aws. White Pgfiect. 2011.

C. Bunch, V. Arora, N. Chohan, C. Krintz, S. Hedge, and A. &tava. A Plug-
gable Autoscaling Service for Open Cloud PaaS Systemshénsth IEEE/ACM
International Conference on Utility and Cloud Computing (UCSdv. 2012.

C. Bunch, N. Chohan, C. Krintz, J. Chohan, J. Kupferman, Phlrek Y. Li, and
Y. Nomura. An Evaluation of Distributed Datastores Using &kppScale Cloud
Platform. InIEEE International Conference on Cloud Computidgl. 2010.

C. Bunch, N. Chohan, C. Krintz, and K. Shams. Neptune: A Dongpecific
Language for Deploying HPC Software on Cloud PlatformsAGM Workshop
on Scientific Cloud Computindgune 2011.

C. Bunch, B. Drawert, N. Chohan, C. Krintz, and L. Petzold. dxsa An Appli-

cation Programming Interface for Cost-Aware, Cloud-AwaregPam Execution.
In 13th IEEE/ACM International Symposium on Cluster, Cloud andl @om-

puting (CCGrid) (in submissionMay 2013.

C. Bunch, B. Drawert, N. Chohan, C. Krintz, L. Petzold, and kaf®s. Lan-
guage and runtime support for automatic configuration amptbgtenent of scien-
tific computing software over cloud fabricdournal of Grid Computing10:23—
46, 2012. 10.1007/s10723-012-9213-8.

C. Bunch, B. Drawert, N. Chohan, A. Riofrio, C. Krintz, and LtR#d. MEDEA:
A Pluggable Middleware System for Interoperable Prograreddion Across
Cloud Fabrics. Idournal of Grid Computing Special Issue: Interoperabilfgd-
eration, Frameworks and Application Programming Interfaéer laaS Clouds (in
submission)2013.

C. Bunch, B. Drawert, N. Chohan, A. Riofrio, C. Krintz, and LtRdd. MEDEA:
A Pluggable Middleware System for Portable Program Exeauti In 27th
IEEE International Parallel & Distributed Processing Syogium (in submis-
sion), 2013.

M. Burrows. The Chubby Lock Service for Loosely-Coupledstfibuted Sys-
tems. INOSDI'06: Seventh Symposium on Operating System Desigmapid-1
mentation 2006.

Cassandra! http://incubator.apache.org/cassandra/”.

219

"
"

Bibliography

[24] Cassandra Operationshttp://wiki.apache.org/cassandra/Operations”.

[25] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kialsit. Ebcioglu, C. von
Praun, and V. Sarkar. X10: an object-oriented approach meumiform cluster
computing.SIGPLAN Not.40:519-538, October 2005.

[26] OpsCode." http://www.opscode.com/chef/”.

[27] N. Chohan, C. Bunch, C. Krintz, and Y. Nomura. Database-Agodransaction
Support for Cloud Infrastructures. IEEE International Conference on Cloud
Computing Jul. 2011.

[28] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soraad,R. Wolski.
AppScale: Scalable and Open AppEngine Application Devekt and Deploy-
ment. INICST International Conference on Cloud Computi@gt. 2009.

[29] CloudFoundry." http://www.cloudfoundry.com/”.

[30] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, anceBtsS Benchmark-
ing cloud serving systems with ycsb. Rroceedings of the 1st ACM symposium
on Cloud computingSoCC '10, pages 143-154, New York, NY, USA, 2010.
ACM.

[31] B. J. Daigle, M. K. Roh, D. T. Gillespie, and L. R. Petzold. tdmated estimation
of rare event probabilities in biochemical systemsPhys. Chem2011.

[32] Power Outage Affects Amazon Customers.
" http://www.datacenterknowledge.com/archives/20 /2B ower-outage-
affects-amazon-customers/”.

[33] J. Dean and S. Ghemawat. MapReduce: Simplified Data Bsoweon Large
Clusters.Proceedings of 6th Symposium on Operating System Desigimygoie-
mentation(OSDI)pages 137-150, 2004.

[34] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, SilRd. Su, K. Vahi,
and M. Livny. Pegasus : Mapping Scientific Workflows onto thedGIn Across
Grids Conferenceg2004.

[35] J. Dias, E. Ogasawara, D. de Oliveira, F. Porto, A. L. @thd, and M. Mattoso.
Supporting dynamic parameter sweep in adaptive and userest workflow. In
Proceedings of the 6th workshop on Workflows in support of {aogde science
WORKS '11, pages 31-36, New York, NY, USA, 2011. ACM.

220

"
"
"
"

Bibliography

[36] B. Drawert, M. J. Lawson, L. Petzold, and M. Khammash. Tiféusive fi-
nite state projection algorithm for effficient simulatiohtbe stochastic reaction-
diffusion master equationl. Phys. Chem132(7), 2010.

[37] Dwemthy’s Array." http://mislav.unigpath.com/poignant-guide/dwemthy/”

[38] T. El-Ghazawi and F. Cantonnet. UPC performance andnpiatea NPB exper-
imental study. InProceedings of the 2002 ACM/IEEE conference on Supercom-
puting Supercomputing '02, pages 1-26, Los Alamitos, CA, USA, 20BEE
Computer Society Press.

[39] H. El-Samad, H. Kurata, J. C. Doyle, C. A. Gross, and M. Khaash. Surviving
heat shock: Control strategies for robustness and perfaedProceedings of
the National Academy of Sciences of the United States of Aan&02(8):2736—
2741, 2005.

[40] EnStratus: http://enstratus.com/”.

[41] Final Thoughts on the Five-Day AWS Outage.
" http://www.eweek.com/c/a/Cloud-Computing/Final-Thotsgbn-the-FiveDay-
AWS-Outage-236462/".

[42] D. T. Gillespie. Exact stochastic simulation of couplehemical reactions.J.
Phys. Chem81(25):2340-2361, 1977.

[43] God Monitoring Framework’ http://god.rubyforge.org/”.
[44] Google App Engineht t p: // code. googl e. com appengi ne/ .

[45] Java App Engine Outage, July 14, 2011.
" http://googleappengine.blogspot.com/2011/07/jaya-@pyine-outage-july-
14-2011.html".

[46] Google App Engine Pipeline API. " http://code.google.com/p/appengine-
pipeline/”.

[47] Google Compute Engine. " http://cloud.google.com/products/compute-
engine.html”.

[48] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-perfance, portable im-
plementation of the MPI message passing interface stanBardllel Computing
22(6):789-828, Sept. 1996.

[49] Hadoop.htt p:// hadoop. apache. org/ core/.

221

"
"
"
"
http://code.google.com/appengine/
"
"
"
http://hadoop.apache.org/core/

Bibliography

[50] Hadoop Distributed File System http://hadoop.apache.org”.

[51] R. H. Halstead, Jr. Multilisp: a language for concurrsyinbolic computation.
ACM Trans. Program. Lang. Syst.(4):501-538, Oct. 1985.

[52] HBase." http://hadoop.apache.org/hbase/”.

[53] H. Herodotou, F. Dong, and S. Babu. No one (cluster) sigafi: automatic clus-
ter sizing for data-intensive analytics. Pmoceedings of the 2nd ACM Symposium
on Cloud ComputingSOCC '11, pages 18:1-18:14, New York, NY, USA, 2011.
ACM.

[54] Heroku Learns from Amazon EC2 Outage.
" http://searchcloudcomputing.techtarget.com/news343@/Heroku-learns-
from-Amazon-EC2-outage”.

[55] Heroku: Widespread Application Outadehttps://status.heroku.com/incident/151”.

[56] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Jo$epR. Katz,
S. Shenker, and I. Stoica. Mesos: A Platform for Fine-GidiResource Sharing
in the Data Center. INetworked Systems Design and Implementa0al.

[57] Engaging the Missing Middlé€.http://www.hpcinthecloud.com/features/Engaging-
the-Missing-Middle-in-HPC-95750644.html”.

[58] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, Kitano, , the
rest of the SBML Forum:, A. P. Arkin, B. J. Bornstein, D. Bray, A. Gh-
Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles, M. Ginkel, V. Garl. Goryanin,
W. J. Hedley, T. C. Hodgman, J.-H. Hofmeyr, P. J. Hunter, N.uBy, J. L. Kas-
berger, A. Kremling, U. Kummer, N. Le Novre, L. M. Loew, D. Lio¢P. Mendes,
E. Minch, E. D. Mjolsness, Y. Nakayama, M. R. Nelson, P. F. &al| T. Saku-
rada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spen&elling, K. Taka-
hashi, M. Tomita, J. Wagner, and J. Wang. The systems biotwgkup language
(SBML): a medium for representation and exchange of biocbamietwork mod-
els. Bioinformatics 19(4):524-531, 2003.

[59] Kaavo." http://lwww.kaavo.com/”.

[60] H. Kaiser, A. Merzky, S. Hirmer, G. Allen, and E. Seiddlhe SAGA C++ ref-
erence implementation: a milestone toward new high-lexiel gpplications. In
Proceedings of the 2006 ACM/IEEE conference on Supercongp&C '06, New
York, NY, USA, 2006. ACM.

222

"
"
"
"
"
"

Bibliography

[61] K. Keahey and T. Freeman. Nimbus or an Open Source CloatioRh or the
Best Open Source EC2 No Money Can Buy Slmpercomputing 2002008.

[62] Y. E. Khamra, H. Kim, S. Jha, and M. Parashar. Explorimg performance fluc-
tuations of hpc workloads on cloud8loudCom pages 383-387, 2010.

[63] G. Koslovski, T. T. Huu, J. Montagnat, and P. Vicat-Blafxecuting distributed
applications on virtualized infrastructures specifiedwite VXDL language and
managed by the HIPerNET framework. IGST International Conference on
Cloud Computing20009.

[64] C. Krintz, C. Bunch, and N. Chohan. AppScale: Open-Soure¢fd?m-as-a-
Service. Technical Report UCSB Technical Report 2011-01, .WiCalifornia,
Santa Barbara, Jan 2011.

[65] L. Lamport. The Part-Time Parliament. ACM Transactions on Computer Sys-
tems 1998.

[66] J. Li, M. Humphrey, Y.-W. Cheah, Y. Ryu, D. Agarwal, K. Jack, and C. v.
Ingen. Fault tolerance and scaling in e-science cloud egpdins: Observations
from the continuing development of modisazurePhoceedings of the 2010 IEEE
Sixth International Conference on e-ScieneSCIENCE '10, 2010.

[67] A.Lugowski, D. Alber, A. Bulug, J. Gilbert, S. Reinhardt Teng, and A. Wara-
nis. A flexible open-source toolbox for scalable complexpgranalysis. II'51AM
Conference on Data Mining (SD\V2012 (accepted).

[68] Lustre.” http://www.lustre.org/”.

[69] M. Mao and M. Humphrey. Auto-scaling to minimize costameet application
deadlines in cloud workflows. IRroceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Asighs5C '11,
2011.

[70] Microsoft Azure Service Platformt. http://www.microsoft.com/azure/”.

[71] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Sama.. Youseff, and
D. Zagorodnov. The Eucalyptus Open-source Cloud-comp&ysgem. INEEE
International Symposium on Cluster Computing and the G¥@D9. htt p: //
open. eucal ypt us. com docunent s/ ccgri d2009. pdf .

[72] Google I/0 2012 Keynote Transcriptichhttp://oakleafblog.blogspot.com/2012/07/google-
i0-2012-day-2-keynote-by-urs.html”.

223

"
"
http://open.eucalyptus.com/documents/ccgrid2009.pdf
http://open.eucalyptus.com/documents/ccgrid2009.pdf
"

Bibliography

[73] P.-O.0stberg, A. Hellander, B. Drawert, E. ElImroth, S. Holmgrerd &. Petzold.
Abstractions for scaling escience applications to disted computing environ-
ments; a stratum integration case study in molecular syshentogy.Proceedings
of BIOINFORMATICS 2012, International Conference on Bioinfatics Models,
Methods, and Algorithmgages 290-294, 2012.

[74] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, Jopez, G. Gibson, A. Fuchs,
and B. Rinaldi. Ycsb++: benchmarking and performance delmgggdvanced
features in scalable table stores. Rroceedings of the 2nd ACM Symposium on
Cloud ComputingSOCC 11, pages 9:1-9:14, New York, NY, USA, 2011. ACM.

[75] Pbspro home page http://ww. al tair.com sof t war e/ pbspro.
ht m

[76] IT Automation Software for System Administratorshttp://puppetlabs.com/”.

[77] L. Ramakrishnan, C. Koelbel, Y. suk Kee, R. Wolski, D. Nurnil. Gan-
non, G. Obertelli, A. Yarkhan, A. Mandal, T. M. Huang, K. Tlyzsaja, and
D. Zagorodnov. Vgrads: Enabling e-science workflows onggaidd clouds with
fault tolerance.

[78] RightScale." http://www.rightscale.com/”.
[79] RightScale. RightScale Gemshttp://rightaws.rubyforge.org/”.

[80] T.J.Rolfe. A Specimen MPI Application: N-Queens in Riatainroads (bulletin
of the ACM SIG on Computer Science Educatidi®)4), 2008.

[81] Ruby language’ http://www.ruby-lang.org”.
[82] Ruby on Rails." http://www.rubyonrails.org”.

[83] K. R. Sanft, S. Wu, M. Roh, J. Fu, R. K. Lim, and L. R. Petzold.ocBiKit2:
Software for Discrete Stochastic Simulation of Biochem@&gdtems with Events.
Bioinformatics 2011.

[84] Scalr." http://scalr.net/”.

[85] K. Shen, H. Tang, and T. Yang. Adaptive two-level thrédanagement for fast
MPI execution on shared memory machines.Phoceedings of ACM/IEEE Su-
perComputing '991999.

224

http://www.altair.com/software/pbspro.htm
http://www.altair.com/software/pbspro.htm
"
"
"
"
"
"

Bibliography

[86] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscalestieleesource scaling for
multi-tenant cloud systemsProceedings of the 2nd ACM Symposium on Cloud
Computing 2011.

[87] Sinatra." http://lwww.sinatrarb.com/”.
[88] A Fast, Lightweight Template Engine for Rubyhttp://slim-lang.com/”.
[89] StochKit." http://www.cs.ucsb.edu/ cse/StochKit/”.

[90] T. Tannenbaum and M. Litzkow. The condor distributedgaissing systemDr.
Dobbs JournalFebruary 1995.

[91] The Computer Language Benchmarks Game.
" http://shootout.alioth.debian.org/".

[92] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. WoAdile dynamic
provisioning of multi-tier internet application®CM Trans. Auton. Adapt. Syst.
3(1), Mar. 2008.

[93] W. E. Nagel and A. Arnold and M. Weber and H.-Ch. Hoppe an&#&lchenbach.
VAMPIR: Visualization and Analysis of MPI ResourceSupercomputerl2:69—
80, 1996.

[94] J. Wang, R. Hua, Y. Zhu, J. Wan, C. Xie, and Y. Chen. Ro-burstroBust
virtualization cost model for workload consolidation oedéuds. InProceedings
of the 2012 12th IEEE/ACM International Symposium on CluStieryd and Grid
Computing (ccgrid 2012)CCGRID '12, pages 490-497, Washington, DC, USA,
2012. IEEE Computer Society.

[95] R. Wolski, N. T. Spring, and J. Hayes. The network weasiggvice: A distributed
resource performance forecasting service for metacomgudiournal of Future
Generation Computing Systemi$:757-768, 1999.

[96] YAML. " http:/lyaml.org/”.

[97] L. Zhang, C. Krintz, and P. Nagpurkar. Language and ®irtnachine support
for efficient fine-grained futures in java. IRroceedings of the 16th Interna-
tional Conference on Parallel Architecture and Compilaticechiiniques PACT
'07, pages 130-139, Washington, DC, USA, 2007. IEEE Compueie§).

[98] L. Zhang, C. Krintz, and P. Nagpurkar. Supporting exmphandling for futures
in java. InProceedings of the 5th international symposium on Priresphnd

225

"
"
"
"
"

Bibliography

practice of programming in Jay@®PPJ '07, pages 175-184, New York, NY, USA,
2007. ACM.

[99] Z. Zhang, D. S. Katz, M. Ripeanu, M. Wilde, and I. T. Fostdme: an anyscale
many-task computing engine. Rroceedings of the 6th workshop on Workflows
in support of large-scale scienc8/ORKS ’11, pages 137-146, New York, NY,
USA, 2011. ACM.

226

	Acknowledgements
	Curriculum Vitæ
	Abstract
	List of Figures
	List of Tables
	Introduction
	Thesis Question
	Dissertation Organization

	Background
	Application Execution via Static Resources
	Web Services
	Scientific Computing
	Limitations

	Application Execution via Dynamic Resources
	Programmatic Cloud Interaction
	Automated Service Deployment
	Limitations

	A Pluggable Autoscaling Service for Open Cloud PaaS Systems
	Introduction and Motivation
	Design
	Role System
	Using Role Metadata to Support Pluggable Autoscaling

	Framework Instantiations
	HA and QoS-Aware Autoscalers
	A Cost-aware Autoscaler
	Manual Administrator Intervention

	Experimental Evaluation
	Methodology
	Experimental Autoscaler Results
	Experimental Metrics Results

	Related Work
	Summary and Conclusions

	Language and Runtime Support for Automatic Configuration and Deployment of Scientific Computing Software over Cloud Fabrics
	Introduction and Motivation
	Neptune
	Syntax and Semantics
	Design Choices

	Implementation
	Cloud Support
	Job Data
	Employing Neptune for HPC Frameworks
	Employing Neptune for Cloud Scaling and Enabling Hybrid Clouds
	Limitations
	Extensibility

	Evaluation
	Methodology
	Experimental Results
	VM Reuse Analysis

	Related Work
	Summary and Conclusions

	MEDEA: A Pluggable Middleware System for Interoperable Program Execution Across Cloud Fabrics
	Introduction and Motivation
	Design
	Implementation
	Pluggable Queue Support
	Pluggable Compute Support
	Pluggable Storage Support

	Evaluation
	Pluggable Queue Evaluation
	Computational Systems Biology Evaluation
	Programming Language Shootout Evaluation

	Extending MEDEA
	Automatic Polling via Futures
	Inlining Task Execution
	Batch Task Execution
	Caching Support

	Related Work
	Summary and Conclusions

	Exodus: An Application Programming Interface for Cost-Aware, Cloud-Aware Program Execution
	Introduction and Motivation
	Design
	Implementation
	Application Programming Interface
	Cloud-Aware Program Execution
	Pluggable Optimizers

	Evaluation
	Scientific Application Evaluation
	General-Purpose Application Evaluation
	Error Analysis

	Related Work
	Summary and Conclusions

	Conclusion
	Contributions and Impact
	Future Research Directions

	Bibliography

