
Towards Automatically Estimating Porting Effort Between
Web Service APIs

Hiranya Jayathilaka, Chandra Krintz, Rich Wolski
UCSB Computer Science Technical Report Number 2013-08

Department of Computer Science
University of California, Santa Barbara

Santa Barbara, CA, USA
{hiranya,ckrintz,rich}@cs.ucsb.edu

ABSTRACT
Developers today increasingly incorporate curated web ser-
vices, accessed over a network via well-defined and published
interfaces (APIs), as modules in their applications. Public
versions of these web APIs emerge and change frequently,
making it critical for software development, testing, and
maintenance personnel to be able to estimate the workload
associated with “porting” (or migrating) an application to a
new API or API version. Unfortunately, today there is no
simple automated mechanism for estimating and reasoning
about the application porting effort that will be necessary
when the web APIs that an application uses change.

To address this limitation, we describe an automated method-
ology for quantifying the porting effort associated with the
use of web APIs. Our approach defines a simple language
(based on Python) with which API developers specify the
semantics of API operations, a tool set that consumes and
extracts semantic similarity of API operations from anno-
tations expressed in this language, and a metric that facili-
tates ranking of porting effort for API operation pairs. We
evaluate our approach using both randomly generated and
real-world APIs and show that our metric can correctly cat-
egorize the relative difficulty that developers associate with
porting an application from one API to another.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Modules and interfaces; D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement—Porta-
bility

General Terms
Experimentation, Languages, Management

Keywords

Web services, Web APIs, Porting effort, Semantic similarity,
Axiomatic semantics

1. INTRODUCTION
Web services are used increasingly for the implementation
of Internet accessible applications [1, 2, 3]. In this emerging
development model, application architects and programmers
use extant, network accessible services as external modules
in their applications (or, indeed, as parts of other web ser-
vices). Building applications from curated web services im-
proves programmer productivity over non-service-oriented
methodologies by easing assembly, testing, maintenance, and
by improving the robustness of complex systems through the
reuse of software and data components offered by providers
“as-a-service” [4]. By composing an application from exist-
ing services that encapsulate common yet complicated tasks
(data access and analysis, messaging, logging, security, etc.),
application developers are able to work at a higher level of
abstraction, thereby saving valuable development and de-
bugging time, while at the same time providing scalable
access to the core of the application logic via a network-
facing service deployment. In addition, the services that
an application calls upon are typically maintained and cu-
rated by an IT staff which is responsible for assuring service
integrity. That is, an application that composes running
web services, leverages the deployment and maintenance re-
sources devoted to those services.

A web service itself consists of one or more software compo-
nents each with a well-defined but separate (in terms of cod-
ing and implementation) application programming interface
(API) that is network-accessible and facilitates machine-to-
machine interoperation. The web service “stack” is respon-
sible for connecting each service implementation to the API
code that exposes it to its users.

The growth in the popularity of this approach to application
development has introduced several challenges for develop-
ers. In particular, because web-service-based applications
decouple their service implementations from their APIs, the
development and maintenance life cycles for APIs and ser-
vice implementations are separated. As a result, APIs can
change independently of the implementations they serve and
new APIs (offering additional features as a superset) emerge
frequently for existing services.

For example, commercial service providers experience com-

petitive pressure to add, modify, deprecate, and retire APIs.
New APIs are frequently introduced by competitors that
are similar in functionality to existing APIs but offer some
additional functional and/or business advantage. As a re-
sult, many commercial service providers change their APIs
in terms of their operations, functionality, and behavior as
well as the terms of their licensing, service level agreements
(SLAs), and pricing, over time.

There are several notable examples of such commercial API
churn. Amazon produced 86 releases of the Amazon EC2
APIs between August 2006 to August 2013 [5]. Eucalyptus,
which mirrors the Amazon EC2 API in open source for free,
on-premise use of Amazon-compatible services [6], releases
its software quarterly to keep pace. Twitter released the
version 1.1 of their web API on September 2012 and pulled
version 1.0 of out of production on May 2013 [7]. eBay has
released 13 versions of its trading API during the first two
quarters of year 2013 [8]. The licensing terms of the Amazon
Product Advertising API changed twice between 2011 and
2013 [9].

In this paper, we describe a methodology for quantifying the
effort required to port an application from one API to an-
other, or from one API version to another version of the same
API. With the possibility of high churn, it is critical that
the software development, testing, and maintenance activi-
ties be informed by measures of the difficulty associated with
“porting” an application to a new API or API version. We
refer to this measure, in the abstract, as porting effort. Port-
ing effort includes the effort needed to rewrite and refactor
code, perform regression testing, and update all impacted
test cases, configurations, deployment scripts, and documen-
tation. At present, we know of no simple mechanism for
estimating and reasoning about the amount of “work” re-
quired to migrate an application between web service APIs.
The state of the practice is that, developers simply perform
the migration speculatively (possibly losing their work if the
migration fails) or rely on their intuition and experience to
obtain this measure.

To address this limitation, we propose a simple but formal
mechanism to estimate porting effort for applications that
use web APIs. Our approach focuses on semantic similarity
of APIs and trades off complexity with efficacy and speed of
analysis. Our goal is to capture the functional behavior of
API operations (using existing, well-understood techniques)
with sufficient accuracy and minimal programmer interven-
tion to rank multiple API alternatives by porting effort.

Note that, in this work, we do not address the research
question associated with ensuring that an API and its ser-
vice implementation remain consistent and conforming to
the specification. That is, because the API and implemen-
tation are essentially developed and managed as separate
software components with separate life cycles, it is possi-
ble for their respective functionalities to fail to meet the
specification when they are composed. The current state
of the practice puts the burden for ensuring API and ser-
vice implementation conformity on the development and/or
maintenance staff. Indeed, the concept of DevOps [10] has
been developed, in part, to address this problem organiza-
tionally. We believe that future work building on the large

body of results from program verification research will ad-
dress this worthy topic. In this work, however, we look only
at the question of compatibility and consistency between
APIs themselves and not their respective service implemen-
tations.

Initially we focus on a straightforward application of pro-
gram semantics applied to the APIs of web services. This
starting point exposes the working of our mechanism while
providing a framework that can make use of more advanced
techniques from the program verification research corpus [11,
12, 13, 14, 15] and semantic web technologies [16, 17, 18, 19,
20, 21, 22, 23].

To enable this investigation, we define a simple language in
terms of a restricted subset of the popular Python program-
ming language 1. Developers use this language to specify
the axiomatic semantics [24] of web APIs (i.e. the precon-
ditions and postconditions associated with each operation).
Our Python-based specification language is familiar to many
developers while facilitating simple static analysis. We use
the output of this analysis to measure API similarity via an
extended form of the Dice coefficient [25] on the abstract
syntax trees of semantic predicates, combined with Hoare’s
consequence rule [24] applied to API pairs.

We implement our approach and evaluate it using a num-
ber of popular APIs for social media login, airline itinerary
search, and digital media video search. Our initial results
indicate that developers can quantify and reason about the
porting effort of migrating their applications to different
web API versions and competitive implementations, with-
out performing the porting. Our experimental results also
show our approach to be efficient enough to be a practi-
cal part of the software engineering process used to develop
service-composing applications. In the sections that follow,
we overview porting effort and detail our approach. We then
describe the empirical evaluation of our approach, discuss
the results, and conclude.

2. EVALUATING PORTING EFFORT
We start with the hypothesis that application porting ef-
fort from one API to another is correlated with the degree
to which two APIs are similar. Two APIs are comparable
in terms of porting effort if they are two different versions
of the same API or expose same or similar services. API
similarity can be syntactic, i.e., two APIs export operations
with similar cardinality and data types for their inputs and
outputs. Alternatively, similarity can be semantic, i.e., two
APIs are similar in terms of the functionality and behavior
of their syntactically similar operations. In this work, we
focus on the latter, i.e. on the functional similarity of the
operations of two APIs that match syntactically. We plan to
consider syntactic similarity more comprehensively in future
work.

To define a metric for application porting effort from one
API to another using the semantics of their operations, we
require mechanisms

• with which API developers specify the semantics of

1Python is used heavily in web services, particularly as a
prototyping language.

API operations (Subsection 2.1) 2,
• that automate the consumption and analysis of speci-

fied API semantics (Subsection 2.2), and

• that use the output from the analysis to construct a
measure of porting effort for a pair of APIs (Subsec-
tion 2.3).

To define each of these mechanisms and the overarching met-
ric, we leverage and assemble extant research advances in a
simple, yet new way that enables developers to estimate and
rank the effort associated with porting their application to
a different version of a web API or to an alternative imple-
mentation of an API. For simplicity of discussion, we assume
that a pair of APIs under consideration have a single, syn-
tactically matching operation. That is, in what follows, we
will examine the ability to quantify similarity between indi-
vidual API operations. As part of our future work we plan
to extend the methodology to consider multiple operations
in pairs of APIs.

2.1 Specifying Web API Semantics
The first mechanism of our approach is a specification lan-
guage that developers can use to document the semantics of
the operations in their web APIs. Our goal is to define a
language that is simple, familiar, and intuitive to use that,
at the same time, enables developers to specify the meaning
of an API in a way that is amenable to efficient static anal-
ysis for semantic similarity. Toward this end, we leverage
popular programming language syntax and tooling, and the
well researched field of axiomatic semantics.

Our language is a strict subset of the Python programming
language. This language choice is inspired by the widespread
use of Python, Python’s high level of abstraction and avail-
able tooling, and by previous works such as JML [26] and
Spec# [27] that document program semantics (behavioral
interface specifications) using programming language syn-
tax. This latter research and that of others shows that using
the syntax of familiar and popular programming languages
to document API semantics facilitates programmer creation
and editing of semantic specifications [28].

We restrict the Python language in a number of ways to
facilitate analysis and to simplify the specification process
by API developers. Our language only accepts single-lined
Python statements that are free of side effects. We disallow
side effects to preclude the consideration of internal service
state. We also disallow conditionals, loops, try-catch blocks,
class definitions, and function definitions.

Developers use this language to describe the behavior of API
operations using axiomatic semantics – preconditions that
hold prior to invoking the operation and postconditions that
hold after the operation executes. We leverage axiomatic
semantics as a first step toward describing and analyzing
API operations in a way that reflects porting effort. We
plan to consider other successful approaches [29, 30, 11] to
describing the function and behavior of API operations as
part of future work.

2We assume that the service provider has verified that the
API semantics match those of the service implementation as
part of its quality assurance and testing process.

Developers refer API request parameters and response pa-
rameters using the built-in logical variables input and out-

put, respectively. For example, for an operation that takes
two positive numbers and responds with their sum, the pre-
conditions can be documented using the statements input.x >
0 and input.y > 0; the postconditions can be documented
as output.sum == input.x + input.y. These logical vari-
ables have been inspired by Hoare logic [24] and separa-
tion logic [31] to differentiate precondition values from post-
condition values. The use of logical variables also enables
expressing postconditions relative to preconditions, that is,
postconditions can refer to the pre-state (request state) of
an operation.

We do not allow invoking arbitrary functions using our lan-
guage. This includes the built-in functions of Python as well
as any class-level functions that can be invoked as object
methods. However, we do support a number of useful prede-
fined, side-effect-free, functions (that we have defined) when
invoked as built-in functions (as opposed to object meth-
ods). We currently support the functions len, implies,

forall, exists, matches, datebefore, and dateformat.
We illustrate the use of a subset of our built-ins using sim-
ple examples below. Our language and built-ins are easily
extended if and when more expressive power is required.

• The password input must be at least 6 characters long:
len(input.password) >= 6

• All entries in the input list named scores must be
within the range [0, 100]:
forall(entry, input.scores, 0 <= entry and entry

<= 100)

• The format of the publishedDate output field is yyyy-
MM-dd :
dateformat(output.publishedDate, ‘yyyy-MM-dd’)

• If the country input field is set to US, the currency
output field will be set to USD :
implies(input.country == ‘US’, output.currency =

‘USD’)

2.2 Comparing API Operations Pairwise
We next determine a similarity“score”by comparing the pre-
conditions and postconditions of individual API operations.
Throughout the remainder of this paper, we refer to the
specified preconditions and postconditions of an API simply
as semantic predicates. We represent semantic predicates as
abstract syntax trees (ASTs).

To compare a pair of matching API operations, we compute
a tree similarity metric on their ASTs. To enable this, we
employ a technique that is widely used for software plagia-
rism detection and source code evolution analysis, called the
Dice coefficient [32]. The Dice coefficient has been shown in
this past work to accurately extract the semantic similar-
ity of two code fragments. Using the Dice coefficient, we
treat each AST as a set of nodes over which we compute set
similarity. Specifically, if P1 and P2 are two semantic pred-
icates whose ASTs are T1 and T2 respectively, we compute
the degree of similarity between the predicates P1 and P2

by computing the Dice coefficient on T1 and T2 as follows.

Similarity(< P1, P2 >) = Dice(< T1, T2 >) (1)

Dice(< T1, T2 >) =
2C

2C + L + R
(2)

C is the number of nodes common to both T1 and T2. L is
the number of nodes unique to T1 and R is the number of
nodes unique to T2. This approach enables us to obtain a
similarity value between 0 and 1 for any two given semantic
predicates, where 0 indicates a total mismatch and 1 indi-
cates a perfect match.

We also apply a trivial transformation on the semantic pred-
icates when performing semantic comparison that breaks
disjunctive and conjunctive predicates into their constituent
predicates. This enables our mechanism to handle situations
where the same set of predicates have been expressed in two
APIs, but in slightly different formats.

Notice that the amount of work necessary to port from one
API to another is affected by the number of predicates in
each. In particular, the effort to port from a source API with
fewer preconditions than the target API is more difficult
than porting in the reverse direction.

To illustrate this asymmetry, let M and N be two web APIs
where N has more preconditions than M . It is more difficult
to port from M to N than from N to M . More preconditions
imply that N ’s input set is more restricted than M . There-
fore it cannot support all the inputs that M does. Hence
some extra effort has to be put in by the developer to make
sure that the application doesn’t pass an unsupported input
value to API N . However, by the same argument, porting
an application from N to M should be easier. Since M ’s in-
put set is less restricted than N , the developer doesn’t have
to do any extra work in this case.

Notice also that a similar asymmetry exists with respect
to postconditions. If an application is to be ported from
API S to API T and if T has more postconditions than S,
then porting S to T is easier than the other way around.
More postconditions help further restrict the output of API
T . In other words, T may not produce an output that S
doesn’t. Therefore the application should be able to handle
all the outputs generated by T , without having to make any
code changes. On the other hand, porting from API T to
S becomes more difficult, since S might produce an output
that T doesn’t.

2.3 Quantifying Porting Effort Between API
Operations

Using the mechanism described in the previous section, we
construct a measure of application porting effort using the
semantic similarity of two APIs. Suppose S is a source API
with the precondition set Spre and the postcondition set
Spost. Suppose T is a target API with the precondition set
Tpre and the postcondition set Tpost. To compute the port-
ing effort from S to T , we first compare each member in Spre

against each member in Tpre. That is, we calculate the simi-
larity (Dice coefficient) of each predicate pair in Spre×Tpre.
Then we choose the pairs with the highest similarity, and
match each member in Spre to a member in Tpre. In other
words, for each predicate x ∈ Spre we assign a predicate
y ∈ Tpre such that the similarity of < x, y > is greater than

the similarity of any < x, z > where z ∈ Tpre and y 6= z.
Matched pairs are put into a new set Mpre. We also make
sure that no member in Spre or Tpre is matched to multiple
counterparts. That is, whenever we insert a pair < x, y >
into Mpre, we mark x in Spre and y in Tpre so that they can-
not be considered for a match again. This way each member
in Spre can be matched to a unique member in Tpre as long
as |Spre| ≤ |Tpre|. But if |Spre| > |Tpre| some members of
Spre will remain unmatched.

We translate the predicate assignments into a porting effort
score by computing (1−Di) where Di is the similarity of the
pair i ∈ Mpre. We add these values up to obtain an initial
porting effort score Peff1. Then we consider the remaining
unmatched (unmarked) predicates in Spre and Tpre. Re-
call that porting to an API with more preconditions is more
difficult than in the reverse direction. To reflect this asym-
metry in our methodology, we increase Peff1 by 1 for each
unmatched predicate in Tpre. Unmatched predicates in Spre

are ignored. Therefore, we have:

Peff1(S, T) =
∑

i∈Mpre

(1−Di) + |Tpre| − |Mpre| (3)

We perform a similar computation for postconditions using
the sets Spost and Tpost. We compute the similarity of the
members of Spost×Tpost and pick the pairs with the highest
similarity to initialize a matching set Mpost. As a postcondi-
tion pair < x, y > inserted to Mpost, we mark x in Spost and
y in Tpost to ensure that no predicate is matched multiple
times. Then for each pair j ∈ Mpost we compute (1 − Dj)
where Dj is the similarity of the pair j, and add these val-
ues up to obtain the porting effort score Peff2. We further
penalize the porting effort by increasing Peff2 by 1 for each
unmarked (unmatched) predicate in Spost. This adjustment
accounts for the greater difficulty associated with porting
from an API with more postconditions to one with fewer
postconditions.

Peff2(S, T) =
∑

j∈Mpost

(1−Dj) + |Spost| − |Mpost| (4)

We calculate the final porting effort score by combining the
values obtained from previous computations. If Peff (S, T)
is the overall porting effort from API S to API T , we have:

Peff (S, T) = Peff1(S, T) + Peff2(S, T) (5)

Algorithm 1 further illustrates our porting effort evaluation
method. Temp1 and Temp2 are map data structures that
support storing key-value pairs. The algorithm makes use
of following named procedures:

• map store(map, key, value) - Stores the given key −
value pair in the map.

• map get max(map) - Returns the key-value pair with
the largest value in the map.

• map remove(map, key) - Removes the entry with the
specified key from the map.

• mark(set, element) - Marks the specified element in
the set.
• unmarked(set) - Returns TRUE if the set contains

at least one unmarked element. Otherwise returns
FALSE.
• Sim(< x, y >) - Returns the similarity (Dice coeffi-

cient) of the predicate pair < x, y >.

Data: Source API S with predicate sets Spre, Spost and
Target API T with predicate sets Tpre, Tpost

Result: Porting effort
Mpre ←− ∅,Mpost ←− ∅
Peff1 ←− 0, Peff2 ←− 0
Temp1 ←− EmptyMap, Temp2 ←− EmptyMap

for < x, y >∈ (Spre × Tpre) do
map store(Temp1, < x, y >, Sim(< x, y >))

end
while unmarked(Spre) and unmarked(Tpre) do

<< x, y >,Di >←− map get max(Temp1)
mark(Spre, x), mark(Tpre, y)
map remove(Temp1, < x, y >)
Mpre ←−Mpre ∪ {< x, y >}
Peff1 ←− Peff1 + (1−Di)

end
Peff1 = Peff1 + |Tpre| − |Mpre|
for < x, y >∈ (Spost × Tpost) do

map store(Temp2, < x, y >, Sim(< x, y >))
end
while unmarked(Spost) and unmarked(Tpost) do

<< x, y >,Dj >←− map get max(Temp2)
mark(Spost, x), mark(Tpost, y)
map remove(Temp2, < x, y >)
Mpost ←−Mpost ∪ {< x, y >}
Peff2 ←− Peff2 + (1−Dj)

end
Peff2 = Peff2 + |Spost| − |Mpost|
return Peff1 + Peff2

Algorithm 1: Porting effort evaluation algorithm

3. EXPERIMENTAL RESULTS
We have implemented a prototype of our methodology that
takes two web API specifications as the input, and outputs
the porting effort between them. The input web API spec-
ifications are simple JSON strings, similar to Swagger API
descriptions [33]. The specifications list all of the operations
of the web APIs along with their axiomatic semantics ex-
pressed using Python-based specification language described
in subsection 2.1.

We use this prototype to investigate the properties of our
methodology as well as to expose its efficacy. In the first set
of experiments, we consider randomly generated API spec-
ifications to study various characteristics of our API port-
ing effort metric. We then consider real-world APIs and
developer-perceived porting effort, and evaluate the over-
head of API similarity mechanism.

3.1 Randomly Generated APIs
In our first experiment, we randomly generate a population
of 100 API specifications. Each specification has a single op-

eration. We compare each API against all others in the pop-
ulation and compute the porting effort between them. We
repeat this experiment using different numbers of semantic
predicates. We randomly generate the API specifications
with 10, 20 and 50 semantic predicates. Our goal with this
experiment is to understand how our measure of porting ef-
fort changes under these scenarios (e.g. to determine the
sensitivity of the mechanism to supplied parameters).

Figure 1 shows the cumulative distribution functions (CDFs)
of the computed porting effort as a function of the number of
predicates per single API operation. A porting effort value
of 0 indicates no porting effort. The data shows that the
porting effort between API operations increases with the
number of semantic predicates. For example, the maximum
porting effort observed in APIs with 10 semantic predicates
is 17.4. This goes up to 30.1 when the number of predicates
is increased to 20. It further increases up to 44.9 when the
semantic predicates count is set to 50. Also, when consider-
ing the CDFs of the porting effort, 50% of the API operation
pairs have 4.3 or less porting effort in the population with
10 semantic predicates. In the population with 20 semantic
predicates, 50% of the APIs have 7.1 or less porting effort.
In the population with 50 semantic predicates, this limit fur-
ther increases up to 12.9. This is inline with our experience
in which, as the number of semantic predicates increases, the
API consumer is forced to adhere to additional restrictions.
As such, when porting among different web API operations,
the developer has to take more constraints into account and
must write more code to reconcile the differences. This re-
sults in increased porting effort. Our experimental results
suggest that our porting effort evaluation mechanism cap-
tures this phenomenon.

It is also interesting to note that our porting effort values
are not bounded by any upper limit. The porting effort
could be arbitrarily large depending on the number and the
complexity of the semantic predicates. We believe that this
property of the metric reflects current practice. That is, it
is always possible to find or create two new APIs E and F ,
such that the effort it takes to port an application from E to
F is greater than any previously known upper bound. Our
porting effort evaluation mechanism captures this property.

3.2 Publicly Available, Real-World APIs
We next investigate the efficacy of our approach using popu-
lar, publicly available web APIs. We list these APIs below.
To evaluate our porting effort metric, we have augmented
the APIs with semantic specifications manually. To enable
this, we carefully analyze the API documentation and ex-
amples related to each of these web APIs. Specifically, we
identify an important operation from each API set that was
present across the set and specify its pre/postconditions us-
ing our specification language. Thus, these results pertain
the similarity between an individual API operation that is
common to all APIs in a set (either social media, airline
services, or digital media).

• Social media login APIs: Facebook, Google, LlinkedIn,
Twitter, Yahoo, Hi5, Amazon

• Airline itinerary search APIs: American Airlines, British
Airways, Cathay Pacific, Delta Airlines, Emirates, Eti-

Figure 1: Porting effort CDFs for randomly gener-
ated APIs

Figure 2: Porting Effort CDFs for real world APIs

had, Singapore Airlines, United Airlines, Virgin Amer-
ica

• Digital media video search APIs: Youtube, iTunes,
MovieDB, RottenTomatoes, Vimeo

We then compute the porting effort among each pair of APIs
within each of the above three categories. We present the
CDFs of the results in figure 2.

The data shows that a fairly large proportion of the API
pairs have a low porting effort. For instance, in all three
populations (social media, airlines and video search), 50%
of the pairs have a porting effort of 3.3 or less, a charac-
teristic not present in the data obtained from the randomly
generated APIs. This is because, unlike in the randomly
generated populations where most APIs are completely un-
related to each other, in real world API populations most
APIs can and do have commonalities. For instance, most so-
cial media login APIs have similar constraints on username
and password. Most airline APIs have similar requirements
with respect to specifying departure and arrival cities, travel
dates and the number of passengers. Most video search APIs
also exhibits similar constraints, in that most APIs at least

Figure 3: Percentage variance of porting effort

accept simple text queries to perform keyword-based search.
These similarities simplify and make application porting be-
tween a number of API alternatives practical.

The CDFs of the social media APIs and the airline APIs
follow relatively similar trends. However, the CDF of the
video search APIs deviates from the other two and reaches
a maximum porting effort value close to 35. A closer look at
the API specifications showed that social media APIs and
the airline APIs are similar in terms of their average seman-
tic predicate count (8.1 and 9.3 respectively). For the video
search APIs, the average predicate count is as high as 15.6
thus resulting in an increased porting effort among them.
Also, some of the video search APIs have a large number of
semantic predicates compared to the others. For instance,
Youtube search API has 28 semantic predicates, and the
iTunes search API has 30 semantic predicates. Therefore
ports that involve these APIs tend to be much more com-
plicated than the others.

3.3 Categorizing API Porting Difficulty
Given the observed properties of the methodology (particu-
larly for the real-world APIs), one way which we believe it to
be useful is in determining categories of difficulty. That is,
it should be possible for the methodology to “cluster” API
ports into groups that can be ranked in terms of difficulty
(e.g. is a port “easy” or “hard”?)

To investigate this hypothesis we use k-means clustering to
classify the results into two groups (i.e. k = 2). Figure 3
shows, for each sample set, the ratio of the variance ex-
plained by the categorization to the total variance in the
set. Typically, this analysis shows an “elbow” in the curve
corresponding to the point where further categorization adds
little explanatory power. In our study, that point of dimin-
ishing returns appears at k = 2.

Thus, for these API operations, it appears that our method-
ology should be able to divide pairwise porting effort into
two categories: “easy” and “difficult.” We then asked two of
our lab members (lets call them D1 and D2) conversant with
web services but not otherwise associated with this project
to categorize the porting difficulty of a subset of the porting

Figure 4: Percentage Accuracy of the Classification

possibilities in each set as either “easy” or “difficult.”

We gave these developers three sample sets, each consist-
ing of 5 API specifications, randomly chosen from the above
three categories (social media, airlines and video search).
We then asked each developer to analyze the API specifica-
tions pairwise, and classify all possible pairs into two groups
– easy and difficult – depending on the potential complexity
of porting an application from one API to another. We also
computed the porting effort between these web APIs using
our own prototype, and used k-means clustering to classify
the results into two groups (i.e. k = 2).

Figure 4 shows the percentage accuracy of the classifica-
tions computed using our formal mechanism with respect
to the classifications provided by developers D1 and D2 re-
spectively. We compute the percentage accuracy as the ratio
of the number of entries classified as the same (i.e. agree-
ment between the developer and the methodology) to the
total sample size. In terms of a simple categorization, the
agreement is good. Indeed, developer D2 and the method-
ology obtained the same classification (100% accuracy) for
the social media API operation.

3.4 Overhead
Finally, we evaluate the time overhead associated with com-
puting web API porting effort using our mechanism. We
employ our randomly generated set of 100 API specifica-
tions and compute the porting effort between each pair of
APIs. We measure the time elapsed for all computations
and then compute the average time per API pair. We re-
peat the experiment, varying the total number of semantic
predicates in each API specification. We report the average
times that we observe in these experiments in figure 5.

For web APIs with 10 semantic predicates, our evaluation
method takes less than 10 ms. This increases up to 200 ms
when the predicate count is increased to 50. This increase
in execution time is due to the pairwise AST comparison
operations performed by our algorithm. That is, when com-
puting the porting effort between two APIs, our prototype
compares each precondition of the source API against each
precondition of the target API. In the same fashion, our

Figure 5: Average execution time of the porting ef-
fort evaluation algorithm

prototype compares each postcondition of the source API
against each postcondition of the target API. Therefore the
number of AST comparisons performed is polynomial in the
number of semantic predicates. Hence the average execu-
tion time of our algorithm increases polynomially with the
increase in semantic predicates. However, for web APIs with
10 semantic predicates, the average execution time is below
10 ms and for web APIs with 20 semantic predicates, the
average execution time is well below 50 ms. Since most of
the real world web APIs that we have studied to date have a
small number of predicates (the max was 30), our approach
is not likely to impose a significant time overhead on the
development process for applications. If required, the al-
gorithm can be easily parallelized by running the pairwise
AST comparisons in parallel to reduce the overhead further.

Overall, our porting effort evaluation method produces use-
ful results with a high level of accuracy. The method is effi-
cient, and can be easily applied to real world web APIs. The
Python-based syntax simplifies documentation and publica-
tion of API semantics (relative to semantic ontologies, state
machines, and formal logic) by API providers. If an API
provider fails to publish API semantics in our language, API
consumers (developers) can easily create API specifications
on their own by converting the semantics of API operations
described in the API documentation into Python code.

4. RELATED WORK
Our work builds upon and extends research from a number
of other areas in computer science. These areas include pro-
gramming language and web service semantics, analysis and
verification.

Our approach of using axiomatic semantics to describe web
APIs is rooted in the work of Floyd [34] and Hoare [24].
Floyd modeled computer programs as digraphs where ver-
tices represent program statements and edges represent con-
trol flow. Predicates representing correctness conditions are
attached to the edges. Hoare introduced the notion of Hoare
triples and constructed a formalism for reasoning about pro-
gram correctness using them. A Hoare triple is a logical
construct of the form P{C}Q where C is a command (an

operation) in a program, P is the set of preconditions of C
and Q is the set of postconditions of C. We adapted this for-
malism into our work where we reason about web services by
describing their operations along with the respective precon-
ditions and postconditions. Hoare’s seminal work on using
axiomatic semantics to reason about program correctness
excludes side effects and arbitrary procedure calls. In this
work, we follow the same approach for semantic predicate
description language to facilitate low complexity and thus
fast evaluation and comparison of API porting effort.

Several researchers have been successful in using axiomatic
semantics to reason about the correctness and behavior of
software constructs. Hoare himself, along with Wirth showed
how axiomatic semantics can be used to describe Pascal pro-
grams [35]. Fikes and McGuiness used axiomatic semantics
to describe RDF data models [36]. Gegg-Harrison et al in-
troduced ProVIDE [37], a software development tool that
allows the user to establish program correctness via speci-
fying postconditions and then generating the corresponding
preconditions. Black used axiomatic semantics to verify the
behavior of a secure web server [38].

Our guidelines for comparing web API semantics are loosely
based on Hoare’s rule of consequence [24]. The rule of con-
sequence states that if P{C}Q and P ′{C′}Q′ are two Hoare
triples such that P ⇒ P ′ and Q′ ⇒ Q, then the command
C′ can be used in any context where the command C can
be used. This is because C′ has more permissive precon-
ditions and more restrictive postconditions compared to C.
We follow a similar rule when comparing web APIs with
unequal number of preconditions or postconditions. Sim-
ilar arguments have been discussed by Naumann [39] and
Olderog [40] in the past.

The use of programming language syntax for expressing pro-
gram semantics and contracts is a widely used concept. JML
[26] uses two primary annotations (requires and ensures)
to document the preconditions and postconditions of Java
methods using Java syntax. Spec# [27] provides similar
functionality for the C# language. SPARK language [41]
has built-in contract documentation features, where con-
tracts are encoded in the source code as Ada comments.
These technologies use the documented semantics or con-
tracts mostly for verification purposes. That is, they verify
whether the program adheres to the given contract at the
runtime. We use the documented semantics at the develop-
ment time to reason about web service semantics and porting
effort by applying static analysis methods.

The use of AST representations to compare programs and
reason about them is also well researched. Our approach
is heavily based on the work of Baxter et al, where they
used AST comparison methods for detecting program clones
[32]. Baxter et al introduced the notion of syntactic sim-
ilarity (based on the Dice coefficient), as opposed to ex-
act matches, as a more practical means of finding program
segments with similar functionality and behavior. Cui et
al showed how to use AST comparison methods for source
code plagiarism detection [42]. They showed that AST com-
parison based methods are capable of finding a wide range
of similarities between different programs. Hashimoto and
Mori augmented AST comparison methods with heuristics-

driven techniques so that they can be used to efficiently an-
alyze the differences between programs written in a wide
range of programming languages [43]. Neamtiu et al used
AST comparison methods to track down and analyze how a
program code base has evolved over time [44].

Bianchini et al introduced the notion of semantics-enabled
web API selection patterns [45]. One of the selection pat-
terns they discuss is the substitution pattern which aims
at finding a web API that can be used to substitute an-
other API (i.e. porting). They presented a formalism to
model and quantify this selection pattern based on seman-
tic ontologies. However, constructing comprehensive seman-
tic ontologies requires a lot of time and manual effort, and
therefore such techniques are difficult to apply in practice.
Also they mainly focus on semantically annotating the in-
put/output data elements of web APIs, whereas we look at
the functional and behavioral traits of the web APIs.

There is a large body of work that uses techniques like pro-
cess models (e.g. [46]), state machine models (e.g. [30])
and logic (e.g. [11]) to reason about web service behavior.
However these formalisms are aimed at addressing the issues
such as discovery, monitoring and verification. Our work de-
viates from these formal methods, in the sense we attempt
to reason about developer experience of different web ser-
vices, in the sense how much effort a developer has to put
in to port an application from one web API to another.

5. CONCLUSIONS
Increasingly, web, mobile, and cloud developers integrate
publicly available web services, exposed via well-defined APIs,
into their Internet accessible applications. Doing so sim-
plifies and expedites software development, testing, deploy-
ment, and management of these applications. Despite these
benefits that arise from decoupling of APIs from the im-
plementations they serve, the web service model has also
introduced a key challenge for developers: API churn – con-
stant API evolution (versioning) and emergence of alterna-
tive, competitive implementations for the same API. As a
result, it is critical that developers be able to efficiently es-
timate and reason about the work required to migrate their
applications from one API (or API version) to another.

In this paper, we investigate a new methodology for au-
tomatically quantifying such porting effort. Our approach
defines a simple language based on Python with which API
developers specify the semantics of API operations, a tool
set that consumes and analyzes specified API semantics, and
a new metric, based on a method used to detect code pla-
giarism, to estimate porting effort between pairs of API op-
erations. We evaluate a prototype of this approach using
randomly generated APIs to measure the sensitivity to the
parameters we employ, and using competitive, publicly avail-
able APIs to determine its efficacy on real-world APIs. We
employ k-means clustering to divide API ports into groups
that can be ranked in terms of difficulty and show that the
variance is explained by 2-3 clusters. Finally, we show that
computation of our porting effort metric introduces mini-
mal overhead, making it sufficiently practical to include in
a developer’s tool chain.

6. REFERENCES

[1] M. Haines and W. Haseman, “Service-Oriented
Architecture Adoption Patterns,” in System Sciences,
2009. HICSS ’09. 42nd Hawaii International
Conference on, 2009, pp. 1–9.

[2] L. An, J. Yan, and L. Tong, “Methodology for web
services adoption based on technology adoption theory
and business process analyses,” Tsinghua Science &
Technology, vol. 13, no. 3, pp. 383 – 389, 2008.
[Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1007021408700610

[3] M. Haines, “Web services as information systems
innovation: a theoretical framework for web service
technology adoption,” in Web Services, 2004.
Proceedings. IEEE International Conference on, 2004,
pp. 11–16.

[4] A. Dan, R. D. Johnson, and T. Carrato, “SOA service
reuse by design,” in Proceedings of the 2nd
international workshop on Systems development in
SOA environments, ser. SDSOA ’08. New York, NY,
USA: ACM, 2008, pp. 25–28. [Online]. Available:
http://doi.acm.org/10.1145/1370916.1370923

[5] “Release Notes: Amazon Web Services,”
http://aws.amazon.com/releasenotes/Amazon-EC2,
2013, [Online; accessed 02-September-2013].

[6] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli,
S. Soman, L. Youseff, and D. Zagorodnov, “The
Eucalyptus open-source cloud-computing system,” in
Cluster Computing and the Grid, 2009. CCGRID’09.
9th IEEE/ACM International Symposium on. IEEE,
2009, pp. 124–131.

[7] “Twitter API v1 Retirement: Final Dates,” https:
//dev.twitter.com/blog/api-v1-retirement-final-dates,
2013, [Online; accessed 02-September-2013].

[8] “eBay Trading Web Services: Release Notes,”
http://developer.ebay.com/DevZone/XML/docs/
ReleaseNotes.html, 2013, [Online; accessed
02-September-2013].

[9] “Product Advertising API,”
https://affiliate-program.amazon.com/gp/advertising/
api/detail/agreement-changes.html, 2013, [Online;
accessed 02-September-2013].

[10] “DevOps,” http://en.wikipedia.org/wiki/DevOps,
2013, [Online; accessed 27-September-2013].

[11] S. Hallé, T. Bultan, G. Hughes, M. Alkhalaf, and
R. Villemaire, “Runtime verification of web service
interface contracts,” Computer, vol. 43, no. 3, pp.
59–66, Mar. 2010. [Online]. Available:
http://dx.doi.org/10.1109/MC.2010.76

[12] J. Nijjar and T. Bultan, “Unbounded data model
verification using SMT solvers,” in Automated
Software Engineering (ASE), 2012 Proceedings of the
27th IEEE/ACM International Conference on, 2012,
pp. 210–219.

[13] S. Hallé, “Model-Based Simulation of SOAP Web
Services from Temporal Logic Specifications,” in
Proceedings of the 2011 16th IEEE International
Conference on Engineering of Complex Computer
Systems, ser. ICECCS ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 95–104. [Online].
Available: http://dx.doi.org/10.1109/ICECCS.2011.17

[14] H. Foster, S. Uchitel, J. Magee, and J. Kramer,
“LTSA-WS: a tool for model-based verification of web
service compositions and choreography,” in
Proceedings of the 28th international conference on
Software engineering, ser. ICSE ’06. New York, NY,
USA: ACM, 2006, pp. 771–774. [Online]. Available:
http://doi.acm.org/10.1145/1134285.1134408

[15] U. Klein and K. S. Namjoshi, “Formalization and
automated verification of RESTful behavior,” in
Proceedings of the 23rd international conference on
Computer aided verification, ser. CAV’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 541–556.

[Online]. Available:
http://dl.acm.org/citation.cfm?id=2032305.2032348

[16] A. Sheth and K. Thirunarayan, Semantics Empowered
Web 3.0: Managing Enterprise, Social, Sensor, and
Cloud-based Data and Services for Advanced
Applications. Morgan & Claypool Publishers, 2012.

[17] L. li Xie, F. zan Chen, and J.-S. Kou, “Ontology-based
semantic web services clustering,” in Industrial
Engineering and Engineering Management (IE EM),
2011 IEEE 18Th International Conference on, vol.
Part 3, 2011, pp. 2075–2079.

[18] K. Anyanwu, A. Maduko, and A. Sheth, “SemRank:
ranking complex relationship search results on the
semantic web,” in Proceedings of the 14th international
conference on World Wide Web, ser. WWW ’05.
New York, NY, USA: ACM, 2005, pp. 117–127.
[Online]. Available:
http://doi.acm.org/10.1145/1060745.1060766

[19] J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell,
“SAWSDL: Semantic Annotations for WSDL and
XML Schema,” Internet Computing, IEEE, vol. 11,
no. 6, pp. 60–67, 2007.

[20] J. Lathem, K. Gomadam, and A. P. Sheth, “SA-REST
and (S)mashups: Adding Semantics to RESTful
Services,” in Proceedings of the International
Conference on Semantic Computing, ser. ICSC ’07.
Washington, DC, USA: IEEE Computer Society, 2007,
pp. 469–476. [Online]. Available:
http://dx.doi.org/10.1109/ICSC.2007.79

[21] E. R. Sacramento, M. A. Casanova, K. K. Breitman,
A. L. Furtado, J. A. F. de Macědo, and V. M. P.
Vidal, “Dealing with inconsistencies in linked data
mashups,” in Proceedings of the 16th International
Database Engineering & Applications
Sysmposium, ser. IDEAS ’12. New York, NY, USA:
ACM, 2012, pp. 175–180. [Online]. Available:
http://doi.acm.org/10.1145/2351476.2351496

[22] E. Meij, “Combining concepts and language models for
information access,” SIGIR Forum, vol. 45, no. 1, pp.
80–80, May 2011. [Online]. Available:
http://doi.acm.org/10.1145/1988852.1988873

[23] D. Wei, T. Wang, J. Wang, and A. Bernstein,
“SAWSDL-iMatcher: A customizable and effective
Semantic Web Service matchmaker,” Web Semant.,
vol. 9, no. 4, pp. 402–417, Dec. 2011. [Online].
Available:
http://dx.doi.org/10.1016/j.websem.2011.08.001

[24] C. A. R. Hoare, “An axiomatic basis for computer
programming,” Commun. ACM, vol. 12, no. 10, pp.
576–580, Oct. 1969. [Online]. Available:
http://doi.acm.org/10.1145/363235.363259

[25] L. R. Dice, “Measures of the amount of ecologic
association between species,” Ecology, vol. 26, no. 3,
pp. pp. 297–302, 1945. [Online]. Available:
http://www.jstor.org/stable/1932409

[26] G. T. Leavens and Y. Cheon, “Design by Contract
with JML,” 2006.

[27] M. Barnett, K. R. M. Leino, and W. Schulte, “The
Spec# programming system: an overview,” in
Proceedings of the 2004 international conference on
Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices, ser. CASSIS’04. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 49–69.

[28] J. Hatcliff, G. T. Leavens, K. R. M. Leino, P. Müller,
and M. Parkinson, “Behavioral interface specification
languages,” ACM Comput. Surv., vol. 44, no. 3, pp.
16:1–16:58, Jun. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2187671.2187678

[29] R. Verborgh, T. Steiner, D. Van Deursen, S. Coppens,
J. G. Vallés, and R. Van de Walle, “Functional
descriptions as the bridge between hypermedia APIs
and the Semantic Web,” in Proceedings of the Third

International Workshop on RESTful Design, ser.
WS-REST ’12. New York, NY, USA: ACM, 2012,
pp. 33–40. [Online]. Available:
http://doi.acm.org/10.1145/2307819.2307828

[30] Z. Shen and J. Su, “Web service discovery based on
behavior signatures,” in Proceedings of the 2005 IEEE
International Conference on Services Computing -
Volume 01, ser. SCC ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 279–286. [Online].
Available: http://dx.doi.org/10.1109/SCC.2005.107

[31] J. C. Reynolds, “Separation Logic: A Logic for Shared
Mutable Data Structures,” in Proceedings of the 17th
Annual IEEE Symposium on Logic in Computer
Science, ser. LICS ’02. Washington, DC, USA: IEEE
Computer Society, 2002, pp. 55–74. [Online].
Available:
http://dl.acm.org/citation.cfm?id=645683.664578

[32] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier, “Clone detection using abstract syntax trees,”
in Software Maintenance, 1998. Proceedings.,
International Conference on, 1998, pp. 368–377.

[33] “Swagger: A simple, open standard for describing
REST APIs with JSON,”
https://developers.helloreverb.com/swagger/, 2013,
[Online; accessed 27-September-2013].

[34] R. W. Floyd, “Assigning Meaning to Programs,” in
Proceedings of the Symposium on Applied Maths,
vol. 19. AMS, 1967, pp. 19–32.

[35] C. Hoare and N. Wirth, “An axiomatic definition of
the programming language PASCAL,” Acta
Informatica, vol. 2, no. 4, pp. 335–355, 1973. [Online].
Available: http://dx.doi.org/10.1007/BF00289504

[36] R. Fikes and D. McGuinness, “An axiomatic semantics
for RDF, RDF-S, and DAML+ OIL,” Manuscript,
2001.

[37] T. S. Gegg-Harrison, G. R. Bunce, R. D. Ganetzky,
C. M. Olson, and J. D. Wilson, “Studying program
correctness by constructing contracts,” in Proceedings
of the 8th annual conference on Innovation and
technology in computer science education, ser. ITiCSE
’03. New York, NY, USA: ACM, 2003, pp. 129–133.
[Online]. Available:
http://doi.acm.org/10.1145/961511.961548

[38] P. Black, Axiomatic Semantics Verification of a Secure
Web Server. Brigham Young University. Department
of Computer Science, 1998. [Online]. Available:
http://books.google.com/books?id=lrM7HQAACAAJ

[39] D. A. Naumann, “Calculating Sharp Adaptation
Rules,” Information Processing Letters, vol. 77, p.
2001, 2000.

[40] E.-R. Olderog, “On the notion of expressiveness and
the rule of adaptation,” Theoretical Computer Science,
vol. 24, no. 3, pp. 337 – 347, 1983. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/
0304397583900099

[41] J. Barnes, High Integrity Software: The SPARK
Approach to Safety and Security. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[42] B. Cui, J. Li, T. Guo, J. Wang, and D. Ma, “Code
Comparison System based on Abstract Syntax Tree,”
in Broadband Network and Multimedia Technology
(IC-BNMT), 2010 3rd IEEE International Conference
on, 2010, pp. 668–673.

[43] M. Hashimoto and A. Mori, “Diff/TS: A Tool for
Fine-Grained Structural Change Analysis,” in Reverse
Engineering, 2008. WCRE ’08. 15th Working
Conference on, 2008, pp. 279–288.

[44] I. Neamtiu, J. S. Foster, and M. Hicks,
“Understanding source code evolution using abstract
syntax tree matching,” in Proceedings of the 2005
international workshop on Mining software
repositories, ser. MSR ’05. New York, NY, USA:

ACM, 2005, pp. 1–5. [Online]. Available:
http://doi.acm.org/10.1145/1082983.1083143

[45] D. Bianchini, V. De Antonellis, and M. Melchiori,
“Semantics-enabled web APIs selection patterns,” in
Proceedings of the 15th Symposium on International
Database Engineering & Applications, ser. IDEAS
’11. New York, NY, USA: ACM, 2011, pp. 204–208.
[Online]. Available:
http://doi.acm.org/10.1145/2076623.2076650

[46] G. Salaun, L. Bordeaux, and M. Schaerf, “Describing
and reasoning on web services using process algebra,”
in Web Services, 2004. Proceedings. IEEE
International Conference on, 2004, pp. 43–50.

