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Abstract—Life Cycle Assessment(LCA) is crucial for evalua-
ting the ecological sustainability of a product or service, and
the accurate evaluation of sustainability requires detailed and
transparent information about industrial activities. However,
such information is usually considered confidential and withheld
from the public. In this paper, we present a rigorous study of
privacy in the context of LCA. The main goal is to explore
the privacy challenges in sustainability assessment considering
the protection of trade secrets while increasing transparency of
industrial activities. To overcome privacy concerns, we apply
differential privacy to LCA computations considering the idiosyn-
cratic features of LCA data. Our assessments on a specific real-
life example show that it is possible to achieve privacy-preserving
LCA computations without losing the utility of data completely.

I. INTRODUCTION

One of the greatest challenges facing global society is to
ensure that the industrial goods and services required by a
growing and modernizing population can be met sustainably
and equitably [23]. Industrial Ecology (IE) is the study of
resource requirements and the social and ecological implica-
tions of industrial activities. Its primary utility is to inform
consumers, businesses, and policy makers about the magnitude
and significance of material flows through the economy that
supports specific products, technologies, or systems [26]. One
primary technique in IE is life cycle assessment (LCA), a
standardized methodology for estimating the total environ-
mental implications of products or services [5], [9]. The core
methodology of LCA is governed by a set of international
standards [15] and is widely applied to evaluate the potential
ecological consequences of consumption decisions.

Preparing an LCA requires access to a database of infor-
mation about the inventory requirements and environmental
emissions of industrial processes, called a life cycle inventory
(LCI) database. Preparing an accurate and comprehensive
LCI database is a tremendous task and the development and
maintenance of these resources is an ongoing challenge [22].
Because industrial processes are typically undertaken in a
competitive economic context, the operators of these processes
would like to prevent potential competitors from learning
sensitive information about their activities. Information that
may be valuable to a competitor is often termed confidential
business information. Inventory data about industrial processes

is usually considered to be confidential, and therefore is often
not available freely. This type of information is nonetheless
required in order to accurately assess environmental impact.
As a consequence, the historical development of LCA has
long been intimately bound to questions of confidentiality [14],
[10].

Despite its centrality to LCA, data privacy in the LCA
domain has not formally considered. In particular, methods
for privacy-preserving data publication in LCA have not
been well-developed. The guiding principle behind privacy
protection in LCA database preparation is that data that are
regarded as secret by the owners can be concealed through
aggregation with other data sets and with data sets extracted
from LCI background databases (see [22], ch. 3).

In this paper, we formulate the LCA computation in a way
that allows us to introduce a privacy model, and consider
possible threat models and attacks that could result in an
adversary learning private data. Our goal in this paper is to
provide the data security community with a real sense of
the challenges faced by practitioners in the field of Industrial
Ecology. We explore a particular problem in LCA and explore
the privacy issues and possible trade-offs between increase
transparency by industrial companies and privacy protection
of trade secrets that preserve competitive edge. The results
of our attacks justify the concerns over publishing inventory
data about industrial processes without securing with any
security. To tackle this problem, we apply privacy techniques
to LCA computations and illustrate their usage on a specific
real life example. Our evaluations over a real life example
highlight that it is possible to achieve privacy-preserving LCA
publication without losing too much utility on the published
data while ensuring privacy with the application of differential
privacy. A straightforward optimization such as normalization,
considering the idiosyncratic features of LCA data, delivers
a reasonable improvement in the publication quality without
sacrificing the privacy.

The followings summarize our contributions in a nutshell:

• The first formal privacy-preserving LCA computation
formulation while providing more transparency.

• Verify privacy concerns of LCA practitioners by develo-
ping an attack.
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• Develop a differentially private matrix multiplication that
is particularly efficient in the LCA context.

• Evaluate the proposed privacy-preserving publications
and propose optimization to improve publication utility.

The rest of the paper is organized as follows. The next
section formulates the LCA aggregation problem and explains
current practice along with privacy concerns. Section III inves-
tigates the validity of privacy concerns in LCA publications.
Differentially private LCA publication techniques are presen-
ted in Section IV. The following section presents experimental
evaluation. The final section concludes the paper.

II. FORMULATING THE LCA AGGREGATION PROBLEM

A. LCA Basics

LCA following the ISO standards describes the delivery of
a product or service as a network of industrial unit processes
whose outputs are required in order to provide a functional
unit of utility to a user. Each unit process represents one form
of industrial activity. Each edge in the network indicates a flow
from one process to another, or between one process and the
environment. Flows between processes are called intermediate
flows, and flows between a process and the environment are
called elementary flows. Only elementary flows may generate
environmental impacts [15], [12].

LCA studies distinguish between a foreground model, which
represents the activities under scrutiny, and a background
model, which represents the operations of the broader eco-
nomy [21]. Private data are typically contained in the fo-
reground model. The preparation of a background database
is outside the scope of an individual study, and background
databases are provided and maintained by dedicated research
[25] or commercial [2] organizations. Although background
databases are subject to licensing restrictions, in this study
they are regarded as publicly available because any party
who purchases a license may inspect them freely. Background
databases are assumed to be available in an aggregated form
in which the relations among the different processes are not
known.

An LCA aggregation study can be described as three se-
quential matrix multiplications with respect to a background
database Bx[16]. Bx is an m × n matrix that maps a set
of n background processes to a set of m elementary flows.
The foreground model is made up of a set of p foreground
processes, each of which is defined by its dependencies on
the n background processes. These are described in an n× p
dependency matrix Ad, which comprises the study’s private
input data. Here w is a p-element weighting vector that
specifies the relative significance of the different foreground
processes. The first multiplication aggregates the foreground
model into a weighted dependency vector ap:

ap = Ad · w (1)

The dependency vector ap is then applied to the background
database to determine an emission vector b:

b = Bx · ap (2)

The vector b, also called a life cycle inventory, reports
the aggregate amounts of different emissions released into
the environment throughout the life cycle of the product
system specified. The results of the inventory computation
must be characterized with respect to a set of t environmental
impact categories, represented by multiplication with a t×m
characterization matrix E.

s = E · b (3)

This multiplication results in a set of t impact scores s ,
which are the final results of the study. The impact scores
in s provide a basis to compare different product systems
with equivalent functional units on the basis of their potential
environmental impacts.

B. Privacy Concerns and Current Practice

The current practice in the Industrial Ecology community
is to make the result of the study s (Equation 3) publicly
available, so that the product system they represent can be
compared to other product systems. However, it is difficult
to evaluate the significance of the elements of s without
knowing something about b. For instance, an independent
researcher making a critical evaluation of s may wish to
know whether a given environmental emission was included
in b with a significant value. Alternatively, a practitioner may
require further knowledge about the flows in b, such as their
geographic or temporal scope. Some research questions may
require a practitioner to supply her own E matrix, which is
not possible if b is not disclosed.

On the other hand, these requirements raise several privacy
concerns over the data in Ad, for which ap is a proxy. In the
absence of a formal understanding of the privacy implications
of disclosing b, it is common practice in the community to
withhold b and only publish s. As mentioned earlier, Bx can
be regarded as public, and so there is conceivable risk that
ap could be back-computed from b if it is fully released. On
the other hand, the release of an obfuscated form of b may
permit certain research questions to be answered while still
ensuring privacy. In order to support the needs of the sustai-
nability research community, it is necessary to understand the
relationship between disclosure of b and exposure of elements
of ap.

III. CONFIDENTIALITY & PRIVACY ISSUES

As explained in Section II, b is an emission vector which
reports the amount of exchange for each emission during a
production or a service. b contains important information both
for environmental analysis and marketing decisions. However,
LCA practitioners are hesitant to publish b due to their
fear of information leakage concerning details of ap, and
hence potentially trade secrets that give a specific company a
competitive edge over its competition. The question is whether
the practitioners are right or not in their concerns. Here,
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we investigate the possible information leakage out of the
publication of b. In other words, how much of ap can be
recovered when b is published, given that Bx is public and
b is derived from the factorization of Bx and ap as shown in
Equation 2?

A. Industrial Ecology Privacy Concerns

The operations of an LCA aggregation study is sequential
matrix multiplications. If Bx is a nonsingular (invertible)
matrix, there exists a unique inverse denoted by B−1

x , i. e.,
Bx · B−1

x = B−1
x · Bx = I . Then, Equation 2 has a unique

solution, ap = B−1
x · b. This might be seen as a justification

of the concern not to publish b along with impact scores, s.
However, Bx in LCA is a singular matrix most of the time,
which means it is not invertible and ap cannot be solved
directly from Equation 2. Is this enough to ensure security
guarantees?

The answer to this question is unclear. The concept of
Moore-Penrose pseudoinverse of matrices [19], generalizes
the notion of a nonsingular (invertible) matrix and makes it
applicable to singular matrices. This concept is useful when
someone searches for an optimal approximation of a set of
linear equation solutions like A · x = y, where A is a known
m×n matrix, y is a column vector with m components and x
is an unknown column vector. x is the solution for the linear
system, which usually leads to the minimum least square of
(A ·x−y). A common approach to compute the pseudoinverse
is to use the Singular Values Decomposition (SVD) [11]. This
approach can be directly applied in the LCA study to reveal
the secret ap vector with some approximation. The Moore-
Penrose pseudoinverse has already been employed to solve
different problems like digital imaging methods [4], [24] and
astronomical data analysis [20]. A key question is to what
extent the ap vector computed from the pseudoinverse allows
an attacker to reconstruct ap. The next section investigates
the power of the pseudoinverse technique to reveal industry
secrets.

B. Revealing Industry Secrets using Moore-Penrose Pseudoin-
verse

This section briefly explains the features of the Moore-
Penrose pseudoinverse [19] in terms of its capabilities and
limitations. The pseudoinverse of a matrix A is denoted by
A+. For any matrix A, it is known that there exists only
one Moore-Penrose inverse A+, i. e., uniqueness. The general
psudoinverse solution to a linear system A · x = y is:

x = A+ · y + (I −A+ ·A) · q (4)

where q is an arbitrary vector of appropriate order. Since q
is arbitrary, there exists an infinite number of solutions when
(I − A+ · A) 6= 0. A natural question is whether there is a
case where (I−A+ ·A) = 0. The answer is in the affirmative
when A has a full column rank [18], A+ = (AT ·A)−1 ·AT .
Having a full column rank guarantees a unique solution to x
as seen from the following derivation:

x = A+ · y + (I −A+ ·A) · q
= A+ · y + (I − (AT ·A)−1 ·AT ·A) · q
= A+ · y + (I − I) · q = A+ · y

(5)

In the context of LCA, to the best of our knowledge, having
a full column rank in Bx matrix is very rare. The columns are
not completely independent from each other which leads to
having an infinite number of solutions for the linear system.
One can claim that having an infinite number of solutions for x
will create enough ambiguity and an adversary will not be able
to distinguish which x is close to the original one. However,
our empirical studies over a real LCA study disprove this and
show that one can solve the linear system approximately close
enough using the Moore-Penrose pseudoinverse as we will
explain in detail later in Section V. Therefore, we need to
ensure the security of publication which prevents an adversary
from recovering the solution even with the usage of Moore-
Penrose inverse. In the context of privacy-preserving data
publication, differential privacy becomes a canonical technique
due to its strong privacy guarantees and capability to release
useful aggregation information. Given that an LCA study is
an aggregation problem, we propose differentially private LCA
publications. The next section explains differential privacy and
its usage in the context of LCA publication in detail.

IV. ACHIEVING LCA PRIVACY

A. Background: Differential Privacy

Differential privacy provides a strong notion of privacy
and is commonly used for statistical data publication [6].
It ensures that the removal or addition of a single record
does not significantly affect the outcome of any analysis. It
quantitatively bounds how much a single record can contribute
to a public output. The formal definition of differential privacy
is [6]:

Definition 1. A random mechanism M gives ε-differential
privacy if for any neighboring data sets D1 and D2 differing
on at most one element, and all S ⊆ Range(M),

Pr[M(D1) ∈ S] ≤ eε · Pr[M(D2) ∈ S] (6)

Differential privacy can be achieved by the addition of
random noise. The magnitude of the noise is chosen based on
the sensitivity of a query function which considers the largest
change in the output of the function with a change of a single
record. Such a change is referred to as the global sensitivity
of a function [6].

Definition 2. For any function f : Dn → Rd, the sensitivity
of f is:

∆f = max
D1,D2∈Dn

‖ f(D1)− f(D2) ‖1 (7)

for all D1, D2 differing in at most one element.

For example, for counting queries, the global sensitivity of
a function is 1, since inclusion or exclusion of a single record
changes the output of a function by at most 1.
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Dwork [6] suggests using the Laplace mechanism to add
noise to achieve differential privacy and this has become a
canonical approach for differentially private systems. Here, we
revisit the differentially private Laplace mechanism.

Theorem 1. The randomized mechanism MF for a query
function f : Dn → Rd, computes f(x) and adds a noise
sampled from the Laplace distribution to each of the d outputs
satisfies ε-differential privacy [8]. For such a function, the
Laplace mechanism is defined by

MF (x) = f(x) + (Y1, Y2, ..., Yd) (8)

where Yi is drawn from the Laplace function Lap(∆f/ε).

A relaxed form of differential privacy, called approximate
differential privacy or (ε, δ)-differential privacy for short, is
introduced by Dwork et al. [7]. The approximate differential
privacy can be achieved using Gaussian noise calibrated to the
L2 sensitivity.

Definition 3. L2 sensitivity of a real valued query function g:
Dn → R:

∆g = max
D1,D2∈Dn

‖ g(D1)− g(D2) ‖2 (9)

for all D1, D2 differing in at most one element.

Theorem 2. The randomized mechanism MG for a query
function g, computes g(X) and adds a noise sampled from
the normal distribution N(µ, σ2) where µ and σ2 are mean
and variance, respectively. For such a function, the Gaussian
mechanism is defined by

MG(D) = g(D) +N(0, σ2) (10)

where σ = ∆g
√

2ln(2/δ)/ε. MG provides (ε, δ)-differential
privacy.

B. Differential Privacy for LCA Computation

The main motivation of this paper is to perform diffe-
rentially private LCA matrix multiplication in the form of
Equation 2, where no adversary is able to recover ap from the
published b vector. Recall that Bx is a publicly known matrix.
In this section, we develop two differentially private matrix
multiplication mechanisms that will be used later to achieve
differentially private publication for LCA computations.

Each element in the ap vector represents a background
process that is included in the production. The privacy goal is
to make a publication such that either inclusion or exclusion
of a specific background process from the computation has a
negligible effect on the output, which is vector b. To achieve
this goal, differential privacy might be applied by either
perturbing the input or the output.

1) Input Perturbation: The initial way to achieve differen-
tial privacy is to add noise to the input data itself. In the
LCA context, the ap vector contains sensitive information. To
achieve ε-differentially private computation, the straightfor-
ward approach is to generate a differentially private version
of ap, and then perform matrix factorization. Similarly, the

(ε, δ)-differentially private ap vector can be published using
the Gaussian mechanism, and then it is used in the matrix
computation.

In this case, the global sensitivity of the publication consi-
ders the maximum change in all possible neighboring vectors.

Definition 4. Let R denote the set of real numbers. For
x1, x2 ∈ Rd, the sensitivity of the publication:

∆f1 = max ‖ x1 − x2 ‖1 (11)

for all x1, x2 differing in at most one element in the vector.

Assume x1
1, x

2
1, .., x

d
1 are the elements of x1 and

x1
2, x

2
2, .., x

d
2 are the elements of x2 such that ∀i, j ∈ [1, d],

xi1, x
j
2 ∈ [0, N ]. If x1 and x2 differ in one element, the

maximum change in the publication (global sensitivity) will
be N .

Although having a data independent sensitivity computation
is a desired feature in differentially private publications, the
sensitivity computation in our context is data dependent.
In theory, the sensitivity is unbounded and can be infinity.
Given this fact, differential privacy might be considered as an
inappropriate methodology for differentially private LCA com-
putations. However, this is not the case. LCA data modeling
has its own characteristics like sparsity, data distribution,
which make differential privacy work in the practice for the
LCA computations. Later, in this section we will develop
a probabilistic estimated variance formulation which is a
measurement of utility of an LCA publication.

Now, we can formally define our differentially private vector
publication mechanism.

Proposition 1. The randomized mechanism MK that outputs
the following vector is ε-differentially private:

MK(x) = x+ k (12)

where k is a vector consisting of n independent samples drawn
from the Laplace distribution function with a scale ∆f1/ε,
i. e., Lap(∆f1/ε).

Proof. Recall that x is a vector consisting of the true answers.
MK mechanism adds independent Laplace noise to each
element of x. Thus, the output of MK is a vector of length d
containing a noisy answer for each element in x. The MK

mechanism incorporates the features of Theorem 1, hence,
satisfies ε-differential privacy.

Recall that, our motivation is to publish vector b in LCA
computation, not ap. Using the MK mechanism, it is possible
to publish ε-differentially private ap. Now, the differentially
private version of ap will be used to compute resulting b vector.

Proposition 2. Given a public A ∈ Rm×n and private
x ∈ Rn, the randomized mechanism MF1

that performs the
following operation ensures ε-differentially privacy for x:

MF1
(A, x) = A ·MK(x) (13)

Proof. MF1
uses a differentially private (obfuscated) version

of x, generated by mechanism MK , in the matrix factorization.
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A is known by the public and transforming to the LCA
computation A stands for a Bx matrix where the rows are
emissions and the columns are processes that are included
in the study. The mechanism has to ensure that either the
inclusion or removal of a process should not reveal any
information about the process. It is already proven that the
MK mechanism ensures differential privacy. The factorization
of A.MK(x) is a post processing over the differentially private
x. The factorization does not have any access to the original x
matrix, hence it does not violate differential privacy. Although
the mechanism outputs only the result of the factorization,
assume that an adversary tries to find the original x vector
by solving the linear system. In the best case, the adversary
will get MK(x) by solving the linear system which is already
proven ε-differentially private. Therefore, MF1 mechanism
ensures ε-differential privacy for x.

Expected Variance of Error. To measure the utility, we
analyze the accuracy of resulting vector. Let y denote the
factorization of A.MK(x) where y1, y2, .., ym are the elements
of y. We use yi to denote the correct value, ŷi to denote dif-
ferentially private result, and EMF1

(yi) to denote the absolute
error for yi with MF1

mechanism such that:

EMF1
(yi) = |yi − ŷi| (14)

Given each yi is randomized, EMF1
(yi) is a random vari-

able. Since y has m elements, the average variance of error
(the mean squared error) of MF1

is:

Varavg(MF1
) =

∑m
k=1(EMF1

(yk))2

m
(15)

In the MF1
mechanism, each element of x is added a

noise sampled from the Laplace distribution Lap(∆f1/ε). The
variance at each element, therefore, Vare = 2.(∆f1

ε )2. Note
that the sampled random variables are uncorrelated. In the
factorization, for each row, the jth element of A is multiplied
by the jth element of obfuscated x.

Vari(EMF1
(yi)) =

n∑
k=1

A2
ik.Vare (16)

In the factorization, each element of A is a weighting con-
stant. It corresponds to the Bx matrix in LCA computations.
Without modeling the LCA study completely, it is possible
to estimate Aik if the underlying data distribution of A is
known. A consists of m × n discrete values, we can define
the probability density function g(zi), such that for any zi,
which is a value that Z can take, g gives the probability that
the random variable Z equals zi:

P (Z = zi) = g(zi) i = 1, 2, ...

g(zi) ≥ 0,
∑
i

g(zi) = 1 (17)

Then, the expected value for Z is:

Ep(Z) =
∑
z

z.g(z) (18)

Using the expected value for any entry in A, we can
compute the expected error variance of y’s elements in the
following way.

Ep(Vari(EMF1
(yi))) = n.Ep(Z)2.Vare (19)

The final step is to compute the expected average error
variance for the MF1 mechanism.

Epavg(Varavg(MF1
)) =

n2.Ep(Z)4.Vare

m
(20)

The expected average error variance depends on the data
distribution of A, and there is no boundary for the error.
However, in the LCA context, the Bx matrix is sparse most
of the time and most of the entries are either zero (0)
or close to zero, which makes the expected average error
variance low. Although unbounded sensitivity is a problem,
the characteristics of LCA publications enable differentially
private publication to deliver significant utility, which will later
be discussed and verified in Section V-B.

2) Output Perturbation: To achieve differential privacy by
perturbing the output, the desired differentially private mecha-
nism initially computes the function, and then adds noise to
each element of the computed output to obtain differentially
private publication. Similar to the previous setting, A is a
public matrix and x is a private vector which we want to
preserve its privacy.

Definition 5. Let R denote the set of real numbers where
A ∈ Rm×n and x ∈ Rn. A matrix multiplication function
f :Rm×n × Rn → Rm is defined by:

f(A, x) = A · x (21)

The output of f is an m-dimensional vector. To achieve
differentially private matrix multiplication, the noise should
be generated based on the sensitivity of f . The sensitivity
of f considers the maximum change in the output with a
single change in the vector x. The defined function is a matrix
multiplication, thus, a single change in x will result in changes
in every entry of the output. We consider the maximum change
as a sensitivity with a single change.

Definition 6. For x1, x2 ∈ Rn, A1, A2 ∈ Rm×n, the sensiti-
vity of f(A, x):

∆f2 = max ‖ f(A1, x1)− f(A2, x2) ‖1 (22)

for all x1, x2 differing in at most one element.

When an element is excluded from the x vector, the corre-
sponding column is also excluded from A to perform matrix
multiplication. For example, if the second entry from the x
vector is excluded, the second column of matrix A should
also be removed from A to perform multiplication operation
consistently. Basically, this is an exclusion of a process from
an LCA model and observation of its effect.
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In the proposition below, we define a differentially private
matrix multiplication mechanism.

Proposition 3. Given a matrix multiplication function
f(A, x), the randomized mechanism MF2 that outputs the
following vector is ε-differentially private:

MF2
(A, x) = f(A, x) + k (23)

where k is a vector consisting of m independent samples drawn
from the Laplace distribution function with a scale ∆f2/ε,
i. e., Lap(∆f2/ε).

MF2
initially executes f(A, x) which outputs the multipli-

cation of A with x. Then, the mechanism adds a randomly
sampled vector k to the result of the multiplication to obfuscate
it.

Proof. MF2 incorporates the features of Theorem 1, which
states that a random mechanism satisfies ε-differential privacy
iff each output of a function is added a noise sampled
from the Laplace distribution. MF2

initially, performs matrix
multiplication, and then adds a noise to each element in the
resulting vector. Therefore, MF2 is ε-differentially private.

Expected Variance of Error. Let y denote the result of
MF2

(A, x). The absolute error is caused only by the addition
of random noises sampled from the Laplace distribution.
Therefore, the error variance of y’s entries:

Vari(EMF2
(yi)) = Vare (24)

where Vare = 2.(∆f2

ε )2 for MF2
.

Since all noises are independently generated and have the
same variance, the average error variance is:

Varavg(EMF2
(yi)) =

Vare

m
(25)

The average error variance is again data dependent, but as
it will be verified with a real life example in the next section,
it is likely for LCA computations to preserve the utility of
differential privacy.

V. EVALUATION OF PRIVACY-PRESERVING LCA
COMPUTATION

To evaluate the security concerns and challenges of an
LCA publication and the effects of differential privacy, we
conducted experiments over a real LCA study for distillers
grain. Using U.S. Life Cycle Inventory (USLCI) [1], we
design and build a case study for distillers grain.

Data sets: The distillers grain study contains 39 background
processes and 378 elementary flows. Therefore, ap is a 39-
dimensional vector and Bx is a 378×39 matrix. The distinctive
property of this data set is having a very broad range of
numbers. The entries in the matrices range from 10−15 to 103.
We will later explain the effects of having numbers from such
a wide range.

This section initially presents attacks to demonstrate whet-
her there is a need for privacy preserving publication in reality,

given that the only motivation is to make b public. Due to
the special properties of the LCA data, the answer to this
inquiry is affirmative. Therefore, the section continues with
the detailed guideline on applying differential privacy to an
LCA computation where the aim is to make the publication
useful (high utility) while still preserving the privacy.

A. Attack against LCA publication with Public b

The attack is formed to understand the security and privacy
breaches in LCA publication. Suppose an LCA practitioner
wants to publish b. She computes b using Equation 2 and
makes it publicly available while not providing any infor-
mation about ap. As stated before, Bx is publicly known.
The LCA practitioner thinks the computation is secure, since
Bx is a singular matrix and there is no way to recover ap.
An adversary, on the other hand, is interested in learning
information about ap, since this vector contains confidential
information regarding production processes which could be
used to gain financial benefits.

a) Attack with Pseudoinverse:: The attacker develops its
attack by computing the Moore-Penrose pseudoinverse of Bx
which is covered in Section III-B. The rank of Bx is 29 -not a
full column rank-. This means the solution to the Bx · ap = b
linear system is not unique. The common approach to resolve
this issue uses the least square approach to optimize the
approximation for ap. This will output an approximate solution
that is denoted by âp. There are variety of ways to measure
the distance between two vectors all of which might provide
different results. To measure the closeness of the output, the
Euclidean distance is used in this study. Additionally, the
computations provide details about how many entries in the
vectors are close within a given threshold. We use close
enough as a term to express that the distance between the
approximated value and the actual value is less than a provided
threshold, which basically means an adversary approximate
enough to recover the actual value. For example, consider
a scenario where the first entry in ap is 3 and the attacker
finds the first entry of âp to be 2. If the threshold is 0.5,
the comparison indicates that the outputs are far away from
each other and this is a failure for the attacker. However, if
the threshold is 2, the attacker recovers the entry approximate
enough and this is a success.

When the attack is executed1 using the distillers LCA data,
the distance between the actual ap and the computed vector
âp, i. e., ‖ ap− âp ‖2, is 0.6558. Although the distance seems
close, the attacker is able to approximate only 3 processes out
of 39 close enough when the threshold is 10−10. However, this
is still a good source of information to claim that a practitioner
is not able to secure ap completely and the data is breached.

Furthermore, in a piratical setting, many entries of the ap
vector are 0 for the distillers grain data set. It is reasonable
to assume that an expert in the field has enough background
knowledge to estimate which processes are included in the

1The Singular Value Decomposition technique is used to compute the
pseudoinverse.
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computation pretty well. In such a case, the expert can develop
a stronger attack against the publication of b and hence
knowledge of ap by removing all zero entries from ap which
will result in the removal of the corresponding columns in
Bx. In our study, 19 entries of ap are 0. When these entries
are removed from the computation, the attacker has 20 entries
to estimate. The new Bx matrix does not have a full column
rank (it is 17). When the attacker solves the linear system using
the pseudoinverse technique, the distance ‖ ap − âp ‖2 equals
0.15559. Compared to the initial case, it is a more powerful
attack and the attacker is able to approximate 13 processes
out of 20 when the threshold is 10−10. Given that the attacker
already knows the zero entries, she manages to recover almost
82.05% of ap. The conducted experiments outline the power
of pseudoinverse approach in the context of LCA domain.
The important reasoning for such a good approximation is
the domain range of the LCA data. The case study contains
many very small numbers and this helps in approaximating
the result better.

These attacks show that publishing b without securing with
any privacy technique has severe security issues and the
concerns over making b public in the LCA community are
justified. Therefore, the publication should be made privacy-
preserving. Next, this work applies different differential pri-
vacy techniques to secure the publication. The publications
are again attacked by the adversaries to test the security of
the publication in practice.

B. Differentially Private LCA Computation

In this section, we explain how to perform differentially
private LCA computation efficiently by using the mechanisms
that are introduced in Section IV-B and evaluate the efficiency
of the publication in terms of utility and security. The main
metric to provide comparison is again the Euclidean distance
of matrices for both utility and security. To ensure better utility,
it is better to have a smaller distance between the original and
the computed matrices. However, it is desired to have a larger
distance between matrices to achieve better security.

Given Bx and ap, the randomized mechanism MF1(Bx, ap)
ensures ε-differentially private matrix multiplication by pertur-
bing ap first and then factorizing it with Bx (Proposition 2).
b̂ denotes the obfuscated version of b vector. The LCA
practitioner publishes the obfuscated version and keeps any
version of ap private. If an adversary solves the linear system
of Bx·âp = b̂ perfectly, she ends up having âp int the best case.
Since âp is ε-differentially private, privacy is still guaranteed.

Table I presents the results of privacy-preserving LCA
computation with the MF1

mechanism. The experiments are
conducted by varying the ε security parameter. ∆b denotes the
Euclidean distance between the original b vector and b̂. ∆âp
measures the distance between ap and âp where âp is the
output of the MK mechanism (Proposition 1). This explicitly
depicts the effect of random noise addition. Assume that an
adversary finds an approximate solution, denoted by ap, to
Bx · âp = b̂ using the pseudoinverse approach. ∆ap is defined
as the Euclidean distance between ap and ap.

Table I
MF1 MECHANISM FOR MATRIX FACTORIZATION

ε ∆b ∆âp ∆ap
0.01 180.1E3 498.934 447.95
0.05 94216.22 94.86 91.449
0.1 128531.08 32.099 29.876
0.5 14580.31 5.348 5.144
1 5393.87 7.66 7.247
2 3840.31 2.03 1.783
10 2727.62 0.464 0.44
100 247.28 0.044 0.162

Table II
MF2

MECHANISM FOR MATRIX FACTORIZATION

ε ∆b ∆ap
0.01 3311.5 9.91E8
0.05 697.663 8.23E7
0.1 309.63 8.98E7
0.5 69.421 1.11E7
1 40.601 222.4E4
2 17.467 509.8E4
10 2.865 634.2E3
100 0.339 102.1E3

It is a well-known fact that when ε is small, the amount
of noise addition is larger but ensures more security [17]. As
ε increases, less noise is added which results in more utility.
Finding the correct ε value for differentially private systems
is a well studied research problem [17], [13]. ln 2 and ln 3
are widely used ε values for differentially private applications.
This suggestions are also applicable in our context. We assume
ε ≈ 1 is an ideal setting in our context.

When ε is 0.01, the distance between differentially private
ap and the original ap is maximum, 498.934. When ε is 1, this
distance is 7.66, which is also not very small. It is easy to infer
that the noises are sampled with a large scale from the Laplace
distribution. The main reason for this is that the values of ap
range from 6.48×10−8 to 0.7. In order to hide the existence of
a single record, the differential privacy mechanism adds large
noises since the sensitivity is too high.

The change in b is relatively large as a result of the
MF1

mechanism. It seems that the small perturbations in ap
introduce large perturbations in b. Such a system is referred to
as ill-conditioned [3]. When ε is 1, ∆b is 5393.87. This can
be inferred as too much utility loss. However, when the result
of the computation is analyzed in detail, 165 elements out
of 378 (44%) are approximately close within the threshold
of 10−10 when ε is 1. If an analyst wants to make a study
for individual emissions, such a publication is very useful.
The other important feature of this publication is its privacy.
When an attacker executes the attack described before, she
cannot recover ap at all. The attacker computes ap which
has a distance of 7.247 from ap. More importantly, even if
she knows the location of all zero elements in the vector,
she cannot approximate even 1 element out of 20 within a
threshold of 10−10. This validates the strong privacy guarantee
of the MF1 mechanism.
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Table III
MF1 MECHANISM FOR MATRIX FACTORIZATION WITH NORMALIZATION

ε ∆b ∆âp ∆ap
0.01 122057.076 337.99 303.475
0.05 63824.391 64.355 62.082
0.1 87070.216 21.647 20.13
0.5 9877.376 5.176 4.901
1 3653.79 3.677 3.538
2 2601.958 1.427 1.271
10 1848.137 0.367 0.375
100 167.92 0.259 0.299

To achieve a differentially private LCA publication with the
output perturbation, the MF2

mechanism is proposed (Propo-
sition 3). This approach initially computes b by multiplying
Bx with ap, and then obfuscates b by adding a random noise
vector. ap is again kept secret and the obfuscated emission
vector b̂ is made public.

Table II presents the experimental results of privacy-
preserving LCA computation with the MF2

mechanism. This
kind of publication reduces utility less compared to the earlier
publication with MF1

when ∆b results are considered. When
ε is 1, ∆b equals 40.601 when MF2

is used. It is 5393.87
when the publication is done with the MF1 mechanism for
the same ε. However, when the results are analyzed in detail,
none of the entries in b̂ is close enough to the entries in
b within the threshold of 10−10. As explained before, in a
similar setting, the MF1

outputs 44% of the entries close
enough. The trade-off between MF1

and MF2
can easily be

seen by considering the empirical studies. The MF1 delivers
better utility for an analysis of individual emissions. On
the other hand, MF2

delivers better utility if an analysis
contains aggregate computation, e. g., “What is the summation
of emissions (bi, bj , bk, ..., bn) in the distillers grain study?”.

In terms of privacy, MF2
achieves a strong privacy as pre-

sented in Table II. When ε is 1, ∆ap equals 222.4×104. When
an attacker tries to solve the system with the pseudoinverse
approach, the computed ap has a distance of 222.4 × 104 to
the original ap. The attacker is not able to approximate any
entries in ap.

Both MF1
and MF2

ensures strong privacy. This is very
positive and convincing findings in the context of LCA publi-
cation. The practitioners can feel confident about publishing
b. Although the current techniques deliver reasonable utility,
the question remains whether there is a way to improve
utility without sacrificing the privacy guarantees in such ill-
conditioned systems.

To answer this inquiry, this study explores a normalization
technique to decrease the utility loss in the LCA computation.
The motivation for applying normalization is narrowing down
the range of numbers that data sets have, since such a wide
range causes differentially private systems to inject more noise
to the system.

Table III presents the results when MF1
is executed with the

normalized version of ap, denoted by ãp. In this computation,
ãp is provided as an input instead of ap. As seen from the

Table IV
MF2

MECHANISM FOR MATRIX FACTORIZATION WITH NORMALIZATION

ε ∆b ∆ap
0.01 1609.384 4.8E8
0.05 339.06 4.0E7
0.1 150.48 4.36E7
0.5 33.738 5.41E6
1 19.73 1.08E6
2 8.489 2.47E6
10 1.392 3.08E5
100 0.164 4.9E4

results, using ãp instead of ap decreases the distance between
the published b̂ and b from 5393.87 to 3653.79, since âp con-
tains less noise compared to the non-normalized computation.
In addition to that 167 entries of b̂ are approximate enough to
the entries of b within a threshold of 10−10. It is 165 if the
non-normalized input is used in the computation. Therefore, it
is reasonable to state that using the normalized input increases
the utility of the MF1

mechanism.
To apply a similar approach to MF2

, the normalization
operation is performed on Bx, where the normalized version is
denoted by B̃x. B̃x and ap are inputs to the MF2

mechanism.
The results of the publications are presented in Table IV.

The normalization approach also has a positive effect on
the MF2 mechanism in terms of utility. Since the system is
ill-conditioned, narrowing down the range of numbers results
in adding less noise to the output of the publication. When
ε equals 1, ∆b is 19.73, in contrast to 40.601 when norma-
lization is not employed. This is a huge gain in the utility.
However, the normalization technique does not improve the
utility of the MF2 mechanism in terms of individual emission
analysis. None of the emissions is close enough within the
threshold of 10−10 to the original emissions.

The normalization does not have any negative impact on
the privacy for both MF1

and MF2
. An adversary cannot

approximate any element in ap.
Considering the overall empirical study, differentially pri-

vate LCA computation can be achieved with either MF1 or
MF2 without sacrificing security. Although MF1 is useful for
an individual emission analysis, MF2

delivers good utility for
aggregate analysis on b. The straightforward application of
normalization increases the utility.

VI. CONCLUSION

In this paper, we present a comprehensive study to explore
the privacy concerns over publicizing the industrial activities
in the form of LCA computations. Accurate and high quality
sustainability assessment requires detailed information about
industrial activities; however such information is considered
confidential. This paper initiates a study to explore privacy and
security challenges that prevent organizations from making
public disclosures about their activities. Our empirical studies
show that the application of privacy-preserving techniques is
required to preserve the privacy of private data. Otherwise,
it is possible to expose the private data by reverse-computing
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from the publication. To support the needs of the sustainability
research community, this paper proposes differentially private
LCA computations and explains how to achieve it for LCA
computations by either perturbing the input data or the output
data. Our evaluations on a real LCA example from a distillers
grain study demonstrates that the use of differential privacy
to publish more detailed information ensures strong privacy
while revealing useful information for analysts.
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