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ABSTRACT
Web service providers have been using NoSQL datastores to pro-
vide scalability and availability for globally distributed data at the
cost of sacrificing transactional guarantees. Recently, major web
service providers like Google have moved towards building stor-
age systems that provide ACID transactional guarantees for glob-
ally distributed data. For example, the newly published system,
Spanner, uses Two-Phase Commit and Two-Phase Locking to pro-
vide atomicity and isolation for globally distributed data, running
on top of Paxos to provide fault-tolerant log replication. We show
in this paper that it is possible to provide the same ACID transac-
tional guarantees for multi-datacenter databases with fewer cross-
datacenter communication trips, compared to replicated logging,
by using a more efficient architecutre. Instead of replicating the
transactional log, we replicate the commit operation itself, by run-
ning Two-Phase Commit multiple times in different datacenters,
and use Paxos to reach consensus among datacenters as to whether
the transaction should commit. Doing so not only replaces several
inter-datacenter communication trips with intra-datacenter commu-
nication trips, but also allows us to integrate atomic commitment
and isolation protocols with consistent replication protocols so as
to further reduce the number of cross-datacenter communication
trips needed for consistent replication; for example, by eliminating
the need for an election phase in Paxos.

1. INTRODUCTION
The rapid increase in the amount of data that is handled by web

services as well as the globally-distributed client base of those web
services has driven many web service providers towards adopting
NoSQL datastores that do not provide transactional guarantees but
provide more scalablility and availability via transparent sharding
and replication of large amounts of data. For example, systems
like Google’s Bigtable [6], Apache Cassandra [14], and Amazon’s
Dynamo [9] do not guarantee isolation or atomicity for multi-row
transactional updates. Other systems like Google’s Megastore [3],
Microsoft’s SQL Azure [4], and Oracle’s NoSQL Database [18]
provide these guarantees to transactions whose data accesses are
confined to subsets of the database (e.g., a single shard). Re-

cently, however, major web service providers have moved towards
building storage systems that provide unrestricted ACID transac-
tional guarantees. Google’s Spanner [8] is a prominent example of
such new trend. Spanner uses Two-Phase Commit and Two-Phase
Locking to provide atomicity and isolation, running on top of a
Paxos-replicated log to provide fault-tolerant synchronous replica-
tion across datacenters. The same architecture is also used in Scat-
ter [11], a distributed hashtable datastore that provides ACID trans-
actional guarantees for sharded, globally replicated data, through
a key-value interface. Such layered architecture, in which the
protocols that guarantee transactional atomicity and isolation are
separated from the protocol that guarantees fault-tolerant replica-
tion, has many advantages from an engineering perspective, such
as modularity, and clarity of semantics.

We show in this paper that it is possible to provide ACID trans-
actional guarantees for cross-datacenter databases with a smaller
number of cross-datacenter roundtrips, compared to a system that
uses log replication, such as Spanner, by using a more efficient ar-
chitecutre. Instead of running Two-Phase Commit and Two-Phase
Locking on top of Paxos to replicate the transactional log, we run
Paxos on top of Two-Phase Commit and Two-Phase Locking to
replicate the commit operation itself. That is, we execute the Two-
Phase commit multiple time, once per datacenter, with each data-
center executing Two-Phase Commit and Two-Phase Locking in-
ternally, and we use Paxos to reach a consensus among datacenters
as to whether the transaction should eventually commit. We refer
to this approach as Replicated Commit, in contrast to the replicated
log approach.

Replicated Commit has the advantage of replacing several inter-
datacenter communication trips with intra-datacenter communi-
cation trips, when implementing ACID transactions on top of
globally-replicated data. Moreover, replicating the Two-Phase
Commit operation, rather than replicating log entries, also allows us
to integrate atomic commitment and isolation protocols with con-
sistent replication protocols so as to further reduce the number of
cross-datacenter communication trips needed for consistent repli-
cation; for example, by eliminating the need for an election phase
in Paxos. Reducing the number of cross-data center communica-
tion trips is crucial in order to reduce transaction response time as
perceived by the user. Studies performed by different web service
providers [1] already demonstrate that even small increases in la-
tency result in significant losses for service providers; for example,
Google observes that an extra 0.5 seconds in search page gener-
ation time causes traffic to drop by 20%, while Amazon reports
that every 100ms increase in latency results in 1% loss in sales.
When replicating a database across datacenters in different conti-
nents, each cross-datacenter communication trip consumes tens of
milliseconds, or even hunderds of milliseconds, depending on the



locations of the datacenters. In fact, as revealed by our experi-
ments on the Amazon EC2 platform, cross-datacenter communi-
cation over the internet typically require much more time that the
theoretical lower bound on packet transmission speed; that is, the
speed of light. For example, a packet sent from the East Coast to
the West Coast takes about 90ms, which is nearly three times the
time it takes a light pulse to transfer that distance.

By reducing the number of cross-datacenter communication
trips, Replicated Commit not only reduces the response times of in-
dividual transactions as perceived by the users of the database, but
also significantly reduces the amount of time a transaction holds
exclusive locks on data items. Thus, if the database serves a work-
load that is skewed towards certain data items (i.e., a small subset of
data items receives much more traffic than the rest of the database),
Replicated Commit reduces lock contention considerably, and thus
avoids thrashing. Since skewed data access is fairly common in
practice, reducing lock contention is expected to result in signifi-
cant performance improvements.

We summarize our contributions in this paper as follows.

• We propose an architecture for multi-datacenter databases,
namely Replicated Commit, that is designed to reduce cross-
datacenter communication trips by replicating the Two-Phase
Commit operation among datacenters, and by using Paxos to
reach consensus on the commit decision.

• We compare Replicated Commit against the replicated log
arhcitecture, that is currently used in production systems
such as Google’s Spanner, in order to analyze Replicated
Commit’s savings in cross-datacenter communications.

The rest of the paper is organized as follows. Section 2 presents a
motivating example by analyzing cross-datacenter communication
in a typical replicated log system. In Section 3 we propose our new
architecture and discuss special cases, such as partially-replicated
databases. In Section 4 we compare our architecture against the
replicated log architecture to assess the reduction in the number
of cross-datacenter communication trips analytically. We present
related work in Section 5, and conclude in Section 6.

2. MOTIVATING EXAMPLE
In this section, we present an example that demonstrates the

overhead of running distributed transactions on top of globally
replicated data, with strong consistency guarantees, using log repli-
cation. In a replicated log system that runs Two-Phase Commit
and Two-Phase Locking on top of Paxos, as the case with Spanner
and Scatter, typically the client program that executes the trans-
action begins by reading from the database, and acquiring shared
locks, while buffering all updates locally; then after all reading and
processing is done, the client submits all updates to the database
in Two-Phase Commit. Consider the case when a transaction up-
dates three data items X, Y, and Z in three different shards of the
database. Figure 1 shows the messages exchanged during Two-
Phase Commit on a system where logs are replicated across data
centers using Paxos. Solid lines are used to illustrate Two-Phase
Commit communication, while dashed lines are used to illustrate
Paxos communication. The setup consists of three datacenters.
Each datacenter contains three data servers, where each data server
holds a replica of a shard of the database. We label the shards X,
Y, and Z. Each shard has a Paxos leader at one of the datacenters.
In this example each Paxos leader is in a different datacenter, but in
general this may or may not be the case. We explain the sequence
of operations shown in Figure 1 as follows.

Figure 1: Typical sequence of messages and operations when
running Two-Phase Commit on top of a Paxos-replicated log.

1. The client picks the Paxos leader of one of the shards in-
volved in the transaction, say the shard that contains Y, to
be the coordinator of Two-Phase Commit, while other Paxos
leaders of X and Z are cohorts.

2. The client sends Two-Phase Commit prepare messages to the
Paxos leaders1 of X, Y, and Z, and informs them that Y is
their coordinator. This is a cross-datacenter one-way trip be-
cause the Paxos leaders can be in any datacenter arbitrarily
far from the client.

3. The Paxos leaders acquire exclusive locks on the target data
1To avoid the cost of re-electing a leader each time the system logs
an entry, production systems (e.g., [5, 8]) use a variation of Paxos
called multi-Paxos. In multi-Paxos, once a node is elected a leader
during a Paxos instance, it remains the leader for subsequent Paxos
instances until the leader crashes; re-elections are done periodi-
cally, rather than in each Paxos instance, in order to account for
the case of a crashing leader.



items, X, Y, and Z, then log the Two-Phase Commit prepare
message to their Paxos logs. Paxos logging requires a cross-
datacenter roundtrip because Paxos leaders have to forward
the log entry to, and receive acknowledgements from, a ma-
jority of replicas in other datacenters.

4. The Two-Phase Commit cohorts (i.e., the Paxos leaders of
X and Z) acknowledge the Two-Phase Commit coordinator
(i.e., the Paxos leader of Y) that they have logged the Two-
Phase Commit prepare message successfully. If the Paxos
leaders are in different data centers, this a cross-datacenter
one-way trip.

5. The Two-Phase Commit coordinator (i.e., the Paxos leader of
Y) logs a Two-Phase Commit commit entry in its own Paxos
log. This requires another cross-datacenter roundtrip.

6. The Two-Phase Commit coordinator (i.e., the Paxos leader
of Y) forwards the commit message to the cohorts (i.e., the
Paxos leaders of X and Z) and to the client. This requires a
cross-datacenter one-way trip.

7. Once the client receives the commit message, the client
deems the transaction committed. Any further communica-
tion does not affect latency as perceived by the client, but
delays the release of locks.

8. The Two-Phase Commit cohorts (i.e., the Paxos leaders of Y
and Z) log the commit entry in their Paxos logs. This is a
cross-datacenter roundtrip.

9. The Two-Phase Commit cohorts (i.e., the Paxos leaders of Y
and Z) release theirs locks after receiving acknowledgements
from a majority of datacenters that the commit entry has been
logged successfully.

If the Paxos leaders of X, Y, and Z are in the same datacenter,
the number of cross-datacenter one-way trips that take place dur-
ing the period starting after the client sends the Two-Phase Com-
mit prepare message until the client receives an acknowledgement
from the Two-Phase Commit coordinator, is six one-way trips. If
the Paxos leaders of X, Y, and Z are in different datacenters, an ad-
ditional cross-datacenter one-way trip is incurred. The number of
cross-datacenter trips that take place during the period starting after
the Paxos leaders acquire exclusive locks on X, Y, and Z, until these
locks are released, equals seven one-way trips, if the Paxos leaders
of X, Y, and Z are in the same datacenter, or eight one-way trips if
the Paxos leaders of X, Y, and Z are in different datacenters. Lock-
ing data for long periods of time affects concurrency negatively,
specially when there is contention on certain data items. In sum-
mary, this example demonstrates that the design decision of run-
ning Two-Phase Commit and Two-Phase Locking on top of Paxos
is not very efficient in terms of latency and concurrency.

3. REPLICATED COMMIT
We begin by presenting the data model and infrastructure that

Replicated Commit runs upon, then we explain the Replicated
Commit protocol stack, and show its correctness.

3.1 Data Model and Infrastructure
Our implementation of Replicated Commit runs on a key-value

store, however, Replicated Commit is agnostic to whether the
database is relational, or is a key-value store. We target databases
that are replicated across multiple databases across the globe. Typ-
ically, data is fully-replicated across datacenters for availability

and fault-tolerance; that is, each datacenter has a full copy of the
database. A variant of Replicated Commit also works for par-
tially replicated data; that is, the case when some or all datacen-
ters have subsets of the database rather than full copies. Within
each datacenter the database is sharded across multiple servers to
achieve high throughput. Replicated Commit supports transaction-
time databases as the case with Spanner; that is, all versions of a
data item are maintained in the database, each with its own times-
tamp that indicates the realtime clock at the time when that version
was committed into the database.

All replicas of a data item are peers in the sense that there are
no leader replicas. Each replica of each data item is guarded by its
own lock, thus each server in each datacenter has its own lock table.
This is different from the case when running Two-Phase Locking
on top of a Paxos-replicated log, where a single replica is elected
a Paxos leader (and gets periodically re-elected until it crashes);
as we show in Section 2, the Paxos leader in that case is the only
replica that maintains locks on its data items. When it is only the
Paxos leader that maintains a lock table, if a Paxos leader crashes,
all transactions that hold locks at the lock table of that Paxos leader
have to abort and restart then re-acquire locks from a newly-elected
Paxos leader. Replicated Commit eliminates this single point of
failure because a transaction does not have to restart as long as
it maintains locks on a majority of replicas, and as long as that
majority does not fail.

3.2 Transactions
In Replicated Commit, each transaction is assigned a timetamp

at the beginning. We use the begining timestamp to avoid dead-
locks using wound-wait, and to ensure data consistency. As the
transaction proceeds, the client program that executes the transac-
tion buffers all updates locally while reading from the database.
Once the client program is done with reading and processing, the
client submits all updates to the database at the end of the transac-
tion as part of Two-Phase Commit. In the following subsections we
explain transctional reads and Two-Phase Commit for the general
case of multi-shard read-write transactions, as well as special cases
such as single-shard transactions, and partially-replicated data.

3.2.1 Transactional Reads
In Replicated Commit, a transactional read is performed by send-

ing a read request to all replicas. Whenever a data server receives
a request to read a data item, the data server places a shared (read)
lock on that data item and sends the most recent version of the data
item back to the client. The client waits until it receives responses
from a majority of replicas before reading the data item. The client
reads from a majority to ensure that shared locks are placed on a
majority of replicas so that other transctions that are trying to up-
date the same data item get blocked until this transction commits;
an exception to that is when an older transaction (i.e., a transaction
with a lower timestamp) tries to update the same data item, then
read locks are released immediately to avoid deadlocks. Once the
client receives responses to its read request from a majority of repli-
cas, the client is done with the read operation and may proceed to
process the data item that has been read. If different datacenters re-
spond with different values for the same data item the client picks
the value that is associated with the highest timestamp; this is to
ensure that the client processes the most up-to-date version of the
data item that it reads. Since an update operation releases exclusive
locks only after updating a majority of replica, thus reading from
a majority of replicas guarantees that the most up-to-date value is
retrieved from at least one of the replicas.

3.2.2 Two-Phase Commit



Once a transaction has finished all reading and processing, the
client program that executes the transaction submits all buffered
updates to the database as part of Two-Phase Commit. Each trans-
action starts a new Paxos instance for its own Two-Phase Commit.
In this section we consider the general case of multi-shard transac-
tions on fully-replicated data; then in later sections we discuss the
special cases of single-shard transactions and partial replication.

We use the standard terminology of Paxos from [15, 16]; that
is, each Paxos instance has proposers, acceptors, and learners. A
proposer is an entity that advocates a client request, trying to con-
vince acceptors to accept a value. Eventually, learners need to learn
the value that the acceptors accepted. In the basic Paxos algorithm,
each Paxos instance consists of two phases. During the first phase,
acceptors vote for a leader from among all potential proposers,
while in the second phase, acceptors accept the value proposed by
the leader that they elected in the first phase. Learners need to learn
the value that has been accepted by a majority of acceptors. Learn-
ers can learn the accepted value in different ways; for example, by
having each acceptor broadcasts the value that it has accepted to all
learners, or by appointing one (or more) distinguished learner(s) to
learn the accepted values from acceptors, then forward the learnt
value (i.e., the value accepted by a majority) to other learners.

At a high level, the way Replicated Commit performs Two-Phase
Commit is that each transaction executes a new Paxos instance to
replicate Two-Phase Commit across datacenters. There is only one
proposer for this Paxos instance that is the client program itself,
and each datacenter acts as both an acceptor and a learner. Thus
there is no need for an election phase because the Paxos leader is
always the client; however, that undisputed leader should not be
thought of as a dictator (as the case in asynchronous master-slave
replication for example) because a Paxos leader still needs accep-
tances from a majority of acceptors to pass its proposal. Follow-
ing a similar political analogy to that used in the original Paxos
paper [15], single-proposer Paxos can be thought of as a constitu-
tional monarchy, in constrast with representative democracy in the
case of multi-proposer Paxos. In Replicated Commit, the value to
be agreed on at the end of a Paxos instance is whether to commit a
transaction or not. The default value is not to commit, so a major-
ity of datacenters need to accept the prepare request of Two-Phase
Commit in order for a transaction to commit. If the database is re-
quired to support transaction-time queries, the commit time of each
transaction is also a value that needs to be agreed on; in that case, if
a transaction commits, the same Paxos instance that is used to reach
consensus on the commit decision is also used to reach consensus
on a commit timestamp.

Each datacenter accepts any Two-Phase Commit prepare request
from any transaction only after (1) acquiring all the exclusive locks
needed by that transaction, as specified in the prepare request, (2)
checking that shared locks (i.e., read locks) that have been acquired
by that transaction are still being held by the same transaction, thus
no shared locks have been released because of wound-wait or be-
cause of timeouts for example, and (3) logging the prepare opera-
tion to the transactional log. At each datacenter, acquiring exclu-
sive locks, checking shared locks, and logging commit requests are
all done locally on each of the data servers that hold data items
accessed by the transaction that issued the prepare request. Note
that each data server at each datacenter maintains a lock table and
a transactional log locally, to manage the data replica that is stored
locally on the server. The three operations of acquiring exclusive
locks, checking shared locks, and logging the commit request all
constitute the first phase (i.e., the prepare phase) of Two-Phase
Commit. Therefore the prepare phase of Two-Phase Commit can

be thought of as a subroutine that is nested under the accept phase
of Paxos, and for each datacenter the accept phase of Paxos has to
wait for the prepare phase of Two-Phase Commit to finish before
completing.

Whenever a client sends a Two-Phase Commit prepare request
(through a Paxos accept request) to a datacenter, piggybacked with
information about acquired and required locks, the client also ap-
points one of the shards involved in Two-Phase Commit as the co-
ordinator of Two-Phase Commit, and piggybacks this appointment
to the prepare request that the client sends to all data servers in-
volved in Two-Phase Commit. The coordinator data server in each
datacenter waits until all other data servers involved in Two-Phase
Commit within the same datacenter respond to that coordinator in-
dicating that the prepare operations of Two-Phase Commit has been
done successfully on each of those data servers. Once the coordina-
tor in any datacenter receives from all Two-Phase Commit cohorts
within the same datacenter, the coordinator sends a message back
to the client indicating that it has accepted the Two-Phase Commit
prepare request. If a datacenter can not perform one or more of the
operation(s) needed during the prepare phase of Two-Phase Com-
mit, the datacenter does not accept the prepare request of the client,
and acts as a faulty acceptor. Once the client receives acceptances
from a majority of datacenters, the client considers the transaction
committed.

Each datacenter, whether accepted the commit request or not,
needs to learn whether a majority of datacenters has accepted that
commit request or not. To achieve this, each coordinator in each
datacenter whenever it responds back to the client with an accept,
forwards that accept message to the corresponding coordinators of
the same transaction in other datacenters as well. Whenever a co-
ordinator in a datacenter learns that a majority of datacenters has
accepted the Two-Phase Commit prepare request, the coordinator
proceeds to the second phase of Two-Phase Commit; that is, the
commit phase. During the commit phase, the coordinator in each
datacenter sends commit messages to other cohorts within the same
datacenter. Once the cohorts receive this message, they perform the
actual updates required by the transaction, log the commit opera-
tion, and release all the locks held by this transaction. These three
operations of performing updates, logging the commit operation,
and releasing all locks constitute the second phase (i.e., the commit
phase) of Two-Phase Commit.

3.2.3 Single-Shard Transactions
In Replicated Commit, the number of cross-datacenter commu-

nication trips required to commit a transaction that accesses only
one shard is the same as that required by a transaction that acesses
multiple shards. This is due to the fact that Replicated Commit
performs all the communication required by Two-Phase Commit
locally inside a datacenter. The sequence of operations that take
place during single-shard transactions can be derived directly from
that of multi-shard transactions (as explained in Section 3.2.2) by
considering it a special case in which the Two-Phase Commit co-
ordinator in each datacenter is the only participant in Two-Phase
Commit; thus the prepare and commit phases occur on that coordi-
nator only.

3.2.4 Partial Replication
If the database is partially replicated, Replicated Commit per-

forms Two-Phase Commit in a way different from that explained
in Section 3.2.2. At a high level, Replicated Commit initiates one
Paxos instance for each shard that is involved in Two-Phase Com-
mit. The client acts as the sole proposer of each of these Paxos
instances, thus it is always the leader. Each replica of each shard



performs the two phases of Two-Phase Commit locally, and the
commit phase depends on the decision agreed on using Paxos. For
the client to initiate Two-Phase Commit, the client sends a Paxos
accept request to each replica of every shard that is involved in
Two-Phase Commit; however, the client does not appoint a partic-
ular coordinator among replicas as the case with full replication.
For each shard involved in Two-Phase Commit (i.e., for each Paxos
instance that the client leads) the client waits for accept responses
from a majority of replicas. Whenever a data server receives an ac-
cept request from a client, the data server acquires exclusive locks
that are required by the transaction, checks that shared locks are
still being held by the transaction, and logs the Two-Phase Commit
prepare operation; if these three operations get executed success-
fully, the data server responds back to the client with an accept re-
sponse. Once the client receives accept responses from a majority
of replicas of each shard that is involved in Two-Phase Commit, the
client proceeds to the learning phase. The value to be learnt by the
replicas of each Paxos instance is whether the transaction should
commit or not. The default value is not to commit, so each data
server that is involved in Two-Phase Commit does not proceed to
the commit phase until it learns from the client that the transaction
should commit. If the client crashes, data servers that are involved
in that transaction timeout and exchange messages with each oth-
ers in one round of communication to learn whether a majority of
replicas of each shard has accepted the Paxos proposal (i.e., has fin-
ished the prepare phase of Two-Phase Commit successfully). Once
a data server learns about the commit decision, the data server per-
forms the actual commit operations; that is, updates the data items
that the transaction requests to update, logs the commit operation,
then releases all locks.

3.3 Correctness
The consistency of Replicated Commit follows directly from for-

mulating Replicated Commit in terms of Paxos running on top of
Two-Phase Commit. Since all Two-Phase Commit operations oc-
cur inside datacenters, Replicated Commit treats all datacenters as
replicas of a single data item, and executes a Paxos instance on
top of those replicas. Paxos is already proven to guarantee consis-
tency, thus all replicas in all datacenters are guaranteed to be con-
sistent. Within each datacenter, two Paxos instances of two con-
flicting transactions are isolated by means of Two-Phase Locking
that takes place inside each datacenter. To see how the transactional
hisotry is always serializable, consider any two conflicting transac-
tions, T1 and T2. If the conflict between T1 and T2 is a write-write
conflict, or a transitivity thereof, only one of the two transactions
could acquire exclusive locks on the data items that they are trying
to update, but not both transaction, because each of them requires
locks from a majority of datacenters. Similarly, for read-write con-
flicts, or transitives thereof, a transction can not start the update
phase before all reads are done, and since each transaction has to
acquire read locks, for each data item that it reads, from a majority
of datacenters, only one of the two conflicting transactions could
acquire the required locks. In case of parital-replicated, notice that
each shard has its own Paxos instance, thus for each shard to be
updated the transaction still needs exclusive locks from a majority
of a datacenter to get the Paxos proposal accepted.

4. REPLICATED COMMIT VERSUS
REPLICATED LOG

Figure 2 compares Replicated Commit against replicated logs at
an architectural level. In the following subsections, we analyze the
number of cross-datacenter communication trips needed by Repli-

Figure 2: Architectural differences between Replicated Com-
mit and Replicated Log.

cated Commit and compare it to systems that are based on repli-
cated logs.

4.1 Transactional reads
Replicated Commit performs transactional reads by reading from

a majority of replicas and picking the value with the highest times-
tamp. Although reading from a majority of replicas adds more mes-
saging, it does not add significant latency compared to systems that
are based on replicated logging and long-living Paxos leaders. In
the case of long-living Paxos leaders, for each data item there is
one replica that acts as the Paxos leader of that data item and main-
tains shared and exclusive locks on the data item, thus the client
needs to read from that Paxos leader only in order to hold a shared
lock on the data item. Although reading from the Paxos leader
only results in a single read request message, the Paxos leader of
each data item may be in any datacenter that is arbitrarily far from
the client. For example, in Spanner [8], which is a system that
implements Two-Phase Commit and Two-Phase Locking on top
of a Paxos-replicated log, Paxos leaders are distributed arbitrarily
among datacenters. Thus, many data reads end up answered from
remote datacenters. This is particulary the case when each trans-
action reads multiple data items, then those read requests end up
directed to multiple datacenters, similar to Replicated Commit.

Reading a majority of replicas, as the case with Replicated Com-
mit, has advantages related to fault-tolerance. In the case of repli-
cated logging systems, the lock table of any shard is maintained
at a single node, that is the Paxos leader. Thus whenever a Paxos
leader crashes, all clients that are trying to access the lock table at
that Paxos leader need to wait until a new Paxos leader gets elected,
which may take multiple seconds. For example, the time between
two consecutive elections in Spanner is 10 seconds [8]; all clients
that try to access the lock table at a failed Paxos leader have to wait
for the next elections to take place first. Replicated Commit does
not have the same issue. As long as a majority of nodes are up and
running, transactions can continue reading data without interrup-
tion.

4.2 Two-Phase Commit
Figure 3 shows how Replicated Commit works for the same ex-

ample illustrated in Figure 1. That is, given three datacenters, with
three data servers in each datacenter. Each data server holds a shard
of the database, and shards are labeled X, Y, and Z. Solid lines indi-
cate Two-Phase Commit communication, while dashed lines indi-
cate Paxos communication. The client program begins by picking
a shard to act as the coordinator; that is, data servers that hold repli-
cas of the selected shard act as coordinators of Two-Phase Commit



Figure 3: Typical Two-Phase Commit operations when using
Replicated Commit.

in each datacenter. The following sequence of messages takes place
in Replicated Commit.

1. The client picks a shard, say the shard of Y, as the Two-Phase
Commit coordinator.

2. The client sends a Paxos accept request to the coordinator
in each datacenter. This requires a cross-datacenter one-way
trip.

3. The coordinator in each data center sends a Two-Phase Com-
mit prepare message to all Two-Phase Commit cohorts in the
same datacenter, including itself. In this example, the co-
horts are the servers that host X, Y, and Z. All cohorts ac-
quire locks, and log the Two-Phase Commit prepare message
in their local logs, then respond back to their coordinators.

4. After receiving from all Two-Phase Commit cohorts in the
same datacenter, the coordinator in each datacenter responds
back to the client, confirming that it has finished the pre-
pare phase of Two-Phase Commit, and thus has accepted the
Paxos request. Coordinators also send that message to each
others so that all datacenters learn about this acceptance.
This phase requires a cross-datacenter one-way trip.

5. Once the client receives responses from a majority of dat-
acenters, the client deems the transaction committed. Any
further communication does not affect latency as perceived
by the user.

6. In each datacenter, the coordinator waits until it learns that
a majority of datacenters have accepted the commit request,

then the coordinator commits its own datacenter by sending
commit messages to all Two-Phase Commit cohorts within
its datacenter, including the coordinator itself. All cohorts
log the commit message, then release their locks.

Here we compare the number of cross-datacenter communica-
tion trips incurred by Replicated Commit during Two-Phase Com-
mit against those required by replicated logs. The number of cross-
datacenter communication trips that take place starting after the
client sends the accept request to datacenters until the client re-
ceives a commit acknowledgement equals two one-way communi-
cation trips. The number of cross-datacenter communication trips
that take place starting after data servers acquire exclusive locks
until these locks are released equals only one-way communica-
tion trip. Thus Replicated Commit eliminates five cross-datacenter
communication trips from total response time, compared to repli-
cated logging when Paxos leaders are in different datacenters, or
four communcation trips when Paxos leaders are in the same data-
center. Moreover, Replicated Commit eliminates seven communi-
cation trips from total locking time, compared to replicated logging
when Paxos leaders are in different datacenters, or six communica-
tion trips when Paxos leaders are in the same datacenter. Taking
Spanner as an example of a production system that uses Paxos-
replicated logs, the experimental setup of Spanner states that Paxos
leaders are randomly scattered over zones, so it is more realistic
not to assume that the leaders are in the same data center. More-
over, the amount of time a lock is retained by a given transaction
affects the performance of other transactions, specially when there
is contention on some data items.

4.3 Single-Shard Transactions
Consider the case of single-shard transactions. In a typical repli-

cated log system, such as Spanner or Scatter, the client sends the
transaction to the Paxos leader of the single shard that is accessed
by the transaction. The leader can be in any datacenter, arbitrarily
far from the client, thus for many transactions, this communication
counts as a cross-datacenter communication trip. The Paxos leader
logs the commit message in its Paxos log; this requires a cross-
datacenter roundtrip. Then the leader acknowledges the client; this
requires a cross-datacenter one-way trip. In total, a replicated log
system requires four cross-datacenter communication trips to com-
mit a single-shard transaction. When using Replicated Commit, a
single-shard transaction has the same number of cross-datacenter
trips as a multi-shard transaction (that is, three cross-datacenter
trips), because Two-Phase Commit takes place internally inside a
datacenter, and does not affect cross-datacenter communication.

5. RELATED WORK
Running transactions on top of replicated storage was first pro-

posed in [10], and has been recently used in various systems like
Spanner [8] and Scatter [11], by making use of Paxos [15] for
log replication. Replicated Commit, in comparison, runs Paxos on
top of Two-Phase Commit and Two-Phase Locking to replicate the
commit operation instead of the log. Thus, although Replicated
Commit still uses a layered architecture that separates atomic com-
mitment, concurrency control, and consistent replication into dif-
ferent layers, Replicated Commit inverts the layered architecture
to achieve lower latency. MDCC [21] is another widely-circulated
proposed approach to multi-datacenter databases that uses variants
of Paxos to provide both consistent replication and atomic com-
mitment. In comparison to MDCC, the layered architecture that is
used in Replicated Commit, as well as in replicated logging, sep-
arates the atomic commitment protocol from the consistent repli-



cation protocol. Separating the two protocols reduces the num-
ber of acceptors and learners in a Paxos instance to the number
of datacenters instead of the number of data servers accessed by
the transaction; the latter equals the number of datacenters times
the number of shards involved in the transaction. Besides, the lay-
ered architecuter has some engineering advantages such as modu-
larily and clarity of semantics. Integrating different protocols via
semantically-rich messages has been investigated before in other
contexts; for example, integrating concurrency control with trans-
actional recovery [2].

Gray and Lamport [12] propose Paxos Commit as an atomic
commitment protocol to solve the blocking issue of Two-Phase
Commit. Eliminating blocking during atomic commitment is an
orthogonal issue; in other words, Replicated Commit can still use
Paxos Commit as an alternative to Two-Phase Commit for atomic
commitment inside each datacenter, while maintaining the layered
architecture of running an inter-datacenter replication layer on top
of an intra-datacenter atomic commit layer.

Other examples of multi-datacenter datastores include Cassan-
dra [14] and PNUTS [7]; however, those system do not support
transactions. COPS [17] delivers a weaker type of consistency; that
is, causal consistency with convergent conflict handling, which is
referred to as causal+. Other systems have been also developed
with focus on distirbuted transactions. For example, H-Store [13]
and Calvin [20] are recently-proposed distributed datastores that el-
eminiate concurrency by executing transactions serially, when the
set of locks to be acquired during a transaction are known in ad-
vance, but they do not provide external consistency. Walter [19]
is another recently-proposed datastore that extends Snapshot Isola-
tion to a variant called Parallel Snapshot Isolation (PSI).

6. CONCLUSION
We present an architecture for multi-datacenter databases that

we refer to as Replicated Commit, to provide ACID transactional
guarantees with much fewer cross-datacenter communication trips
compared to the replicated log approach. Instead of replicating the
transactional log, Replicated Commit replicates the commit opera-
tion itself by running Two-Phase Commit multiple times in differ-
ent datacenters, and uses Paxos to reach consensus among datacen-
ters as to whether the transaction should commit. Doing so not only
replaces several inter-datacenter communication trips with intra-
datacenter communication trips, but also allows us to elimiante the
election phase before consensus so as to further reduce the num-
ber of cross-datacenter communication trips needed for consistent
replication. Our proposed approach also improves fault-tolerance
for reads. We analyze Replicated Commit by comapring the num-
ber of cross-datacenter communication trips that it requires versus
those required by the replicated log approach, then we conduct an
extensive experimental study to evaluate the performance and scal-
ability of Replicated Commit under various multi-datacenter se-
tups.
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