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ABSTRACT
Understanding what social media users discuss and what is happen-
ing in the real world can be enabled through the automatic analy-
sis and summarization of Online Social Media. Trend Discovery,
through the extraction of trending topics, is utilized in marketing
campaigns and by companies to identify customer interests and po-
tential new markets. While there is a plethora of techniques to iden-
tify trending topics, there is a lack of focus on the characteristics
of the underlying population that participate in a trend. Users that
mention a topic define a multivariate vector of demographics and
user characteristics with the potential to offer insights into the com-
munities that are focused on a topic, both latent and obvious. We
propose a novel algorithmic framework for the efficient and scal-
able extraction of the combination of user characteristics that define
a community interested in a topic. Potential results include cases
like “female residents of Boston, MA, that support the Democratic
party, are focused on the activistic topic #FreeJustina” or “young
adults, living in the US, are focused on topic #NavyYardShooting
with a Negative sentiment”. Such topics might be significantly pop-
ular or not, but community extraction emphasizes the importance
and focused interest in a topic even if it is not as popular as other
topics with a more defused audience. The proposed framework can
support any number of attributes and scales linearly. We assessed
our algorithm’s accuracy and efficiency on synthetic and real Twit-
ter data and results show high accuracy and efficiency.

1. INTRODUCTION
The study of social patterns in Online Social Media like Twitter

or Facebook can be very helpful in identifying collective user be-
havior among specific segments of society. Trending Topics have
been popularly used in the detection of breaking news, as well as
in marketing and advertising mechanisms. In its general definition,
a Trending Topic is a collection of words or phrases that refer to a
temporarily popular topic. Usually, the origin of a trending topic is
a popular real life event that is being discussed on social media or a
meme that is spreading. Trending topics are used to understand and
explain how information and memes diffuse through vast social net-
works with hundreds of millions of nodes. Many algorithms have

been proposed for discovering interesting trending topics utilizing
techniques from the areas of Anomaly Detection, Data Streams,
and Clustering. In existing studies, trending topics are mined for
specific interest areas like Sports [18], Earthquakes [21], News re-
porting [16, 22], or general event detection [20, 1]. In this paper
we research the novel idea of identifying the underlying user com-
munities that are interested in social media topics and then utilize
this knowledge to rank topics by importance. Such a task can be
challenging in terms of complexity when dealing with a non trivial
number of community characteristics. The official Twitter Trend-
ing Topics are personalized to the user by displaying the top topics
from categories the user is interested in. This is a simple approach
to serve relevant trends but focuses only on topic categories (e.g.
Technology, Politics, etc.) or location, and does not identify topics
where the underlying population has specific properties, thus, can
miss less popular topics with highly interesting community charac-
teristics.

We observed that the user population involved in a trend offers
high potential in understanding a trend and how other users might
react to it. In a previous study on Twitter trending topics even
simple social relations between the participants of a topic trend
could greatly enhance the understanding of trending topics [9] or
spammer detection [7]. Then, a space efficient framework was pro-
posed, named GeoScope [10], that extracts trending topics which
are highly focused in specific geographical locations. Human eval-
uations showed that topics with a high geographical correlation
tend to be more interesting than topics with a dispersed population.

In this paper, we propose a novel community detection algorithm
utilizing a spectrum of social characteristics rather than just geo-
graphic locations. The detection of community characteristics that
are interested in a topic, like gender, age, location, race, ethnicity,
political affiliation, etc., can yield powerful results which are useful
in a variety of domains. Marketers can understand their customers
better by identifying the communities interested in their or compet-
itive products. Advertisements, which usually are linked to a trend-
ing topic or event, can become more personalized. Content recom-
mendation can be improved through the extraction of target groups
interested in specific topics. Last but not least, the understanding of
the underlying population of a topic can enable the study and dis-
covery of latent communities that sociologists might not be aware
of.

Communities focused on topics, can sometimes be expected and
sometimes unexpected. It is easy to anticipate that young boys
will be interested in the PlayStation 4 gaming console even without
monitoring the widely popular trending topic #PS4. But we might
not expect that women in the area of Boston, MA, that also support
the Democratic party, showed their solidarity to an arrested female
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teen named Justina with the not so popular topic #FreeJustina. It
is even more unexpected to observe the hijacking of the hashtag
campaign #ReasonsToVisitEgypt that was originally created to pro-
mote tourism in Egypt, but local citizens used it negatively to raise
awareness for the country’s political situation. The important take
away is that using only the popularity of a trending topic is not
enough; a better understanding of the underlying community can
yield a better ranking for interesting topics that might not be glob-
ally popular.

We define a specific type of community that we call focused com-
munity to enable the efficient extraction of communities interested
in topics on social media. We exploit specific properties of this defi-
nition to propose a novel framework that receives a social stream as
its input and reports topics and the corresponding focused commu-
nities as its output. The framework scales linearly with the number
of attributes, and reports communities that might lie within in any
attribute combination or sub-dimension.

The current research project makes the following contributions:

• The definition of a maximally focused community.

• Information Retrieval metrics, like TF/IDF, are adapted to
rank topics based on their communities’ relative popularity
and exclusivity.

• A probabilistic and scalable algorithm for the discovery of
maximally focused communities with amortized linear time
complexity. The algorithm also deals with missing values in
records, in a stochastic way that maintains high confidence
on the reported results.

• The effectiveness and efficiency of the proposed approach is
tested through extensive experimentation and analysis on a
massive social dataset from Twitter and synthetic data.

Related work is presented in Section 2. The definition of a Fo-
cused Community is given in Section 3 and the description of the
proposed algorithm is offered in Section 4. The methodology for
dealing with missing values in real social data is described in Sec-
tion 5 and, finally, experimental results are presented in Section 6.

2. RELATED WORK
While there are multiple approaches to extract trending topics

from social content we are the first to explore the underlying fo-
cused communities. Our work builds on many techniques in areas
that share common properties with this problem, most notably from
Subspace Clustering and Frequent Itemset Extraction/Association
Rule Mining.

Association Rule Mining using Frequent Itemset Extraction [6]
is a well studied area and poses similarities to the attribute-based
community extraction. Techniques that sample the data to perform
fast itemset extraction are the closest to our proposed approach
since probabilistic algorithms are used to reduce complexity. Such
techniques include Toivonen [25] and Chakaravarthy et al. [11].

Clustering algorithms for data in multiple dimensions, known
as subspace clustering algorithms, are usually divided in two cat-
egories: density-based methods and k-means-based methods. A
detailed survey on both categories can be found in [15]. Density-
based methods assume that a cluster is a data space region in which
the element distribution is dense and is separated from other clus-
ters by regions of low density. Examples of such algorithms include
CLIQUE [5], P3C [17], and 4C [8]. K-means based algorithms
come closer to the nature of our framework for community extrac-
tion of a trending topic. In the k-means or the k-medoids [14] meth-
ods k cluster centroids are initially picked and through an iterative

process, where each datapoint is assigned to its closest cluster cen-
troid, convergence is eventually achieved – or a maximum number
of iterations is reached. Subspace clustering methods that follow
this approach include PROCLUS [3], and ORCLUS [4]. The same
algorithmic principles are also used to solve the frequent itemset
and association rule mining problems (e.g. a-priori pruning in used
in both [6] and CLIQUE [5]).

Our approach is similar to the k-means based methods in the
sense that k datapoints are also randomly picked at the beginning,
although this number, k, does not dictate the final number of the
extracted communities which, in fact, might be less than k. In con-
trast, our method probabilistically locates the sub-space of a com-
munity interested in a Trending Topic starting with these k random
datapoints and then climbs through the attribute lattice to identify
the interested community. Thus, we can detect focused communi-
ties quickly, a task that is possible but inefficient through existing
sub-space clustering and association rule mining techniques.

Missing value imputation (handling) is important given the na-
ture of social data, something that is consistently overseen in tradi-
tional subspace clustering and frequent itemset methods [13]. Typ-
ically, records with missing values are completely removed and al-
gorithms are then applied only on the remaining or a subset of the
records. Our algorithmic framework includes a stochastic method-
ology to deal with missing values in a less severe way and yields
results with high confidence that otherwise could be discarded if
records were completely removed.

Similar to our approach, probabilistic or Monte Carlo based meth-
ods for community extraction have also been explored in Perozzi
et al. [19]. They study extracting community attributes that form
highly connected subgraphs within the social network. To detect
the correct values for each attribute they utilize Monte Carlo sam-
pling to randomly select values until a connected subgraph is formed.
Our approach seeds the process by sampling k datapoints from a
trending topic’s population. This leads to a much more agile and
efficient attribute value selection process.

3. FOCUSED COMMUNITIES
The process of identifying focused communities has to be ap-

plied on each topic individually. To extract and understand the un-
derlying communities interested in a particular topic, T, two pieces
of information are necessary. 1) The topic population P which in-
cludes every social posting that mentions topic T. We will refer
to these social postings using the general term datapoints but in
the specific case of Twitter they are called tweets. 2) The cor-
responding social characteristics (attribute values) for every data-
point. These attributes can include user demographics like Loca-
tion, Age, Gender, Race, or characteristics like political affiliation,
supporting soccer team, hobbies, etc. Each user that mentions a
topic can be represented by an attribute value vector. For example,
a hypothetical 5-dimensional attribute vector could be: [Location:
Los Angeles, Age: 18, Gender: Male, Citizenship: USA, Political
Affiliation: Republican]. Certain attributes can be hierarchical, like
Location or Age. If a user lives in Los Angeles, then she also lives
in California, or USA, or the World. If a user is 15 years old then
she also belongs in the “teenager” age group. Ultimately, given the
population of a topic T , we want to extract a value for each attribute
in order to discover a “maximally focused community” interested
in topic T . In the currrent section we will formally define what a
focused and maximally focused community is.

Let D be a domain with N attributes. Each attribute ai ∈ D has
a finite set of values Vai . Let P be a set of datapoints where each
datapoint is represented by a vector of N attribute values vi ∈ Vai .
We refer to any vector of attribute values as a tuple; therefore, any
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datapoint is considered a tuple. The support of a single attribute
value is equal to the number of datapoints in P that contain the
value. The support of a tuple instance is equal to the number of
datapoints with values that match the values of the tuple.

Categorical attribute values may follow a tree-like hierarchical
pattern. The Location attribute can be described using a tree hier-
archy of 4 levels: city, region/state/province, country, and “World-
wide”. The Ethnicity attribute can be described using a tree hier-
archy of 3 levels: ethnicity, minority/non minority, and “Any eth-
nicity”. Values in each level of the hierarchy are connected to a
single ancestor from the previous level and to an arbitrary number
of successors in the next level (which can be zero for the values of
the bottom level). The root of the hierarchy is symbolized with the
value “*”. Note that every attribute can be described at least by the
trivial hierarchy of 2 levels where the bottom level contains all the
values and the top level contains just “*”. Numerical attribute val-
ues can be viewed as hierarchical attributes as well. Using a radius
r the hierarchical ancestor of a numerical value v can be dynami-
cally estimated as the range [v − r,v + r]. Alternatively, the values
of a numerical attribute can be discretized so it becomes categori-
cal. In the current work we focused on categorical attributes but the
proposed algorithm works also with numerical attributes.

We define a homophilic community C to be a partition of the
population P for a specific topic T which share common values for
a subset of the N attributes. For example, a homophilic community
can include all the users who live in Los Angeles and are male.
Homophilic communities are important because homophily dictates
that every member of the community interested in T share some
common characteristics. However, the community members are
not necessarily connected in the social graph. From this point on
we will refer to homophilic communities simply as communities.

For a given topic with a group of datapoints P, a community
C ⊆ P is defined by N attribute values [v1 ∈ a1,v2 ∈ a2,...,vN ∈ aN ]
and can also be represented as a tuple. We will use the symbol C to
refer to the members of the community and Ct to refer to the tuple
with the attribute values that define the community. We define a
community C to be focused if there is at least one attribute value
v ∈ Ct which no datapoint in P −C shares. This attribute value
v is an exclusive feature of the community: every member of the
community has this value because of the homophily property but
no other person in P shares it. Let Pv be the set of all datapoints in
P that contain the attribute value v. The following must hold for C
to be focused: ∃v ∈ Ct so that Pv ≡ C.

Figure 1 illustrates the difference between an arbitrary commu-
nity (non focused) and a focused community with three attributes.
As an example we can assume that attribute a is Location with
value va equal to Los Angeles, attribute b is Age with value vb
equal to 18 years old, and attribute c is Gender with value vc equal
to Male. In the first case, the population corresponding to the inter-
section of the three attributes defines a non focused community, ie.,
18 year old males who live in Los Angeles. In the second case, the
population corresponding to the attribute vc ≡ 18 years old is al-
most identical to the intersection of all three attributes. Therefore,
the support of the Los Angeles male community is almost equal to
the number of users in P that are 18 years old, since almost none
else in P−C has this age.

We can relax the definition of a focused community by introduc-
ing a relaxation threshold ε so that we can measure how close a
community is to being perfectly focused. The support of a com-
munity C must be smaller or equal to the size of Pv : ��C�� ≤ ��Pv

��. If
Pv , ∅ this inequality can be re-written as:

��C��
��Pv

��
≤ 1 =⇒

��C��
��Pv

��
−1 ≤ 0 (1)

va vb vc

C

P

(a) Non focused community

va

vb

C

vc P

(b) Focused community (ε > 0)

Figure 1: Illustration of a non focused community (a), which is
the simple intersection of three attribute values va , vb , and vc . A
focused community (b) has at least one attribute (vb ) that is as close
to the intersection of va , vb , and vc , as ε permits.

Figure 2: Partial view of the attribute lattice. Two connected nodes
(solid arrow) in the lattice indicate that a tuple can be reached from
the other through a single attribute generalization. A dashed ar-
row indicates that two nodes have other nodes between which are
omitted due to space restrictions.

For a focused community where Pv ≡ C, Inequality (1) must be
exactly equal to 0. With the introduction of the relaxation threshold
ε inequality (1) becomes:

�����
1−

��C��
��Pv

��

�����
≤ ε (2)

We call the absolute value of the fraction at the left side of the
inequality the focus metric of the community. A value of 0 indicates
that the community is perfectly focused. A value above ε indicates
that the community is not focused.

The relaxation of the focused community definition is necessary
for the discovery of focused communities in the presence of data
noise or missing values. The threshold ε practically defines how
many datapoints in P might share the “exclusive” feature of the
focused community without being part of it.

The generalization of an attribute value v is the process of replac-
ing the value v with a direct ancestor of v in the attribute’s hierar-
chy. The generalization of any value except “*” is possible. The
root value “*” cannot be generalized since it has no ancestors. We
denote the case of a missing attribute value using the “⊥” operator
(bottom). A “⊥” value can be directly generalized to “*” through
a single generalization step no matter how high the attribute hierar-
chy is. In the general case, an attribute a can be generalized from
value va to value vb if vb precedes or is equal to va in attribute
a’s hierarchy. We denote this relation between va and vb using the
operators � (succeeds) and � (precedes): vb � va or va � vb .

As an example, for the Location attribute the following relations
are true: Los Angeles � Los Angeles, Los Angeles � California,
Los Angeles � USA, California � USA, California � *.

The support of a generalized attribute value in P is equal to the
number of datapoints that contain any successor of the value. For
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example, in a two-dimensional space, the tuple [Location:California,
Gender:*] matches datapoints like [Los Angeles, Male] or [San
Francisco, Female]. The tuple that contains all the hierarchy roots
is called HEAD: HEAD ≡ [∗,∗,...,∗,...,∗]. The HEAD tuple matches
every datapoint in P: ��HE AD | = ��P��. Figure 2 shows an example
of the formed lattice given a specific starting tuple with three at-
tributes: Location, Gender, and Age. Connected nodes are reach-
able through a series of attribute value generalizations (climbing).

Given a focused community C, it is possible to reach another fo-
cused community C′ by generalizing one or more attributes (C �
C′). A maximally focused community is a focused community that
has no attribute value which can be generalized to obtain another
focused community. Any two maximally focused communities in
P are guaranteed to share a number of members between 0 and
ε ��P�� (upper bound). When ε → 0, any two maximally focused
communities should share no common members. This is an impor-
tant characteristic since it leads to the extraction of non overlapping
(partitioned) groups, a desirable property in trend analysis [3].

Since every single tuple with unique attribute values is a poten-
tially self-contained focused community, we further require a fo-
cused community to meet a minimum support requirement, rela-
tive to the population P. More specifically, we introduce a support
threshold ξ ≤ 1 so that every maximally focused community has
support of at least ξ��P��.

4. ALGORITHM DESCRIPTION
The proposed algorithm aims to extract a new topic ranking that

utilizes the identified focused communities. Given a set of topics,
all the maximally focused communities of each topic with a focus
metric less or equal to ε and support greater or equal to ξ are ex-
tracted. The community characteristics are then used to calculate
a score which leads to a novel topic ranking. The output of the
algorithm is the ranked list of topics and the extracted maximally
focused communities interested in each topic.

4.1 Algorithm Overview
Figure 3 illustrates the overview of the algorithm. Given a stream

of datapoints being traversed through a sliding window, topics are
identified (keywords, entities, phrases, hashtags) and the datapoints
of the window are grouped by topic. All the topics with at least a
minimum number of datapoints form the pool of candidate topics.
For each topic in the candidate topics, the focused communities are
extracted through the Sample&Climb module (dashed rectangle in
Figure 3). The extraction of a maximally focused community is an
optimization problem: find a combination of attribute values (tuple
Ct ) that maximizes the size of the community defined by Ct , while
minimizing the focus metric (Equation (2) from Section 3). The
Sample & Climb algorithm selects a random sample of datapoints
from P (seeding phase) and uses each datapoint as a starting point
to reach the attribute values of a focused community through a se-
ries of value generalizations (climbing phase). The output of the
Sample&Climb module is used to calculate a topic score for each
topic. These scores are then used to rank the pool of candidate
topics, and result in a top-k list of trending topics. Topic scoring is
performed by normalizing the raw frequency of a topic with the rel-
ative popularity and exclusivity of the corresponding focused com-
munity. The intuition behind such a scoring is to identify surprising
communities, i.e. communities that are relatively more popular in a
topic’s population than the global population, or communities with
exclusive focus on a topic.

As an example, the Twitter hashtag “#ObamaInThreeWords” has
a focused community that includes supporters of the Republican
Party (Political affiliation), that are Male (Gender), between the

Figure 3: Algorithm overview.

Figure 4: Seeding phase example.

ages 19-22 (Age), and that live in the United States (Location).
These characteristics can boost the topic to the top 10 of the list of
ranked topics, even with just 246 mentions; a population size that
would not be significant for general trend detection algorithms.

In Subsections 4.2 and 4.3 we describe how the focused com-
munity extraction (Sample&Climb) is performed per topic and in
Subsection 4.4 we describe the scoring and ranking process which
is applied on all candidate topics of the sliding window.

4.2 Sample&Climb Seeding Phase
The Seeding phase must efficiently bootstrap the optimization

problem of extracting a tuple that defines a topic’s maximally fo-
cused community. To that end, we uniformly sample k tuples from
P (datapoints) and create a new set S; every tuple t ∈ S is then fed to
the climbing phase which will reach a potential maximally focused
community. If the sampled tuple is actually a member of a max-
imally focused community (checked by Equation 2), the climbing
phase should extract the community. If the sampled tuple is not
a member of any focused community the climbing phase will not
extract a community. The intuition behind this approach is to prob-
abilistically select datapoints that might belong to a maximally fo-
cused community. This intuition is visualized in Figure 4 where we
assume that in a population P two focused communities C1 and C2
exist. The sampling of datapoints d1 or d2 can enable the extraction
of community C1. The sampling of datapoint d4 can enable the ex-
traction of community C2. The sampling of datapoint d3 does not
enable the extraction of any community and a different datapoint
needs to be sampled. If the datapoint is indeed a member of a com-
munity, then a series of attribute generalizations and focus metric
computations can lead us to the actual attribute values of the com-
munity. For example, if the following focused community exists:
[Location: USA, Gender: *, Age: 13-18] and the datapoint: [Santa
Barbara, Male, 18] is randomly selected then the location value
can be generalized twice (Santa Barbara → California → USA),
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the gender value once (Male → *), and the age value once (18 →
18-23) to reach the tuple that describes the community.

When a sampled tuple successfully leads to the extraction of a
maximally focused community, the result is saved. If the next sam-
pled tuple succeeds an already extracted community, by a previous
iteration in the seeding phase, then the tuple is skipped since it can
only lead to a known community and would be a waste of resources
to process it. Pseudocode for the seeding phase is provided in Al-
gorithm 1. Line 5 tests if the new sampled tuple is succeeds an
already extracted community c. If the tuple is already a successor
of an extracted community, the climbing phase is skipped since it
will yield the same result given that the climbing process is deter-
ministic. The returned result of the climbing phase is a maximally
focused community if climbing was successful, or equal to NULL
if a focused community could not be extracted (line 8).

Algorithm 1: Seeding phase
Data: Tuples P, attribute hierarchies H[N]
Result: Set of maximally focused communities C

1 begin
2 C← {};
3 S← sample(P);
4 for t ∈ S do

// If t succeeds any community c in C,
// skip it (optimization).

5 if ∃c ∈ C t � c then
6 continue;

7 c← climb(t,P,H);
// c is a community tuple

8 if c , NULL then
9 C← C∪ {c};

Based on the desired success probability of the seeding phase
pb , the appropriate minimum size of the sample S can be deter-
mined. Let k be the number of datapoints sampled during the Seed-
ing phase and C a unique maximally focused community in P.

The sampling of datapoints can be simulated through a series
of Bernoulli trials where success is defined as the selection of a
datapoint tuple t so that t � Ct . The number of trials is equal to the
size of the sample: ��S�� = k. The probability of success in a single
trial is equal to p = ��C��/��P��. The probability of at least one success
out of k trials (we can assume that P is large enough for the trials to
be independent even without replacement) is equal to 1 minus the
probability of getting 0 successes. This probability is defined by
the geometric equation that describes the CDF of k Bernoulli trials:
1− (1− p)k . Therefore, we have:

pb = 1− (1− ��C��/��P��)k = 1− (1− p)k (3)

We want to find the minimum value of k so that the right hand
of Equation (3) is greater or equal to pb . Let q = 1 − p be the
probability of failure in a single trial.

pb ≤ 1− (1− p)k =⇒ qk ≤ 1− pb =⇒
q<1

k ≥ logq (1− pb ) =⇒ k ≥
log(1− pb )

log(q)
=⇒

argmin
k =

⌈
log(1− pb )

log(q)

⌉

Note that k is not directly dependent to the size of the population
P, only on the probability of success pb . As an example, to find
focused communities with at least 30% the size of population P
and with success probability pb = .99 we need at least 13 samples.

For communities with size 70% or more and the same probability
pb we need only 4 uniformly selected samples.

4.3 Sample&Climb Climbing Phase
The Climbing phase follows the Seeding phase by consuming the

sampled datapoint and producing a maximally focused community.
More specifically, a tuple t is received from the Seeding phase and
the focus metric from Equation (2) is utilized to climb the lattice
(see Figure 2) from t to a new tuple t ′ � t, so that the support of t ′

in P is maximized and is at least ξ, and t’s focus metric remains be-
low the relaxation threshold ε . Similar to hill-climbing techniques,
in every new iteration a new neighbor of the current solution is
generated until an acceptable solution is reached. A tuple t has
N possible neighbors: each one can be reached by generalizing a
different attribute value of t.

4.3.1 Basic Climbing Approach
The pseudocode in Algorithm 2 describes this process. Starting

from a tuple t, a new neighbor is produced in every iteration till a
maximally focused community or a HEAD tuple is reached. HEAD
represents the unique tuple that has all of its attribute values fully
generalized: HEAD ≡ [∗,∗,...,∗,...,∗].

An accepted solution (focused community) is reached when both
conditions in line 5 in Algorithm 2 are satisfied (focus metric and
support). These two conditions alone do not guarantee maximality
therefore the algorithm will not return at this point but will continue
until the HEAD is reached and at this point will return the most re-
cent accepted value for t ′. In line 7 the next attribute for generaliza-
tion is selected: ag . Different selection policies will yield different
results and offer different guarantees. Using the selected attribute,
a new tuple ttemp is generated, identical to the previous ttemp on
all attributes except ag , which gets generalized.

Since the climbing process always follows an upward path – a
neighbor is created only by generalizing a single attribute – there is
a well defined maximum number of iterations, equal to:

N∑
i=1

(H[i].numLevels−1)

where H[i].numLevels is the number of hierarchical levels for the
ith attribute. This sum can be approximated by O(N ). However,
the selection policy for the next attribute to generalize has a signifi-
cant impact on the performance of extracting a tuple t ′ that eventu-
ally corresponds to a maximally focused community. We will first
discuss the exact selection policy that guarantees the discovery of
a maximally focused community and then propose a greedy policy
for a more efficient selection.

Algorithm 2: Climbing phase
Data: Attribute tuple t, all tuples P, attribute hierarchies H[N]
Result: Maximally generalized tuple t ′

1 begin
2 ttemp ← t;
3 t ′← NULL;
4 while ttemp , HEAD do
5 if f ocus(ttemp ,P) ≤ ε and support(ttemp ,P) ≥ ξ��P��

then
6 t ′← ttemp ;

7 ag ← getNext AttributeToGeneralize(ttemp ,P,H);
// Replace ag with parent of ag in ttemp

8 ttemp ← {a ∈ ttemp |ag ← H.parentV alue(ag )};
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We start with a policy for selecting the next attribute of a tuple
t to generalize (ag ) which guarantees reaching the correct attribute
values of a maximally focused community C, if one exists and t �
Ct . This policy involves choosing the attribute with a value that
when generalized to the next hierarchical level results in the largest
gain on the new tuple’s support.

argmax
ag ∈t

support({a ∈ t |ag .value← H.parent(ag .value)},P)

where ag .value is the current value of the attribute ag (e.g. if
the attribute is Location, it could be Los Angeles or California).
The argmax function returns the attribute value for which the tuple
support attains its maximum value. The main drawback of this
approach is the need to calculate the support of N different tuples
in each iteration. Since a total of O(N ) iterations is required to
reach a maximally focused community, the total time complexity
becomes quadratic (O(N2)).

Theorem 1. The attribute generalization policy will lead to a
maximally focused community C if the starting tuple t � Ct .

Proof. Let C be a maximally focused community with size ��C�� ≥
ξP and with a focus metric less than ε . Let t be a starting tuple with
n attribute values so that t � Ct (Ct can be reached by generalizing
attribute values in t). Ct can be correctly reached from t if after
O(n) iterations t ′ becomes Ct . The only way that a selection pol-
icy can fail to reach Ct , during the climb from t to HEAD, is if one
attribute value of t gets generalized beyond the corresponding at-
tribute value of Ct . To prove the theorem we need to show that the
selection policy will never select to generalize an attribute of t that
has reached the same value with the corresponding attribute of Ct .

Let ti and t j be the ith and j th attribute values of t, and ci and cj
the ith and j th attribute values of Ct . Assume that ti has reached
the same value with ci , and that t j has not: t j � cj . C is a max-
imally focused community so given the maximality property any
further generalization of an attribute in Ct cannot lead to a new
focused community. Therefore, the generalization of ti will not in-
crease the support of t while the selection of attribute t j (or any
other attribute not generalized to the same level with Ct ) will result
in a new tuple t ′ with an increased support. Thus, as long as there
are attribute values in t that are not generalized to the same level of
Ct , their selection will always be prioritized over attribute values
that have reached the correct level of generalization, till all of them
are correctly generalized.

4.3.2 Greedy Attribute Selection Approach
To improve the efficiency of the focused community extraction

algorithm and render it scalable, we propose a greedy policy to se-
lect the attribute ag : choose the attribute value of the tuple that
has the smallest support in P (argmin). The intuition behind this
approach is that in a homophilic community defined by N charac-
teristics, the characteristic with the smallest support is the one that
most likely constrains the size of the community the most. More
specifically, the support of a tuple t is equal to the size of the inter-
section of the N attribute values in t and the size of this intersection
is bounded by the support of the attribute value with the smallest
support. The only way to increase this bound is by generalizing the
smallest attribute in order to match more datapoints. This obser-
vation is illustrated in Figure 1b: if either of the two values va or
vc is generalized, the intersection of the three attributes will still
be limited by value vb and remain almost the same size. Instead,
the generalization of vb has the greatest potential to increase the

(a) (b)

Figure 5: (a) An example of the specific case for which the greedy
attribute selection policy can fail to select the correct attribute.
(b) An example of a community with split attribute values.

intersection of the three attributes. The mathematical form of this
policy is the following:

argmin
ag ∈t

support(ag .value,P) (4)

The main benefit of the greedy policy over the exact approach,
is the improvement of time complexity. While we need to compute
the support of N attribute values in each iteration, we do not need
to actually perform the operation for every attribute value in every
iteration, since only one of the support values changes: the support
of attribute ag which gets generalized. All other attribute values of
the tuple remain the same therefore their support does not change
in the next iteration. Storing in memory the support of the N − 1
attribute values only a single support calculation needs to be per-
formed per iteration. With an O(1) time complexity per iteration
the total climbing time complexity becomes O(N ).

The downside of the greedy policy is that it does not offer spe-
cific guarantees for reaching a maximally focused community. In
fact, there is a specific case where the greedy approach might choose
to generalize an attribute value that is not the correct one. Figure
5a visualizes this scenario where all of the necessary requirements
to fail are met: Assuming that a correct community exists and is
[male, California, 13-22], if the climbing process seeded by the tu-
ple [male,San Francisco,18] has currently reached tuple [male, Cal-
ifornia, 18] then the greedy policy will select attribute value Cali-
fornia for generalization since it has the smallest support. However,
the correct choice would be to generalize the value 18 to 13-22 in
order to reach the correct focused community. If California is gen-
eralized, the focused community will not be reached.

4.3.3 Climbing Phase Extension
The Climbing algorithm, as described so far, requires that a com-

munity characteristic is precisely described through the hierarchy.
However, there can be cases where a community expands in a level
that is not present as a node in the hierarchy. For example, a fo-
cused community might be exclusively split in two remote loca-
tions: San Diego and New York. The only way to describe both
cities with one attribute value would be to generalize them to the
country level: USA. Ideally, we want to avoid this generalization
since USA also indicates a community that expands in the whole
country and not only San Diego and New York.

If this scenario occurs for a single attribute only, then two indi-
vidual focused communities can be extracted. When this pattern
is observed in more than one attributes then the extraction of in-
dividual communities might not be possible. Figure 5b illustrates
such an example where a focused community resides in two sepa-
rate cities and two disjoint age groups. Note that the intersection
between a single location value and single age value does not form
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a focused community by itself (based on the definition). A focused
community can only be reached if the location attribute has value
SanDiego|NewY ork and the age attribute has value 13− 18|30+,
where the “|” operator stands for “or”. We will be referring to such
values as “split attribute values” and to the individual values of a
split attribute value as siblings.

The generalization of an attribute value from v to v′, given a
population of datapoints P, should be acceptable if the majority
of attribute values directly succeeding v′ are also represented in
P. For example, we can generalize the value Male to “*” only if
there is a significant number of females in the population as well
(at least ξ%). Or generalize the value Los Angeles to California
only if the majority of cities in California also have a presence is
P. Calculating the presence of a majority can be computationally
expensive so instead we utilize a simpler heuristic: If at least m
different attribute values directly succeeding v′ are also represented
in P then the generalization is acceptable. In the experiments, we
used a value of m = 3 for all attributes except Location which had a
value of m = 7. This results in an accuracy of 93%, with the exact
approach to test majority being the ground truth.

To extract communities with split attribute values the climbing
algorithm has to be altered to handle such cases. The necessary
changes are shown in Algorithm 3 which replace lines 7 and 8 in
Algorithm 2. The intuition is that when an attribute value gener-
alization is not acceptable there might still be other sibling values
which are part of a homophilic community. By sampling a few dat-
apoints from P we can discover those sibling values (lines 5 and 6).
It is still necessary to generalize these sibling values (line 8) with
regards to ttemp to eventually reach a maximally community. For
example, let a focused community expand in two regions Califor-
nia and Florida and only there. Starting from the attribute value
ag = Los Angeles, we can generalize to California (ag ← Cali-
fornia) but generalizing California to USA is not acceptable since
the whole country of 50 states can not be represented by just two
states. If a new sample from P is seeded, other cities from Cali-
fornia and Florida will be discovered as sibling values. Cities in
California are already part of the current ag and can be ignored.
Cities in Florida, like Miami can be accepted but should be tested
for further generalization, i.e. to Florida. Since this generalization
is acceptable, Florida will become a sibling value to California.

This algorithmic extension has no significant impact on the com-
plexity. Though the cases of split attribute values were quite rare
in our experiments, even when met, the additional complexity only
includes the additional steps for checking and generalizing the new
attribute siblings (line 8 in Algorithm 3). Given that there can be
a maximum of 1/ξ siblings for each attribute the total complexity
becomes O(n/ξ), with ξ ≤ 1.

Algorithm 3: Extension for handling split attribute values
Result: Maximally generalized tuple t ′ with split attributes

1 if t ′ , NULL and f ocus(ttemp ,P) > ε then
2 return;

3 ag ← getNext AttributeToGeneralize(ttemp ,P,H);
4 if generalization of ttemp [ag ] not acceptable then
5 S′← sample(P);
6 splitV alues← {t[ag ]|t ∈ S′ and t � ttemp };
7 for splitV alue ∈ splitV alues do
8 splitV alue← generalize(splitV alue);

9 else
10 splitV alues = {H.parentV alue(ag )};

11 ttemp ← {a ∈ ttemp |ag ← splitV alues};

4.4 Topic Ranking Phase
During the traversal of datapoints using a sliding window of size
|W |, the Sample&Climb module identifies a set of topics with their
corresponding maximally focused communities. This set can be
quite large and may include uninteresting cases. We therefore de-
veloped a score metric to order this set in a way that ensures more
interesting or surprising topics are ranked higher. Initially, a fil-
tering pre-step is necessary to remove topics with unsurprising fo-
cused communities. For example, if a topic has a focused commu-
nity of males with support 50%, and half of the total Twitter popu-
lation in W is male anyway, then the focused community is actually
expected. We perform a Pearson’s chi-squared test to compute the
anomaly of a topic’s community (expected Vs. observed) and fur-
ther filter-in candidate topics with significance of p ≤ 0.05.

To obtain an interesting ranking of topics, after filtering out the
topics with expected focused communities, we use a combination
of two measures: Inverse Community Frequency and Relative Com-
munity Popularity. Both measures aim to normalize the raw fre-
quency of a topic in order to boost those topics with interesting
focused communities. Inverse Community Frequency (icf) is in-
spired by Inverse Document Frequency from text document rank-
ing in Information Retrieval. Here we use it in a similar context: to
tune down community characteristics that get associated with many
topics. A community characteristic that appears in few topics only
should be more interesting. Inverse Community Frequency, mea-
sures how many topics in the whole window W of datapoints also
share a community characteristic. For example, the icf of location
Santa Barbara will depend on how many topics in W have a fo-
cused community that contains Santa Barbara. The icf score of a
community C is the product of icf scores for each attribute value in
C. The icf score for a single attribute value a is equal to:

ic f (a) = log
Nt

|{T ∈W |a ∈ C}|

where Nt is the total number of topics in W and the fraction de-
nominator is equal to the number of topics T in W with a com-
munity C that contains the attribute value a. Relative Popularity
takes values between 0 and 1 and practically compares the size of a
topic’s focused community with the size of the community with the
same characteristics in the window W of datapoints. The relative
popularity score is calculated as the fraction of the support of a
community in P over the support of the community in W:

rp(C) =
support(C,P)
support(C,W )

For example, if a topic is being discussed by 100 women and the
number of women in W is also 100, then this community has a
relative popularity of 1. The overall scoring function is based on
each topic’s extracted focused community C and uses both notions
of relative popularity and exclusive focus:

score(T ) = |P | × rp(C)× ic f (C) (5)

where C is a focused community of the topic T, P is the population
of the topic. The overall score of a topic is proportional to the
topic’s raw popularity (size of P), the relative popularity score of
the topic’s community, and the icf score of its community. Using
this score metric we rank the candidate topics and obtain a list of
top-k Trending Topics as the final result of the algorithm.

5. HANDLING MISSING VALUES
One of the main challenges when dealing with real social data-

sets is the sparsity of attribute values. This observed sparsity (miss-
ing values) is due to the low recall of specific inference tasks which
usually originates in the general lack of sufficient information to
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infer attributes with high confidence (e.g., not enough textual infor-
mation to infer the age of a user). For example, it is possible that
a topic is mentioned by 1000 users, and within this population 100
have complete location information and 250 have their age success-
fully inferred. The intersection of the users that have both location
and age values extracted is even smaller.

Let P be a population of datapoints and C a maximally focused
community in P if there were no missing values. Let N be the num-
ber of attributes and mi ∈ [0,1] the portion of missing values for
each attribute ai . The discovery of a focused community requires
at least one attribute value (exclusive feature) with size equal to the
size of the community, assuming 0 relaxation (ε = 0). Note that
the size of the community is equal to the number of datapoints in
P that match the tuple that defines the community. In the presence
of missing values, an attribute tuple will not match every datapoint
that it should. For example, the tuple [California, Male, *] does
not match the datapoint [Los Angeles, ⊥, 18] because ⊥ does not
succeed Male. Therefore, if there are randomly missing values in
each attribute, the observed size of the community C and the size
of the exclusive feature will differ and the focus metric will not be
low enough to identify the focused community.

To overcome this problem, we allow a tuple to match missing
values during counting. Referring back to the previous example,
we allow the tuple [California, Male, *] to match the datapoint [Los
Angeles, ⊥, 18]. This alteration fixes the issue of under-counting a
tuple, but introduces over-counting: additional datapoints are now
counted as part of a community. However, the community size
over-estimation is statistically bounded. Let v f be the attribute
value that plays the role of the exclusive feature in the focused com-
munity C and let m f be the ratio of missing values for the attribute
a f . The focused community can be divided in two parts: the dat-
apoints that belong in the community and have a value v f for the
attribute a f and the datapoints that belong in the community and
have a value ⊥ for the attribute a f (missing value). Similarly, the
datapoints outside the focused community can be divided in two
parts: the datapoints that have a value v′

f
, v f for the attribute a f

and the datapoints that have a value ⊥ for the attribute a f (missing
value). Note that there are no datapoints outside the community
with value v f for the attribute a f based on the definition of the fo-
cused community. The datapoints that could be mistakenly counted
are the ones outside the community, with a missing value. Among
these datapoints, the other N − 1 attribute values must also match
the corresponding attribute values of the community or be missing.
The expected size of this subset of datapoints is bounded by:

m f
��P−C�� ≤ m f

��P��− ξ��P�� = m f (1− ξ)��P��
This is an upper bound of the expected count of wrongly counted

datapoints since some of these datapoints will likely have a differ-
ent non-missing value for some attribute ai , a f and will not match
to the community’s tuple. In any case, in the presence of many
missing values it is recommended to use a higher support threshold
ξ for the correct detection of focused communities since the above
value gets closer to 0 when ξ → 1.

6. EXPERIMENTS AND ANALYSIS
To understand the performance and accuracy of the proposed al-

gorithm we performed experiments on two different datasets, one
real and one synthetic. The real dataset comprises of a 10% sample
of the Twitter stream from 2013 and 2014 and tested the perfor-
mance of the algorithm and quality of the results. The synthetic
dataset was specifically constructed to examine the accuracy and
recall of the proposed approach and includes a complete spectrum
of scenarios — some that might be rare in a real dataset.

We introduce the details of the Twitter dataset and attribute ex-
traction process in Subsection 6.1, then offer a qualitative analysis
of the produced results in Subsection 6.2. In Subsection 6.3 we of-
fer a quantitative evaluation of the Twitter results to measure their
usefulness and attractiveness. Finally, we discuss the performance
of the algorithm on synthetic data in Subsection 6.4.

6.1 The Twitter Dataset
The used Twitter dataset contains a uniform 10% sample of all

the tweets and Twitter users from the following two periods: Septem-
ber 12 to October 26 of 2013 (45 days) and April 16 to May 24 of
2014 (39 days). The pool of topics contains every mentioned hash-
tag or capitalized entity from the tweets’ raw text. The extracted
tweet features include location, the list of external user mentions
(@-replies), the device the tweet was posted from (e.g. iPhone,
Android, web browser), and the general sentiment. Location ex-
traction was done on (1) the tweet level using Twitter’s geo-tagging
mechanism, and to further improve the recall, on (2) the user level
using a user-provided raw text field (similarly to [27, 2]). To infer
location based on the user’s field we applied a simple but precise
pattern matching process that could identify location patterns like:
“City, Region, Country”, or “Region, Country”, or just “Country”.
To validate the patterns we used a Location hierarchy provided by
the MaxMind database [12]. The user device was extracted from
the available information provided by the Twitter API [26]. To infer
the sentiment of a tweet we used the SentiStrength tool [24]. Note
that not all features were available in every tweet; for example, less
than 2% of the tweets had an explicit location tag or non-neutral
sentiment (missing values).

Meaningful and interesting community extraction requires a di-
verse set of user characteristics/demographics. To expand the num-
ber of extracted attributes from the Twitter dataset we additionally
infer the users’ age, gender, political affiliation, and sports team
preference. To extract gender and age we applied existing language
models extracted from Schwartz et al. [23] on social media data. To
apply the models we gathered all the tweets of every user for each
of the two analyzed periods of data. While this is an expensive
process, especially space-wise, it can be done offline and does not
affect the complexity of our Sample&Climb algorithm. For politi-
cal affiliation we gathered the Twitter accounts associated with the
three most popular US political parties: Democratics, Republicans,
and Libertarians. Then, a user’s political affiliation was determined
based on their interactions (@-replies) with these accounts. Simi-
larly for sports, we collected the Twitter accounts of teams, players,
and coaches for the following four US professional sports: Base-
ball, Basketball, Football, and Hockey. For every sport, a user’s
team preference was inferred based on their interactions with each
team’s accounts. Table 1 shows the precision of each inference
task. Given that the language models are in English, age and gen-
der inference only works for english speaking users. Similarly, po-
litical affiliation and sports teams are focused on users within the
United States and Canada. Precision was calculated manually on a
sample of 100 users from each category. However, for the age and
gender inference we list the calculated precision from Schwartz et
al. Note that their models were tested on Facebook data and not on
Twitter, so precision might differ slightly.

In total, the experimental setup contained 10 attributes: 1) Lo-
cation (either from the tweet or the user), 2) Age, 3) Gender, 4)
Political affiliation, 5) Baseball team, 6) Basketball team, 7) Foot-
ball team, 8) Hockey team, 9) Tweeting device (e.g. iPhone), and
10) Sentiment. While the sentiment is not strictly a user charac-
teristic, it helps with the interpretation of the results by hinting at
the attitude of the community towards the topic. Apart from Loca-
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Inferred Attribute Source Precision
Location Geo-tagged tweets 100%
Location User specified location 96.1%
Device Twitter API 100%
Gender Schwartz et al. [23] 91.9%
Age Schwartz et al. [23] .84 (R value)
Political Affiliation Interaction with parties 83.4%
Baseball Team Interaction with teams 91.5%
Basketball Team Interaction with teams 93.7%
Football Team Interaction with teams 87.8%
Hockey Team Interaction with teams 95.0%
Sentiment SentiStrength [24] 68.7%

Table 1: Inference accuracy of Twitter attributes

tion, and Device all attribute hierarchies have only 2 levels (trivial
hierarchy). Specifically, the Location hierarchy has 4 levels: city,
region, country, and “*”. The Device hierarchy has 3 levels: spe-
cific device, “mobile”/“desktop”, and “*”.

Settings. The execution of the community extraction algorithm
was applied on the stream of tweets using a sliding window of size
500,000. On a typical day this amount of tweets can be produced
within two minutes of real time. For every new window new topics
get introduced, existing topics receive additional mentions, and old
topics get evicted. To reduce noise, candidate topics are required
to have at least 50 mentions during the window. The rest of the al-
gorithm settings are: selection policy: greedy, seeding sample size
(k): 20 datapoints, ε : 0.15, ξ : 0.3. The choice of ε is based on the
fact that Twitter data is noisy and the community extraction should
be relaxed enough to accommodate this noise. The value of the sup-
port threshold ξ is based on the average population of a Trending
Topic on Twitter, which is usually between 1K and 200K tweets,
therefore we can expect communities of size between 300 and 60K
users (smaller communities would not be interesting). Note that
our dataset only contains 10% of the tweets in Twitter Firehose,
therefore all reported size numbers in the results section should be
1/10 of what we would get on the whole Twitter dataset.

6.2 Qualitative Evaluation of Twitter Results
The final product of this experiment, is an ordered list of Trend-

ing Topics and the corresponding maximally focused communities
that were extracted, in each window. The extracted community of
a topic might differ between different windows as different or addi-
tional users mention the topic and the population changes.

We cherry-picked some topics to showcase interesting behaviors
and qualitatively argue that the results actually make sense. These
topics are listed in Tables 2 (general interest trends) and 3 (trends
with a sports related focus). A “*” value indicates that the attribute
got generalized to its top level of the hierarchy. A “⊥” value in-
dicates that there was not enough information to extract a specific
attribute value (due to missing values). Attribute values for Device
and Basketball team are omitted due to lack of space. Topics that
appear twice are taken from different windows, or even days, and
are listed to show the dynamic nature of focused communities as
the topic population grows or just changes.

One interesting result includes hashtag #DisneySide which was
a social media campaign by US Disney Parks. Disney asked from
fans to tweet photos of their ‘Disney Side’ from their visit to a Dis-
ney theme park. During the first day, most of the tweets occurred
in the two cities where a Disney park is located: Anaheim, Califor-
nia and Orlando, Florida (split values). The next day, the campaign
audience expanded to the include whole states of California and
Florida.

Other topics that are not self explanatory are briefly discussed
here: Topic #PS4 stands for ‘Play Station 4’, the gaming console.
#Bring1DtoGreece stands for ‘Bring 1Direction to Greece’ where
One Direction is a globally popular boy band. #NavyYardShooting
is about a mass shooting that occurred on September 16, 2013 on
a US military base at Washington, D.C. Topic #ReasonsToVisitE-
gypt started as a touristic campaign for Egypt but got highjacked
with citizens’ complains, hence the negative sentiment. Topic Penn
State is related to a college football match where college Penn State
played in Bloomington, Indiana. Indianapolis is also in the results
since it is the capital of the Indiana state and it is very likely that
fans/students might have specified it as their location. #auspol is
a hashtag about police brutality in Australia. In the early stages
of the trend it was mostly mentioned in the two largest cities of
Australia but as it became popular, the whole country became the
focused community. The topic #FreeJustina is about an arrested
female teen named Justina from Boston. We observe that women
in the area of Boston, MA, that also support the Democratic party,
showed their solidarity to Justina through this hashtag. #cdnpoli
stands for ‘generic canadian political issues’ and this is why the
topic’s location is in Canada. #AZvsNO stands for ‘Arizona vs New
Orleans’ and it is an example were the extracted community has a
split value in the Football attribute. Finally, #Boston is an interest-
ing case with a focused community that consisted of users which
were fans of local teams in all three sports attributes.

An interesting general observation in the Twitter results is that
for topics related to activism or politics, usually the male demo-
graphic was prevalent (with exceptions like #FreeJustina). For top-
ics related to memes or pop culture, usually the female demographic
was prevalent. A similar pattern based on age was not observed.

To compare the community-based topics with a baseline, we list
the top 10 topics based on each ranking: raw popularity ranking
and community-based ranking (relative community popularity and
inverse community frequency). Both topic lists are extracted from
the same randomly selected window. The results are shown in Table
4. Raw popularity results in popular but not necessarily informative
or diverse trending topics (e.g. #ipad). On the other hand, topics
ranked based on their focused community characteristics appear to
be more interesting and are further enhanced with the information
of who is interested in each topic. The average similarity between
the two rankings was measured with the Set Based Measure de-
scribed in [28] (average ranked correlation cannot be applied since
our method filters out some topics). In general, the idea is to de-
termine the fraction of content overlapping (set intersection) at dif-
ferent depths. The average set based measure with a depth of 20 is
equal to 0.089 while with a depth of 10 is 0. These values indicate
that the two rankings produce heterogeneous top-k lists with mini-
mal overlap and signifies that surprising communities do not have
a focus on extremely popular topics.

6.3 Quantitative Evaluation of Twitter Results
As with many unsupervised learning tasks, evaluating the pro-

duced results is a challenging task. In content recommendation sys-
tems used by real users, one can run A/B tests to compare the suc-
cess of the algorithm with a baseline. To evaluate the community-
based topics in terms of potential usefulness and interestingness we
(a) measure the entropy of the results as an objective quantitative
measure, and (b) asked human evaluators to choose their favorite
topics from a mixed pool of trending topics.

Using the notions of Self-information and Entropy from Infor-
mation Theory we provide a measure of the information content
for community-based trending topics. Self-information can capture
how surprising an event is based on the probability of the event.
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Table 2: Examples of general Trending Topics.

Topic Size Sentiment Location Age Gender Politics Size
#PS4 114 * * 13-18 Male ⊥ 111
#Bring1DtoGreece 117 * Athens:AT:GR 13-18 Female ⊥ 110
#NavyYardShooting 5427 Negative US 19-22 * * 5218
#ReasonsToVisitEgypt 50 Negative AL:EG, CA:EG * * ⊥ 49
#DisneySide (day 1) 54 Positive Anaheim:CA:US, Orlando:FL:US * Female ⊥ 50
#DisneySide (day 2) 53 * CA:US, FL:US * Female ⊥ 51
Penn State 64 Negative Bloomington:IN:US, Indianapolis:IN:US 19-22 Male * 56
#auspol 55 * Melbourne:VIC:AU, Sydney:NSW:AU * Male ⊥ 51
#auspol 461 Negative AU * * ⊥ 457
#FreeJustina 54 Negative Boston:MA:US * Female Democrats 51
#cdnpoli 151 Negative ON:CA 23-29 Male Republicans 139
White House 2989 * US * Male Republicans 2868
#ObamaCare 5090 Negative US * Male Republicans 4818
#ObamaInThreeWords 246 Negative US 19-22 Male Republicans 224

Table 3: Examples of Trending Topics in sports.

Topic Size Location Age Gender Baseball Football Hockey Size
#TMLtalk 3437 Toronto:ON:CA 19-22 * ⊥ ⊥ Toronto Maple Leafs 3096

#AZvsNO 50 ⊥ 19-22 * ⊥
Arizona Cardinals,
New Orleans Saints ⊥ 50

#RedSox 528 Boston:MA:US 19-22 Male Boston Red Sox ⊥ ⊥ 411

#Boston 51 ⊥ ⊥ ⊥ Boston Red Sox
New England

Patriots Boston Bruins 51

Table 4: Comparison between raw popularity trending topics (left) and trending topics ranked by the proposed ranking score (right).

# Topic Size Topic Score Size Community attribute values
1 #gameinsight 8592 #auspol 62570.109 59 Sydney,AU, Negative sentiment, Male
2 # net 5555 #miami 42330.137 50 Miami,US, mobile, 19-22, Male
3 #android 5117 #iraq 35321.723 61 Mobile, Negative sentiment, Male, Republicans
4 #androidgames 4999 #news 29135.463 958 Mobile web, negative, Male
5 #ipadgames 4057 #uk 19354.53 105 Sevenoaks,GB, Web, Male
6 #ipad 3958 #nature 17530.416 78 Browser, Positive sentiment, 23-29, Female
7 #mpn 3012 #benghazi 13585.276 59 Mobile, Negative sentiment, Male, Republicans
8 #iphonegames 2229 #tcot 10481.482 229 Negative sentiment, Male, Republicans
9 #tbt 2211 #hair 5858.8447 93 iPhone, Positive sentiment, 13-18, Female

10 #nowplaying 1972 #redsox 5346.331 60 Male, Boston Red Sox

Then, we can calculate the entropy of the experiment (extracting
community-based trending topics) as the expected value of every
trending topic’s self-information. The self-information of the com-
munity CT for a single topic T is I (CT ) = −log2(Prob(CT )). In-
tuitively, the less likely a community is to observed the higher its
self-information. The prior probability of CT can be measured in
the sliding window as the percentage of datapoints that contain CT .
The entropy of the results is equal to the expected value of all topic
communities: E[I (CT )]. Since we are using logarithm with base
2 in the self-information calculation, the final entropy will be mea-
sured in bits. We also measured in the same way the entropy of
communities associated with trends ranked by raw frequency, i.e.
the more standard popularity-based trending topics. In this case,
topics do not have a focused community that can be defined as a
single attribute tuple. However, we can still calculate the probabil-
ity of the observed population characteristics for each topic based
on the prior probabilities from the sliding window.

The average entropy for the community-based topics was found
to be 1.87 bits. The average entropy for frequency-based topics
was found to be much lower: 0.27 bits. This indicates that the ex-
tracted topics using our method contain surprising and potentially

useful communities that cannot be trivially anticipated or that are
not observed in topics ranked by raw frequency.

To measure exactly how much more interesting real users would
find the extracted topics we performed the following experiment
with human evaluators (colleagues and Amazon Turkers): We ran-
domly picked a timeslot from our dataset and created a pool of 10
topics, which included a random selection of top ranked topics by
our algorithm and top ranked topics by raw popularity (similarly
to Table 4). These 10 topics were then presented, unlabeled and
randomly ordered, to an evaluator. We asked each evaluator to pick
5 topics (in no particular order) that they find the most interesting,
where a topic is defined as interesting to a user if they would like to
know more about it; get tweets that contain it, read news articles,
see related images, etc.

The histogram in Figure 6 shows the results of this experiment
performed on 12 Computer Science graduate students from the
University of California, Santa Barbara. Topics denoted by (C) are
community-based and topics denoted by (F) are frequency-based.
All of the top selections ended up being community-based topics
even though some evaluators were interested in simply popular top-
ics like #ThrowbackThursday or #NowPlaying.
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Figure 6: People’s topic preference from a pool of 10 topics. All of
the top ranked topics are community-based.

To reduce any bias on the reported evaluations results, we per-
formed the same experiment with 5 topic pools on Amazon Turk
with an average of 72 participants per pool and 10 topics per pool.
All participating turkers were based in the US. The results are shown
in Table 5. The first two rows display the percentage of community-
based topics (c-topics) in the top-3 and top-5 of the evaluators’ se-
lections. On average, community-based topics were ranked in the
top-3 on 73.3% of the times, and in the top-5 on 60% of the times.
These two values indicate that in both the top-3 and top-5 cases, the
majority of interesting topics was community-based. The final two
rows of Table 5 show the percentages of c-topic and frequency-
based topic (f-topic) selections — how many times an evaluator
clicked a topic of each category as interesting. This value can also
be viewed as the probability of each category/method to produce
an interesting topic. On average, community-based topics have
26.86% better chance to be more interesting than raw frequency
ranked topics, which shows that in most cases users will find our
algorithm’s results more interesting. Overall, a few topics ranked
by raw frequency will still be interesting to users due to their popu-
larity, but overall our method delivers more appealing results to the
average person as represented by Amazon Turkers.

The right-most column of Table 5 displays the above statistics
for the experiment we run on the CS grad students which was ap-
plied on the topics of Pool 1. It is interesting to note the difference
between these values and the values of the first column of the ta-
ble which shows the results of Pool 1 with Amazon Turkers. This
difference indicates that a group of people with a biased interest in
news (like graduate students) might find topics with a community
focus more interesting than a random diverse population (like US
based Amazon turkers). In future work we plan to explore person-
alized topic scoring that produces different rankings for different
users to further increase relevance.

6.4 Experiments on Synthetic Data
The synthetic data was mainly used to test the effectiveness and

efficiency of our proposed algorithm on specific scenarios. Using a
pseudo-random data generation process we were able to inject com-
munities and then test the algorithm for the expected result. The
first part of the generation process includes the random building
of the dimensional space: number of attributes n (between 5 and
20), possible values for each attribute ai (between 2 and 50000),
and the number of levels in the attribute’s hierarchy hi (between
2 and 5). The second part includes the creation of a community
C by randomly selecting a value ci for each attribute ai , given
equal selection probability to each level of the hierarchy hi . The
result is an array of attribute values [c1,c2,...,cn] that defines the

expected focused community of the population. This community is
also assigned a randomly selected size ratio pC between 30% and
90% of the total size of the population. The third and final part is
the creation of the population with a random size between 10,000
and 1,000,000 to simulate the numbers of Twitter Trending Topics.
Every created datapoint has a probability of being part of the com-
munity C equal to pC . If the datapoint is detemined to be part of
the community, each attribute value vi is selected randomly from
the leave attributes of hierarchy hi which are also descendants of
(or equal to) ci . If the datapoint is not part of the community, then
each attribute value vi can be uniformly selected from every possi-
ble value of attribute ai . A total of 10000 population groups were
created, each with a single maximally focused community.

The above construction process creates simple communities. To
test the more rare extended version of a community where attribute
values are split (like in Figure 5b), we altered 1000 cases so that the
selected values in each attribute dimension were more than one;
half of the times under the same direct ancestor in the hierarchy
and the other half with separate direct ancestors. We limited the
number of split attributes of a community to a maximum of 5. The
algorithm settings that we used on the synthetic dataset were the
same as with the Twitter experiments: selection policy: greedy,
seeding sample size: 20 datapoints, ε : 0.15, ξ : 0.3

Results: The algorithm was able to find the correct communities
in each synthetic population with an accuracy of 93.1%. A com-
munity extraction was labeled as successful when the exact correct
community could be identified. In the rest of the cases that failed,
most of the time there would be a community attribute value or two
that were further generalized than expected. By measuring the ratio
of correctly extracted attribute values for each community the aver-
age accuracy is 97.2%. The running time for all 10000 cases was a
little less than 10 minutes on a 2.6GHz Inter Core i5 workstation.

7. CONCLUSIONS
We study the problem of extracting multi-dimensional commu-

nities focused on individual topics by introducing the notion of a
maximally focused community with properties that enable the effi-
cient discovery of interested communities defined by a subset of so-
cial attributes. These properties led to the implementation of an al-
gorithmic framework for the extraction of maximally focused com-
munities of any topic with proved linear time complexity. Finally,
we provide a robust ranking that boosts topics with relatively pop-
ular or exclusively focused communities through metrics adapted
from Information Retrieval.

Extensive experimentation was conducted on two different data-
sets: one real from Twitter with data from large periods in 2013/14
and one synthetic. The results highlight the efficiency, correctness,
and stability of our proposed algorithm. We are able to identify
interesting communities for Trending Topics, sometimes expected
and sometimes unexpected. It is interesting to observe that females
in Boston, which also support the Democratic party, show their sol-
idarity to an arrested teen (#FreeJustina). It is unexpected to dis-
cover the hijacking of a touristic hashtag in Egypt from local citi-
zens that try to raise awareness for the country’s political situation
(#ReasonsToVisitEgypt). Such data can be used by advertisers, an-
alysts, the police, or any other entity, to better understand a topic’s
participating population or who contributes to a trend.
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