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Abstract—Cloud computing has become a popular metaphor
for dynamic and secure self-service access to computational
and storage capabilities. In this study, we analyze and model
workloads gathered from enterprise-operated commercial private
clouds that implement “Infrastructure as a Service.” Our results
show that 3-phase hyperexponential distributions fit using the
Estimation Maximization (E-M) algorithm capture workload
attributes accurately. In addition, these models of individual
attributes compose to produce estimates of overall cloud per-
formance that our results verify to be accurate.

As an early study of commercial enterprise private clouds,
this work provides guidance to those researching, designing, or
maintaining such installations. In particular, the cloud workloads
under study do not exhibit “heavy-tailed” distributional proper-
ties in the same way that “bare metal” operating systems do,
potentially leading to different design and engineering tradeoffs.

Index Terms—cloud workload, parametric modeling, perfor-
mance evaluation

I. INTRODUCTION

Cloud Computing [1] is a technological approach to Infor-
mation Technology management that carries the promise of
lower costs through greater efficiencies. Often associated with
the phrase “Infrastructure as a Service” (IaaS) and originally
conceived of as a utility computing model [2], the innova-
tion stems from the use of scalable automation (developed
to support e-commerce) to implement data center resource
provisioning and access.

Since its inception, two categories of IaaS cloud computing
deployments have emerged. Public clouds are computing util-
ities operated by service providers who provide access via
the Internet. On the other hand, private clouds implement
the cloud computing model as an infrastructure management
platform within a private data center (e.g. one managed by
a company’s IT organization). While these deployment styles
share a common technological approach, their usage patterns
and technical rationale differ.

In particular, IaaS private clouds implement a self-service
model so that users may automatically obtain resources that
are managed by a separate IT organization. Users are free
to customize and archive their application environments in
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the form of virtual machine images. When a user wishes to
instantiate an application, she or he specifies the image or
images to use to instantiate one or more virtual machines
(VMs) that will host the application’s components. Typically,
a private cloud also conveys quality of service attributes that
are associated with the underlying resources (users can know
what types of resources they are accessing), and the cloud
administers “charge-back” accounting and resource quotas
rather than fee-based charging.

In this article, we describe, analyze, and model workloads
gathered from several production private cloud deployments.
Unlike approaches based strictly on empirical distributions and
some form of clustering and/or regression [3], [4], [5], [6], [7]
our study investigates the development of parametric statistical
models similar in spirit to the parametric approaches used by
those studying operating system workload migration [8], [9],
service workload modeling [10], and data center workload
characterization [11]. This analysis is useful for infrastruc-
ture capacity planning and cost estimation, since it allows
procuring entities to predict the effects of adding or removing
resources from a specific deployment. That is, by changing
the parameters of a well-fit workload model, IT professionals
can predict how many resources will be needed in a specific
private cloud if and when workload changes in the future.
Moreover, because the models take the form of statistical
distributions, it is possible to predict load characteristics such
as the degree to which load will vary, percentiles of the overall
load distribution, etc. This research also informs, more broadly,
future system software research, design, and engineering, since
the observed workloads differ substantially in their statistical
characterization from workloads reported previously [8], [10].

Public cloud providers have yet to publish quantitative traces
of workload data, as the exact nature of customer usage and
infrastructure capabilities are usually held to be trade secrets.
Private clouds, however, are not typically revenue generating
in a commercial context, making the companies that deploy
them more willing to share (in anonymized form) their cloud
workload instrumentation data.

We are fortunate to have been able to work with Eucalyp-
tus [12], [13], a popular open-source private cloud platform
maintained by the commercial entity Eucalyptus Systems, to
study several production private cloud deployments imple-
mented by commercial customers. As far as we know, this
article constitutes the first analysis of instrumentation data
captured from enterprise private clouds used for production
(i.e., not for evaluation purposes). To help foster additional
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research, we are making the data described in this article
available to the wider community from the URL given in [14]
1.

The remainder of this article is organized as follows.
Section II describes the data sets we have gathered and the
methodology we have used to model them. In Section III we
detail the accuracy of these new models and discuss their
strengths and weaknesses. Section IV outlines the potential
impact that these results have on private cloud usage and
systems design. We discuss related work in Section V, and
in Section VI we conclude and describe future work.

II. PRIVATE CLOUD WORKLOADS

Our investigation focuses on private cloud workloads from
clouds that implement Infrastructure as a Service (IaaS). In this
style of cloud computing, users request that the cloud provision
collections of virtual machines (VMs) that are interconnected
(via an isolated network) with each other, a common (and
secure) storage infrastructure, and with a gateway or network
transition point to at least one network outside of the cloud
itself. Eucalyptus supports the Amazon AWS API and cloud
abstractions [15] for IaaS.

Briefly, under the AWS API, each user request for VM
provisioning specifies:

• VM Type – the core count, memory size, and disk
partition size for each virtual machine to be provisioned;

• Image – the data set (captured as a root filesystem, kernel,
and ramdisk) that will be used to initialize the VM when
it starts;

• Security Group – an identifier of a virtual network
interconnecting the VMs protected by a virtual firewall;

• Availability Zone – a logical partition of the cloud
in which all resources share a common set of QoS
attributes2; and

• Instance Count – the number of VMs that should be
started from the Image, in the Security Group, in the
Availability Zone as a result of the request.

Note that in this API specification, all VMs that result from
a single request share the same Security Group, Availability
Zone, and VM Type and all are started from the same
Image. Users query the cloud for identifiers that name these
components of a provisioning request and some, but not all,
may instantiated from administrator-set defaults.

Eucalyptus, like AWS, either accepts an entire request or
rejects it as a whole. In particular, if there are insufficient
resources available to start all VMs in the same Availability
Zone, the entire request is rejected and no VM will start. If,
on the other hand, the request is accepted, Eucalyptus will
attempt to start all VMs specified in a request simultaneously.
Users must request the termination of the VMs individually,
however, based on instance identifiers that are returned from
the provisioning request. To effect the termination of a group

1We will make the data sets described herein available, in anonymized form,
should this article be accepted for publication.

2In AWS, an availability zone corresponds to a region of fault isolation.
Eucalyptus extends this concept to include other QoS attributes.

of VMs, one may specify multiple instance identifiers within
a single terminate request.

A Eucalyptus-internal VM scheduler (Eucalyptus can be
configured to use either a round-robin or a high multi-tenancy
scheduler) makes placement decisions and keeps track of uti-
lization across physical machines. Both Eucalyptus schedulers
place restrictions both on how VM types are defined and how
VMs may be scheduled. In particular, VM types must be
defined in a size order so that their core counts and memory
sizes “nest.” That is, one or more VM types of a given size
must “fit” within the size specification of the next larger size.
Ideally, each VM type comprises a multiple of the next smaller
VM type, although only the nesting criterion is enforced by
Eucalyptus. Further, the resource requirements associated with
a VM Type cannot be split across physical machines. Thus
the scheduler will only place a VM on a machine where
there are a sufficient number of free cores, sufficient free
memory, and sufficient free disk space to accept its VM Type.
Finally, the Eucalyptus administrator specifies a storage quota
for each physical machine that is configured to accept VMs
that limits the total disk space Eucalyptus is entitled to occupy.
The schedulers respect these quotas when making placement
decisions at run time.

In this study, the different cloud administrators had con-
figured their respective clouds so that placement decisions
depend only on core count. That is, each VM type and storage
quota were defined so that core count (and not memory or
disk storage) fit is the critical criterion for making placement
decisions. If the scheduler determines that there are a sufficient
number of free cores on a physical machine to run a VM,
the configuration in each case guarantees that there is enough
memory and disk space as well. This method of VM sizing is
typical of Eucalyptus private clouds. Administrators typically
ensure that each VM Type balances core, memory, and disk
footprint to make it easier for users to reason about their
resource usage.

A. VM Attributes

Thus, VM workload, as experienced by a Eucalyptus cloud,
can be captured by four attributes (for each given request):

• Interarrival Time – the amount of time until the next
request;

• VM Lifetime – the time duration over which a VM is
provisioned to a physical machine;

• Request Size – the number of VMs in the request;
• Core Count – the CPU core count requested for each

VM.
Our approach is to model workload for a specific cloud
as a set of possibly interrelated statistical distributions of
these attributes. In Subsection II-E we describe the specific
models we have found to be effective for this purpose and
a methodology for automatically determining their parameters
from a Eucalyptus workload trace. Note that the data described
in this study do not include instrumentation data gathered from
within each VM. Each Eucalyptus administrator installed and
maintained his or her own set of images without regard for this
work, making it difficult or impossible for us to ensure that a
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common set of VM instrumentation tools could be employed.
Thus our work focuses on occupancy workload as managed by
the cloud (i.e., the workload that the cloud unavoidably must
manage without the cooperation of the VMs), complementing
the work of others who have studied models that rely on data
gathered from within the VMs [16].

B. Resource Attributes
According to this model, machines configured into a Euca-

lyptus system experience workload in terms of two types of
utilization:

• Core Utilization – the fraction of the total core time
available that CPU cores within the cloud are assigned to
VMs; and

• Node Utilization – the fraction of the total machine time
available within the cloud that nodes (physical machines)
are assigned to some VM.

Henceforth we will use the term “node” as a synonym for
“physical machine” for the sake of brevity. Core utilization
captures the extent to which the cloud makes use of the CPU
cores. Because cores, memory, and disk storage cannot be
used independently, core utilization can also provide some
insight into memory and disk usage, albeit indirectly. Clearly
core utilization is dependent on VM lifetime and interarrival
distributions while node utilization reflects the balance of
workload across machines as well as VM lifetime and VM
interarrival time. That is, if node utilization is low, it is either
because the internal scheduler is not attempting to maximize
balance (Eucalyptus includes a “greedy” scheduler that tries
to maximize multi-tenancy and to keep nodes idle) or because
there is insufficient work arriving to keep nodes busy given
the lifetime distribution of the VMs.

C. Instrumentation
At the time of this study, Eucalyptus did not include

instrumentation that directly measures both VM workload at-
tributes and system-wide performance 3. However, the default
Eucalyptus configuration deployed at most sites specifies that
the system capture maintenance logs in a “rolling” set of log
files. To save disk space, only the latest 200 megabytes of log
data, but not a long-term history, are maintained so that in
the event of a problem, the recent state of the system can be
interrogated.

Note also that the information stored in these logs is
designed to illuminate internal system state rather than to track
the trajectory of specific requests. In addition, the logs do not
capture events such as node failure, the restart of an internal
system component, or overall system restart. Moreover, Eu-
calyptus has been designed so that it can operate in a highly
available mode. As a result, many of the system components
are functional and stateless and thus do not log either session-
oriented events (e.g., VM lifetime) or system outage. For these
reasons, both cloud workload and system utilization must be
composed from different logging events rather than measured
directly.

3Since the time of this writing, some instrumentation has been added
to Eucalyptus for accounting purposes, but the accounting features can be
configured optionally. Thus this facility in not in use at all installations.

Measuring VM Attributes: Each VM, when it is instantiated,
is given a unique identifier (called an “instance id”) that will
not be reused for an acceptably long period of time after the
VM terminates. Eucalyptus attempts to log both the arrival
of a request to start a VM and any request to terminate it,
but these logging events are “best effort.” That is, the starting
event and/or stopping event specific to a particular VM may
not be present in the logs. In particular, while the logs fill and
“roll over” (the log file names are kept ordered from most
recent to least and each has a finite size so their names must
be adjusted when the most recent log becomes full) logging
events may be lost.

Logging events are also lost if and when the local site
administrator decides to stop capturing consecutive logs (or,
more likely, forgets to re-enable a capture script after a routine
machine reboot). Because only a finite history of logging data
is captured in the default configuration, events can be lost if
the history is not archived periodically.

Finally, Eucalyptus is designed to continue to function in the
presence of internal software failure (although in a degraded
mode). If, for example, the software agent that runs on a node
(which is responsible for starting and stopping VMs) crashes
or is stopped, the VMs it has started continue to function.
When the component, called a Eucalyptus Node Controller
(NC), is restarted, it will “adopt” the VMs it finds running
and continue as if the outage had not occurred. During the
period that the NC is down, however, no logging information
for that node is captured.

Fortunately, each node reports the VMs that it is hosting
approximately every 15 seconds and these status updates are
logged. In cases where the start event or stop event (or both)
are missing, the time span between the first observed status
update for a VM and the last are a close approximation to its
user-controlled lifetime. Because only the first VM “heartbeat”
and the last are necessary to approximate lifetime, logging
outages that are due to NC stoppage that occur while the VM
is running can be ignored when computing VM lifetime.

Longer-term outages that are due strictly to failure to archive
the rolling logs are more problematic. If, for example, the local
administrator fails to archive the logs over a period of time
during which the system is running without outage, the lost
logs will appear as a period of dropout in an overall trace
of VM workload. VMs that start in the dropout period will
appear to start immediately after the dropout ends (the logs
will suddenly show a heartbeat for a previously unlogged VM).
Similarly, VMs that end during a dropout period will appear
to terminate before dropout, at the time of their last observed
heartbeat.

To mitigate these effects, our methodology attempts to
identify places in the logs where log dropout appears to occur.
A large number of VM heartbeats (without start events) that
appear simultaneously after a long period of inactivity marks
the end of a dropout period. Similarly, a large number of final
VM heartbeats (again, without stop events) at a single point
in the log signals the beginning of a dropout period.

To correct for the artificial foreshortening of VM lifetime
and elongation of VM interarrival time that log drop out
introduces, we generate an “outage map” for each archive and
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use it to adjust affected VM start and stop times. Each entry in
a map indicates the starting time stamp for a potential outage
and its duration. For VMs that appear to start during an outage,
we decrement their start times by a random fraction of the
outage interval. Similarly, VMs that appear to have stopped
during a dropout period have their stop times incremented by
a random fraction of the outage interval.

We observe that this outage correction (the degree of which
varies by installation) improves the model fit for VM inter-
arrival time, VM lifetime, and CPU core utilization. Because
it does not capture individual node outages, however, it does
not completely correct node utilization predictions (cf. the next
Subsection).

Resource Attributes: Measuring resource attributes over the
long term is more problematic under the versions of Eucalyp-
tus we studied because resource information is not aggregated
into a single log (as are VM event data). Eucalyptus maintains
several different rolling logs, each recording information that
is specific to a subsystem or activity. Even with the aid of
the cooperative and helpful cloud administrators who worked
with us on this study, we observed log dropout on several
occasions for an archive of only a single rolling log (the one
that carries VM lifetime and scheduling information.) It was
not possible to tax these administrators with the additional
burden of archiving all of the different logs recorded by
Eucalyptus in a given installation so that we could generate
aggregate measurements of resource attributes.

Instead, we use a faster-than-real time simulator that imple-
ments the Eucalyptus VM scheduling algorithms and “replays”
VM activity culled from the logs. The advantage of using
a simulator is twofold. First, it is possible to instrument the
simulator to provide information that explains a particular set
of observations. Simply computing resource utilization, for
example, from the logs provides little insight regarding the
patterns of activity that leads to these measurements. Second,
it is possible to predict the effect of hypothetical changes to
the system using the simulator. For example, it is possible to
change the scheduling algorithm and to observe the effect of
the change on node utilization.

D. Data Sets
We present data from three separate commercial private

clouds implemented using Eucalyptus. The commercial enti-
ties operating these private clouds have allowed us to monitor
their respective installations over an extended period and have
agreed to have these results data made publicly available in
an anonymized form. All three clouds support the commercial
activity of their operators (they are not operated for, e.g.,
evaluation or investigative purposes).

The first data set (DS1) is taken from an organization
with several large-scale software development efforts. While
the private cloud is used for some company-wide service
hosting, its primary use is to support software testing and
development. DS1 captures private cloud VM activity that
combines software development with service hosting, with an
emphasis on development.

The second data set (DS2) is taken from an IT organization
that “sells” time on a re-charge basis to other organizational

units in its umbrella company. The accounting charges trans-
late to operating budget for the following fiscal year, making
the economic incentives similar to those driving a public cloud.
Thus the usage of this cloud is not known (i.e., the cloud does
not have a specific purpose other than to host the workloads of
its paying customers). The function of the umbrella company,
however, makes it likely that much of the activity is generated
by software development.

The third data set (DS3) is taken from a private cloud
used to allow business partners to integrate their respective
software products with the products made by the company
operating the cloud. It also supports user and customer trials
of the company’s software products. Finally, these partners
often use the cloud for demonstration or sales purposes. Thus
the workload is a mixture of software development with on-
demand hosting activities.

Table I provides summary descriptions of the cloud deploy-
ments from which we have gathered these data sets.

Each data set measures the workload from a single Eu-
calyptus Availability Zone. The cloud that generated DS1
was configured with two Availability Zones, only one of
which was instrumented for monitoring. The other two clouds
each implemented only a single Availability Zone. We show
the time period that each dataset spans and the approximate
employee counts for the organization operating each cloud.
Our goal in using these data sets is to measure workload across
a spectrum of commercial activity. However, note that each
cloud is relatively small and is operated by a small IT staff.
Also, we do not have measurements of the size of the user
pool accessing each cloud. Thus the organizational scale does
not necessarily reflect the size of the user community that
generated the workload captured in each data set.

All three data sets span several months of continuous usage.
During the monitoring periods, each of the hosting organiza-
tions upgraded their respective Eucalyptus clouds, in one case
multiple times. Further details concerning the provenance of
the data and the data sets themselves are available from the
web site URL given in [14], hosted by the Computer Science
Department at the University of California Santa Barbara.

E. Modeling Methodology

We represent the workload experienced by each cloud as a
function of four distributions, one for each of the workload at-
tributes: Request Interarrival Time, VM Lifetime, Request Size,
and Core Count. Thus, the workload model for a given cloud
is represented by a time series of requests, each composed
of one or more VMs with each VM characterized by a core
count and lifetime. All VMs in a request have the same core
count (per AWS API semantics), but request sizes and core
counts vary from request to request. Further, according to the
API, while all VMs within a specific request are intended to
start at the same time, it is possible for the user to terminate
them either individually or as a collection. In this work we
model VM lifetimes according to the latter usage pattern. That
is, all VMs within a request are assumed to have the same
lifetime. Anecdotally, we have experimented with generating
workloads using lifetime models to determine the durations of
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Data Set Nodes Cores/Node Time Period Description
DS1 13 24 Aug. 2012 to Oct. 2012 Large company with

50,000 to 100,000 employees
DS2 7 12 Aug. 2012 to Apr. 2013 Medium sized company with

2,000 to 5,000 employees
DS3 7 8 Aug. 2012 to May 2013 Small company with

50 to 100 employees
TABLE I

SUMMARY OF PRIVATE CLOUD DATASET CHARACTERISTICS

VMs within each request separately and found that it does not
affect the results significantly.

We have found that a 3-phase hyperexponential distribution,
together with some enhancements to be discussed below,
provides a good model for both VM interarrival and lifetimes.
Note that while hyperexponentials could be justified from an
“explanatory” standpoint for VM lifetimes (i.e., one could
posit that there are three types of processes, namely short,
medium, and long), there is no such simple explanatory
justification in the case of interarrivals, and in any event
we simply put this model forth as one able to capture the
complexities of both distributions. The hyperexponential fam-
ily of distributions is also convenient from the standpoint of
parameter estimation via the E-M algorithm as implemented
in the EMpht software package [17], [18].

The other two attributes are categorical, and we simply
use their empirical proportions for parameters. Eucalyptus
supports up to five VM types, making the number of request-
size and core-count combinations relatively manageable. To
generate a simulated workload trace, then, we extract these
proportions for each size-count combination and sample ran-
domly from the empirical distribution.

In addition, the workloads include modal behavior. Pro-
cesses scheduled at regular intervals and large numbers of pro-
cesses with identical lifetimes introduce jump-discontinuity-
like behavior in the cumulative distribution functions of the
interarrival and VM lifetime distributions respectively. We
therefore implemented an algorithm for automatically iden-
tifying such modal behavior in the traces. We then generate
our final model by separating these instances out as a fraction
of the total, producing a hyperexponential fit for the remaining
processes, and overlaying the distributions of the periodic and
modal processes (cf. Section III).

III. RESULTS

The goal of our work is twofold. First, we wish to illustrate
statistical distributions that are useful in modeling VM inter-
arrival times and lifetimes. Second, we wish to demonstrate
the use of these individual distributions to compose realistic
models of overall cloud performance (e.g., cloud utilization).

To investigate the question of representing VM attributes
using statistical distributions, we compare a 3-phase hyper-
exponential (estimating parameters via the E-M algorithm
discussed in the previous section), a lognormal distribution,
and a Pareto distribution (for the last two there are closed
forms for maximum likelihood parameter estimators) in terms
of their ability to represent interarrival time and VM lifetime.
During the course of this investigation we noticed that the

distribution of VM lifetime data differed depending on whether
the VMs being modeled use one core or more than one core;
thus, we use two lifetime distributions for each data set.

In the following tables, we show the Kolmolgrov-Smirnov
(KS) statistic [19] computed for the goodness-of-fit between
the observed data and a distribution fit to it. Recall that the KS
statistic measures the difference in quantile between a sample
and a proposed model over all possible values and returns the
maximum of these; for example, if 100 seconds is the 20th

percentile of true VM lifetimes and a proposed model has
100 seconds at the 35th percentile, then the difference for the
value of 100 is .35 − .20 = .15, and so the KS statistic for
this model will be at least .15. Smaller values of this statistic
thus reflect better fit, at least with respect to this test. We
also include, simply to give a point of reference, the α = .05
value for the statistic. Note that a given model might have a
fairly small KS statistic and still have a large discrepancy in
terms of population attributes such as mean or variance (which
may be crucial depending on one’s interest), because a small
fraction of very large values can have a great influence on
these statistics – graphically, the KS statistic detects vertical
but not horizontal discrepancies in the CDFs. On the other
hand, generally speaking, a large KS statistic implies a poor
fit.

Table II compares KS statistics for the interarrival times.
For this attribute, every model generates a KS statistic large

Data Set Critical Value 3-P Lognormal Pareto
DS1 0.040227 0.061424 0.076046 0.235342
DS2 0.062933 0.076903 0.079632 0.196724
DS3 0.033230 0.020051 0.023726 0.365086

TABLE II
COMPARISON OF KS STATS FOR INTERARRIVAL DATA AND MODELS

enough to warrant a rejection of the null hypothesis at the
α = .05 level that the data have been drawn from the model
distribution for the data in DS1 and DS2. However, both the
hyperexponential and the lognormal are reasonably close to the
critical value in each case. For DS3, both the hyperexponential
and lognormal KS values are less than the critical value,
which indicates that either or both might be a good choice for
modeling interarrival times in this data set. Compared to the
hyperexponential and lognormal models, the Pareto appears
to be a poor choice, as evidenced by the large KS statistics it
generates.

Figure 1 shows the cumulative distribution functions (CDFs)
for the DS3 measurement interarrival data and all three models
(the units in the figure are seconds). Note that for the DS3
data set, the KS statistics show the hyperexponential and
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Fig. 1. DS3 interarrival distributions (units are seconds)

lognormal models to be much better fits than the Pareto and
each comfortably below the rejection threshold. In the figure,
the measurement data are completely obscured by both models
on the scale necessary to show the upper tail of the Pareto. It
is clear in this graphical comparison that the Pareto is a poorer
fit than either of the other two alternatives.

Figure 2 shows the same comparison for the DS3 data set as
in Figure 1 but with the Pareto model removed. Both the hy-
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Fig. 2. DS3 interarrival data, hyperexponential and lognormal distributions
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perexponential and lognormal models appear to represent the
shape of the measurement distribution correctly in the figure.
However, the upper tail of the lognormal contains considerably
greater probability mass than either the measurement or the
hyperexponential distribution. Figure 3 “zooms in” on just the
parts of the CDFs between 50000 and 5000000 seconds for
the interarrival times in data set DS3. Note that the x-axis in
each of Figure 2 and Figure 3 is defined using a log scale
and that y-axis in Figure 3 shows only values between 0.93
and 1.0. As described in the previous section, the KS statistic
fails to detect a poor fit in the extreme percentiles, which exert
high leverage on population characteristics such as mean and
variance.

To investigate further the modeling power of each approach,
Table III compares, by data set, the sample mean and standard
deviation for the interarrival observations to the mean and
standard deviation from each fitted model. In each column of
data, the units of time for the mean is seconds and the standard
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deviation is given in parentheses. Note that we omit the Pareto

Data Set Sample 3-P Lognormal
DS1 2202.1 2202.1 2278.5

(2.2e+04) (8.5e+03) (5.0e+04)
DS2 41285.7 41285.9 265295.6

(1.1e+05) (1.0e+05) (5.2e+07)
DS3 11238.8 11238.8 18792.7

(3.0e+04) (2.8e+04) (2.4e+05)
TABLE III

COMPARISON OF MEAN AND STANDARD DEVIATION (IN PARENTHESES)
FOR INTERARRIVAL DATA AND MODELS

results from this table because the the shape parameter for
each fitted Pareto model is less than 1, so that the mean is
infinite and the variance is undefined for these models. From
a comparison of the remaining means and standard deviations,
it is clear that 3-phase hyperexponential is a better choice than
a lognormal as a model for the interarrival data across all data
sets. In particular, as Figure 2 suggests, due to the additional
probability mass in the upper tail of the lognormal its mean
is larger than the mean of either the empirical data or the
hyperexponential.

Table IV and Table V show KS statistics and mean and stan-
dard deviation comparisons for for multi-core VM lifetimes.
In each column of Table V, the units of time for the mean is
seconds and the standard deviation is shown in parentheses.
Again, the KS comparisons do not show a clearly superior

Data Set Critical Value 3-P Lognormal Pareto
DS1 0.055429 0.041428 0.096728 0.310270
DS2 0.071283 0.087782 0.050345 0.278906
DS3 0.053344 0.066853 0.026220 0.296969

TABLE IV
COMPARISON OF KS STATS FOR MULTI-CORE VM LIFETIMES AND

MODELS

model, although they indicate that the Pareto distribution is
likely to be a poor model. The lognormal fit fails to reject the
null hypothesis for DS2 and DS3 where the hyperexponential
statistic is just slightly larger than the critical value. The
reverse is true (fail to reject for the hyperexponential, reject
for the lognormal) for DS1.

However, comparing the means and standard deviations in
Table V shows that the hyperexponential is the closest fit
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across all data sets and models, again due to a better match
in the upper tails. The maximum-likelihood fits of the Pareto

Data Set Sample 3-P Lognormal
DS1 257173.0 257176.1 1615134.1

(4.6e+05) (5.7e+05) (1.5e+08)
DS2 144669.0 144669.0 257314.2

(7.9e+05) (4.0e+05) (1.5e+07)
DS3 30739.2 30739.3 48756.6

(1.6e+05) (1.0e+05) (2.2e+06)
TABLE V

COMPARISON OF MEAN AND STANDARD DEVIATION (IN PARENTHESES)
FOR MULTI-CORE VM LIFETIMES AND MODELS

models generate distributions that have infinite means and
undefined variances in each case, so they have been omitted
from the table.

Data Set Critical Value 3-P Lognormal Pareto
DS1 0.035642 0.130662 0.206753 0.349283
DS2 0.089676 0.085053 0.108434 0.268853
DS3 0.053508 0.101547 0.071394 0.301746

TABLE VI
COMPARISON OF KS STATS FOR SINGLE-CORE LIFETIMES AND MODELS

Similarly, Table VI and Table VII show KS and
mean/standard deviation statistics for single-core VM life-
times. For this attribute, the KS statistics indicate slightly

Data Set Sample 3-P Lognormal
DS1 28754.4 28754.8 4837.5

(1.6e+05) (1.3e+05) (2.4e+04)
DS2 599815.0 599843.7 2712876.3

(1.7e+06) (1.6e+06) (9.8e+08)
DS3 44447.8 44448.5 40081.3

(2.2e+05) (1.7e+05) (2.6e+06)
TABLE VII

COMPARISON OF MEAN AND STANDARD DEVIATION (IN PARENTHESES)
FOR SINGLE-CORE VM LIFETIMES AND MODELS

worse fits for the hyperexponential and lognormal models than
for the other two attributes, and again there is little to choose
between the two. However, the mean and standard deviation
comparisons (with Pareto omitted for the same reason as
before) show the hyperexponential to be the better choice,
particularly with respect to the mean.

Table VIII shows the parameters computed by EMpht for
each hyperexponential model. In the table, the probability pi is
associated with the exponential distribution having parameter
λi in each model; since p3 can be calculated as 1−p1−p2, we
omit it. Note that the model of single-core VM lifetimes for
data set DS1 is, in fact, a 2-phase hyperexponential (λ2 is equal
to λ3). This case raises the question of whether additional
parameters (i.e. more hyperexponential phases) would improve
the fit. We further investigate this question in Subsection III-B.

A. Synthetic VM Traces

As described in Section II, accurate synthetic VM traces
may need to combine fitted models with modal components.
Figure 4 shows the CDF of the VM interarrival times taken
from the measurement data. Note the presence of what appear
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Fig. 4. DS1 interarrival measurement data (units are seconds)

to be two modes, one at zero seconds and the other at 1800 sec-
onds. Less obviously from the graph, there are many sequences
of VM launches at 1800-second intervals throughout the trace
(the mode appears there because there is often no VM activity
between two consecutive such launches). The mode at zero
seconds results from two different phenomena. First, multiple
VM launches specified in the same user request are logged
by Eucalyptus as separate events with the same time stamp.
Second, heavy periods of activity result in multiple requests
that appear to occur simultaneously. Eucalyptus logs events to
the nearest second and requests are conveyed to the place in
the system where the logs are recored via a set of messages
that are handled asynchronously. Thus requests are queue up
and appear to be handled simultaneously when, in fact, they
were issued by their respective users at slightly different times.

In order to build a realistic synthetic VM trace, one must
take into account these modal components, which by their
nature are not well modeled by a continuous distribution such
as a hyperexponential, in the measurements. In this study, only
the interarrival measurements for data set DS1 contain regu-
larly spaced sequences. On the other hand, interarrival times
from all datasets contain a mode at zero seconds (due to to
the Eucalyptus logging mechanisms); additionally, the multi-
core VM lifetime measurements for DS1 contain four further
modes at 2493, 929, 992, and 1104 seconds respectively. As
described previously, our methodology automatically detects
these components and incorporates them into the synthetic
traces it produces.

B. Modeling Cloud Performance

Both to compare the efficacy of the different attribute
models and to test whether additional phases in the hyperex-
ponential models would improve accuracy, Table IX compares
the core utilization measured for each private cloud against
synthetic workloads. In each case, if the measurement time
series contains modes, the synthetic representation of that
series includes similar modes. CPU core utilization, in this
case, is computed as the ratio of total CPU core occupancy
time to the total core time available. Note that each synthetic
trace is composed of multiple samples from its constituent
distributions. Thus the core utilization measured from the
synthetic data varies trace to trace. In columns 3,4, and
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Data Set Interarrival Time Multi-core Lifetime Single-core Lifetime
DS1 λ1=0.00080 λ2=0.00005 λ1=0.00004 λ2=0.000002 λ1=0.000003 λ2=0.00109

λ3=0.02894 λ3=0.00059 λ3=0.00109
p1=0.34561 p2=0.08648 p1=0.24667 p2=0.37948 p1=0.09325 p2=0.22251

DS2 λ1=0.000006 λ2=0.05228 λ1=0.00186 λ2=0.00008 λ1=0.00143 λ2=0.00005
λ3=0.00081 λ3=0.0000008 λ3=0.0000004
p1=0.38881 p2=0.18227 p1=0.42093 p2=0.43960 p1=0.44885 p2=0.30675

DS3 λ1=0.00030 λ2=0.00003 λ1=0.00498 λ2=0.000005 λ1=0.000297 λ2=0.000003
λ3=0.00257 λ3=0.00022 λ3=0.00410
p1=0.39442 p2=0.24644 p1=0.37621 p2=0.14838 p1=0.34131 p2=0.12544

TABLE VIII
HYPEREXPONENTIAL PARAMETERS COMPUTED FOR EACH MODEL MY EMPHT

Data Set Measured 3-P Lognormal Pareto
DS1 0.41 0.39 (0.04) 0.46 (0.09) 0.03 (0.03)
DS2 0.22 0.22 (0.03) 0.07 (0.04) 0.06 (0.06)
DS3 0.13 0.14 (0.01) 0.08 (0.02) 0.01 (0.01)

TABLE IX
COMPARISON OF MEASURED AND MODELED CPU CORE UTILIZATION

USING SYNTHETIC WORKLOADS

5, Table IX shows the average and standard deviation (in
parentheses) of each synthetic utilization over 100 repeated
experiments. In each case, the average from a synthetic trace
generated using a 3-phase hyperexponential is well within
two standard deviations of the true measurements (shown in
column 2) for each data set and is the closest to the true
measurement among the three models tested. The inaccuracy
of the lognormal and Pareto models should not be surprising
in light of the lognormal’s failure to reflect the mean (and
hence aggregate) process lifetime (cf. Tables V, VII) and the
Pareto’s failure even to have a finite mean. While it is possible
that additional hyperexponential phases would improve accu-
racy, the improvements (in terms of modeling overall CPU
utilization) would be slight and the extra complexity would
be unwarranted. Table X shows measured and modeled node
utilization. As in Table IX, the sample mean and standard

Data Set Sample 3-P Lognormal Pareto
DS1 0.82 0.92 (0.02) 0.86 (0.08) 0.20 (0.20)
DS2 0.39 0.37 (0.05) 0.21 (0.10) 0.17 (0.17)
DS3 0.41 0.47 (0.03) 0.30 (0.11) 0.05 (0.05)

TABLE X
COMPARISON OF MEASURED AND MODELED NODE UTILIZATION USING

SYNTHETIC WORKLOADS

deviation (shown in parentheses) for 100 repeated modeling
experiments are shown in columns 3,4, and 5. To compute
node utilization for the cloud we first record the occupancy
duration for each node as total time during which it hosts at
least 1 VM. The node utilization for the cloud is then the the
ratio of the sum of the node occupancies for each node divided
by total possible occupancy time.

NodeUtilization =

N∑
i=1

NodeOccupancy(i)

N ∗ TraceDuration
(1)

In Equation 1, NodeOccupancy(i) returns the total time that
node i had work assigned to it by the Eucalyptus scheduler,
TraceDuration is the total time period under study, and N is
the number of nodes.

Table X shows that synthetic workloads generated from a 3-
phase hyperexponential are generally more accurate than those
generated from a lognormal or Pareto, but the accuracy is not
as precise as in Table IX. These results illustrate Eucalyptus
system behavior we chose not to model. In particular, we
discovered two phenomena in the logs that are not represented
in our models and which we believe contribute to the discrep-
ancies between modeled and measured node utilization.

The first unmodeled characteristic is individual node
dropout. Eucalyptus is engineered to avoid “fail-stop” in the
event that one or more of its internal components fail. In
particular, the temporary loss of a node manifests only in the
temporary loss of capacity. Inspecting the logs, we noticed
periods of time when individual nodes appeared inactive. The
reasons for these inactivity periods (e.g. node failure, node
maintenance, etc.) are not apparent in the logs nor were they
frequent enough for us to attempt a statistical characterization.

We use the simulator to compute measured node utilization
by replaying the actual measurement trace from the logs
and observing the values of NodeOccupancy for each node.
Thus the resulting values computed from Equation 1 include
periods of individual node inactivity. In contrast, the modeled
data comes from synthetic traces that are generated without
individual node inactivity periods. Hence the 3-phase hyper-
exponential model is likely to be overstating the measured
utilization in proportion to the duration of individual node
inactivity periods.

The second complication arises from bug in the VM sched-
ulers present in some versions of Eucalyptus. The faster-than-
real-time simulator includes the Eucalyptus schedulers (both
round-robin and “greedy”), but it invokes them as part of
a single-threaded event-driven simulation. When Eucalyptus
runs, however, the schedulers are invoked asynchronously
in a way that appears occasionally to bring about a race
condition. As a result, the logs record periods during which
the schedulers temporarily assign more than the maximum
specified occupancy to individual nodes. That is, a node is
assigned VMs in such a way that the total number of cores in
the VM exceeds the core capacity of the node. The hypervisors
that were configured into each Eucalyptus cloud simply time-
sliced these VMs so that the cloud appeared to function
properly in the presence of this erroneous implementation of
multi-tenancy. Indeed, neither the Eucalyptus engineering staff
nor the individual cloud administrators were aware of this bug
before our study. Moreover, it is not clear whether the bug is
present or, if present, whether it is triggered with the same
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frequency, across versions of Eucalyptus. In this study, each
of the clouds went through one or more Eucalyptus upgrades
over the course of the logged time period.

As with individual node dropout, we chose not to model the
manifestation of the scheduling race condition in the synthetic
traces or in the simulator. We believe that these unmodeled
effects contribute to the inaccuracies show in Table X for
the 3-phase hyperexponential model. The other models, how-
ever, suffer from the additional probability mass in the tails
discussed earlier. That is, they generate long-running VMs
with greater frequency and longer lifetimes than what the
logs report. As a result, near the end of each lognormal and
Pareto simulation experiment there are a few of these extreme
jobs, which keep a small number of VMs assigned while the
others are idle. This explains the relatively low simulated node
utilization for the lognormal and Pareto models.

IV. DISCUSSION

From the data presented in Section III, it seems that
private cloud workloads culled from enterprise settings (as
they are being generated today) can be well modeled by
a 3-phase hyperexponential distribution that is fit using the
E-M algorithm. From a modeling perspective, this result is
perhaps unsurprising in that the 5 parameters of this model
should be able to represent the observations more realistically
than the 2 parameters that characterize both the lognormal
and Pareto models. Indeed, it is striking that the lognormal
(which requires less computational effort to compute that the
hyperexponential) is as effective as the results indicate. In
a modeling setting where a quick approximation is needed,
the lognormal could prove to be a useful alternative to the
hyperexponential. As the results in the previous section show,
however, the lognormal model is inaccurate with respect to
mean interarrivals and process lifetimes, which are crucial to
an accurate representation of workload and utilization.

From an explanatory perspective, these results indicate po-
tentially greater long-term impact. Private clouds do not imple-
ment queuing disciplines in the same way that batch-scheduled
systems do. The results seem to indicate that workload can be
modeled as small, medium, and large-sized VMs arriving in
small, medium, and large-sized intervals. Private clouds must
schedule the offered load using multi-tenancy (i.e. by over-
committing resources) or by choosing to refuse admittance
to certain requests when a resource shortfall is imminent.
Accurate models of workload, such as the hyperexponentials
detailed in this study, inform the design of cloud schedulers
and capacity planners. Indeed, our implementation is fully
automatic, making it possible to generate predictive models
“on the fly” to be used by a run time cloud scheduler (this
usage is the subject of our future work).

These models also allow IT professionals faced with
medium- to long-term capacity planning decisions to answer
“what if” questions. For example, the core utilization measure-
ments shown in column 2 of Table IX indicate approximately
59% of the core occupancy time for DS1 is unused. The cloud
administrators for this cloud, however, report that it is “full”
with little extra capacity. The reason for this discrepancy is that

the largest VM type configured for this cloud specifies half the
number of cores as is available from any given node. Thus,
using round-robin scheduling as this cloud does, when the core
utilization is above 0.5 it is unlikely that a VM of the largest
type can be scheduled. The overall utilization fraction of 0.41
shown in the table is near enough to the 0.5 threshold so that
the system “feels” as though it it is running near capacity with
respect to large VM sizes, but users are still able to run them
when needed. Using the simulator to replay the original log
data, we have verified this conjecture. For 99% of the log
duration, at least 12 cores (half the capacity of a single node)
are available.

By changing the parameters of the hyperexponential model,
it is possible to estimate what the effect on core utilization
if all VM lifetimes were to, say, double due to the need to
complete additional work. To model this change, each λ in
the lifetime models shown in Table VIII (columns 3, and 4)
are multiplied by 0.5. In this example, such an increase in
lifetime would result in an overall average utilization of 0.68
indicating that the system would appear overcommitted to its
users periodically with respect to large VMs. Again, using the
simulator to replay a synthetic workload generated from this
altered model, we determine that users would not be able to
run a 12 core VM for approximately 21% of the simulated time
duration. Thus, without additional nodes added to the cloud, a
doubling of VM duration would cause the cloud to refuse to
run 12 core VMs approximately 21% of the time. Moreover,
by changing the parameters of the simulator, we determine
that the addition of 3 nodes, each having 24 cores (as do the
others), will restore the user experience to the 99% availability
level for large VMs if the workload were to double.

In addition to the capacity planning capability, we believe
that these results provide early guidance to those designing
applications, middleware, and operating systems for enterprise
private clouds. Specifically, excellent earlier work [8], [10] has
shown that various process process lifetimes are “heavy tailed”
and in fact are well modeled by Pareto distributions. The
virtual machines in this study all instantiated either an instance
of the Linux operating system or the Windows operating
system, which, presumably, has been designed specifically to
support heavy-tailed process lifetime distributions. However,
the operating system instances terminate with their associated
(light-tailed) VM instances, and so the lifetimes of their sub-
processes are not long enough to necessitate these design
features. That is, in an enterprise private cloud, operating
system support in the guest instances may only need to manage
processes with relatively light-tailed lifetime distributions. The
operating system implementing the private cloud probably does
see heavy-tailed process lifetimes, but it seems that the guests
do not. We have yet to investigate the ramifications of this
observation fully, but it indicates that a simpler and less gen-
eral operating system (still supporting the Linux or Windows
system call interface) can simplify private cloud deployments
and optimize performance. It also supports the notion that
private cloud applications treat guest operating systems as
software containers, the lifetime of which is determined by
the lifetime of the application itself rather than as a software
extension of the physical infrastructure.
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Finally, we wish to acknowledge that this first study of in
vivo private cloud workloads may only be capturing early
usage patterns. Private clouds are new and even newer in
production enterprise computing settings. As the approach
matures, studies such as this one will certainly be necessary
either to confirm its findings or to demonstrate the effect on
workload that the maturation process has had. However, our
results provide guidance today to the enterprise professional
and to the computer systems researcher wishing to model
private cloud workloads.

V. RELATED WORK

Workload modeling has been studied extensively in the
conjunction with parallel job scheduling and high-performance
computing [20], [21], [22], [23], [24]. Supercomputers and
grid systems [25] that aggregate them depend on efficient
schedulers to keep expensive machines and storage systems
(often shared by many scientists) highly utilized. To help
design and understand the performance characteristics of
these schedulers, a number of different workload modeling
approaches have been explored.

Our work is particularly similar in methodology to the ap-
proaches described in [22] and [23]. We fit parametric models
to workload traces culled from logging data post facto. We
use both statistical goodness-of-fit metrics and instrumented
simulations to determine the efficacy of each model.

Our work differs, primarily, in its motivation. While sched-
uler design is one possible use for our technique, it is also
designed to be viable as a capacity planning tool. Thus we
require a greater level of registration between measurement
and modeled data than previous efforts, particularly with
respect to mean and variance.

Workload models (in the form of traffic models) have also
been developed for networks [26], [27], [28], network-facing
services [29], [10], [30], and operating systems [8], [9]. We
too seek reliable parametric distributional characterizations of
the load presented to a network-facing set of services (e.g. a
Eucalyptus private cloud). Unlike many of the traffic models,
however, our approach generates distributions that can be
sampled to produce synthetic sequences of work units. From
these sequences, aggregate measures of cloud performance can
then be derived. Traffic models, on the other hand, typically
produce descriptions of aggregate behavior at some measure-
ment point (e.g. the number of packets passing a specific locale
in a network). The time series of these aggregates (at some
suitable scale) captures the variability that will be experienced
at the measurement point.

Finally, our work is part of a growing body of work
that investigates cloud workloads specifically [4], [5], [16].
This research has focused primarily on the use of empirical
distributions, clustering, and regression to generate predictive
models. Our approach is distinct in that it combines empirical
distributions with parametric models and simulation. As result,
in addition to predictive capabilities, it is possible to answer
certain “what if” questions by manipulating the parameters of
the automatically fitted hyperexponentials.

VI. CONCLUSION AND FUTURE WORK

IaaS-style Cloud computing is a new model for providing
authenticated, automated, and self-service resource provision-
ing and private clouds implement this model to effect a new
type of data center management platform. In this study, we
analyze and model workload measurements from several com-
mercial private cloud deployments. We compare the efficacy
of three statistical approaches to modeling workload and find
that the use of a 3-phase hyperexponential is most appropriate.
While clearly early in the technology life cycle for cloud
computing (indeed we believe this study to be the first to
analyze production enterprise workloads) these results provide
insight and guidance to those researchers and professionals
who are working to improve the overall approach or who are
concerned with making the best use of private clouds.

As part of our future work, we will enhance the predictive
capabilities that these results engender. Specifically, we plan
to study both on-line cloud schedulers and off-line capacity
planning methods useful for data center design and manage-
ment.
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