
Relative Heap Efficiency of the OpenCV Framework in the
Dalvik Virtual Machine and the Java Virtual Machine

Joshua Lynch†

Department of Computer Science and Engineering
University of California, San Diego

jblynch@ucsd.edu

Abstract
The OpenCV framework is an open source project
released under the BSD license that provides
libraries for image manipulation and computer
vision. It has been ported to numerous platforms,
though for the purpose of this report only the Java
and Android platforms will be referenced. This
report compares the heap allocation efficiency of
the two different platforms, highlighting the
potential fundamental differences in the Java
Virtual Machine and the Dalvik Virtual Machine.

Introduction
With the exponential growth in mobile
computing's processing power, it has become
possible to port third party libraries and
frameworks that were previously dependent on
laptop and desktop hardware. While the capacity
of mobile devices has increased by leaps and
bounds, memory is still a very limiting feature.
Therefore, any software designed to operate on the
mobile platform must take into account the
physical limitations of the devices, while still
maintaining approximately the same quality in
output. This optimization begins with the
operating system itself, by having the Dalvik
Virtual Machine (DVM) being streamlined to the
point of having multiple instances running
simultaneously.

The comparison of the desktop centric Java
Virtual Machine (JVM) and the mobile oriented
DVM is an obvious choice due to the similarities
between Java and Android. Java .class bytecode
files can be converted to the Dalvik Executable
.dex bytecode files. The .dex bytecode files are
themselves optimized for memory efficiency that
goes beyond the optimizations preformed by the
Java compiler.
 Despite the similarities in the source code, there

is a major difference in the way the two runtime
environments operate. The JVM uses a stack
based architecture in which each method call
generates its own stack frame, whereas the DVM
uses the registers themselves as its data structure,
eliminating the overhead involved in pushing and
popping from a stack[1]. The JVM is designed to
be run on any laptop and desktop computer, and so
abstracts its code from the hardware at the expense
of efficiency. The DVM must work within the
much more limiting constraints of the mobile
hardware and so is far more chip dependent.
Generally speaking, these fundamental differences
in the way the two environments function makes
the Android code utilize far less memory than the
Java code, at the expense of versatility.

This experiment will focus on the OpenCV
framework, an open source project that furnishes
developers with a series of libraries designed for
image manipulation and computer vision. The
framework has been ported to a variety of different
platforms, though with each port substantial
changes must be made to the libraries' source
code.

Goals
The purpose of this experiment is to compare the
heap efficiency of the OpenCV Imgproc library on
the Java and Android platforms to see how
similarity the platforms perform after the
optimizations made by the conversion from .class
to .dex bytecode. In order to make the unit tests as
accurate representations of the “real world,” they
were designed to conform to the OpenCV
Foundation's official guidelines on how to load
their libraries.

Methodology
Sixteen different unit tests were written using both

† Work done Summer 2014 at the University of California, Santa Barbara's Four Eyes Lab

Java and Android implementations of libraries to
test various methods in the Imageproc library.
While some libraries such as the Java.awt library
have not been directly ported and must be replaced
with comparable methods from Android.graphics,
most supplemental libraries are consistent across
both platforms. The Imageproc library focuses on
very basic image manipulation such as blurring,
scaling and altering pixel brightness. The
simplistic nature of its functions made the
Imageproc library ideal for testing very specific
aspects of the OpenCV framework. Each of the
Android unit tests had two components, a viewer
class and a bare-bones execution class. The
viewer class was used to display the final image on
the screen as proof that the unit test could
successfully execute, but the overhead required to
format and display the image on the screen would
have tainted the heap data. The bare-bones class
simply executed the unit test of the Imageproc
method, thereby providing a comparable output to
its Java counterpart, which simply wrote the image
to disk.

The second major difference is that the
Android unit tests asynchronously loaded the
library from the OpenCV Manager, an app put out
by the OpenCV Foundation that allows for any
OpenCV dependent app to dynamically access the
appropriate chip dependent version of OpenCV.
This is necessary because some of the OpenCV
libraries depend on C++ code compiled for
specific ARM versions via Android's Native
Development Kit. While this does put an
additional strain on the app, it is in line with the
purpose of this experiment. The OpenCV
Foundation strongly recommends the use of the
use of the OpenCV Manager for mobile
applications, and so in a comparison of the relative
effectiveness of the two platforms it is consistent
to follow official best practice guidelines.

The Eclipse Memory Analyzer Tool (MAT)
was the main tool used to collect and analyze the
Java heap dumps. The Android heap dumps were
collected with the Dalvik Debug Monitor Server
(DDMS) and analyzed with the MAT. While it
had no problem dealing with the Android heap
dumps, the MAT consistently misrepresented the
Java data by seeming to treat consecutive memory
dumps as a single unit. Therefore, the reported

Java heap size would grow rapidly, often doubling
in size after several heap dumps. Closing the
MAT was not enough to correct for this problem;
Eclipse had to be completely closed and restarted
before subsequent heap dumps of the same unit
test would be in the ball park of one another. The
MAT had none of these issues with the Android
heap dumps however, and Eclipse was only closed
between sessions. Each unit test was run three
times.

Results
The results of the unit tests were quite striking, not
only were the Android heap dumps far more
uniform in size, but they were dramatically smaller
that their Java counterparts. The hardware used in
these tests was a Windows 64-bit laptop and a 32-
bit first generation Nexus 7 running Jellybean 4.2
on the ARMv7 architecture.

As shown by the table, the heap usage of the Java
unit tests was phenomenally higher than the
Android heap use. The Android tests stayed at a
steady 6.7MB per run, for every single trial run
across every unit test. In contrast, the Java unit
tests had a low of 55.97MB and a high of
123.8MB, with fluctuations of ~10MB per trial
run. Even when the Android OpenCV framework
was loaded statically rather than asynchronously,
the total heap usage only rose to 7.45MB.

The heap breakdown also almost

unilaterally has the Android unit tests
outperforming the Java unit tests. Not only was
the average Java unit test's heap allocation higher
than its Android counterpart, but the number of
objects instantiated by the Java unit tests was
much higher.

Not only were the Java numbers higher, but
they were far more erratic. The lowest average
number of class loaders was 127.33 across the
Thresholding unit test's three trials, with the
highest average number being 205 class loaders
across the three trials of GaussianFilter and
FaceDetector. In contrast, every single Android
unit test averaged exactly 4 class loaders across
their three trials. As expected, with such a high
number of class loaders in use the Java unit tests
produced far more classes that their Android
equivalents. Similarly there was a much higher
deviation amongst the Java numbers with the
number of classes ranging from ~11k to ~14.5k,
while the Android tests were all at ~3.1k with a
variation of about 6 classes for any given unit test.

The only category in which the Android
unit tests produced more objects was Garbage
Collection roots, where the usual ratio of Android
to Java object creation was reversed.
The last category of heap use is the number of
objects initialized. As expected, the Java unit tests
initialized far more objects than the Android ones.
Much like all of the other stats, the Android
numbers were remarkably consistent in the
number of objects created, while there are wild
fluctuations in the Java numbers.

Discussion
The purpose of this experiment is to compare the
memory efficiency of the OpenCV platform on its
Java and Android releases. While the data seems
to strongly favor the Android version of OpenCV,
this may be due to environmental factors other
than the work done by the OpenCV Foundation to
port their libraries to Android. The platforms are
different, the Java unit tests were run on a
Windows 64-bit architecture while the Android

unit tests were running on a 32-bit Android Nexus
7 with Jellybean version 4.2. The VM architecture
is also quite different; the DVM utilizes a register
based system while the JVM uses a stack based
architecture. Also, the .dex bytecode file is
designed to reduce the memory used. While this
helps to explain the drastic size difference between
the Java and Android heaps, it does not explain
why the Android heaps had far less fluctuations in
size.

The OpenCV libraries were not initialized
in exactly the same way across both platforms as
per official recommendations; while this helps test
the comparative functionalities of the platforms as
a whole, it does affect the specifics of the data.
This was done for two reasons; first and foremost
the purpose of this experiment is to compare the
two libraries' performances under “real world”
conditions, which in this case involves the Java
libraries being statically initialized and the
Android libraries asynchronously initialized.
Second, the difference itself was relatively
negligible; when statically initialized the Android
heap rose from 6.7MB to 7.45MB, a far cry from
the lowest Java heap of 55.97MB. Finally, the
unreliable nature of the MAT's heap reporting
capabilities makes even the figures gathered after
compensating for the MAT's quirks suspect.
Platforms and tools aside, these unit tests focus

exclusively on the Imageproc library and may not
be representative of the OpenCV framework as a
whole.

References
[1] Sinnathamby, Mark. "Stack Based vs Register
Based Virtual Machine Architecture, and the
Dalvik VM." Forays in Software Development.
N.p., 15 July 2012. Web. 04 Nov. 2014.

