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Abstract
High-throughput “next generation” genome sequencing
technologies have out-paced Moore’s law, producing a flood
of inexpensive genetic information that is invaluable to re-
search, ranging from the development of new and improved
crops to understanding the genetic variation that underlies
cancer. However, this flood of new information presents a
fundamental new challenge to genetic mapping, the process
of assembling genetic data, which is a core operation in
genomics research. The current generation of genetic
mapping tools were designed for the small data setting,
and are now limited by the the prohibitively slow clustering
algorithms they employ in the genetic marker-clustering
stage of automatic genetic map construction. In this work,
we present a new approach to genetic mapping based on a
fast new clustering algorithm. Our theoretical and empirical
analysis shows that the algorithm can correctly recover
linkage groups. Using real-world and synthetic data, we
demonstrate that our approach is able to quickly process
orders of magnitude more genetic markers than existing
tools and that by exploiting domain knowledge, it is able
to out-perform more generic approaches based on spectral
clustering. Finally, we demonstrate that by scaling to the
available sequence data we are able to improve the quality
of genetic marker clusters, leading to a higher quality
ultra-high-density genetic map that can be used to improve
genome assemblies and map quantitative traits.
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1 Motivation and Background

Genetic maps are essential for organizing DNA sequence
information along chromosomes, and they enable di-
verse applications of genetics to problems in health,
agriculture, and the study of biodiversity [5]. Early ge-
netic maps were constructed using only dozens or a few
hundred genetic markers (chromosomal regions with
two or more sequence variants in a population), and
computation of a map from an underlying dataset was
data limited and therefore computationally inexpensive.
With the advent of inexpensive high-throughput “next
generation” sequencing [20], however, the situation is
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now reversed, and it is becoming a simple matter to gen-
erate data corresponding to millions of genetic markers
across a genome. This flood of data creates a new chal-
lenge: to produce accurate high-density genetic maps in
a computationally efficient manner.

A genetic map is a linear ordering of genetic markers
that is consistent with observed patterns of inheritance
in a population. An essential concept is the linkage
group which collects together markers that are found
on a single chromosome. Genetic maps are therefore or-
ganized into multiple linkage groups, with the number
of groups equal to the number of chromosomes in the
species. Within a linkage group, there is a natural mea-
sure of proximity which arises from the linear structure
of chromosomes and the mechanics of their transmission
from generation to generation. Given a pair of markers
in the same linkage group, we can estimate their prox-
imity on the chromosome by comparing their sequence
across a mapping population of related individuals. This
estimate is made based on the LOD score, a logarithm
of odds that two markers are genetically linked, based
on the similarities and differences across each individ-
ual’s genotype. The fundamental problem of genetic
map construction is to take as input the sequences of n
related individuals at m genetic markers, possibly with
errors and often missing data (unknown genotypes of
particular markers for particular individuals), and to
organize these markers into linear chains that represent
the structure of chromosomes.

The first step of genetic mapping involves cluster-
ing markers into linkage groups. This is traditionally
performed by first computing pairwise similarities be-
tween all pairs of markers. Markers are then grouped
using various standard clustering algorithms, often ap-
plying a biologically meaningful cutoff to the similarity
matrix. Computing the similarity score between two
markers can be a simple attribute comparison or a com-
putationally intensive procedure, such as estimating the
recombination rate of two genetic markers via nonlin-
ear regression [23, 31]. While clustering algorithms that
work directly on similarities typically start with the sim-
ilarity matrix as input, the cost of constructing this ma-
trix is often overlooked. Even when the similarity cal-
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Figure 1: Genetic map construction. Input is given in
the form of a marker (m) - individual (i) matrix. The
markers are clustered into linkage groups (LG’s) (1),
ordered within each linkage group (2), and finally spaced
according to their genetic distance (3).

culation is fast, it requires O(m2) time to calculate all
pairwise similarity scores for m genetic markers, which
quickly becomes prohibitive for large numbers of data
points. Our work addresses this important clustering
computation for large-scale gene mapping problems by
taking advantage of our prior knowledge that the linkage
groups (i.e., chromosomes) have an intrinsically linear
substructure. Our primary contributions are:

1. A new, fast clustering algorithm, BubbleCluster,
that exploits the structure of genetic markers (Sec-
tion 3.1).

2. An analysis of the BubbleCluster algorithm demon-
strating accurate cluster estimation (Section 3.2).

3. An empirical evaluation on synthetic and real-world
data demonstrating the scalability and accuracy of
the BubbleCluster algorithm (Section 4).

2 Problem Definition

Computational tools for genetic mapping follow three
phases: (1) Grouping markers into linkage groups (typ-
ically chromosomes), (2) Ordering markers within chro-
mosomes and (3) Map distance estimation (Fig. 1).
Linkage group construction is typically performed using
single linkage clustering on the similarity graph where
the similarity function is the LOD score, a logarithm of
odds that two markers are genetically linked. The LOD
score between two data points is based on the recombi-
nation fraction between the two markers, the probabil-
ity that an odd number of crossovers occur during meio-
sis along the region between them. Given the population
size, a critical LOD score (linklod [26]) is estimated and

serves as the cut-off threshold for constructing clusters
from the single linkage dendrogram.

Current software tools, such as the popular
MSTMap [31] and JoinMap [26], fail to scale up to
even tens of thousands of markers, let alone the mil-
lions of markers measured simultaneoulsy by new tech-
nologies. Our initial benchmarks revealed that the bot-
tleneck is the pairwise distance calculation step in the
linkage group construction phase. This is unexpected,
given that the exact solution of the second phase (map
ordering) is shown to be a variant of the NP-complete
symmetric traveling salesman problem [24]. There are
several reasons for this phenomenon. First, heuristics
and approximations, such as using a minimum-spanning
tree [31], work well in the ordering phase, due to the
underlying simple geometry of the problem. Second, af-
ter breaking the data into linkage groups, we operate
on smaller-size data. Finally, but perhaps most impor-
tantly, the number of bins are smaller than the num-
ber of actual markers, especially for large numbers of
markers. A bin is a minimal genetic interval, which
might contain several markers, that is genetically re-
solved from its adjacent set of bins. The markers within
a bin are not resolvable due to the limited size of the
population and the limited number of recombination
events in a given population. Ordering is performed on
the bins themselves as opposed to markers, significantly
reducing the runtime.

In this paper, we therefore focus on the bottleneck
of finding ordered, connected clusters (linkage groups)
C1, ..., Ck, given m markers measured across n individu-
als in the mapping population. The entries of a marker
feature vector xi are individual genotypes at marker
sites. For illustration, all genotypes are assumed to be
homozygous, and hence the n entries of a marker fea-
ture vector can take only two values A,B, and ‘−’ for
missing values. Since changes in population type only
affect the LOD computation, our algorithm generalizes
to more complex populations.

The LOD score for two markers xi, xj is

(2.1) LOD(xi, xj) = log10

(
(1−θ)NR θR

0.5NR+R

)
,

where θ = R
NR+R is the recombination fraction, R is

the number of recombinant individuals, and NR is the
number of non-recombinant individuals. For phase-
known populations, R is the number of matches and
NR is the number of mismatches in the observed (not −)
portions of the feature vectors xi and xj .

Finally, we point out that the fixed order of ge-
netic markers along chromosomes is a key property of
the data. Exploiting this linear, one-dimensional struc-
ture enables a specialized procedure for finding linkage
groups that is faster than generic clustering algorithms.



In practice, due to genotyping errors and missing data,
markers do not reside exactly on a line, but approxi-
mately enough to build an ordered backbone sketch of
the line along which a linkage group lies.

3 Methods and Techniques

In this section, we detail our BubbleCluster algorithm
and prove its correctness under mild assumptions. To
stay as general as possible, we will use a divergence
measure d when describing our algorithm. In practice,
we use the inverse of the LOD score for our distance.
This is a valid divergence measure since the LOD score
is a symmetric, monotonically decreasing function of
genetic distance [10, 13].

3.1 The BubbleCluster algorithm Algorithm 1
clusters in three phases:

1. Perform an initial clustering C using all high-quality
markers (lines 1–21);

2. Assign low-quality markers to their most likely
cluster C ∈ C (lines 22–30);

3. If any of the initial clusters are too small, attempt
to merge them with a large cluster (lines 31–34).

This algorithm is a coarse-to-fine approach in two re-
spects: first, it relies on a good clustering of reliable
high-quality data points in Phase 1 as a skeleton to as-
sign more noisy low-quality points in Phase 2. Second,
as detailed below, the clustering in Phase 1 itself estab-
lishes a clustering and ordering among representative
sketches of the high-quality data that again serve as
landmarks for the remaining points. Such a hierarchical
approach is related to theoretically well-grounded clus-
tering techniques like core sets [4, 8] or nearest neighbor
clustering [29], but, as opposed to the cited algorithms,
BubbleCluster is deterministic. Apart from robustness,
sketches offer a big gain in scalability.

In Phase 3, we then draw on the biological laws that
govern true linkage group sizes in living organisms to
determine whether any cluster is too small to consider
a true linkage group. We attempt to merge all such
clusters with the larger clusters from Phases 1 and 2.

Phase 1: Initial Clustering. The first phase
of our algorithm is the most important, exploiting the
structure of genetic linkage groups in order to quickly
cluster high-quality genetic markers. The algorithm has
two parameters, a distance cutoff threshold t and a non-
missing data threshold n.

The missing data threshold is used to distinguish
high-quality markers from lower-quality markers with
limited information content. In Phase 1, we only process

Algorithm 1: BubbleCluster Algorithm

Inputs: X = {x1 . . . xM},
t = distance threshold,
n = nonmissing threshold
c = difference threshold

1 C ← ∅; // List of cluster members sets

2 R ← ∅; // List of representatives sets

3 sort X by increasing missing data;
4 H = {xi ∈ X | nonmissing(xi) > n} ;
5 for point x ∈ H in sequence do
6 if R = ∅ then
7 define new cluster Cα: Cα ← {x};
8 define new rep. set Rα: Rα ← {x};
9 C ← C ∪ Cα,R ← R∪Rα;

10 else
11 rmin = argmin

r
d(x, r) s.t. r ∈ Rα ∈ R;

12 rmin2
= argmin

r/∈Rα
d(x, r) ;

13 if d(x, rmin) < t then
14 assign x to cluster Cα:

Cα ← Cα ∪ {x};
15 if isBoundaryPoint (x,Rα) then
16 add x to the correct end of Rα;

17 if d(x, rmin2) < t then
18 MergeReppts (Rα, Rβ);
19 MergeClusters (Cα, Cβ);

20 else
21 set up new cluster:

C ← C ∪ {x},R ← R∪ {x};

22 for y ∈ X \ H do
23 rmin = argmin

r
d(y, r) s.t. r ∈ Rα ∈ R;

24 rmin2
= argmin

r/∈Rα
d(y, r) ;

25 dmin2
= d(y, rmin2

);
26 dmin = d(y, rmin);
27 if (dmin2 − dmin) > c · dmin2 · dmin then
28 Cα ← Cα ∪ {y};
29 else
30 set up new cluster:

C ← C ∪ {y},R ← R∪ {y};

31 for all small clusters Cs in C do
32 pick a cj ∈ Cs;
33 if d(cj , rk) < t for any rk in any Rα ∈ R

then
34 MergeClusters (Cs, Cα);
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Figure 2: (a) The linear structure of a genetic marker
cluster Ci. (b) The red points are the representative points
for cluster Ci. Each marker in the cluster is within the
threshold distance t of at least one representative point ri.

high-quality markers that have at least n non-zero
entries. The algorithm proceeds by establishing clusters
on the fly: each incoming point is either close to, and
hence assigned, to an existing cluster, or it creates a
new cluster. Two clusters are merged if their distance
is smaller than the cutoff threshold.

To avoid storing all data points and comparing
distances between a new point and all previous points,
we only keep a representative sketch Rα for each cluster
Cα. To create and maintain sketches, we exploit the
special structure of the data: genetic markers have
a fixed order within each linkage group, making the
structure of each cluster appear linear, as illustrated in
Figure 2(a). The resulting sketch is therefore an ordered
list of representative points as illustrated in Figure 2(b)
where for every point in Cα, there is a point rα(x) in
Rα with d(x, rα(x)) ≤ t.

For each incoming point x, we find the closest sketch
point rmin. If d(x, rmin) < t, then x is assigned to
the same cluster as rmin. Otherwise, it sprouts a new
cluster (line 21). If x is added to an existing cluster,
we need to check whether it is well represented by
the current sketch, or whether we need to augment
Rα. Here, we use the linearity assumption. If x is
outside of the boundaries specified by Rα, we add x as
a new (boundary) sketch point. This is determined by
comparing x to the closest current boundary point rα in
Rα, and the point r2 ∈ Rα immediately next to rα in the
ordered list Rα, as illustrated in Figures 3(a) and 3(b):
if d(x, r2) ≥ d(x, rα), then x extends the boundary.

When x becomes a new representative point, it
extends Cα in the linear dimension along which we
assume the representative points to lie. It succeeds rα
and becomes a new end of Rα.

Finally, we determine whether x connects two clus-
ters (lines 17–19) by finding the nearest sketch point
rmin2

that is not in the cluster to which x was assigned.
If d(x, rmin2

) < t, then x forms a bridge rmin, x, rmin2
be-
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Figure 3: The isBoundaryPoint function determines
whether a marker lies at the boundary of the representa-
tive points. Either (a) x lies on the outside of boundary
point rα; isBoundaryPoint(x,Rα) returns true or (b) x lies
on the inside of rα; isBoundaryPoint(x,Rα) returns false.

tween the two clusters. When merging clusters, we must
also merge their sketches Rα and Rβ . To merge Rα and
Rβ , we compute the four pairwise distances between the
two boundary points of Rα and the two boundary points
of Rβ , in order to find the two closest boundary points
rα ∈ Rα and rβ ∈ Rβ . We then append Rβ to the end
of Rα in the order which maintains the closest distance
between rα and rβ .

Phase 2: Low quality marker assignment. At
the completion of Phase 1, we have an initial clustering
C of all the high-quality data points x ∈ H, along with
their ordered sketches. In Phase 2 (lines 22–30), we
rely on the sketches to assign the remaining low quality
markers y ∈ X \ H to one of the existing clusters.
We use a simple heuristic: for each low-quality marker,
we find the difference between dmin2

= d(y, rmin2
) and

dmin = d(y, rmin), where rmin and rmin2
are defined as in

Section 3.1. If this difference is greater than a threshold
c·dmin ·dmin2

, then we add y to the cluster Cα containing
rmin. Otherwise, we simply create a new, temporary
“singleton” cluster containing only the point y. Because
we use d = 1/LOD in practice, this choice of difference
threshold corresponds to the situation when the odds
that cj belongs to cluster Cα is 10c greater than the
odds that cj belongs to any other cluster. Intuitively,
we assign y to Cα only if we believe that it is much more
likely that y belongs to Cα than to any other cluster.
Moreover, we only assign points to existing clusters for
which we have high confidence in our assignment.

Phase 3: Merging small clusters with large
clusters At this stage, we rely on further assumptions
about the underlying structure of our clusters, based on
our knowledge of true linkage groups. We know that
each marker comes from exactly one linkage group, and
that these groups tend to be relatively large. Though
chromosomes vary in size, it is extremely unlikely that



the smallest of k chromosomes of a particular species
will contain less than a quarter of the genetic markers of
the next-smallest chromosome. In this phase, therefore,
we find all such small clusters, and attempt to merge
them with existing clusters. We pick a random point x
within each small cluster Cs and compare its distance
to all the sketch points r in large clusters. If this point
is found to lie within the threshold distance of a sketch
point rα ∈ Rα, then we merge the small cluster Cs with
the large cluster Cα.

Running time: The BubbleCluster runs in time
O(m log(m) + mr) for m markers and r representative
points, with the former term due to sorting markers.
In practice, the number of sketch points scales logarith-
mically with the number of markers, and was always
smaller than 100 per linkage group in our experiments.

3.2 Correctness of BubbleCluster For the
analysis, we make the following assumptions on the true
underlying linkage groups C∗1 , . . . C

∗
K that are roughly

reasonable for real data.

A1. Separation: there exists a λsep > 0 such that for
any C∗α and any two points x ∈ C∗α, y /∈ C∗α, it
holds that d(x, y) > λsep.

A2. Connectedness: there exist constants 0 < λconn +
2ε < λsep, ε ≥ 0, such that for every C∗α and each
x1, x2 ∈ C∗α, there is a path of points y1, . . . ym ∈
C∗α ∩ H with d(x1, y1) < λconn, d(ym, x2) < λconn
and d(yj , yj+1) < λconn for all 1 ≤ j ≤ m.

A3. The divergence measure d roughly reflects the
underlying arrangement: for any true ordering
r1, r2, r3 ∈ C∗α for any three points with ε ≤
d(r1, r2) ≤ 2λconn + 4ε and ε < d(r2, r3) ≤
2λconn + 4ε, it holds that d(r1, r2) < d(r1, r3) and
d(r2, r3) < d(r1, r3).

A4. All sketch points r1, r2 ∈ Rα are ε-separated:
d(r1, r2) ≥ ε.

The ε in A3 and A4 adds noise robustness. Assumption
A4 is simple to satisfy in the algorithm if we add the
condition that a point x becomes a boundary point only
if d(x, rα) ≥ ε.

Lemma 3.1. If λconn + 2ε < t < λsep and if Assump-
tions A1-A4 hold, then the algorithm identifies the cor-
rect clusters for all points in H within one pass over the
sorted data. In addition, the sketch of each cluster is
ordered correctly.

Proof. Let C ′1, . . . C
′
J be the clusters returned by the

algorithm, with an ordered sketch rα1 , . . . , r
α
L ∈ C ′α for

each cluster. We also observe that if A2 holds, then,
by construction of the algorithm, two adjacent sketch
points within a cluster have distance at most λconn +2ε.

First, we argue that for all C ′α, C ′α ⊆ C∗β for
some β after Phase 1. This is an invariant that holds
throughout Phase 1: When a cluster is created, it
consists of one point and therefore certainly is contained
in a single true cluster. If a new point x gets added
to C ′α, that point is within a distance of t < λsep of
rmin ∈ C∗β , and hence, by A1, x and rmin must be in
the same true cluster. Two clusters are merged only if
there is a path (rmin, x, rmin2

) between them with hop
distances less than λconn+ε. By A2, these clusters must
therefore belong to the same true cluster.

Second, we see that if C ′α ⊆ C∗γ and C ′β ⊆ C∗γ ,
then α = β, i.e., no true cluster is split: If C∗γ was
split, then, by A2, there would be at least two clusters
C ′α, C

′
β ⊆ C∗γ and points rα ∈ Rα, rβ ∈ Rβ with

d(rα, rβ) ≤ λconn + 2ε < t, and hence these clusters
will be merged.

Third, the ordering is recovered. If we ensure
that the sketch points are at least ε apart, then A3
implies that the merge of two correctly ordered sketches
preserves the correct ordering. A new sketch point x is
added to Rα if it is farther away than ε from any sketch
point and if it is identified as a boundary point. By A3,
it is then correct to place x at the beginning/end of the
list Rα, next its closest boundary point.

3.3 Related Work A preclustering of the data
aims to establish which markers fall on the same chro-
mosomes (linkage groups). A common choice of link-
age metric is the LOD score, which measures the log-
likelihood that two markers are linked on the same
chromosome. While there are an overwhelming num-
ber of clustering methods [1], from flat to hierarchical
methods, bottom-up to top-down methods, and includ-
ing spectral approaches [28], single linkage and k-means
[18], we are here interested in a clustering that exploits
the known biological structure in the data, that is, the
the linear ordering of markers along a chromosome.

Several computational tools exist for the construc-
tion of genetic linkage maps, as explained in the survey
by Cheema and Dicks [6]. Since then, OneMap [19]
and Lep-MAP [22] have also been proposed. All these
tools, without exception, perform all-pairs comparisons
among markers, which makes them unsuitable for mil-
lions of markers. Structural clustering methods that
have been applied to gene mapping include connected
components [31, 12, 14] and single linkage clustering
[15]. Our algorithm is related to the concept of single
linkage, but differently from single linkage, we construct
and merge clusters on the fly, requiring only one pass



through the data after sorting. Our simple and efficient
algorithm is correct due to the linear organization of
chromosomes.

Our aim to retain both correctness and efficiency
requires a compressed representation of the data and
clusters that preserves enough information to obtain
accurate solutions. General compressed representations
for clustering problems have been addressed by core sets
[4, 8], and hierarchical re-clustering ideas for streaming
and distributed clustering [21, 25]. Our approach
is closely related. As opposed to general sampling
techniques, we extract a problem-specific representative
core set deterministically within one pass, and exploit
the specific structure of the marker data.

The way our algorithm maintains an ordering of the
dataset is similar in spirit to the OPTICS algorithm [2].
However, different from OPTICS, our algorithm is not
density based and uses several representative points to
provide an accurate coverage of the underlying cluster.
In that sense, our algorithm is closest to the CURE al-
gorithm [9], which also maintains representative points.
The specific insight we draw from the genetic mapping
problem enables our algorithm to maintain a better per-
formance bound than CURE’s O(n2 log(n)) bound, and
also prove correctness with mild assumptions.

4 Empirical Evaluation

We compare our algorithm to two popular genetic map-
ping tools: JoinMap and MSTMap. Furthermore, we
compare our algorithm to a general spectral clustering
method called the power iteration clustering (PIC) al-
gorithm [16]. PIC could in theory reduce the running
time close to linear by decomposing the similarity ma-
trix times vector multiplication phase to two raw ma-
trix times vector multiplication steps, hence avoiding
the quadratic similarity matrix construction step. This
“path folding” idea has been applied to accelerate clus-
tering of big data sets in the field of text mining [17].

Most of the experiments were run on a quad-core
server with AMD Opteron 8378 Processors running
at 2.4GHz. Because JoinMap requires the Windows
OS, experiments with JoinMap were performed on a
Windows desktop with Intel 2.93GHz Core 2 Duo
processors. Even though both machines are multicore,
all experiments are single threaded and use a single core.

4.1 Data We evaluate BubbleCluster on both
real and synthetic datasets. The first dataset, barley,
consists of 65,357 genetic markers from a population of
90 individuals and 20% missing data. This species of
barley has 7 true linkage groups. The second, larger
switchgrass dataset of 548,281 genetic markers comes
from a population size of 500 individual columns (with

some duplicate coverage) in the data matrix and 65%
missing data, with 18 true linkage groups. Due to its
size, previous clustering efforts on this data focused
only on the 113,326 highest-quality markers. We cluster
both the 113K subset of markers and the complete
548K dataset in our experiments to demonstrate the
scalability of our algorithm.

For scaling studies, we rely primarily on synthetic
data. We generate synthetic data with Spaghetti,
software which was created to simulate genetic marker
data with real-life complications [27]. Spaghetti allows
for a wide range of parameter settings, and we only list
the most important ones here.

To simulate the very real-life complications (espe-
cially with respect to LOD score calculations) caused by
missing data, we created datasets for a range of missing
data rates, from 0 to 65%. In addition to the missing
rate, we varied the number of markers from 12.5K to
400K, doubling the size at each increment. The popu-
lation size was fixed at 300, the sequencing error rate
at 0.1%, and the number of linkage groups at 10 in all
experiments.

4.2 Evaluation Metric We use the overall F -
score to evaluate the quality of each clustering. The
F -score ranges from 0 to 1, and evaluates a test cluster
Ci with respect to a “golden standard” cluster Gj in
terms of precision and recall [30]. Formally, if Gj ∈ G is
one golden standard cluster, then the F -score for a test
cluster Ci with respect to Gj is defined as:

F (Gj , Ci) =
2pijrij
rij + pij

where rij and pij are recall and precision, respectively,

and defined as rij =
|Ci∩Gj |
|Gj | and pij =

|Ci∩Gj |
|Ci| . The

overall F -score is a normalized, weighted sum of the F -
scores for each golden standard cluster Gj ∈ G. An
overall F -score comparing a test clustering C with a
golden standard clustering G is given by:

F (G, C) =
1

n

k∑
j=1

|Gj | max
i=1...l

F (Gj , Ci)

where k is the number of true, or golden standard,
clusters, l is the number of test clusters, and n is
the total number of datapoints, i.e. n =

∑
j |Gj |.

An F -score of 1, therefore, would indicate that a test
clustering exactly matches a golden standard clustering.

4.3 Results Our results for real datasets are
summarized in Table 1. We report the runtime as well as
the overall F -score achieved by BubbleCluster for each
dataset. The golden standard clusters used to calculate
the F -score were found by single-linkage clustering as



Dataset Markers F -score Time

Barley 64K 0.99927 15 s

Switchgrass 113K 0.974539 534 s (8.9 min)

Switchgrass 548K 0.989461 6779 s (1.9 hrs)

Table 1: Clustering performance on Barley and Switch-
grass from the Joint Genome Institute using BubbleCluster.
MSTmap and JoinMAP are unable to effectively handle data
sets at this scale.

described in Section 4.1. If the assumptions stated
in Section 3.2 hold, then single linkage clustering will
provably find the correct clusters, given a divergence
threshold smaller than λsep. A divergence threshold of
t = 1/8 with nonmissing data threshold n = 66 was
used to cluster the 65K barley dataset; for switchgrass,
we used thresholds t = 1/20 and n = 132. The c
parameter was set to 5 in all experiments. We motivate
our choices of t and n in the Supplementary Text.
We do not report F -score for the popular mapping
tools MSTMap and JoinMap, because the size of these
datasets was prohibitively large for these tools due
to memory limitations. In fact, no mapping tool we
know of has been successful in clustering genetic marker
datasets at this scale.

Table 1 demonstrates that we achieve very accu-
rate clusters in O(m log(m)) time for m markers, a sig-
nificant improvement over the O(m2) algorithms used
by other genetic marker clustering tools. We empha-
size that these datasets come from real-world sequence
data, where missing data entries are not distributed in
any predictable manner, such as having a uniform or
Poisson shape, among the markers. Nonetheless, our al-
gorithm handles missing data effectively and efficiently
for all these datasets, recovering the true linkage groups
with both precision and recall above 97%.

Table 2 underscores our ability to outperform exist-
ing genetic clustering methods as well as more general
clustering methods applied to synthetic genetic marker
data. Here, we show that even on relatively small
datasets, where JoinMap and MSTMap complete the
clustering stage in a fairly reasonable amount of time,
we achieve nearly identical F -scores, but within a frac-
tion of the time. In fact, the results are slightly biased
in favor of JoinMap. Although this tool will automat-
ically construct the single-linkage dendrogram from an
input data matrix, it is up to the user to select which
dendrogram edges to cut in order to produce the final
clusters. We used our prior knowledge of the synthetic
data clusters to select those edges which would produce
the best clustering result. The time reported is only the
time that it took JoinMap to output the dendrogram.

In the third row of Table 2, we give the best
F -score achieved by the spectral-clustering-based PIC

12.5K Markers 25K MarkersClustering
F-Score Time F-Score Time

JoinMAP 0.99964 14 min 0.99982 46 min

MSTMap 0.99964 4.5 min 0.99982 20 min

PIC 0.47024
11 sec

0.60782
44 sec

+(16 min) +(74 min)

Bubble 0.99944 6 sec 0.99972 15 sec

Table 2: Performance comparison of clustering algorithms
using synthetic Spaghetti for 12.5K and 25K markers with
35% missing data and 0.1% error rate. All experiments run
on Neumann, except for JoinMap that ran on the Windows
machine. The number in parenthesis for the PIC algorithm
is the preprocessing time for pairwise calculations.

algorithm. We took extensive measures to improve
both the accuracy and efficiency of PIC, but could
improve neither the F -scores nor the runtimes beyond
those reported in Table 2. For example, we chose
the best of several PIC runs with different counts of
pseudo-eigenvectors, finding that k-means clustering
in the 2-dimensional space spanned by two pseudo-
eigenvectors performed best. Additionally, in the final
stage of PIC we used k-means++[3], an improvement
over Lloyd’s k-means algorithm, in order to improve
cluster quality. We include the running time of PIC
given the similarity matrix as input, but we note
that the algorithm necessitates the construction of this
matrix, the time for which is included in parentheses
and which contributes the O(m2) term in its time
complexity. As stated in Section 4, a decomposition
of the similarity matrix into a sparse matrix-sparse-
matrix-vector product would improve running time, but
even then, the F -score indicates that PIC falls short in
terms of clustering quality.

The inability of PIC to produce competitive results
in terms of clustering quality motivates the need for a
more application-specific approach in this domain. Al-
though spectral clustering methods enjoy popularity in
the data mining community, we point out the difficulty
in applying these methods to a problem with erroneous
and/or missing data, a similarity function that cannot
be expressed as an inner product, and an underlying
structure that can only be exploited if the application-
specific problem is well understood.

Our ability to scale, while simultaneously making
effective use of more data availability, is demonstrated
in Figure 4 and Table 3, respectively. Here, we increase
the size of our synthetic dataset from 12.5K to 400K
genetic markers. We report the clustering quality
for both 35% and 65% missing data in terms of the
errors we make; the entries in Table 3 are (1 -F -score)
for each (dataset size, missing data rate) pair. The
running times corresponding to Table 3 are plotted
in Figure 4 on a log-log scale. We make two points



 10

 100

 1000

 12.5  25  50  100  200  400

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

Problem Size (in thousands of markers)

BubbleCluster on synthetic data

35% missing rate

6

15

28

73

157

419
65% missing rate

8

17

38

105

261

663

Figure 4: Runtimes showing how the BubbleCluster Algo-
rithm performs on increasing dataset sizes. Both axes are
on a logarithmic scale.

about these empirical results: (1) as Table 3 shows,
the error we make in clustering decreases linearly, in
almost exact correlation with the size of the data,
and (2) the running time increases with O(m logm),
promising reliable performance up to almost half a
million markers, even with an enormous amount of
missing data. Comparing Table 1 with these results,
we believe the behavior of our algorithm in these
experiments is predictive of its performance in real
world.

5 Significance and Impact

Current approaches to genetic mapping were designed
for a small data setting, and use algorithms that scale
quadratically with the number of markers. These al-
gorithms do not scale to the level needed to construct
genetic maps in a modern setting, when markers are
abundant. The value of the ultra-high-density genetic
maps (millions of markers) that can be readily con-
structed with our algorithm is especially evident when
only short-range (i.e., gene-scale) sequence assemblies
are available. In this case, the power of genetic map-
ping and sequence assembly can be combined to repre-
sent genes in order along chromosomes. Our method
exploits the underlying linear structure of chromosomes
to avoid the expensive (quadratic) marker-by-marker
pairwise calculation. The resulting linkage groups (i.e.,
marker clusters) are highly concordant with computa-
tionally expensive quadratic calculations, but our im-
proved scaling allows far denser maps to be constructed
with minimal computation.

After the formation of linkage groups, the next
step in constructing a high quality genetic map is in-
ferring the detailed ordering of markers along chromo-
somes, and estimating their genetic separation. Since

Synthetic Data Cluster Quality: (1− F-score)

Dataset size 35% missing data: 65% missing data:

12.5K 5.6× 10−4 11.0× 10−4

25K 2.8× 10−4 4.0× 10−4

50K 1.5× 10−4 2.5× 10−4

100K 0.7× 10−4 1.3× 10−4

200K 0.38× 10−4 0.7× 10−4

400K 0.18× 10−4 0.3× 10−4

Table 3: Clustering performance on synthetic data of
varying dataset sizes. The lower the (1− F-score) value,
the better the algorithm recovers true clusters.

our method takes into account the linear structure of
chromosomes from the start, the result is an approxi-
mate marker ordering that is an excellent starting point
for detailed marker order by simulated annealing or
other similar methods that explore short-range pertur-
bations of our approximate ordering. In fact, the rep-
resentative point order found by our algorithm for the
barley dataset described in Section4.1, was highly cor-
related with the true marker order in barley linkage
groups: for 6 out of 7 groups, the Spearman Rank Cor-
relation Coefficient ρ was above 0.9. When we impose
a stricter ε separation between representative points as
described in Section 3.2, we find that 2 of the linkage
groups’ representative points are in a perfect order (ρ
= 1). We consider this a preliminary result, but it is
an interesting avenue for future research to investigate
the conditions under which we can quickly and precisely
identify the true marker order in all clusters, given a
missing data rate, a dataset and population size, and
assumptions about the linearity of these clusters.

An important application of this method is in
the efficient construction of ultra-dense genetic maps
for large and complex genomes that are filled with
repetitive sequence that frustrate genome assembly but
do not limit the number of genetic markers. The most
economically important of these genomes are various
grasses, including crops grown for food (e.g., barley and
wheat, whose genome sizes are two- to seven-fold larger
than the human genome) or as biofuel feedstocks (e.g,
switchgrass and miscanthus, polyploids that contain
multiple, subtly different copies of a basic genome).
Ordering genes and genetic markers along chromosomes
enables the identification of markers associated with key
traits (e.g., grain or biomass yield, drought and pest
tolerance) and the development of approaches such as
marker-assisted selection [7] and genomic-selection [11]
for genetic improvement of these important crops.
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6 Appendix

Choosing thresholds for BubbleCluster A full
exploration of the entire biologically relevant parame-
ter space (including, for instance, number and type of
markers, sampled population size, missing data rate, er-
ror rates, and number and size of underlying linkage
groups), and how the interplay between these param-
eters affect both the efficiency and accuracy of our al-
gorithm, is beyond the scope of this paper. However,
we can motivate our choices of the divergence and non-
missing data thresholds used in the empirical evaluation
of the BubbleCluster algorithm based on a few assump-
tions about the missing data rate in genetic marker
datasets. Here, we explain how we were able to set
thresholds that we believed would help BubbleCluster
find high-quality clusters quickly and efficiently.

If the clusters we are attempting to recover are
indeed well-separated, then there exists a λsep such that
d(xi, xj) > λsep for any two markers xi ∈ C∗i and
xj ∈ C∗j , C∗i 6= C∗j . Since we choose d = 1/LOD in
practice, then it must be true that

1

LOD(xi, xj)
> λsep ⇒ LOD(xi, xj) <

1

λsep

However, λsep may be very small – in our assumptions
we make clear that no LOD score between a marker
xj ∈ C∗j and a marker xi ∈ C∗i is above 1/λsep in order
for clusters to be “well-separated.” If λ is too small, then
setting t < λsep will cause our algorithm to sprout too
many new clusters and representative points, increasing
computation time significantly.

What we use in practice, therefore, is a thresh-
old distance t which will make it very unlikely that
d(xi, xj) < t when xi and xj are in different clus-
ters. For a given t, let p be the probability that
LOD(xi, xj) > 1/t even though xi and xj are in dif-
ferent clusters. In other words, when xj is a representa-
tive point, p is the probability that setting the thresh-
old divergence to t will cause us to mistakenly assign
a random marker xi to the same cluster as the point
xj , because xi now falls within the threshold “bubble”
surrounding xj . A schematic depicting this situation is
shown in Figure 5.

Let ncomp be the total number of LOD score compu-
tations that we make in Phase 1 of our algorithm, which
is dependent upon the number of representative points
we have per cluster. The probability that none of these
LOD scores is above the threshold, i.e. the probability
that we make no errors in assigning two markers to the
same linkage group, is then:

P (no mistakes) = (1− p)ncomp

The LOD score, as explained in Section 2, is a logarithm

𝒙𝒋 

𝑡 

𝝀𝒔𝒆𝒑 

𝒙𝒊 

Figure 5: A “mistake” occurs in BubbleCluster if t >
λsep, and we encounter two markers xi and xj which
do not belong to the same cluster but do lie within a
threshold divergence t of each-other.

of odds, telling us how much more likely it is that two
markers are genetically linked than that they are not.
In other words, for markers xi and xj it is defined as:

LOD(xi, xj) = log10

P (linkage)

P (no linkage)

where P (linkage) is determined by calculating R and
NR, the number of recombinants and non-recombinants
in the non-missing data entries common to xi and
xj . P (no linkage) is (1/2)R+NR, the probability that a
random pair of markers will match in R+ NR positions
purely by chance. Thus, by the definition of the LOD
score,

p = P

(
P (linkage)

P (no linkage)
< 10( 1

t )
)
≤ 1

10( 1
t )

⇒ P (no mistakes) ≥
(

1− 1

10( 1
t )

)ncomp

If we want to ensure that P (no mistakes) > 1− e, then
we require that(

1− 1

10( 1
t )

)ncomp

> 1− e

⇒ t <
1

log10

(
1

1−(1−e)
1

ncomp

)
An upper bound for ncomp is simply

(
m
2

)
for m markers,

which would imply that we compute all the pairwise
LOD scores for all the markers in our dataset, a grossly
pessimistic assumption. In order to guarantee that



P (no mistakes) is high, we must use this upper bound
to set the divergence threshold t.

We must also keep in mind, however, that the
amount of missing data limits our choice of t, because
the maximum achievable LOD score for a particular
marker is dependent upon the number of non-missing
entries in the data matrix for that marker. If a marker
xi has nnm non-missing entries, the most similar it can
be to another marker xj is to match xj in genotype
perfectly in all nnm non-missing data entries, giving
NR = n. As NR approaches nnm, R approaches 0, and
the LOD achievable by xi approaches its upper bound:

lim
NR→nnm

LOD(xi, xj)

= lim
NR→nnm

log10


(

1− R
R+NR

)NR (
R

R+NR

)R
0.5NR+R


= nnm log10 2

For a threshold divergence of t in Phase 1 of our
algorithm, xi must achieve a LOD score LOD(xi, x) > 1

t
with at least one other data point x in order to join any
existing cluster. Therefore, the number of non-missing
entries nnm in xi must satisfy:

nnm >
1

t log10 2

Clearly, if nnm is less than this constant for a given t,
then xi will never achieve a LOD score with another
point in the data set which would allow it to join
an existing cluster, and we should exclude this point
from the high-quality datapoint set in Phase 1 of our
algorithm. However, we can be more aggressive in
excluding non-informative data points.

Given a mean missing data rate µ, we expect that
the number of non-missing entries a data point xi, with
nnm nonmissing entries, will share with any other point
x will be:

E [shared nonmissing entries(xi)] = (1− µ)nnm

Therefore if nnm satisfies:

nnm >
1

(1− µ)t log10 2

then we expect xi to fall within the threshold divergence
t of at least one other data point xj . The assumption
that points within a cluster are well-connected makes
it probable that if d(xi, xj) < t, then d(xi, x) < t for
all points x within a small divergence measure of xj ,
raising our expectation that the divergence of xi and
at least one other point will be less than t. Thus, we

want to include xi in the high-quality set in Phase 1 of
BubbleCluster.

Our selection of t and the cutoff for non-missing
entries n is thus a balancing act, where we try to ensure
that t guarantees a high P (no mistakes), but is not so
small that a large fraction of our data would be excluded
from Phase 1, which we rely on to build an initial
sketch of each cluster. The threshold settings stated
in our paper were set according to the line of reasoning
presented herein, choosing lower divergence thresholds
for higher missing data rates in order to maximize the
precision in cluster assignments without penalizing the
efficiency of our algorithm.

The LOD score as a similarity measure Here
we provide a simple counterexample to show that the
reciprocal of the LOD score is not a valid distance
metric. Suppose that we have three genetic markers
x1, x2, and x3, where:

x1 =
(
− − − A B − B B

)
x2 =

(
A A A − B − B B

)
x3 =

(
A A A A − − − −

)
Then:

LOD(x1, x2) = log10(8)⇒ 1/LOD(x1, x2) = 1/ log10(8)

LOD(x2, x3) = log10(8)⇒ 1/LOD(x2, x3) = 1/ log10(8)

LOD(x1, x3) = log10(2)⇒ 1/LOD(x1, x3) = 1/ log10(2)

⇒ 1/LOD(x1, x3) > 1/LOD(x1, x2) + 1/LOD(x2, x3)

Thus, for the divergence measure 1/LOD, the triangle
inequality does not hold.


