Developing Systems for API Governance

Chandra Krintz, Hiranya Jayathilaka, Stratos Dimopoulos, Alexander Pucher, Rich Wolski, and Tevfik Bultan
Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA, USA
{ckrintz,hiranya,stratos,pucher,rich,bultan } @cs.ucsb.edu

UCSB Computer Science Technical Report Number 2013-06

Abstract—As scalable information technology evolves to a
more cloud-like model, digital assets (code, data and software
environments) that increasingly form the basis of research and
education require curation as web-accessible services. “Service-
izing” digital assets consists of encapsulating assets in software
that exposes them to web and mobile applications via well-
defined, network accessible, application programming interfaces
(APIs). The stability, maintenance, and lifecycle of these APIs
is critical to the utility of the digital assets they serve. Our
work focuses on the development methodologies and technologies
for API governance - policy, implementation, and deployment
functions for IT management of APIs at scale. This paper
presents our view of API governance in a technology landscape
that is trending towards reliance on web services. It also outlines
some early results generated by our investigation of a prototype
we are developing for implementing API governance at scale.

I. INTRODUCTION

With the advent of cloud computing, digital assets (code,
data, and software environments) and not infrastructure are be-
coming the resources that must capture scientific, research, and
educational investment. The science and education communi-
ties use well-developed Information Technology (IT) practices
to manage the infrastructure in the data centers they manage
today. With high-quality, low-cost infrastructure available from
public clouds, IT management must increase its focus on the
maintenance, protection, and lifecycle control of the digital
assets — the code, software environments, and data — that
comprise the “computational” component of any scientific or
educational endeavor.

Cloud computing has had the same effect on commercial IT
practices and as a result new systems and methodologies for
managing digital assets “as a Service,” such as Hadoop [1],
DevOps [2] and NoSQL [3] continue to proliferate. As a
result, previously successful software and IT approaches (e.g.
Service-oriented Architecture, web services, machine virtual-
ization) are enjoying a renaissance of utility.

In particular, the IT industry has embraced the web services
technologies over the last decade [4], [S], [6]. A web service
is a software component with a well-defined interface, which
can be accessed over a network, and facilitates interoperable
machine-to-machine interactions. The interface portion of a
web service is often termed a web Application Programming
Interface or a web API. It is the API that both defines and
controls what operations can be performed on each asset, by
whom, and under what conditions.

APIs also decouple the implementation of this access func-
tionality from the technologies that are used to manage and
store the assets. That is, while the assets may remain the
same, the technologies used to serve and implement them
can change, particularly as technological advances reduce
implementation costs. APIs must preserve user access to the
assets when the underlying technologies change. Thus, the
lifecycle of the API follows the lifecycle of its assets and not
the lifecycle of the surrounding technologies which typically
change at a more rapid pace.

Finally, APIs in the modern application environment must
provide standardized network-facing access so that the widest
possible variety of applications and devices can access their
digital assets. They must also support availability guarantees
and fault management strategies associated with the assets
and the implementing technologies. It is the combination of
standardized, continuously available, networked access that
will enable purely digital science to scale.

Thus, APIs provide three functionalities that are critical for
the management of digital assets and artifacts. They

o implement control over the assets, both in terms of
operations and access control,

o protect asset lifecycle from technological changes driven
by advances and/or economics, and

e enable scale through standardized, networked connectiv-
ity, and fault management.

Because of these functions, implementing and managing APIs
can be more important than either the digital assets or the
technologies that underly them.

However, despite the primacy of APIs in the new digital IT
environment little technology has yet been developed to imple-
ment API governance — combined policy, implementation, and
deployment control — in a research and educational context.
Good commercial technologies exist for managing digital
assets and also for developing both hardware and software
necessary to implement digital assets (including the necessary
APIs). A few technologies [7], [8] are emerging for packaging
and cataloging APIs. However, technologies for providing
stewardship of APIs through all phases of governance are rare.

Our work focuses on the development of methodologies
and systems for implementing API governance. In addition
to typical APl management features (e.g. cataloging, search,



deployment support, etc.) we believe a system for API gover-
nance must include the following capabilities.

o Change Control — When API changes are necessary, the
extent of the effects of the change must be predictable
and implemented in a uniform, consistent way. If changes
need to be rolled back, the return to previous functionality
is likewise consistent, complete, and managed. This re-
quires development of efficient automated change-impact
analysis techniques that can determine the potential ef-
fects of a proposed change.

e Policy Specification and Analysis — Since APIs are
gateways to digital assets, they should allow only the
authorized clients access these resources. API governance
requires development of mechanisms for specification
of access control policies, and analysis and runtime
enforcement of these policies.

o Consistent Policy Implementation — Policies governing
the use of digital assets and/or their APIs are implemented
consistently across all assets regardless of the constituent
technologies that are used to implement the assets them-
selves.

o Implementation Portability — APl implementation is de-
coupled from the implementation of the digital assets.
As technologies evolve or, more problematically, devolve
when they sunset, API integrity must be maintained
across different implementations.

e Monitoring and Auditing — API governance must include
a unified approach to monitoring and auditing API ac-
tivity. A unified approach is particularly important when
digital assets make heavy use of open source as many
research and educational environments do today. Using
runtime monitoring, erroneous or malicious behaviors
can be identified and resolved by appropriate exception
handling mechanisms. This is necessary since clients that
interact with an API are typically not controlled by the
organization that governs that APL

In the remainder of this paper, we describe our initial
investigations of API governance for curated digital assets
accessed via web services. In particular, we discuss a new
system for automatically determining the similarity between
different web service APIs and the degree to which that
similarity correlates with programmer porting effort.

Determining API similarity is a critical component of API
governance for two reasons. First, as new technologies emerge,
they may require enhancements or extensions to existing
APIs. Determining the degree to which a new technological
implementation supports and existing API and/or the extent
of the effort that will be needed to port applications to a new
API are critical aspects of change control and, hence, API
governance.

II. WEB SERVICES

Today, a large number of mobile, web and cloud applica-
tions are developed using web services as building blocks.
We expect this software engineering trend to continue. Thus,

we believe that in the future, web services (and not pro-
gramming language packaging) will provide the basis for
software modularity. There are several benefits to developing
applications based on web services. These include increased
code reuse, increased software maintainability and improved
software reliability via using well-tested code [9].

Because web service applications must be rewritten when an
API changes, the lifecycle of an API is typically longer than
the infrastructure or service implementation to which it serves
as an interface. Insulating applications from technological
change in the software and hardware infrastructure is a key
advantage of the web service approach.

However, APIs are not immutable. For example, there have
been 86 releases of the Amazon EC2 service from August
2006 to August 2013 [10]. Twitter released the version 1.1 of
their web API on September 2012, and pulled the version 1.0
of out of production on May 2013 [11]. eBay has released
13 versions of their trading API during the first two quarters
of year 2013 alone [12]. The licensing terms of the Amazon
Product Advertising API have changed twice between the
years of 2011 and 2013 [13].

Porting an application from one web API to another is
a cumbersome activity. This process is further complicated
because no simple mechanism exists for evaluating the amount
of effort needed to port applications between web APIs. In
most situations, the only way to evaluate the complexity of
a port is to actually do it, thereby incurring the development
cost as a way of determining what it will be. Often, as an
alternative, the IT organization must rely on the intuition of
developers to estimate the porting effort.

III. METHODOLOGY

We propose a formal and automated mechanism for evalu-
ating the porting effort of applications from one web API to
another. Application porting effort can be analyzed from two
perspectives:

o Syntactic similarity — Similarity of the inputs and outputs
of web APIs

o Semantic similarity — Functional and behavioral similarity
of web APIs

Of the two, checking for syntactic similarity is a solved
problem. Given a machine-readable description of the inputs
and outputs of the APISs, static analysis methods can be used to
verify whether two web services APIs are syntactically com-
patible. However, checking the semantic compatibility of web
APIs is complicated. Existing semantic matchmaking methods
solve this problem using semantic ontologies, process models
or state machine models, all of which are complex, laborious
and potentially computationally intensive. We address this
problem using much more efficient techniques that are simple
to implement.

Our approach uses axiomatic semantics to describe the
functionality and behavior of web APIs. We document the
semantics in a machine-readable manner using a Python subset
specifically designed to capture web service API characteris-
tics. We keep our approach simple by disallowing complex



programming constructs (e.g. loops, functions etc.), and re-
stricting the subset to a side-effect-free programming model
when documenting API semantics. Then we derive abstract
syntax tree (AST) representations [14] of semantic predicates
expressed in our language to compare and reason about the
semantic similarity of different web APIs. We use a Dice
coefficient [15] based AST similarity algorithm and Hoare’s
consequence rule [16] to compute a porting effort score for
any two given web APIs.

I'V. INITIAL FINDINGS

To establish the practicality of our model, we have imple-
mented a prototype of the proposed porting effort evaluation
mechanism. Using this prototype, we studied the resolution
characteristics of the methodology using randomly generated
APIs where we could control the porting “distance” a priori.
We also analyzed the porting effort associated with a number
of web APIs from popular e-commerce and social networking
venues. Our experimental results indicate that the proposed
mechanism is efficient, and delivers accurate results under
most circumstances. We have further tested the validity of
our approach by comparing the results computed by our
formal mechanism with the results provided by some human
developers when manually analyzing several web APIs.

Unsurprisingly, the initial experiments performed using ran-
domly generated web API specifications show that the porting
effort between APIs tends to increase with the number of
semantic predicates. As the number of semantic predicates
increases, the API consumer (e.g. the developer of the ap-
plication consuming the API) is put under more and more
restrictions. Therefore, when porting among different web
APIs, the developer has to take more constraints into account,
and do more patchwork to reconcile the differences among
these restrictions. These activities increase the porting effort,
and the experimental results suggest that our porting effort
evaluation mechanism captures this phenomenon well.

When considering real world web API sets, we see that
a fairly large proportion of the API pairs within a set of
APIs ostensibly serving the same function have a low porting
effort. For example, we looked at three API populations:
social media, airline e-commerce, and video search. In each
of them, 50% of the pairs have a low porting effort score, a
modal characteristic not present in the data obtained from the
randomly generated APIs. Again, this result is confirmational
with respect to intuition. In API populations that serve similar
web services most APIs have a lot in common with each
other. For example, most social media login APIs have similar
constraints on username and password. Most airline APIs have
similar requirements with respect to specifying departure and
arrival cities, travel dates and the number of passengers. Most
video search APIs also have some constraints in common,
in the sense most APIs at least accept simple text queries
to perform keyword-based search. These similarities explain
how current mobile and desktop applications currently manage
multiple APIs in e-commerce and social computing settings.

Finally, we asked student developers who were in the
process of building applications to access some of these venues
for their respective scoring of the difficulty associated with
porting from on API to another. We then applied statisti-
cal clustering to both the scoring results generated by our
methodology and to the results given to us by the developers.
The clustering results show good registration between our
methodology and human perception of porting effort with
respect to categorizing a particular port as “hard” or “easy.”

V. FUTURE WORK

The proposed mechanism provides a way to reason about
the application porting effort between web APIs at a semantic
level. Currently it doesn’t take the syntactic compatibility of
the web APIs into account. That is, it doesn’t consider the
compatibility of web service requests (inputs) and responses
(outputs) when computing the porting effort. We believe that
adding this capability will make our mechanism even more
powerful and useful. Most web services use data types such
as XML and JSON for receiving inputs and sending outputs.
This uniformity enables modeling the web service inputs and
outputs using a structured data model consisting of a simple
type system. Once such a data model has been formulated,
it is a rather well-understood task to analyze the syntactic
compatibility of the web APIs by employing static analysis
methods. We are already in the process of exploring this
possibility.

We are also beginning to study the other aspects of API
governance. In particular, we are interested in developing
methodologies for policy-based change control and auditing
capabilities to manage APIs in large-scale deployments. Cloud
computing, as both a research and commercial discipline, has
developed a number of new approaches for managing “soft”
resources in highly scalable settings. We plan to leverage many
of these developments to develop API governance methods for
scalable systems.

We believe that our approach to semantic specification of
APIs in machine readable form can be extended to specify
access control policies. Using a restricted form of an existing
programming language (such as Python) provides two benefits:
1) It does not require the users to learn a new language for
policy specification, 2) It allows us to appropriately restrict the
language to enable automated analysis. Using this approach,
we plan to develop automated techniques for policy analysis,
such as checking if a policy is stronger or weaker than another
policy, and change-impact analyses that identify the effects
of a policy change. We plan to implement these analyses by
translating the analysis questions to satisfiability queries in
decidable theories and then using automated decision proce-
dures (such as SAT-Solvers or SMT-Solvers). Focusing on API
usage and using a restricted policy language will enable us to
develop a scalable static analysis framework for API policies.

VI. CONCLUSION

APIs have emerged as a key component of the modern
digital economy and we believe the scientific community



will want to leverage the technological developments that
this primacy is engendering. However, even though APIs are
the longest-lived and most expensive software artifacts, little
research has yet focused on what is necessary to implement
good IT governance of them.

Our work is taking an initial step towards the development
of a system for implementing API governance. We have
focused on the problem of determining API similarity which
we measure as the effort necessary to port an application from
one API to another. Our initial results are promising, leading
us to conclude that API governance is worthy of on-going
investigation.

REFERENCES

[1] “Hadoop MapReduce,” "http://hadoop.apache.org/”.

[2] “DevOps,” "http://en.wikipedia.org/wiki/DevOps”.

[3] “NoSQL,” http://en.wikipedia.org/wiki/NoSQL”.

[4] M. Haines and W. Haseman, “Service-oriented architecture adoption pat-
terns,” in System Sciences, 2009. HICSS ’09. 42nd Hawaii International
Conference on, 2009, pp. 1-9.

[5] L. An, J. Yan, and L. Tong, “Methodology for web
services adoption based on technology adoption theory and
business process analyses,” Tsinghua Science & Technology,
vol. 13, no. 3, pp. 383 — 389, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1007021408700610

[6] M. Haines, “Web services as information systems innovation: a theoret-
ical framework for web service technology adoption,” in Web Services,
2004. Proceedings. IEEE International Conference on, 2004, pp. 11-16.

[7]1 “Mashery,” "http://www.mashery.com/”.

[8] “Layer7,” "http://www.layer7tech.com/”.

[91 A. Dan, R. D. Johnson, and T. Carrato, “Soa service reuse by
design,” in Proceedings of the 2nd international workshop on
Systems development in SOA environments, ser. SDSOA ’08. New
York, NY, USA: ACM, 2008, pp. 25-28. [Online]. Available:
http://doi.acm.org/10.1145/1370916.1370923

[10] “Release Notes: Amazon ‘Web Services,”
http://aws.amazon.com/releasenotes/Amazon-EC2, 2013, [Online;
accessed 02-September-2013].

[11] “Twitter API vl Retirement: Final Dates,”
https://dev.twitter.com/blog/api-v 1-retirement-final-dates, 2013, [Online;
accessed 02-September-2013].

[12] “eBay Trading Web Services: Release Notes,”
http://developer.ebay.com/DevZone/XML/docs/ReleaseNotes.html,
2013, [Online; accessed 02-September-2013].

[13] “Product Advertising APL” https://affiliate-
program.amazon.com/gp/advertising/api/detail/agreement-changes.html,
2013, [Online; accessed 02-September-2013].

[14] 1. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Software Maintenance, 1998.
Proceedings., International Conference on, 1998, pp. 368-377.

[15] W. B. Frakes, “Stemming algorithms.” 1992.

[16] C. A. R. Hoare, “An axiomatic basis for computer programming,’
Commun. ACM, vol. 12, no. 10, pp. 576-580, Oct. 1969. [Online].
Available: http://doi.acm.org/10.1145/363235.363259



