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Abstract

A Special Purpose Operating System for Multiscale IoT Microservices

UCSB Technical Report 2022-03

by

Mehmet Fatih Bakir

The Internet of Things (IoT) enables scalable and programmable physical sensing

and actuation, however many of the computers involved in IoT deployments have a

wide range of capability and resource constraints. For this reason, embedded systems

technologies and practices have become the predominant programming model for IoT.

However, IoT also relies on scalable technologies, such as cloud computing, to provide the

resources (compute, networking, and storage) required by applications. The embedded

systems programming model and technology ecosystem shares little with the models and

approaches typically available in cloud computing settings.

In this dissertation, we explore new research that unifies embedded systems and cloud

programming, deployment, and execution for IoT applications. Our approach is based on

microservices – an architecture originally formulated to ease the development of cloud-

based web services. We discuss how we can extend the microservice model to resource

constrained microcontrollers so that an IoT application amalgamating devices and cloud

resources consists only of portable software service components that use a common set

of abstractions. We describe new abstractions, how they can be secured from attackers

and eavesdroppers efficiently, and the design of an operating system supporting these ab-

stractions to unify cloud servers and microcontrollers. We evaluate and demonstrate the

flexibility, portability, and efficiency of our approach using end-to-end IoT applications

and microbenchmarks. Our evaluation shows that this unique combination of advances
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achieves high performance and efficiency across all IoT tiers (sensors, network edge, and

cloud) for the devices, systems, benchmarks, and applications that we study.
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Chapter 1

Introduction

The Internet of Things (IoT) embeds ordinary objects in our environment with digital

intelligence – via sensing, control, communications, and compute capabilities. By making

it easy and economical to extract inferences and predictions from any physical object and

location, IoT has the potential for unparalleled societal impact. However, IoT application

development is nascent despite its tremendous potential (e.g. enabling “smart” cities,

cars, homes, infrastructure, manufacturing, agriculture, etc.). The primary reason for

this is that IoT software is challenging to develop, deploy, and maintain, while ensuring

correctness, security, and fault resiliency required by IoT settings.

Beyond the traditional distributed systems challenges, IoT applications developers

face additional difficulties that are imposed by the vast heterogeneity of IoT deployments.

IoT deployments span multiple computational (i.e. resource) tiers. Devices embedded

in and distributed across our physical surroundings are commonly referred to as being

located at the “edge” of the network. Edge devices include a wide range of sensors,

networks, compute, and storage devices, many of which are battery powered and severely

resource constrained (e.g. microcontrollers and single board computers with tens of

MHz processor clocks, dozens of kilobytes of main memory, and hundreds of kilobytes
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Introduction Chapter 1

of program memory). Resource constrained devices commonly offload computation and

communication (to extend their capabilities and to reduce response latency) to more

capable, line powered, and less resource constrained edge systems, which include small

data centers, cloudlets [176], and multiprocessor servers. Edge systems inter-operate

with remote cloud computing systems when more resources, services, and capabilities

are needed. However, connectivity to cloud systems can be intermittently available,

high latency, low bandwidth, and costly (which must be accounted for in application

deployment designs).

The software stacks of these multi-scale devices also vary widely. IoT applications to-

day run over multiple, incompatible operating systems (1+ for the embedded systems and

1+ for more resources rich systems) and communicate using different network protocols

(private IP networks, low-power networks such as XBee, as well as point-to-point links

such as USB, SPI and UART). Commodity operating systems for resource rich systems

trade off resource efficiency for runtime generality. While Linux can run any application,

it cannot run any specific application optimally, nor does it support severely resource

restricted or special purpose devices. On the other hand, more specialized operating sys-

tems for embedded systems sacrifice programmer productivity and hardware abstraction

for absolute runtime efficiency. A FreeRTOS [70] or bare metal application can take full

advantage of a specific microcontroller, at the expense of productivity and portability.

No IoT programming system today makes it possible to execute the same code across

IoT tiers (e.g., device-edge-cloud) which severely limits code reuse, introduces bugs and

vulnerabilities, and complicates inter-operation across devices.

Moreover, no extant IoT system offers a way to externally specify security proper-

ties or to perform configuration validation, precluding early detection of security vul-

nerabilities or the execution of a deployment plan for security mechanisms that takes

into account the heterogeneous nature of IoT devices. Many edge devices have simple
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(or non-existent) security mechanisms that cannot be used as-is to implement secure

communication, authentication, and authorization. Existing edge solutions compound

the problem via incompatible security protocols, tool chains, software development kits

(SDKs) language frameworks, interfaces, and complex configuration and deployment pro-

cesses. Such disparity and lack of programming, security, and deployment support makes

IoT infrastructure costly to provision and maintain and precludes all but the most expert

developers from contributing to IoT innovation.

Many of these productivity-limiting challenges do not exist in cloud-only program-

ming systems. A key reason for this is the emergence of and wide spread use of the “mi-

croservice” software architectural design. Using this architecture, applications developers

decompose their applications into fine-grained, event driven services that execute inde-

pendently and in isolation (typically using Linux containers or other forms of lightweight

virtualization). The microservices communicate via typed interprocess communication

(IPC) channels with other microservices that are either co-located on the same machine

or available across a network. Microservice applications do not interact directly with the

operating system in the same way as traditional applications (via POSIX system calls)

– instead they request/receive the resources they need, e.g. storage, from other services

using well defined (typed) application programming interfaces (APIs). The lack of strong

coupling between microservices and the operating system facilitates portability, rapid de-

velopment, and low maintenance. Moreover, this design enables horizontal scaling with

little involvement from programmers, since a particular dependency of a service can be

transparently replicated. Examples of microservice platforms include Kubernetes [112],

AWS Container Service [163], AWS Lambda [22], and a number of programming language

frameworks [16, 14, 15]. AWS Lambda is interesting (and similar to Google Functions [76]

and Azure Functions [24]) in that it specializes the microservices architecture with plat-

form level automation (e.g. auto-scaling, event triggering, logging) and abstraction of
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the low level deployment details of the architecture, which taken together, is referred to

as Functions-as-a-Service or Serverless computing [18, 162]. With FaaS, programmers

develop only the individual microservice functions, which they upload to the platform

and specify event (microservice) triggers.

Considering these advantages, we believe that the the serverless microservice model

may also be useful for the domain of IoT. However, to enable this, many new chal-

lenges must be overcome. First, the cost of microservice inter-operation may be too high

for resource constrained devices. First, they were designed for resource-rich settings (i.e.

clouds) and as such trade off programmer productivity for performance/energy efficiency.

The use of container isolation and virtualization, IPC, address space traversal, and other

features may impose too much overhead for use on severely resource constrained devices.

Second, microservices often use statically and strongly typed interface description lan-

guages (IDL) to specify their inputs and outputs, from which code for various program-

ming language implementations can be generated. However, existing IDLs are designed

for resource rich cloud platform and cannot be verbatim ported to microcontrollers due

to their liberal use of memory allocation, exceptions, and tightly coupled network stacks.

Third, all microservice and FaaS platforms today rely on general purpose operating sys-

tems, e.g. Linux or Windows, which do not run on or are too heavy weight for resource

constrained and embedded devices.

With this dissertation, we investigate and and attempt to overcome many of these

challenges surrounding development and deployment of multi-scale IoT applications to-

day. We do so by building upon and extending recent advances in cloud computing,

embedded systems, programming systems, and security for use in portable, end-to-end,

and multi-tier application development and deployment for IoT. Specifically, we attempt

to answer the following thesis question:

Is it possible to unify the cloud and IoT abstractions efficiently through
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software infrastructure optimizations on the microservices model?

To answer this question, we focus on investigating, developing, and evaluating

1. a new programming model for building multi-scale applications that enables porta-

bility and programmer productivity across the devices that comprise an IoT de-

ployment,

2. a scalable security model that can efficiently support all tiers of IoT, and

3. the design and implementation of an operating system specialized for microservices

to realize this vision.

To overcome the diversity of software stacks and provide (1), we describe a novel

model for building IoT applications based on microservices called Devices-as-Services,

which advocate for the modeling of hardware as typed microservices that can be con-

sumed just like a normal service. This model abstracts away most of the platforms, and

if implemented well, could allow for seamless migration of programs between microcon-

trollers and cloud servers.

We then describe CSpot, an implementation of the Devices-as-Services model as a

FaaS-like runtime that can be hosted on Linux edge and cloud machines as well as

microcontrollers running a bare metal operating system. CSpot allows users to provide

low level C++ or C programs that can execute in response to writes to an append only

log. We then extend this using our work on EdgePy and NanoLambda to allow running

python and unmodified AWS Lamdba serverless microservices across the same tiers.

To provide (2), we suggest that a fundamental rethinking of access control and pri-

vacy of services is warranted. To which end we present CAPLets, a novel approach to

security, access control and privacy that can address the challenges of IoT efficiently.

CAPLets makes use of a combination of capability and token based access control to all
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but eliminate any storage on microcontrollers without sacrificing security. While TLS

is sub-optimal in resource restricted devices, alternative primitives based on symmetric

cryptography can be repurposed to efficiently secure the said capability tokens over a

network with little computational overhead. The novel combination of these security

and privacy primitives can unlock fully decentralized authorization that can scale down

to small microcontrollers as well as up to massive cloud servers, providing a uniform

authorization model for all tiers.

CAPLets’ light-weight, special purpose virtual machine for implementing access con-

trol policies whose programs can be embedded in the capability tokens’ bodies allows

even third party users to define completely arbitrary authorization predicates to address

the rigidity challenge of capabilities. A novel key exchange algorithm enables CAPLets

to provide configurable privacy efficiently on microcontrollers.

Finally, for (3), we discuss Ambience, a special purpose operating system to realize

our vision to its logical extreme. Ambience is designed from the ground up to eliminate

all costs of general purpose operating systems and enable domain specific optimizations

to provide a truly uniform programming and deployment environment across scales. Am-

bience can run on ARM microcontrollers with 64 MHz clocks as well as high end x86 64

processor running at multiple GHz.

The enabling novelty of Ambience is the leveraging of various statically known infor-

mation to drive optimizations not only for individual services, but for the kernel images

that host said services at runtime. We note that such information has always been avail-

able to existing systems as well, but instead of being used to their full potential, they are

often discarded early. Ambience also provides domain specific abstractions towards mi-

croservice applications that may not be welcome in a general purpose operating system,

such as the ability of hosting multiple unrelated and non-cooperating services inside the

same address space to recover the cost of premature service decoupling.
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In summary, we answer the thesis question via the following research innovations. We

present a vision for building scalable IoT applications across tiers based on the microser-

vices architecture, and an initial implementation via CSpot. Next, we describe CAPLets,

an efficient, capability based access control mechanism which covers all resource tiers. We

discuss its truly flexible policy definitions and novel key exchange algorithm, as well as its

cryptographic construction. Finally, we specify the design and implementation of Ambi-

ence, a from the ground-up operating system that provides uniformity to microcontrollers

and servers alike.

The remainder of thesis is structured as follows. Chapter 2 provides an overview of the

related literature on approaches to IoT programming, security and communication as well

as cloud microservices and operating systems. We discuss the benefits and limitations of

these technologies and examine the state-of-the-art systems. In Chapter 3, we introduce

Devices as services, a structured and principled method for programming IoT applica-

tions uniformly. Also in Chapter 3, we discuss CSpot, EdgePy and NanoLambda which

implement this model practically to allow the execution of C++, C and Python programs

on microcontrollers and cloud servers alike. In Chapter 4, we detail CAPLets, a capabil-

ity based approach to security and privacy, designed and implemented with power aware

primitives in mind to allow execution on even the weakest microcontrollers. In Chap-

ter 5, we discuss Ambience, a brand new operating system for the efficient execution of

microservice applications across resource tiers to overcome the uniformity challenges of

depending on divergent software stacks. Finally, we discuss future work and conclude in

Chapter 6.
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Chapter 2

Background and Related Work

2.1 Programming the Internet of Things

Internet of Things (IoT) applications today are built through the adaptation of exist-

ing, proven and scalable internet technologies to the varying resource tiers. For instance,

commercial cloud providers’ IoT offerings consist of a low level program running on a real

time operating system (FreeRTOS [70]) running on the extreme edge, communicating via

MQTT [31] over TLS [154] over TCP/IP [2] with a Linux system running on a single

board computer such as a Raspberry Pi [156], which in turn communicates with server-

less [20, 24, 76, 141] microservices running on powerful cloud servers, communicating

over RPC protocols [79, 165, 160].

Such amalgamation of incoherent (and often incompatible) technologies poses mul-

tiple challenges and inefficiencies to the development, deployment and security of IoT

applications.

Some cloud providers attempt to provide a common runtime [78, 131] for the cloud

and the edge to enable code sharing and facilitate secure and reliable communication.

In such a design, while the cloud and the edge machine can share code potentially in a
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high level language, the microcontroller side is often written as a separate, embedded C

program that has to correctly and securely interface with the rest of the system.

There have been some efforts [56] at providing a uniform programming environment

through the porting of Linux to the extreme edge, however, even the most stripped out

Linux can work on only high-end, expensive microcontrollers [129, 128]. Such micro-

controllers are often employed for multimedia applications as opposed to cheap sensing

devices, making their use in IoT applications infeasible.

2.2 Security & Access Control

As the name implies, most IoT devices communicate over a network, often a wireless

one. To avoid tampering and eavesdropping, such communications must be cryptographi-

cally secured. The mainstream approach to securing this link has been to again take what

works in the cloud and use it on a microcontroller. TLS [154] (Transport Layer Security)

(and SSL(Secure Socket Layers)) has served the internet community well for multiple

decades. However, TLS is based on memory and compute intensive asymmetric cryptog-

raphy primitives such as RSA [105] and elliptic curves [61]. While their use in consumer

machines is inconsequential, even on highly concurrent cloud servers, TLS termination is

a significant cost and there has been significant interest in reducing TLS processor load

through hardware offload [146, 74]. On microcontrollers, full TLS hardware offloading is

not a reality, and it often has to be implemented all in software [147, 23, 125]. On top

of causing code bloat and precious RAM waste, such implementations take upwards of

10 seconds to perform a single TLS handshake. While in absolute numbers 10 seconds

could be tolerated, every second spent performing TLS operations is a second spent not

sleeping, reducing battery life.

TLS based systems also require the maintenance of a certificate storage [6], which
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requires periodical revocation checks and as each certificate takes multiple kilobytes to

store, a sizable storage on the microcontroller itself.

Even with this costly setup, TLS can only implement authentication using public

keys, that is, it can prove a party is party X. However, authentication by itself cannot

implement sufficient authorization. Once a party authenticates themselves, what permis-

sions they have are determined by the use of Access Control Lists (ACL), Role Based

Access Control (RBAC), Attribute Based Access Control (ABAC) or similar. All these

approaches require extra storage on the microcontroller themselves, incurring an extra

storage bloat. Storing the tables at a cloud server introduces centralization to a system,

leading to availability and reliability problems.

Capability based access control has seen some interest from the community as it can

enable a truly decentralized, low-resource load alternative for authorization. Network

capabilities (e.g. [135]]) make use of cryptographically protected tokens that entitle their

owners the permissions the token carries. Since the access rights are carried within the

tokens, they can be stored by the clients instead of the server, relieving it from storing

potentially unbounded number of tokens.

Capability and token based access control have been considered in an IoT context

by [124, 92, 65, 90]. However, all of them still depends on the use of expensive TLS

primitives to secure their network.

Authors of [186, 143] advocate for the use of blockchain technologies to secure IoT

devices. Due to the processing and storage requirements of blockchain technologies, such

approaches are fundamentally incompatible with resource-restricted devices and none of

the approaches are evaluated on devices weaker than Raspberry Pi level hardware, a

comparatively powerful machine in IoT deployments.

Another approach taken by multiple authors [110, 173] have been to hide IoT devices

behind more powerful gateways that can implement traditional security practices. To
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make economical sense, many resource-restricted devices must be handled by a single

gateway. However, this sort of deployment create a single point of failure where multiple

nodes can become unavailable due to a failure on the gateway. Also, while the gateways

perform access control and forward correct requests to devices, the devices still must

perform some rudimentary authorization to prevent forged requests from attackers.

2.3 Communication

Following the trend of porting existing technologies to IoT, most platforms and ap-

plications make use JSON [11] as their wire format. As parsing and emitting JSON is

a non-trivial task, microcontroller sides of such applications are either bloated, incorrect

or insecure, if not all. Use of more efficient binary protocols [43, 149, 75, 160, 165] is

gaining some traction, but not commonplace in IoT systems yet.

Wire formats have to be transported over some network protocol, and prior work [25,

98, 78] makes heavy use of message queuing as a decoupled, asynchronous communication

infrastructure. MQTT [31, 169] is often the specific protocol of choice and is supported

by all public cloud vendors’ IoT clouds. Use of MQTT makes services topology-agnostic

by placing an indirection over the MQTT broker no matter where the publisher and

subscriber are deployed. However, this uniformity comes at the cost of performance,

latency and battery life when two services are co-located on the same machine and could

communicate over much more efficient protocols.

2.4 Cloud Microservices & Operating Systems

IoT backends running on cloud servers are often architected as a composition of small

services running in isolation. Services communicate with each other over RPC channels.
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Such an architecture provides maintainability, scalability and fault isolation. These sys-

tems still run on commodity, traditional operating systems, often Linux. However, the

decoupling of services across address spaces and communicating over reified message

channels, combined with the traditional IPC/RPC mechanisms [155, 2] provided by ex-

isting systems introduce a bottleneck. Indeed, microservice deployments are deemed far

less efficient than their monolithic counterparts, but still worth the trade-off.

As the flexibility to deploy services on remote machines as well as locally is desirable

in a scalable network server context, microservice communications are often implemented

with TCP/IP networking. Use of expensive networks when a local IPC primitive will

suffice is sub-optimal. Using a new serverless microservice framework, Jia Et al. [101]

automatically promotes qualifying service dependencies to use pipes to recover some of

the overheads of typical microservice platforms.

As the services, and the associated user space components, perform less and less

work, the inefficiencies of the operating system starts to dominate the overall runtime.

The performance of the networking stack, the scheduler, access control, IO and IPC

subsystems becomes more and more important.

The research community has so far evaluated a variety of approaches to these kernel

inefficiency challenges. Kernel bypass methods [34, 148, 60, 100] attempt to eliminate

the kernel from the data path as much as possible. For instance, in such systems, the

network cards (we discuss networking as an example, but a similar approach applies

to other subsystems as well) deliver data directly to the user space memory instead of

traversing the kernel, and traditional kernel responsibilities are either handled by the

user space or eliminated entirely. This way, a user space application can use essentially

a special purpose network stack instead of relying on the general purpose kernel one.

Alternatively, Unikernels [122, 44, 140, 113] merge the application and the kernel

to again achieve the special purpose network stack the application needs. However,
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Unikernels do away with hardware isolation of individual components they host. Either

all services must be linked to a single address space without fault isolation, or services

must be deployed in separate virtual machines, preventing the exploitation of colocation.

As microservice applications consist of a large number of independent services, start-

ing and maintaining a healthy microservice deployment is a significant challenge. To

ensure correctness at all times, microservice frameworks [112, 58] employ declarative de-

ployment manifests, that is realized and maintained by a control plane as opposed to

manual launching and monitoring of services. In such systems, the control plane con-

stantly monitors the cluster of services and the desired state of the deployment and

eventually matches the state of the cluster with the desired one. We observe the mani-

fests contain more information than what state of the art systems can take into account.

For instance, Kubernetes knows what ports a container or pod will open, but simply

discards this information rather than take advantage of it to drive optimizations.
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Chapter 3

Devices as Services

3.1 Introduction

As the Internet of Things (IoT) grows in size and ubiquity, it is becoming critical

that we perform data-driven operations (i.e. analytics, actuation, and control) at the

“edge” to reduce the latency, response time, cost, and energy use for IoT applications.

As such, edge systems increasingly co-locate data management and analysis services

with sensing, instead of requiring that devices ship their data over long-haul networks

for remote processing using the traditional “cloud” model.

Edge systems [31, 169, 63, 161, 25, 78, 69] typically implement a publish/ subscribe

(pub-sub) model in which devices publish streams of data (often via a nearby broker);

when supported, actuation often uses a separate protocol. Alternatively, some solutions

target a client-server model, where the IoT devices are the clients that respond with

data whenever a decision making server needs it. In our view, a client-server model

is well suited to emerging IoT applications in which resource constrained edge devices

provide nanoservices – data-driven actuation and control, data analysis, processing, and

sensing.
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We believe that the IoT deployments in the not-too-distant future will include multi-

function devices. As a result, a services model in which the specific function (including

data publication) can be requested from each device when it is needed is more appropri-

ate. Further, because devices will continue to be resource constrained, they will require

“helper” services at the edge that augment device capabilities and enable scale. In this

paper, we outline this approach to implementing Devices-as-Services and describe some

of the capabilities of an early prototype.

Our work is motivated by the following observations.

• IoT applications can and will likely be structured as collections of services that

require functionality from a device tier, an edge tier, and a cloud tier

• in-network data processing can significantly reduce response time and energy con-

sumption [188],

• edge isolation precludes the need for dedicated communication channels between

application and devices, and facilitates privacy protection for both data and devices,

• actuation in device tier will require some form of request-response protocol where

the device fields the request,

• the heterogeneity of devices militates for a single programming paradigm and

distributed interaction model, and

• multi-function devices can and will be able to perform their functions (including

data publication) conditionally based on application needs (e.g. as a power opti-

mization).

Thus we propose a new model for distributed IoT applications in Figure 3.1. We flip the

client-server model such that devices at the edge are “servers” that although resource
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Figure 3.1: A new distributed services model for IoT: “client” applications in the cloud
compose services exported by resource-constrained devices at the edge via Edgistries – edge
nodes that facilitate device discovery/registration, privacy mediation, and optimization.

constrained, service multiple, scalable applications (i.e. clients) deployed in the cloud.

Note that in many commercial solutions [78, 25] devices “publish” data to channels to

which servers (running in the cloud) subscribe. We propose to move the servers to

the edge (as a way to scale data ingress, lower latency, and improve privacy) thereby

reversing the current cloud-centric architecture. Such a model requires a new distributed

architecture that leverages edge resources in these ways.

In this paper, we define one such architecture, investigate how it can accommodate

this new model, and evaluate the implications of its use in IoT settings and for servicing

IoT applications. The architecture is based on the functions as-a-service (FaaS) program-

ming and deployment model (the execution engine that underpins serverless computing

for clouds [126, 88, 121, 115]), and integrates a new approach for efficient client and

server discovery, authentication, and authorization via a combination of capability-based

security [135, 42, 81] and a set of edge services for service registry, privacy mediation,

and optimization called an Edgistry.

We prototype an early implementation of this architecture and approach using mi-

crocontrollers, single board computers, and edge clouds. We empirically compare the

energy consumption and performance of traditional and flipped architectures, as well as

our capability approach versus TLS/SSL based mechanisms for authentication. We find
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that it is possible to implement Devices-as-Services – a flipped model of the currently

popular cloud-based IoT architecture – efficiently, using FaaS as a universal programming

paradigm and a set of application agnostic edge services.

3.2 Devices-as-services – a New Approach

Our view is that the current Internet and cloud architecture should “reverse” to

accommodate scalable IoT applications. Rather than hosting services in the cloud (log-

ically making IoT devices clients of those services), we view devices as “servers” and

applications running in the cloud as “clients”.

This viewpoint is supported by several observations. First, devices are resource re-

stricted making them capable of delivering limited and relatively fixed functionality.

This functionality is naturally described as an enumerable set of services (responses to

requests) that are composed by applications. These services are necessarily “small” but

even fully resourced cloud services are now being developed as microservices [106]. De-

vices are the “nanoservices” in an IoT setting.

Secondly, applications must compose device capabilities from vast collections of de-

vices into meaningful functionality for users, and in an IoT setting, the user scale will

be substantial. The cloud is where this scaling will necessarily take place, both in terms

of aggregating device functionality, and matching these aggregations to user demand for

them.

Thirdly, much of the current technological development for IoT [78, 25] is focused on

bringing devices to the cloud. Many of the commercial offerings provide an SDK for

using MQTT [31, 169] or AMQP [3] to publish telemetry, events, etc. to objects (which

subscribe to device channels) in the cloud that represents each device. For actuation, each

device must separately subscribe to such a channel to receive asynchronous commands
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(although for low-power applications that use MQTT-SN, this option is not possible).

With our system, the same server code runs at all tiers — device, edge, and cloud —

unifying the device API as a first-class services API.

The currently prevalent commercial IoT/cloud APIs require devices to act separately

as “publishers” or “subscribers” or both (the last to implement “closed-loop” actuation).

We believe that IoT infrastructure must accommodate a richer model in which devices

(however resource restricted) are capable of actions as well as event telemetry. Thus,

logically, IoT devices are better modeled as servers that provide services to applications.

3.2.1 The Edgistry

Our approach splits the provisioning of services between devices and a common set

of management services located at the edge, termed The Edgistry. Devices host small,

resource-light services that field requests from, and respond to, client applications (hosted

in the cloud or edge). The Edgistry

• implements an eventually consistent distributed service registry (e.g. using blockchain

consensus protocols such as Tendermint BFT [46] and Hyperledger Fabric [8]),

• acts as a speed-matching communication service,

• can protect device privacy (e.g. through anonymization) by isolating the service

provider from service consumer, and

• provides computational and storage off-loading services (e.g. content caching) for

device-hosted services.

From a programmability perspective, we advocate a universally portable “Functions

as a Service” (FaaS) capability [103, 126, 88, 121, 115]. Services on the device are

implemented using a “micro FaaS” – a small, specially tuned, implementation of FaaS
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specifically targeting resource-restricted microcontrollers as an execution platform. The

micro FaaS supports the same programming APIs as a heavier-weight (and serverless)

implementation designed to run on an edge device, in a private cloud, or in a public

cloud. In this way, IoT applications can be coded using a single “FaaS everywhere” set

of programming abstractions from device to cloud.

To enable this portability and also data durability in a distributed setting, such

scale-spanning FaaS capability must define a portable storage abstraction, ideally having

append-only semantics. Thus all computations, regardless of location, can persist data

by appending it to some object hosted in the device-edge-cloud hierarchy using a common

API.

3.2.2 Request Forwarding and Duty Cycle

Note that to save power, some devices will need to spend most of their duty cycle in

a power-saving “sleep” mode. For example, an ESP8266 microcontroller [66] 0.01 mAh

(milliamp-hours) in deep sleep mode and requires 320 mAh to transmit a packet using its

on-board WiFi. Using a 18650 Lithium-ion rechargable battery, it is possible to operate

the microcontroller for approximately 1 year without a battery recharge if it limits its

communication to every 10 minutes (on the average, using WiFi and WPA2) [178]. Thus,

the network connectivity we can expect will be initiated by the device on a duty cycle

dictated by its power budget.

Note that in a “typical” server setting, the client initiates a connection to the server

when making a request. Thus the server’s activation can be triggered by the connec-

tion initiation. In this setting, the connection and the request-response interaction are

decoupled. That is, the device (running a service) polls the Edgistry to see if in-bound

requests are queued there. Any pending requests will be forwarded to the device which
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Figure 3.2: Speed-matching service requests via an Edgistry

can then disconnect (to save power). When a response is ready, the device connects to

the Edgistry and sends a response. Moreover, both the service running on the device

and the proxy running on the Edgistry uses append-only data structures to store state

waiting for successful transmission.

Figure 3.2 shows how a request for service from a device (registered in a serachable

registry, not shown) arrives at the Edgistry and is appended to a request queue associated

with the device. When the device contacts the Edgistry (as part of its duty cycle), the

request is forwarded to the device and appended to a queue of requests, thereby triggering

a function in the micro FaaS. When the response is ready, the device connects and sends

it to the Edgistry where it is appended to a queue of responses destined for a client.

Finally, the Edgistry forwards the response to the original requester.

3.2.3 Device Registry and Privacy

The Edgistry must implement service discovery (i.e. for devices implementing ser-

vices) and client registry. That is, when a client makes a (possibly speed-matched) request

from a service on a device, the Edgistry will need to keep track of where the response

must be returned. We envision each device pairing with a one local Edgistry node (or a

small number of local nodes) so that it does not have to store per-request client tracking
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information.

Service discovery can be implemented using a distributed, eventually consistent blockchain

consensus protocols such as Tendermint BFTT [46]. A blockchain consensus model is

particularly attractive because it offers the opportunity for the Edgistry to implement

privacy features such as location and identity anonymization [120]. For example, an ap-

plication may wish to contact a device within some geographic region without the need

to know the precise location of the device. This type of location “fuzzing” can be im-

plemented using policy delegation by the device to the Edgistry node with which it is

paired. By hiding the identity of the device from the service requesters, we can mitigate

denial of service attacks as the Edgistry delegates the service to one of the devices in the

network in a geographical neighborhood without revealing the device identity to service

consumers.

3.3 Capability-based Service Access

Security is a challenge for this inverted model because it requires distributed pol-

icy implementation governing a vast number of services, each implemented using the

barest minimum of computational and storage resources. This latter requirement alone

precludes the use extant public-key/private-key “standards” for securing client-server

interactions. Specifically, asymmetric cryptography computations and key storage are

costly for resource restricted devices. Moreover, current TLS [154] protocols do not allow

servers to control packet size, so servers must have large memories (e.g. 16k for half

duplex, 32k for full duplex) to conform.

Our approach uses a distributed, capability based authentication scheme to address

these challenges. A capability is a communicable, unforgeable token of authentication.

It encapsulates an object, the access rights on that object, and a cryptographic signature
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that maintains the integrity of the capability. We implement access rights as a bitmap

and generate a signature using a private key based method such as Hashed Message

Authentication Codes (HMACs) [111]. The signature protects the object name and access

rights in the capability. To verify the token, the server receiving a request regenerates

the signature from the capability body and compares it against the capability signature.

If it matches, the server executes the request and discards the capability.

3.3.1 Controlled sharing without the server

Capabilities can support privilege reductions without involving the server. For ex-

ample, Amoeba [135] implements a derivation mechanism that uses commutative hash

functions on access-right bitmaps to selectively reduce capability rights.

We generalize this derivation mechanism to support a wider variety of policy imple-

mentations. To enable this generalization, each capability maintains a derivation history.

Using this history, the server can verify the validity of derivations. On each derivation,

the signature of the current chain is merged with the hash of the new capability. Upon re-

ceiving a request, the server walks the chain applying the hashes. If the signatures match

at the end and each derivation is legal (e.g. does not add new rights), the derivation is

deemed valid, and the request is served. This mechanism is similar to Macaroons [42]

for web services, but with optimizations that permit multiple entries to be combined in

a single signature generation. Because any holder of a capability can extend the chain of

rights constraints this capability system can implement truly distributed access control.

It is possible for our derivation chains to grow over time. To bound this growth

we provide a flattening functionality, which compresses a chain of derivations into a

single capability upon each successful request. Because server verification of capabilities

is efficient (cf. Section 4.6) this methodology is appropriate for very large scale IoT
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deployment.

3.3.2 Protecting Capabilities

To avoid the use of resource-consuming encrypted links between devices at the edge,

we devise a novel approach to protecting capabilities in clear text channels. In our

scheme, capabilities are further constrained to a specific request before being transmit-

ted. Thus, a capability transmitted over the network can only be used for that request.

We number requests with monotonously increasing sequence numbers to prevent replay

attacks. To enable this, we employ the current time as the sequence numbers of each

request. Since updating the sequence number in the server requires a valid capability,

a DOS attack cannot be employed by an outside attacker. The device stores the last

sequence number for efficiency purposes. If a client has a buggy time protocol implemen-

tation or a clock drifts, our protocol handles this case by returning the current sequence

number in the error response. The clients can synchronize their clocks using this num-

ber. Upon the detection of such a drift, an external service such as the Edgistry can fix

the sequence number using a special capability. If the attack model of the application

involves malicious clients, a separate sequence number can be employed per client.

3.3.3 Maintaining trust

The end device and Edgistry perform 2-way authentication so that either can verify

requests from the other. During bootstrap, the end device passes a capability to the

Edgistry. Using 2-way authentication, the Edgistry also passes a capability it signed

to the end device. Using this capability, the Edgistry can verify the authenticity by

requiring the end device to send responses by deriving from that capability.
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3.4 A Prototype

We prototype this “flipped” client-server model and our capability-based security

method using CSPOT [181], an open source 1 distributed platform for deployment and

execution of IoT applications. CSPOT runs as a FaaS server on microcontrollers (i.e. as

a micro FaaS), and as a serverless FaaS runtime system on edge devices, private clouds,

and public clouds. In CSPOT, a function invocation can only be coupled with a “Put”

of data targeting some storage object, which is append-only and persistent. The function

coupled with the put has direct access to this newly posted data as well as all previously

appended data up to some limit specified with the object is created. CSPOT data

objects are called WooFs (Wide-area objects of Functions) and each WooF resides in a

single namespace. Namespaces are addressed by a URI and, thus, network accessible. A

CSPOT application can only persist data in WooFs located in one or more namespaces

– the functions that are invoked are thus stateless while executing.

In our prototype implementation, we use capabilities to authenticate four CSPOT

functions: namespace creation, WooF creation within a namespace, Put operations which

store data in a WooF (and may invoke a function), and Get operations which retrieve

data from a WooF.

Upon flashing a device, we generate an HMAC secret. A “root” capability is securely

issued when the device is paired with an Edgistry node. This capability carries the right

to create a namespace on the device which the Edgistry node uses to initialize the service.

As part of the bootstrapping process, the Edgistry creates the necessary namespaces

and the WooFs on the device. After the CSPOT components are initialized, the applica-

tion, for instance a temperature monitor, is started and periodically Puts a new reading

into the local WooF.

1https://github.com/MAYHEM-Lab/cspot.git
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Note that because the Edgistry has the initial root capability, it can implement all

access control policies via derivations from the root capability once the initial trust re-

lationship is established. For instance, the Edgistry can generate capabilities for the

WooFs and namespaces it creates during the bootstrap process, rather than the device

generating and transmitting them. The device need only verify each derivation, thereby

saving code complexity and power.

At the end of the bootstrapping process, the Edgistry derives the application capabil-

ities. For instance, the Edgistry has full access rights to the WooFs in the device, but it

derives and transfers a read only capability for the clients (applications) to use, following

the principle of least privilege.

Policy delegations also can be performed by clients. For instance, an application

client A can share a capability C1 with another application B with a constraint that the

derived capability C
′
1 is only valid in the presence of another capability, C2, that B must

present alongside C
′
1. Thus clients can also create derivations that implement policies

such as identities (represented by an identity capability) without the server’s involvement

(i.e. without contacting the device which can always verify any derivation).

3.5 Evaluation

Our initial goal is to verify the execution and power efficiencies of this new model

at the device level. We begin with an abbreviated comparison of the Devices-as-services

model to the IoT infrastructure offered by Amazon AWS [97]. Table 3.1 shows the end-

to-end timings from a ESP8266 [66] microcontroller to AWS using our new model, and

the AWS IoT SDK coupled with AWS Lambda.

This benchmark uses NTP-synchronized clocks to record a timestamp on the device

and another in AWS; it computes end-to-end latency as the difference between the two.
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Table 3.1: Comparison of Devices-as-services and AWS IoT. Units are milliseconds; across
100 benchmark runs.

mean stdev max
AWS IoT+λ 5578 265 6843
CSPOT device-¿Edgistry-¿AWS 608 5.78 652

Both CSPOT and AWS Lambda implement an event-driven FaaS programming environ-

ment. For AWS, we persist in DynamoDB [54] For the CSPOT case, we replicate data

on an Edgistry node (an Intel NUC) [96] in a WooF before forwarding/persisting it in

CSPOT running in a virtual machine in AWS. The table shows mean, standard devia-

tion, and maximum latencies in milliseconds over 100 experimental runs. The Edgistry

node is hosted using an edge cloud [63] running Eucalyptus [139] located in the same

room as the microcontroller. The edge cloud is connected to the UCSB campus network.

From this data (and a more detailed comparison that includes Azure IoT Hub [181])it

is clear that this new methodology is at least an order of magnitude faster (in terms of

latency) than comparable commercial offerings even when it replicates data in the Edg-

istry. Further, the coefficient of variation for the AWS experiment is 0.04 and 0.009 for

the CSPOT experiment, indicating that our system is also an order of magnitude more

stable in terms of performance variation.

Moreover, devices that publish all of their data all of the time (e.g. using MQTT to

leverage AWS or Azure) wastes precious battery lifetime when that data is not demanded.

This new model allows devices to function as servers and only to respond when data

is requested by a client application. Thus, in this work, we focus on improving the

efficiencies of the security features at the edge, where computational power and electrical

energy (i.e. battery power) are at a premium.

Much of the latency experienced in commercial offerings (and the concomitant loss of
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Table 3.2: Comparison of cryptographic algorithms for signing and verifying a 32 byte
message on the ESP8266. Average execution time and standard deviation (in parens)
are shown. Last 2 rows show end-to-end measurements.

Algorithm Sign ms (stdev) Verify ms (stdev)
PKCS1 (2048 bit) 3280 (190) 187 (4)
PKCS1 (4096 bit) 31580 (190) 9190 (9)
ECDSA (256 bit) 214 (1) 4340 (216)
HMAC (64 bit) 0.37 (0) 0.37 (0)
HMAC (128 bit) 0.37 (0) 0.37 (0)

3-level Derived
Capability (64 bit) 0.77 (0) 1 (0)
5-level Derived
Capability (64 bit) 1.18 (0.04) 1.3 (0)

battery life through additional active time in the device) is associated with the TLS-based

security protocols that MQTT and AMQP implementations use. While it is possible to

use the bidirectional nature of MQTT and AMQP communications to implement close-

loop device interactions, these protocols (let alone the APIs that actuate them) are

not specifically designed to implement higher-level service interactions on devices with

moderate or severe power restrictions and/or very limited memory. Devices-as-services

requires a more efficient, high-level interaction and key to that interaction is efficient

authentication. We next compare our capability-based approach (which uses an HMAC-

based mechanism) to competitive approaches. In all experiments, SHA256 hash was used

for generating a digest from messages. For the public key cryptography experiments, we

use the recommended key size for RSA of 2048 bits and 4096 bits and 256 bits for ECC.

For the hash generation, we use a custom version of libemsha. Generation of SHA256

hashes from messages are common to both approaches. Our implementation takes around

88 (0.06) microseconds per SHA256 hash on a message of 32 bytes. The time it takes to

hash a message scales linearly with message size.

Table 3.2 shows a comparison of the execution times for various cryptographic tech-
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niques when used to sign and verify messages. The table shows the times for RSA (using

PKCS1) for two different key lengths, ECDSA (an Elliptic Curve Cryptography – ECC

– method popular in many IoT applications [90]), and an HMAC-based scheme we have

implemented. Below the double lines we also show the performance of a 3-level capability

derivation and a 5-level derivation on the server (e.g. to represent a setting in which the

clients constrain capabilities multiple times). We also ran a TLS based server experiment.

We find that each connection uses 3950 milliseconds (ms; standard deviation (stdev) 11

ms) and 32320 ms (stdev 5 ms) for a simple TCP request and 2048 bit and 4096 bit

keys, respectively. The difference between these two measurements is due to network

performance variability.

Clearly, an HMAC-based approach is considerably less computationally intensive than

either of the competitive approaches. Indeed, even the derived capability timings are

better for a 3-level derivation than for a single capability verification using either of the

other schemes.

While the results in Table 3.1 indicate that, overall (even with additional persistent

data replication) our method requires an order of magnitude less “active time,” and ac-

tive time is proportional to power usage, we highlight on the energy efficiency of the

authentication protocol. Specifically, our method uses 0.072 mJ and 0.185 mJ for gen-

eration and verification, respectively. RSA signatures (2048 bit keys) consume 606.1 mJ

and 34.6 mJ, and ECC signatures use 39.54 mJ and 80.32 mJ, respectively. That is for

capability generation our method uses between 3 and 4 orders of magnitude less energy

for authentication than either RSA or ECC.
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3.6 Summary

We propose a new “flipped” client-server model for IoT in which devices at the edge

are servers that provide nanoservices, which applications in the cloud (the clients) com-

pose for their implementations. We contribute a novel approach to distributed service

design based on “FaaS everywhere,” edge-level support, and a novel capability mechanism

for distributed policy implementation, a fuller exposition of which is available from [182].

Our empirical evaluation shows that this approach is feasible and introduces very little

overhead and power consumption.

Devices-as-services provides a principled and structured way of programming hetero-

geneous, distributed and scalable Internet of Things applications to conclude our first

research direction laid out in Chapter 1, a significant advance over the existing main-

stream practice of amalgamating incompatible technologies.

29



Chapter 4

CAPLets

4.1 Introduction

While Devices-as-services provide a uniform method of programming complex IoT

applications, the implemented services must be available over a network (after all, it

is the Internet of Things). Devices-as-services on its own does not define any security

mechanisms, and it is left to the particular application. However, security in the context

of IoT turns out to be very difficult.

Existing IoT programming systems either focus on a specific IoT resource tier (i.e.

the cloud), or attempt to repurpose and amalgamate existing tools and protocols not

designed for the resource constraints, intermittent connectivity, and failure frequency of

IoT deployments [21, 131, 78, 132, 35]. For example, most end-to-end IoT systems [31,

169, 63, 161, 25, 78, 69] use a publish/subscribe (pub-sub) model in which devices publish

streams of data (often via a nearby broker); when supported, actuation often uses a

separate protocol [138].

Similarly, for access control, many IoT systems use Transport Layer Security (TLS) [154]

protocols, based on public-key cryptography [97, 25, 98]. These systems use edge devices
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and microcontrollers to communicate with servers and edge proxies via encrypted chan-

nels, often using RSA certificates. Although TLS addresses many security challenges, it

also consumes significant resources on resource restricted devices (memory, computation,

network, battery power, etc.) and depends on a number of resource-intensive opera-

tions for its security. The latter includes accurate and secure time keeping, awareness of

certificate revocations, and maintenance of root certificates, among others.

Due to the implementation complexity, resource consumption, and configuration dif-

ficulty of TLS-based security, many IoT devices have weak or no access control, and

are easily compromised [9, 119]. Moreover, the heterogeneity of device-maintenance in-

terfaces and the complexities of remote device management often prevent users from

updating weak or faulty implementations when improved software is available. As a re-

sult, many devices are placed behind gateways or firewalls which proxy requests when

they are actually deployed [110, 173], rendering the resource expense associated with

TLS-based security on the device needlessly redundant and costly.

Our goal, with this work, is to address these challenges at the device level. A full

CAPLets IoT deployment uses TLS to protect client-to-client communications where

clients are hosted on relatively resource-rich platforms, but removes the need for resource-

restricted devices to implement or proxy a TLS connection.

The primary problem with current cloud-based approaches is that they make resource-

restricted devices act as network-attached clients that access services hosted on resource-

rich platforms. Because these services use technologies that support Internet web-services

(e.g. in the cloud) they define security protocols that do not account for the paucity of on-

device resources at the edge. As a result, devices acting as clients must use (or proxy the

use of) the resource-intensive protocols mandated by the services. That is, the services

define the protocols that the clients must use and, because they are often repurposed

cloud-based web services, these protocols impose heavy resource loads on client devices.
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Due to this model, current applications are dependent on the availability of cloud

services at all times for users to access their own devices. For instance, a smart-light

needs to be connected to the cloud service even when it is in close proximity to the user.

This causes temporary or permananent outages when Internet connectivity is lost [36, 99]

or the manufacturer no longer supports the online service.

In this paper, we investigate the potential of inverting this relationship so that devices

become first-class – that is, devices host services to which resource-rich clients (on cloud

servers or smartphones) make requests. Such an approach requires the system software

and its protocols to support client and server hosting on any device in an IoT deploy-

ment (from sensor to cloud). Unlike prior work, which focuses on system portability for

IoT [164, 67, 183], we propose a unifying set of security protocols, called CAPLets, that

complement this previous work to realize first-class devices.

To enable efficient access control in all IoT tiers including low-end microcontrollers,

CAPLets replaces asymmetric digital signatures with fast symmetric MAC tags based

on Macaroons [42], introduces a cheap key exchange mechanism, eliminating 1 TLS for

client-server communications, and significantly reduces the storage footprint associated

with authorization and certificate management. As a result, services can be hosted on

sensors, on edge systems, or in a cloud. Unique to our approach is a constraint mechanism

that is programmable and sufficiently flexible to represent diverse policies. As a summary

of our contributions, CAPLets

• defines a capability mechanism that is sufficiently efficient for use by the least capa-

ble IoT devices (sensors, microcontrollers, battery-powered single board computers,

etc.) as well as by more capable edge and cloud systems;

• defines a derivation process that augments existing mechanisms with semantic ca-

1CAPLets depends on TLS for client-client communications (e.g. to transmit an identity token).
However, it can replace TLS for client-server interactions in an IoT application.
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pability derivations to enable superior flexibility of controlled sharing;

• expands what a capability token can contain through the use of static and dynamic

constraints to permit a wider range of policies to be expressed and to provide a

protected metadata channel;

• uses metadata channels to offload policy implementation to trusted delegates across

the deployment, e.g. to authenticate users and issue capabilities that a device can

independently verify;

• defines an efficient and secure service request construction mechanism that does

not depend on encrypted channels;

• defines a secure key exchange protocol by exploiting the cryptographic token con-

struction; and

• supports efficient request validation, bootstrapping, capability sharing, and revo-

cation.

We demonstrate the claimed efficiencies with an empirical evaluation of CAPLets

that we conduct using microbenchmarks and an implementation of CAPLets for an

end-to-end, first-class devices deployment, using a portable IoT operating system. Our

work shows that CAPLets is an order of magnitude faster and more energy efficient

compared to existing state-of-the-art IoT authorization systems.

4.2 Background and related work

Security is a challenge for end-to-end IoT systems because it requires distributed

policy implementation governing a vast diversity of devices (in a multitude of trust do-

mains) that may have limited computing, storage, network, and/or power capacities. In
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particular, TLS and asymmetric cryptography computations and key storage that are

necessary to access most web services are costly (in terms of execution time and energy

expenditure) for resource restricted devices. In addition, these public key cryptography

methods can only be used for authentication in conjunction with some other mechanism

for authorizing the authenticated users (e.g. Access Control Lists or Role Based Access

Control). All such mechanisms require some storage capacity on the device.

Capability systems are popular for controlling access to distributed resources (e.g.

web services [42], operating system processes [135], and IoT [81]) because they are in-

herently decentralized. Such systems use unforgeable tokens of authority to grant client

access to resources and to facilitate sharing of access between clients. They can also

implement the Principle of Least Privilege [159] (entities possess only the access rights

that they actually require), which is appealing in any security context.

Capabilities describe access rights associated with a resource in a way that is forgery

and tamper-proof, often using a cryptographic signature. A concrete example of a capa-

bility is a path and permission bits in a filesystem: Capability = (/home/alice, {R,W,X}).

A signed capability, called a token, can be securely shared across a network.

To verify the token, the server for a protected resource, upon receiving a request

carrying the token (which the server generated previously and signed with a secret key

known only to the server), regenerates the signature from the capability body and com-

pares it against the token signature. If they match, the server “believes” the access rights

carried in the capability and executes the request on the resource if the rights permit the

access.

Capabilities can support privilege reductions, termed derivations, without interven-

tion by, or cooperation with, the server. For example, Amoeba [135] implements a

derivation mechanism that uses commutative hash functions on access-right bitmaps to

selectively reduce capability rights.
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Much research has examined the use of capabilities as the basis of IoT security [82,

123, 91, 80, 187, 186] however relatively few investigations have focused on the efficiencies

necessary for microcontroller deployment. The authors of [91] explore the use of ECC on

a 32-bit microcontroller. Our findings in this paper show that CAPLets is two to three

orders of magnitude more efficient.

4.3 Threat Model and Assumptions

CAPLets makes specific (and somewhat common) assumptions about the network

and physical security of the devices. We list them here to set a common frame of reference

for the rest of the paper.

• Secrets held on devices cannot be remotely compromised.

• Recovering the Message Authentication Code (MAC) secret from a tag and a plain-

text is infeasible.

• The randomness used for generating cryptographic secrets is not guessable by ex-

ternal attackers.

• An attacker may control every part of the network, including delaying, repeating,

dropping, inspecting and modifying packets at will.

4.4 Mechanism

In this section, we describe core CAPLets abstractions. A capability, denoted

CType(data) or just C when their content is irrelevant, is a typed object expressing a

privilege. For instance, CDir(read, /var/log) specifies ”read access to /var/log” for the

directory type. A frame, denoted F , is a set of capabilities, which carry rights to multiple

35



CAPLets Chapter 4

objects as a single unit. A token, denoted T , is the unit of communication. It has a

body, denoted body(T ), and a tag over that body. The tag is computed with a Message

Authentication Code (MAC) function.

CAPLets generates tags using a Hashed Message Authentication Code (HMAC) [111],

in particular HMAC-SHA256. We use HMACs because of their efficiency characteristics

(we compare their performance against alternative approaches in Section 4.6). With

this construction it is safe to transmit tokens back and forth over a network as any

modification to the body of a token is detectable, i.e. tokens are unforgeable.

For each device, called an origin, we define a special token R called the root token. R

only contains a special frame FR, called the root frame and FR in turn only has a special

capability, CR called the root capability. CR grants absolute privilege to the device it is

associated with.

The tag of the root token, tag(R), is computed as MAC(Secret, FR). The Secret

is a random secret generated on the device during bootstrapping (described below).

Currently, we use hardware with true random number generators to generate this secret.

Tag generation for other tokens is also described below.

Tokens do not carry information regarding their origin device. This means the holder

of a token must know (or discover through some external mechanism) the server that

originally generated the token, and can process the token to grant access to protected

resources to the bearer carried therein. While traditional capability implementations

include the responsibility of absolutely naming objects [135], CAPLets refrains from

doing so. The reasons are two fold: (i) including the name (a DNS name, IP address

or a more complicated naming scheme) of the server bloats the token sizes and (ii) in a

distributed network with several, often incompatible subnetworks, naming exact servers

is not a solved problem. For instance, a global address for a server behind a NAT or in

a non-IP network such as Zigbee or Bluetooth does not exist.
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Figure 4.1: The root token for /home/alice directory. The bar shows the token tag,
which is computed as MAC(secret, FrameBody). The ? denotes the capabilities in a
frame.

Figure 4.1 shows an example of a CAPLets root token. The tag (top bar) is generated

from the frame body, using a secret known only to the resource owner (e.g. a secret stored

on a device).

4.4.1 Authenticated modification

A token protects its body with the invariant that MAC(Secret, body(T )) = tag(T ),

that is, the tag carried within the token is equal to the computed tag. While tokens

with this exact form are used in practice (for instance as JSON Web Tokens [1]), they

preclude the ability to perform offline policy delegations.

Past work on Macaroons [42] showed, however, that it is possible to allow some

controlled modification with this cryptographic construction in the form of appending to

a token’s body. Basically, a token starts empty with a nonce tag always available to the

origin. Anyone can append new, delimited data to the token and update its tag with

another MAC. Upon receiving an appended token, an origin can confirm the integrity

of the whole by replaying the modifications, starting from the empty token. Upon each

append, the new tag is computed as tag(tail :: head) = MAC(tag(tail), head). :: is the

list append operator. Note that this operation does not depend on the secret held by

the server and any party can append data to a token without any involvement from the

server.

In other words, every element in the token protects the next one’s integrity. This

37



CAPLets Chapter 4

mechanism is similar to certificate verification in TLS with which a party can verify a

certificate’s integrity by following the signature chain starting from a Certificate Author-

ity (CA). The difference here is that because only the server holds the origin secret, it is

the only entity that can verify an entire chain.

Note that this construction is oblivious to the contents of the body. Macaroons [42]

uses it to append caveats to tokens. CAPLets uses this approach but extends it to

define and enforce semantic requirements associated with each append.

4.4.2 Token derivation

Specifically, CAPLets constructs token bodies as a list of frames, starting with

FR. Only the last frame of a token is used to describe its privileges. In other words,

the rights granted by a token are the capabilities in its last frame. The last frame is

called the leaf frame. The other frames are present in the token for the purposes of in-

tegrity verification and derivation checking and comprise the derivation chain. Formally,

body(T ) = [FR, ..., Fleaf ] where [FR, ...] is the derivation chain.

We define a valid derivation to be one that reduces privileges monotonically. For

instance, C1 = ”Read/write Sensor1” is more privileged than C2 = ”Read Sensor1”. A

derivation from a frame with C2 to a frame with C1 is deemed invalid, whereas the other

way is valid. Note that this decision is application dependent and an application may

define the C1 to C2 to be invalid as well.

A token with invalid derivations can pass the integrity check described above. There-

fore, after integrity verification, CAPLets also checks that each derivation is valid in a

token.

The type of a capability is used for 2 purposes: serialization and validation checking.

The first is rather trivial: the type of a capability is transferred as a header in messages

and during deserialization, the header is used to reconstruct the correct object. The
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second is the basis of derivation validation.

Whether a derivation is valid or not is a function of two frames: V alidDerivation(Fold, Fnew).

A token is valid if all adjacent pairs in its body pass the validity check.

V alidDerivation(Fold, Fnew) =

∀Cnew ∈ Fnew ∃Cold ∈ Fold Cnew ⊆ Cold

(4.1)

In this equation, the ⊆ operator decides whether the new capability is a subset of the

old one. Therefore, the validity check ensures that each subsequent frame in a token is a

subset of the previous one.

Whether a capability is a subset of another is an application defined relation between

the types of the given capabilities with the special case ∀CC ⊆ CR. If the relation between

two capability types is not defined, it defaults to false. The subset is a binary relation

between capabilities that forms a partial order. An example of the subset relationship

occurs between a directory capability CD(DirPath) and a path capability CP (Path):

CP (Path) ⊆ CD(DirPath) =

StartsWith(Path,DirPath)

(4.2)

This particular relationship allows the users to legally derive access rights to files in

directories to which they have access. For instance, if Alice holds CD(/home/alice), she

can legally derive CP (/home/alice/hello.txt).

This construction allows CAPLets applications to express flexible, natural deriva-

tions. It must be noted that the party doing the derivation checking has the authority

to determine what is valid or invalid. However, sharing these relationships among the

server and the clients is still beneficial to minimize non-malicious, invalid derivations.

The derivations of a token is the set of all possible tokens that can be transitively
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Figure 4.2: A derived CAPLets token. The blue bar displays the frame tag. The root
frame, now in red stripes, is still present in the token, but its contents are only used for
validation purposes. ?’d lines denote capabilities and lines with ? denote constraints.

derived from it and is denoted as ST (for successors of T ). Conversely, the tokens that can

transitively derive T is denoted PT (for predecessors of T ). From our previous definitions

it follows that ∀TR ∈ PT .

Due to the cryptographic construction, only the party who holds T ∈ PD can compute

tag(D) given only body(D) by taking tag(T ) and replaying the derivations from T ’s leaf

to D’s leaf. This property is core to how a server verifies the tag of a derived token.

Upon receiving a token T , the origin replays all frames in it over R and checks whether

the tag supplied in T matches the computed tag. If not, it rejects the token. After the

tag verification, the server checks derivation validity (and rejects the token if invalid).

By maintaining the chain of derivations, tokens also carry within them a form of

sharing history. That is, by looking at a token, a resource owner can trace how the

holder of this token acquired it. As we explain below, combined with the use of identity

tokens, this history allows for a powerful yet simple auditing, debugging, and revocation

mechanism.

Figure 4.2 shows a derived token. The root token is at the top (the stripes showing

that while it’s contents are visible, they are not usable). The derived frame in the figure

has two new capabilities and lacks the original one, demonstrating the subset relationship.
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CAPLets’ distinction between capabilities and constraints allows for efficient caching

and analysis of permissions a token carries. For instance, a client can submit a token

to be used in a session, which the server could verify ahead of time as much as it can

(for instance time dependent constraints cannot be verified ahead of time, but endpoint

constraints can). After that point, the client can efficiently perform multiple requests

with that token.

CAPLets uses a zero-copy network format similar to [75, 160], improving overall

verification performance.

4.4.3 Bootstrapping

To bootstrap authorization, the device generates a cryptographically random secret,

which it stores in internal non-volatile memory. The internal secret is never shared ex-

ternally and short of physical attacks, is unrecoverable. Using this secret with a MAC,

CAPLets produces the root token R. R is then transmitted securely to the owner

through the commissioning transport, typically a wired connection. For wireless commis-

sioning, a one time secure channel is needed to transport the token. Post commissioning,

the device need not create or hand out tokens (although it can).

4.4.4 Sharing

R is securely held by the resource owner, Alice. Alice uses this root token to derive

privilege-reduced request capabilities for herself to use in accessing resources.

Alice can also share derivations of R with another actor, Bob. To do so, she constructs

a frame with only the resources she intends to share with Bob. CAPLets appends this

frame to R and computes the new tag as explained previously. She can safely pass this

derived token to Bob as the MAC is one-way, i.e. even though he can see the contents R,
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Bob cannot recover tag(R). The transfer of the token from Alice to Bob needs to occur

over a secure channel (e.g. using TLS) to prevent the token from being seen by anyone

other than Bob.

4.4.5 Constraints

The mechanism explained so far is limited in that an owner of a token can only

restrict it by removing a permission from it. While sufficient for some purposes, sophis-

ticated authorization policies require the ability to condition authorization on a set of

circumstances that may change after a resource is instantiated.

For example, when sharing a capability for a sensor, the owner, Alice, may want

to restrict the receiver, Bob, such that he can only take readings when the device has

sufficient battery power. Such a restriction is difficult to express in terms of monotonically

decreasing access rights. While a special case field of required battery level can be added

to every token, such an approach does not scale to support a large number of restrictions.

As a generic solution for expressing arbitrary limitations on capabilities, we introduce

constraints. Constraints are carried in frames alongside the capabilities and used to decide

whether or not the frame is valid. That is, if a constraint is not satisfied, the frame is

deemed invalid.

Constraints consist of executable code for a sandboxed virtual machine (VM). CAPLets

does not specify a VM: it could be a fully generic VM like the Java Virtual Machine

(JVM), or a special purpose machine like eBPF or CapVM as described in Section 4.6.

After validating a token, a server then evaluates the constraints in the leaf frame and if

any constraint fails, it rejects the token.

During a derivation, an application can emit arbitrary code for the VM and add it to

the leaf frame. Code contents are protected via token construction just like capabilities.
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With such a construction, CAPLets deployments can be future-proof and enable the

expression of truly flexible authorization policies. For instance, with Macaroons [42], the

interpretation of caveats is baked in at deployment time and they are fixed and unchange-

able. As a result, new policies that are needed after deployment cannot be implemented.

Concretely, for the above example, if the Macaroons application did not include a ”bat-

tery level is above N%” caveat checker at build/deploy time, it is impossible to specify

such a requirement. With CAPLets, a client application can specify it dynamically.

Constraints may depend on a variety of information sources. During evaluation, a

constraint has access to the contents of the tokens provided by a client and key context

such as network endpoint information. They may also access global information such

as the current time or battery level through the use of VM-calls. The set of global

state exposed to a constraint depends on the application. For example, it is possible to

authorize the constraints of a token with other tokens for enhanced protection.

Constraints naturally integrate into the CAPLets derivation mechanism. Since or-

dering between arbitrary code is ill-defined, the subset relation between constraints is

defined to be equality. This means that each constraint in a previous frame must appear

verbatim in the next one. Since all constraints must be met for a frame to be valid,

adding a new one can never escalate privileges.

Constraints may also express dependencies that span multiple tokens. A token can

be constrained in a way that it is valid only if the request also presents a token with

a specific signature. Or it may require that a token contains a specific capability to be

valid. For example, an identity constraint can be used to limit a token to be only valid if

it is being used by a specific user. We discuss identity implementation using CAPLets

in Section 4.4.8.

For widely used and common constraints, CAPLets supports a static optimization

where the code for a constraint can be baked into an application in an optimized form and
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can be delegated to by regular constraints. We call such constraints static constraints.

For such cases, the frame need not carry any code for the constraint and just name the

static constraint it depends on. Static constraints only carry the data they need, and are

very efficient both in terms of network transfers and execution time, while maintaining

the flexibility of CAPLets.

For example, a token can be constrained to be valid only when it is raining, as deter-

mined by reading an on-board rain sensor. Another example is an end point constraint

which checks whether the request originates from a certain end point. For a static rain

constraint, the body of the constraint is empty: its existence is enough to make a deci-

sion. For the end point constraint, its body must carry the specific end point to check at

validation time.

4.4.6 Capability Revocation

CAPLets has two mechanisms for revocation with different guarantees: eventual and

immediate. Eventual revocations are space efficient and CAPLets provides a timeout

constraint for its implementation. Tokens with a timeout constraint are periodically

refreshed by the issuer. An issuer may revoke a token by choosing not to refresh it at

the next cycle. While this approach is good enough for many applications, CAPLets

also optionally supports immediate revocations if needed, which requires storage at the

server (as described below).

When a token holder wishes to immediately revoke a token she has shared, she sends a

revocation request to the origin. The server places the tag of the token on a blacklist. Any

request that contains the token with a tag in the blacklist is rejected by the server. The

check is applied on every frame and therefore, revoking T implicitly revokes ∀DD ∈ ST

as well. To prevent the unbounded growth of the blacklist, each entry carries the expiry
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date of the token along with the tag. Upon expiration, the entry is removed from the

blacklist since the expiry mechanism will prevent the use of the token. In the unlikely

event the list grows to unacceptable levels, the owner may revoke R, which revokes every

token and clears the list.

Note that the device in this case need not refresh tokens – it only maintains the

blacklist – since the tokens may be (and usually are) derived by the owner on a resource-

rich platform. That is, the owner may issue (and refresh) tokens that are validatable by

the device without communicating with the device.

4.4.7 Request Construction & Validation

All other capability systems use the token only to authorize a request delivered along-

side the capability. The server checks if the provided capability has permissions to per-

form the request. Because the request is included separately, it is possible (and often

convenient or expedient) to transmit a capability with higher privilege than the request

requires. This is arguably a violation of the Principle of Least Privilege [158].

CAPLets takes an alternative approach and unifies service requests and capabilities.

We exploit the fact CAPLets capabilities are arbitrary objects, and encode requests as

special capabilities. Each service request is expressed as its own capability type by

placing it in a leaf frame. For instance, a read request on a file can be placed inside a

leaf frame where the previous frame includes read access rights for the file. In this case,

the file read permission is a superset of read request capability on that file. CAPLets’

construction ensures the derivation checks succeed only if the frame before the request

frame has sufficient access rights to perform the request. We denote request capabilities

as CReq.

A request capability must specify an operation precisely. We enforce this by man-
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dating a request capability not be the superset of any other capability. In practice this

means that any frame containing a request capability cannot be further derived. This

ensures that once a request token is crafted, it is immutable. It can be performed as

it is or discarded, but partial application is not allowed. This construction ensures the

integrity of requests even when transmitted in plain text, allowing for enhanced efficiency

when confidentiality is not needed.

It is sometimes convenient to create requests that depend on other tokens, for instance

as proof of an earlier action such as authentication. Tokens passed alongside a request

token for supporting purposes are called auxiliary tokens. To prevent an actor from using

the auxiliary tokens separately with other, unintended, requests, CAPLets requires that

clients to place a signature constraint with the signature of the request token in the leaf

frames of each auxiliary token. This constraint ensures that a token is only valid if it is

being used alongside a token with the specified signature.

Upon receiving a request, a server performs three validation steps on all tokens:

Signature verification: The server reconstructs the final tag by starting with the root

tag and replaying derivations in the chain. If the resulting tag does not match the tag

provided by the token, the request is rejected.

Derivation validation: Every link in the derivation chain is validated for valid deriva-

tions as described in 4.4.2. Every constraint in the previous frame must be verbatim

present in the next frame. If these conditions are met in every link in the chain, the last

frame is legally derived by definition. If any invalid derivation is performed at any step,

the request is rejected.

Constraint validation: Constraints in all the leaf frames are checked. If any of the

constraints are unmet, the request is rejected.

If the request is not rejected in any step, it is served.
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Figure 4.3: A request token comprising implied rights carried by previous frames. A
request token may only have request specifications and constraints in it’s last frame.
Since the request is delivered as a derivation, no further checks are necessary.

4.4.8 Identities in CAPLets

To represent identities in CAPLets, we introduce identity capabilities. An identity

capability for a certain identity, for instance Bob, is proof that the holder of such a

capability is indeed, Bob. The issuance of such identity capabilities is not directly spec-

ified by CAPLets. They can be directly issued by the owner of the device, Alice, if

she wishes to implement an authentication service herself. Identity capabilities use the

same mechanism as regular capabilities, and thus support derivations. This means that

the issuance of identity capabilities can be offloaded to a trusted identity provider, as

with regular capabilities. This provider can use existing authentication services such as

LDAP [142] and issue CAPLets identity tokens for successful authentications. Such

tokens should have a timeout constraint to facilitate revocation. Since the tokens are

generated by a computationally powerful and non-power-constrained machine, users can
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routinely refresh them.

With this formulation, the user Bob can acquire a token, TBob, that proves to the

device that he is Bob. Note that regardless of how Bob receives it, TBob ∈ SR and it

can be verified with the regular derivation process, precluding the need for a complex

public key management for the server. Either the owner issued the token directly, or she

shared an intermediary identity root token with an identity provider, which then derived

an identity token for Bob from it.

An identity constraint limits a token to be only valid if presented alongside a specific

identity capability. When Alice wishes to limit a token to be only used by Bob, she

places an identity constraint on the token and shares it with Bob. When performing a

request with that token, Bob includes his identity token, which the server checks using

a constraint validator. Without the identity token, the access right token will not be

validated. Figure 4.4 demonstrates an end to end interaction with an external identity

provider.
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Figure 4.4: 1. Device delivers the root token to the owner during provisioning. 2. The
owner registers the device with an identity provider service. 3. Owner shares a Bob-
id-constrained token with Bob. 4-5. Bob receives a Bob-id token to be used with the
device. 6. Bob delivers a request token alongside his id token. The thick edge denotes
a client-server communication and is a CAPLets channel. The thin edges use a TLS
based protocol, such as HTTPS or SSH.

An identity token is only ever used as an auxiliary to another request token and is

protected by the signature constraint explained in Section 4.4.7. Note that the body of

the identity capability and constraint types are dependent on the desired identification

mechanism. The possibilities range from a single integer to variable length strings en-

coding complex identities. Since an identity token generated for a specific server will not

be valid for a different server due to signature mismatches, even a single integer provides

security.
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4.4.9 CAPLets Key Exchange

So far we have focused on authorization. While CAPLets can securely perform re-

quest authorization without an encrypted channel due to its immutable request construc-

tion, the bodies of requests and responses are visible to attackers. Moreover, responses

are not authenticated. The conventional approach to this problem is to employ TLS

channels [78, 25, 42, 65]. However, TLS based encryption has many drawbacks includ-

ing certificate management on devices and, as we quantify in our evaluation, requiring

slow and power hungry operations. While TLS might be as efficient as possible for the

guarantees it makes, we believe that not all such guarantees are as desirable in an IoT

context (versus an Internet/cloud context). In this section, we describe how we exploit

the cryptographic construction to provide a limited but efficient form of encrypted chan-

nel among CAPLets parties. We provide a formal proof of the security of our algoritm

against passive, replay, and man in the middle attacks as an Appendix.

At the core of our algorithm is the observation that tag(T ) forms a shared secret

among the users who hold any token in T ∪PT . That is, a party can recover the tag from

a body if and only if they hold a token in this set.

As described above, we use this property to ensure token integrity. However, it is

also possible to use it to derive a secure symmetric key among anyone within this set,

particularly, between the server and any user, since the server holds R, the root token.

For this purpose, we introduce a new leaf capability type: an encryption capability,

denoted as E. An encryption capability E has the following properties: ∀CE ⊂ C and

∀CC 6⊂ E. This means that an encryption object can be derived from any capability

and no other capability can be derived from an encryption object.

When a client wishes to set up an encrypted channel with anyone holding T ∪PT , they

derive an encryption token TE from T that has only the encryption capability in the leaf
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Client Device

body(TE) with NC
Compute tag(TE)

MAC(tag(TE), NC)||ND
Pick random NDMAC(tag(TE), ND)
Verify MAC

MkTE
||MAC

Figure 4.5: CAPLets key exchange: tag(TE) is not recoverable by an attacker and
forms a shared secret. Both parties can ensure the other end knows the secret by sending
each other challenges. Once authentication is done, the session key kTE

is computed as
KDF (tag(TE)). Mk means the encryption of M with key k with some symmetric cipher.
The MAC is computed over Mk.

frame and transmits the token body without the tag to the server. Upon receiving

an encryption token, the server will recover the shared secret tag(TE). At this point, both

parties can generate matching keys kTE
for encryption through a Key Derivation Function

(KDF). Both parties then challenge the other side to compute MAC(tag(TE), N{C,D}),

N{C,D} is chosen at random by each party respectively.

The challenge uses the same construction we use to compute derived tags and may

seem susceptible to an attack where an attacker asks a party to compute the tag of a

STE
. For this reason, we have defined TE to be non-deriveable, i.e. STE

= ∅. While

the cryptographic construction allows such a token, the logical construction prevents its

use. This is a case where past approaches to capability construction are insufficient to

accomodate arbitrary metadata channels.

Instead of using tag(TE) directly to derive encryption keys, an authenticated Ephemeral

Diffie-Hellman (DHE) key exchange can be employed to enhance this algorithm with Per-

fect Forward Secrecy (PFS). In DHE key exchanges, both parties generate a temporary

public and private key pair and share the public parts over the network. Upon receiving

the public key of the other party they combine their private key and the public key of
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the other party to agree on the same key. Since any potential attacker only sees the

public parts, they cannot compute the shared key. However, unauthenticated DHE is

susceptible to trivial Man in the Middle (MitM) attacks. To prevent this, the DH public

keys are authenticated. For instance, if both parties had long term public keys, they

could sign their messages so that the other end can confirm with the long term public

key.

In the case of TLS, a digital signature algorithm such as RSA or ECDSA (Elliptic

Curve Digital Signature Algorithm) must be used for this purpose. However, digital

signatures are compute intensive and consume significant energy. In CAPLets, the

parties instead use the shared secret tag(TE) with an HMAC to authenticate their DH

public keys (QC and QD in Figure 4.6).

For CAPLets, PFS means that if tag(TE) is compromised at some future time,

an attacker cannot decrypt any past communication even if they stored all the packets

between the parties. However, as we will demonstrate in our evaluation, PFS consumes an

order of magnitude more energy than the rest of the entire communication. In practice,

IoT communication often loses value with time, and by the time an attacker recovers

a tag and decrpyts past data points, the data may already be obsolete. When PFS

is necessary, the CAPLets implementation is still more effficient than TLS due to its

ability to use MACs instead of digital signatures.

Once the key exchange is finished, the application is free to use the key with any

suitable symmetric cipher. Our prototype uses AES-CTR and HMAC-SHA256 in a

correct encrypt-then-MAC construction.

As mentioned above, anyone holding a token in PTE
can actively intercept this key

exchange. Since tag(TE) is the only shared knowledge among the device and a user, this

is impossible to prevent (even with TLS, certificates would have to be pre-exchanged, i.e.

another shared knowledge). However, |PTE
| can be minimized, for instance by the owner
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Client Device

body(TE) with NC
Compute tag(TE)

QD||MAC(tag(TE), QD)

QC ||MAC(tag(TE), QC)
Verify MAC

Mk||MAC

Figure 4.6: Perfect-forward-secrecy secure CAPLets key exchange: tag(TE) is not re-
coverable by an attacker and forms a shared secret. Both parties generate ephemeral
public-private key pairs (QC , dC), (QD, dD) and share tagged public keys. Parties au-
thenticate each other by verifying the received MAC. After authentication, session key k
is computed as dC ∗ QD and dD ∗ QC for the client and device, respectively. Note that
the session key is not derived from tag(TE). Mk is the encryption of message M with
key k via some symmetric cipher. The MAC is computed over Mk.

issuing special purpose tokens to users that are only used to derive encryption tokens.

In that case, |PTE
| = 1, with the device owner being the only other party who can listen

to the conversations. We view this last point as a desirable property as a device owner

should be able to monitor communication to/from the devices they own.

4.5 Special purpose authorization VMs

As mentioned previously, while CAPLets supports authortization logic to be ex-

pressed using arbitrary programs, it does not specify or rely on a particular virtual

machine to do so. Theoretically, such programs can be written for the JVM, CLR, We-

bAssembly, BPF/eBPF, JavaScript etc. Practically, use of most of these widespread

VMs in a microcontroller is impractical at best and impossible at worst for a variety of

reasons including requiring a garbage collector, runtime compilation and having a large

footprint.

Considering the programs for CAPLets are not supposed to be general purpose (you
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should never be writing a web server in a CAPLets policy), use of a general purpose

VM incurs unnecessary overhead. Plus, each application may benefit from the ability of

having a purpose-built virtual machine as opposed to a general purpose, authorization

focused VM. In this section, we describe the design of a customization focused VM

framework called TVM that we use to build CapVM.

With TVM, we have the following goals:

• Easy to customize: adding custom instructions to the VM must be as easy as

possible to expose unique functionality into the VMs.

• Small footprint: TVM environments are expected to run on microcontrollers.

The generated code must be as small as possible, and consume as little memory at

possible at runtime.

• High performance: while we would not be able to beat JIT languages for long

computations, TVM programs must execute as quickly as possible to conserve

battery life.

• Easy to maintain: use of arcane languages and tools to specify the VMs increase

maintenance problems as they create new learning barriers, workspace setups and

the keep-up of another project. We would like to use existing languages and tools

as much as possible.

4.5.1 Design of TVM

We design TVM to allow a programmer to be able to easily specify the machine ar-

chitecture (register vs stack machine), machine state (register count, processor flags etc.)

and instruction implementations. A machine state is represented as a C++ structure

and each instruction is implemented as a C++ function.
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We use the C++ programming language to perform the actual VM generation at

compile time using its excellent generic and compile time programming features. A

programmer specifies each instruction available to the virtual machine using a compile

time C++ list with their associated instruction identifiers (i.e. opcodes). TVM could

trivially generate the identifiers itself, however, changes in the definition could change

the identifiers and break existing programs. For instance, say an existing version of a

TVM definition has the following instructions: add, sub, jmp, print, call. TVM could

assign opcodes 1, 2, 3, 4, 5 to each of these instructions respectively. However, when the

programmer realizes the print instruction should actually be a runtime function instead

of an instruction and removes it in a future version, the opcode of call would change

since TVM cannot know about old versions of the VM. To maintain binary stability, we

require programmers to assign the numbers manually to instructions so that deprecations

and removal of instructions is possible.

As the VM definitions are completely declarative, the programmers do not have to

have any domain expertise in virtual machine design or low level programming experience.

TVM instructions are strongly typed functions. They specify what operands they take

by just taking parameters of their operand types. TVM can then introspect the function

arguments and automatically generate instruction decoders automatically.

For instance, the following instruction declarations specify how the actual binaries

will be decoded:

void add(vm_state& state,

register_id<4> a, register_id<4> b,

register_id<4> dest);

void ijump(vm_state& state, register_id<2> indirect_register);

void reljump(vm_state& state, int_literal<16> offset);
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add takes 3 registers of 4 bits each, ijump performs an indirect jump to the address

contained in the specified register, but that register can be only of the first 4 registers,

since it takes a register id of 2 bits only. reljump performs a relative jump, but the jump

offset must be a literal of maximum 65,535 bytes.

The programmer need not concern themselves with such low level details, and proto-

typing and development can take place rather quickly. This could be achieved in other

frameworks by asking the programmer to specify the same information twice, once in the

function declaration and once more in a special instruction descriptor structure. In

such an approach, such declarations can go out of sync and cause hard to debug failures.

As the saying goes, ”A person with a watch always knows the time. A person with two

watches never does.”, a system with a single declaration is correct by definition, one with

two declarations can never be.

After instruction decoding, TVM also generates the execution loop. Generation of

an efficient execution loop is non-trivial and is a topic of research. For instance, for

maximum performance on machines with sophisticated branch predictors, a threaded

loop performs better than a switch in a loop, but performs worse on microcontrollers.

Likewise, a switch in a loop performs better than a jump through an array of function

pointers when the opcode space is sparse but the function pointers perform better when

the opcodes are dense. Relieving the programmer of such concerns allows TVM to pick

the most efficient strategy for each deployment.

4.6 Experimental Evaluation

In this section, we evaluate CAPLets using an end-to-end experiment that couples

an IoT device at the edge with the cloud. We compare CAPLets against two mature and

commercially available systems for implementing IoT applications using cloud computing.
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CC3220SF nRF52840 ESP8266
Processor 80 MHz Cortex-M4 64 MHz Cortex-M4 80 MHz Xtensa
Memory 256KB 256KB 80KB
Crypt HW Yes Yes No
Network WiFi BLE WiFi
Coremark 87 212 191

Table 4.1: 32-bit devices used in the experiments.

We also analyze the performance of CAPLets using a set of microbenchmarks to help

illuminate its efficiencies.

4.6.1 Devices, Software, and Setup

Table 4.1 shows the resource constrained hardware platforms that we consider as

end devices in this study. We consider three 32-bit microcontrollers, each with different

resource configurations (processor speed, memory size, and network type). Two of the

three devices have hardware that performs cryptographic operations efficiently (demarked

Crypt HW in the table). Coremark [62] refers to the approximate compute power of each

processor.

We execute CAPLets on these devices on bare metal, using cloud SDKs and FreeR-

TOS from Amazon Web Services (AWS) and Microsoft Azure, and using CSPOT [183]

– an operating system and runtime designed for cloud and IoT applications. For all

experiments, we optimize for code size and use the same drivers across devices.

Our bare metal environment consists of a minimal implementation designed to achieve

and measure the maximum efficiency of the methodology in isolation. As Macaroons [42]

has no implementation that can run on a microcontroller, we benchmarked it and CAPLets

on an x86 PC.

We conduct experiments using two deployments:

Edge: The device communicates with an edge system (i.e. an Intel NUC [96]) on
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the same WLAN network. For AWS and Azure experiments, the device communicates

with a Greengrass or IoT Edge virtual machine instance on the NUC over MQTT [31].

CAPLets communicates with the instance via TCP.

Cloud: The device communicates with resources hosted in a public cloud (connected

via a fast academic network located in California). For AWS and Azure, the device

communicates with an IoT Core or IoT Hub instance, respectively, over MQTT. These

instances are located in Oregon and California, respectively. CAPLets uses an AWS

EC2 instance in Oregon.

We configure AWS and Azure software (and reprogram the device) to use the different

communication end points (edge and cloud). For CAPLets, neither the software on the

device nor on the edge had to be modified since the device is oblivious to the origin and

the same authorization mechanism works regardless of the client location (i.e. it uses our

first-class-devices model).

We measure energy consumption by sampling the momentary power use of the pro-

cessors. We use an INA219 sensor which we set to 2KHz (the maximum sampling rate

the sensor supports) and the highest resolution.

4.6.2 End-to-end Evaluation

As an end-to-end experiment, we measure the time and energy costs of a sensor

capturing and communicating a sample to a user. We implement this application using

the services and software provided by the leading IoT service providers, AWS and Azure.

Specifically, we use Amazon FreeRTOS on the device side, AWS Greengrass on the

edge, and AWS IoT Core on the cloud for AWS. For Azure, we use FreeRTOS with the

Azure SDK, IoT Edge, and IoT Hub for device, edge, and cloud, respectively. Com-

munication is handled by AWS or Azure IoT SDK libraries, which use an MQTT [31]
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implementation of a publish-subscribe protocol between the end device and edge or cloud.

The providers issue each device a private key and certificate to communicate with the

services. We inject the key into our CC3220SF device at firmware build time. When

possible, CAPLets and the SDKs perform the cryptographic operations in hardware.

We also evaluate an implementation of the application for CSPOT [183] – an experi-

mental and open source operating system designed specifically for coupled IoT-and-cloud

applications. CSPOT is useful to this study because it is a complete system capable of

implementing device-level services directly, without a proxy, as well as services hosted by

edge and cloud resources.

AWS and Azure implement proxy-based approaches in which an edge device or a

cloud resource (but not a resource-restricted device such as a microcontroller) store access

control lists for all users and devices. The resource also performs authentication.

In AWS and Azure, the device wakes up every 5 minutes, collects a sample, associates

with the WiFi network, establishes a secure connection to the respective server over TLS

(authorization is implicit in the establishment of this channel), sends the sample over

MQTT and goes back to deep sleep. When users wishes to view the samples, they visit

the cloud/edge service and read the samples.

For CAPLets, the device wakes up every 5 minutes, collects a sample, records it

and goes back to deep sleep. When a user wishes to view the samples, they initiate

a connection to the device. As we employ 802.11 Long Sleep Interval (LSI) feature,

the device is soon woken up by the network processor, the communication succeeds,

the user authorizes herself to the device, and receives the samples. This means that

for uninteresting samples, i.e. samples that the user never reads, CAPLets conserves

battery power. LSI allows a WiFi station to stay associated with the access point during

prolonged sleeps. Instead of dropping received packets, the access point buffers them

until the next beacon frame sent out frequently (at least once every few seconds). The

59



CAPLets Chapter 4

Operation Time ms Enrgy mJ Code KB

No Auth
Edge 95 (20) 21 (4) 45

CAPLets
Edge (bare metal) 99 (28) 22 (6) 48

No Auth
Edge + CSPOT 119 (12) 22 (2) 49

CAPLets
Edge + CSPOT 119 (16) 24 (3) 51

AWS
Greengrass 825 (231) 148 (49) 75

Azure 1715
IoT Edge (119) 251 (22) 75

CAPLets
Cloud 121 (28) 26 (5) 48

CAPLets
Cloud+CSPOT 165 (25) 32 (6) 51

AWS 1696
IoT Core (908) 314 (90) 230

Azure 3168
IoT Hub (244) 457 (32) 130

Table 4.2: End-to-end application performance. All execution measurements and stan-
dard deviations (in parentheses) are over 100 consecutive executions. We consider an
edge (top table) and cloud deployment (bottom table).

beacon frames are handled by the low level network hardware and the device does not

wake up unless there is a packet for it. Therefore, a CAPLets user will not wait for 5

minutes before they can read existing samples, but at most a few seconds.

We measure end-to-end performance and energy use from the sensor server (end

device) perspective. We execute the application 100 times for each deployment (Azure,

AWS, CAPLets, and CAPLets with CSPOT using edge and cloud configurations).

We compute the average and standard deviation for awake time in milliseconds and

energy use in millijoules. Awake time is the time it takes for the processor to wake from

deep sleep and associate with WiFi network to handle one sensor sample and go back to

sleep. We also measure application code size. Table 4.2 shows the results.

We include No Auth experiments for completeness which is CAPLets request han-
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dling with security checks disabled. These results show that the CAPLets security

checks only account for about 4% of the overall processing time as can be seen by com-

paring the No Auth row with CAPLets Edge. CAPLets code size with or without

CSPOT is 4 and 2 times smaller than that of Amazon FreeRTOS with both AWS and

Azure SDKs, making space for more features on the end device. The results for CSPOT

show that CAPLets, when integrated with a full system that spans device, edge, and

cloud tiers in an IoT deployment, adds no discernable overhead.

The latency improvement should not be considered only in the context of user-

perceived latency, but also in the context of battery life. As the CAPLets application

serves the request and goes back to deep sleep, TLS based versions are still busy per-

forming the handshake. As this operation is performed for every sample for the cloud

systems, it inevitably will consume its battery earlier, resulting in unavailability.

For the cloud deployment, AWS and Azure both require the devices to be awake for

an order of magnitude longer per request than using CAPLets. Part of the disparity

stems from the fact that our approach minimizes the responsibilities the end device has

to perform per sample. Consider the steps taken for each data point on the AWS set

up: (i) perform a DNS look up to determine the remote end point in AWS, (ii) perform

time synchronization for certificate expiry verification (iii) verify the authenticity of the

remote end point by walking a certificate chain (iv) establish a TLS session, (v) establish

an MQTT session, and (vi) transmit the sample.

Although some steps can be cached, and are in these experiments, they must execute

periodically on the end device. Except for MQTT, no protocol involved in these steps was

designed for a memory, processor, and power constrained microcontroller. Our approach

offloads costly operations to the clients. For instance, instead of the device performing a

DNS lookup to locate the server, the client performs a DNS lookup to locate the device.
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4.6.3 Microbenchmark Evaluation

In this section, we conduct a broad range of microbenchmark experiments to expose

the performance characteristics of CAPLets. In particular, we evaluate the costs of

cryptographic primitives that are performed per request for CAPLets versus competi-

tive approaches.

In its core CAPLets depends on 2 cryptographic primitives: HMAC-SHA256 for

token construction and message authentication and AES-CTR for securing the commu-

nication. If PFS key exchange is used, it also uses ECDHE for temporary session key

exchange.

The primary competitors of CAPLets are TLS-based cloud services and Vana-

dium [65]. Both these approaches use asymmetric cryptography to authenticate parties.

For IoT systems, Elliptic Curves are preferred [124, 28] due to their smaller key sizes

for equivalent security [33] and better performance characteristics when compared to

RSA [105]. Therefore, we only consider cipher suites with ECDSA.

For the ECDHE experiments, we use Curve25519 for its efficient implementation [37].

For the ECDSA experiments, we use the p256 [108] curve. These experiments demon-

strate the cost of using long term public keys for parties to authenticate themselves.

These operations are performed when a device acts as a client for cloud or edge service,

as in AWS IoT Core and Greengrass.

Table 4.3 presents the average energy consumption in microjoules for each microbench-

mark for the three hardware platforms. Note that timings for this set of microbenchmarks

are comparatively similar showing the same ratios of performance in comparison (i.e.

CAPLets is one to two orders of magnitude faster). We omit the timing comparison

due to space constraints.

TLS based protocols sign ECDHE messages with ECDSA in the handshake, so their

62



CAPLets Chapter 4

Operation CC3220SF nRF52840 ESP8266

ECDHE (SW) 13679.07 1596.87 116592.71

ECDHE (HW) N/A 537.45 N/A

AES128-CTR (SW) 73.95 9.76 96.72

AES128-CTR (HW) 19.70 1.73 N/A

HMAC-SHA256 (SW) 75.92 8.42 93.32

HMAC-SHA256 (HW) 10.65 4.94 N/A

ECDSA Sign (SW) 15592.68 2730.87 122617.24

ECDSA Sign (HW) 15337.49 456.05 N/A

ECDSA Verify (SW) 16914.24 3007.92 138659.75

ECDSA Verify (HW) 17023.39 457.65 N/A

Table 4.3: Average energy consumption for microbenchmarks over 100 runs. The units
are microjoules.

Handshake Energy Use

TLS PFS 1451.16

CAPLets PFS 547.33

CAPLets Non-PFS 9.88

Table 4.4: Energy consumption for the handshakes of TLS and CAPLets on nRF52840.
The units are microjoules.

cost is ECDHE + ECDSA Sign + ECDSA Verify. With CAPLets, the cost is ECDHE

+ 2 * HMACs. Our results show that an HMAC uses 2 to 3 orders of magnitude less

energy than either ECDSA operation. After key exchange, both TLS and CAPLets

switch to an efficient, symmetric cipher.

Our efficiency gains stem from the fact that over a connection, a TLS protocol uses

every operation in Table 4.3. CAPLets on the other hand eliminates the use of the bot-

tom cluster, and uses ECDHE only for PFS. Table 4.4 shows that with PFS, a CAPLets

handshake consumes about 3 times less energy compared to TLS. If PFS is not needed,

CAPLets consumes at least 2 orders of magnitude less energy.

Note that the hardware-based ECDSA implementation on the CC3220SF performs

on-par with or worse than the software implementation. The ECDSA ”acceleration”

takes place on the network processor of the CC3220SF, which has a binary-blob firmware,
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Figure 4.7: Time it takes for CAPLets and Macaroons to verify a token.

preventing us from investigating further. This observation, however, is consistent with

existing literature [145]. Thus we consider it anomalous and likely due to a firmware bug

or misconfiguration specific to ECDSA on the CC3220SF.

Finally, we benchmark CAPLets and Macaroons verification operations for different

frame counts (using frames in CAPLets and and caveats in Macaroons). We show the

results in Figure 4.7. Surprisingly, CAPLets performs slightly but consistently better

than Macaroons even though the cryptographic construction is the same. To ensure there

is no difference in cryptographic implementation, we modified our code to use the HMAC

implementation used by Macaroons. We find that the performance difference is due to

64



CAPLets Chapter 4

the use of zero copy deserialization in CAPLets. Once Macaroons receives a packet

over the network, it allocates memory for each caveat and deserializes its format into the

buffers, which take linear time. CAPLets, alternatively, operates on the received buffer

directly with no deserialization step.

4.6.4 Evaluating Constraints

We next evaluate the performance of dynamic constraints (cf Section 4.4.5). We

consider three virtual machines: (i) eBPF [12], which is used in the Linux kernel for

policy control; (ii) a popular VM called WebAssembly [179] (Wasm); and a low-level

VM that we developed, called CapVM, that is specifically designed and optimized for

CAPLets.

eBPF is a VM originally designed to filter network packets without involving the user

space. Since the programs run in the kernel space, the runtime is well-isolated and its

programs are limited in many ways (execution limits, 5 parameter limit for functions,

lack of a linker etc).

Wasm is a general purpose VM designed for efficient execution in web browsers.

It defines a stack machine and a memory-safe execution environment so that “unsafe”

languages such as C or C++ can use it as a compilation target for execution in a browser.

In this study, we use state-of-the-art eBPF and Wasm interpreters [174] and [17].

Our goal with the CapVM bytecode design is compactness and direct interpretability

on embedded systems. Our design uses a register based ISA and provides complex

instructions to access system resources and validation context, in addition to those for

arithmetic, logical, and control operations. Its bytecode uses variable size instructions for

maximum code compactness with configurable fixed size opcodes for efficient decoding.

The ISA is untyped and does not perform any dynamic type or memory safety checks.
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For sandboxing, all the memory accesses are confined to the fixed, linear memory of the

VM, so any unsafe user code is contained within the program and cannot affect the rest of

the system. Any fault during the execution results in the current request being rejected.

CapVM will be released as open source if/when this paper is published.

To evaluate the performance of this bytecode and its interpretation, we use the

CC3220SF device. We consider a simple timeout constraint for this study. The con-

straint, written in C++, renders a token invalid after a certain amount of time has

passed. We compile the code to eBPF and Wasm using clang [114] with size optimiza-

tions. Because no higher level language yet exists that can emit code for CapVM, we

write the constraint code by hand, directly in the CapVM bytecode language. We impose

an executed instructions limit to all VMs to prevent policies from running indefinitely.

In case an execution exceeds the limit, the constraint will be rejected.

We show the measurements from these two implementations of the bytecode con-

straint in Table 4.5. We evaluate VM Code Size (row 1), Bytecode Size (row 2), Valida-

tion Memory size (row 3), and Validation Time (row 4). Columns two to four show the

results for the various alternatives. The final column (for reference) shows the metrics

when we implement the constraint in native code.

This experiment shows some interesing results. CapVM is an order of magnitude

faster and consumes around 1% the energy of Wasm. eBPF, on the other hand, has similar

performance and energy use characteristics. However, its bytecode is large compared to

CapVM, and double that of Wasm. Code sizes (of their interpreters) of CapVM and

eBPF are similar and add between 1 and 7 kB to the static version. Wasm, on the

other hand, takes up about 55 kB of space due to its optimization pipeline. Our results

show that this VM’s focus on high performance hurts its memory use and performance

significantly. Since policies are one off executions rather than long running tasks, we

believe Wasm is inappropriate for such use.

66



CAPLets Chapter 4

CapVM eBPF Wasm Static
Code Size 10.5 kB 16 kB 65 kB 9.5 kB
Bytecode 23 Bytes 400 Bytes 193 Bytes N/A
Memory 216 Bytes 512 Bytes 30510 Bytes 16 Bytes
Time 144 µs 248 µs 10560 µs 11 µs
Energy 16 µJ 20 µJ 1125 µJ 2.5 µJ

Table 4.5: Performance of bytecode constraint implementations on Validation operation:
CapVM, eBPF and Wasm. Code Size is for each VM implementation with the constraint;
Bytecode size is the size of the rendered constraint. Static shows the size of a direct C++
compilation of the constraint.

The large bytecode difference between CapVM and eBPF can be explained by eBPF

still being a general purpose VM while CapVM is designed specifically for the inter-

pretation of constraint checkers in resource constrained devices. For instance, CapVM

provides instructions to navigate a token, whereas eBPF must emit code to do the same.

Finally, eBPF uses a fixed, 8 byte instruction encoding, bloating programs.

In conclusion, both eBPF and CapVM show sufficient performance, energy and mem-

ory use characteristics to implement CAPLets constraints. Having to generate CapVM

assembly manually is tedious, and is, at present, a disadvantage. However, the smaller

byte code size may warrant the inconvenience. Further, eBPF imposes some strict re-

strictions: functions can have up to 5 arguments, any more and the function does not

compile. There also is no standard linker for it, so programs must be written in a single

translation unit. Wasm has no such limitations, but its state-of-the art interpreter is

large and less performant in terms of speed, energy, and size.

4.7 Summary

We present CAPLets, an efficient, secure, and flexible distributed access control

mechanism that provides a uniform authorization model for a broad spectrum of resource

scales and non-trivial policies. CAPLets is uniquely optimized for IoT deployments with
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resource restricted devices, such as microcontrollers, as the main actors. In this setting,

the optimizations it provides are substantial. We believe this consideration is key to

facilitating greater and more efficient security mechanisms for IoT settings.

We design CAPLets to execute efficiently on the least-capable devices in these de-

ployments (i.e. microcontrollers/sensors with little memory and processing power, bat-

teries, and duty cycles), while being able to scale up for use on the most capable (cloud

systems). We also define new abstractions for CAPLets that can be used to build a

wide range of efficient security measures for common attack scenarios and to facilitate en-

crypted channels. We empirically evaluate the performance of CAPLets and compare it

against state-of-the-art authorization mechanisms in use today. We find that CAPLets

is an order of magnitude faster and more energy efficient than this prior work for both

resource constrained devices and end-to-end IoT (i.e. sensor-edge-cloud) deployments.

We also show that CAPLets performs similarly or better than Macaroons [42], while

qualitatively improving portability and flexibility and introducing new features, including

secure key exchange without the use of TLS.

With the combination of CAPLets’s efficient construction, flexible policy definition

mechanism and cheap key exchange, we address the second part of our research directions

laid out in Chapter 1.
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Ambience

5.1 Introduction

Applications and systems that amalgamate heterogeneous, resource-restricted, or em-

bedded devices with traditional resource-rich compute resources cannot use a single,

“universal” approach to execute on all hardware components today. Specifically, in an

IoT context, low-resource devices are programmed using special-purpose or embedded

technologies that then must communicate with cloud-hosted services programmed using

popular and productivity-enhancing cloud technologies. While embedded programmers

miss out on the productivity of high-level systems, they often enjoy efficiencies unheard

of in the cloud domain thanks to building their entire image optimized for the task.

Cloud technologies are not designed and are not efficient enough for low-level systems,

and relatively bespoke device programming technologies are too “low level” to support

productive cloud environments. This bifurcation of systems creates reliability, maintain-

ability, security and scalability challenges.

Microservices are a popular architecture for building scalable, distributed network

services and applications [136]. The microservice architecture has seen wide adoption,
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with numerous supporting infrastructure projects [5, 112, 141, 102]. Applications struc-

tured as microservices are composed of many small and “simple” services (to promote

code reuse and cohesion), which are typically hosted within separate isolation domains to

improve fault isolation and/or implement multi-layered trust and security policies. As a

result, service requests and responses between microservices are commonly implemented

using typed, Remote Procedure Call (RPC) interfaces [79, 165, 160].

Since microservices design promotes the proliferation of many different services in

a single application, users and administrators of these applications often employ a con-

tainer orchestration technology to implement and maintain application deployments [112,

59, 48]. Using these frameworks, developers express what their deployment should be

using a declarative language, and the framework realizes it by creating new instances

and decommissioning stale ones [40]. However, the microservices themselves, and any

orchestration technologies that manage deployments of them, rely on general purpose,

commodity operating systems [53, 175, 47, 152, 51, 180] for their execution.

A combination of Devices-as-services and CAPLets enables the development of secure,

microservice based IoT applications. However, such applications must still be built on

existing, commodity operating systems which have never considered hosting microservices

as a first class citizen. A purely computational CSpot [182] application can indeed be

moved between a Linux CSpot system and a bare metal CSpot system. However, this is

a very leaky abstraction, as at the first external IO call (be it sockets, files or even just

getting the current time!), the application would lose its portability.

This dependence on general purpose operating systems poses two challenges that are

becoming increasingly difficult to overcome on the path of building a unified platform for

heterogeneous systems. The first is that the plethora of hardware platforms (e.g. embed-

ded IoT devices, microcontrollers, special purpose processors, edge computers, security

co-processors, etc.) do not support a common set of operating system abstractions, let
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alone a common operating system, either among themselves or with commodity servers.

That is, while most commodity servers and virtualization environments support some

form of Linux or Windows, neither of these general purpose operating systems runs on

all devices in a distributed deployment that includes special purpose or embedded sys-

tems.

Recently, large cloud providers have adopted the serverless model in their IoT offerings

as well. Serverless, or FaaS (Functions as a Service) microservices [22, 77, 52, 141] pro-

vide a programming environment where programmers write simple event driven services;

the runtime platform takes over the responsibility of deployment and scaling through

concurrency. AWS IoT Greengrass [19] for instance, allows developers to transparently

deploy their Lambda functions to a Raspberry Pi or x86 single board computer running

on the edge. However, cloud providers have yet to extend the model to microcontrollers,

possibly due to efficiency challenges of doing so. The state-of-the-art is that the edge

and the cloud can be programmed with a uniform “Function-as-a-Service” model, but

microcontrollers must be programmed using different technologies (e.g., MQTT [31],

FreeRTOS [70], and IoT SDK [97]). As a result, applications, even when adopting mi-

croservices in this context must correctly compose an increasingly vast array of disparate

protocols and separately-developed technologies to achieve functionality. This software

heterogeneity makes them complex to develop, brittle, hard to repurpose, and difficult

to maintain.

The second challenge is achieving performance. While “scale out” (the addition of

separate processors to a web service to handle additional request load) has proved eco-

nomical and effective in a cloud context [72, 127], it is less effective or infeasible for

deployments that include heterogeneous collections of devices and processors. Addition-

ally, in relatively homogeneous cloud-hosted deployments, as our results presented herein

indicate, the generality of commodity operating systems introduces a per-node (i.e. “scale
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up”) performance penalty when executing microservices.

In this paper, we describe Ambience – a new operating system specifically designed

to overcome these challenges and to support distributed applications structured as mi-

croservices in heterogeneous distributed settings that include device capabilities spanning

a range of scales. We choose microservices as our programming model as it is familiar

while being amenable to building event driven, scalable, efficient systems, meeting the

requirements of IoT nodes. Using microservices universally means that all functionality

in an IoT deployments (including resource-restricted sensors, cameras, actuators, etc.) is

represented and accessed via some microservice.

Our research with Ambience postulates that it is possible to design an operating

system which is both efficient enough and high-level enough to support microservices as

a universal programming and deployment model. It does so by defining optimizeable,

high level abstractions for constructing and deploying microservices, which include isola-

tion groups, coroutine-based asynchrony, typed interfaces and deployment specification,

among others. These abstractions expose more information that is specific to microservice

implementation and deployment, than general purpose operating system alternatives.

Ambience makes use of these abstractions not only to ease programming across het-

erogeneous systems, but also to introspect and automatically specialize the microservices

it hosts. Rather than a single kernel image shared across all nodes of a deployment,

Ambience generates individual kernel images, each specialized and optimized to run the

microservices on each node in a deployment. That is, Ambience includes deployment

information (typically the domain of a separate orchestration framework) that it uses to

generate optimized and customized operating systems images for each device or server

targeted in a deployment.

We show that these optimization features allow Ambience to achieve throughputs on

the order of hundreds of thousands of requests per second across isolation domains on a
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single x86 core. Furthermore, the same microservices can be transparently deployed bare

metal on microcontrollers and single board computers, x86 hypervisors (KVM [170],

Firecracker [7] and VirtualBox [177]) with virtio [157] support, and embedded within

Linux systems (to facilitate incremental transition to Ambience), without modification.

We demonstrate Ambience’s flexibility and portability using a distributed wildlife

tracking application, running on a heterogeneous hardware and network setup. We eval-

uate its performance through detailed microbenchmarks. We also compare Ambience’s

key characteristics to Linux as well as Azure’s IoT platform [134] Our evaluation shows

that Ambience can achieve high performance and efficiency across all resource tiers. In

the sections that follow, we contextualize these contributions in terms of previous and

related work and through an exposition of the Ambience abstractions, automated opti-

mizations, and deployment support.

5.2 Related Work

The popularity and prevalence of microservice-based applications have resulted in

many runtime and orchestration advances that automate provisioning, scheduling, and

deployment of microservices [5, 112, 113, 48]. Kubernetes [112] has received wide-spread

adoption from users and service providers alike. Kubernetes requires developers to spec-

ify their entire deployment in declarative files instead of manual provisioning. This makes

the creation and migration of entire multi-node clusters a trivial operation. Ambience in-

tegrates these mechanism at the operating system level and leverages a similar declarative

approach for deployment specification.

Serverless computing and Functions-as-a-Service (FaaS) form a recent and compelling

platform for hosting microservice applications in cloud computing systems [89, 30, 86,

141, 22]. Serverless systems provide high availability, fault tolerance, dynamic elasticity
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via automated, event-driven provisioning, containerized execution, and management of

the underlying infrastructure. Philosophically, Ambience shares the view of microservices

(implemented using FaaS) as “omniplatform” for IoT with [184] but it goes on to illustrate

that miniaturizable FaaS functionality, by itself, is not sufficiently performant in terms of

memory footprint and execution efficiency. Also, the authors of [184] specify no model for

device I/O – a key feature in an IoT development context. The authors of [102] exploit

locality across serverless microservices to replace RPC with IPC primitives to increase

throughput and lower latency. The authors conclude that there remain many individual

overheads. By co-designing the entire stack for deployment and performance, Ambience

eliminates a significant number of these overheads.

Ambience integrates abstractions (lightweight isolation, asynchronous interfaces be-

tween trust domains, queues, groups, etc.) and tooling (deployment IDL, compilation

support, deployment/code specialization) that are also found in other systems [112, 59,

87, 171]. The authors of [166, 167] introduce the implementation of asynchronous sys-

tem calls in Linux by designating pages of memory as a buffer that is polled by kernel

threads. However, to achieve adequate concurrency and performance, a large number of

kernel threads are required, which causes memory pressure. The io uring [13] effort is

a recent approach to implementing an alternative asynchronous (async) system call for

Linux [45]. However, at the time of this writing, it does not support all system calls, and

does not support kernel-to-user requests. A similar queue design is used in virtio’s [157]

interface where a guest operating system communicates with the host through virtqueues,

similar to the earlier Xen [32]. While they too do not support host-to-guest requests,

unlike io uring, they use a unified pool of queue elements, so the guest can issue more

work with the same amount of memory without VM-exits. Unlike these approaches,

Ambience supports bidirectional asynchronous communication with low kernel resource

consumption over its queue interface.
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Kernel bypass systems [34, 148, 60, 100] try to eliminate kernel overheads related to

network processing and context switching. Ambience, alternatively, attempts to elimi-

nate these overheads by specializing the kernels it generates to support the user space

microservices they host.

In [84, 116], the authors explore the use of memory protection units on microcon-

trollers to improve reliability and enable the execution of untrusted code. However,

these approaches do not support server or edge class machines. Authors of [29, 184, 73]

show that a lightweight serverless architecture implementation running in both Linux

user space and on microcontroller systems, even without memory protection, is a viable

architecture for building distributed IoT systems. Ambience is distinct from these efforts

in that it is a comprehensive operating system approach that supports microservices

running at all resource scales.

Unikernels [122, 44, 140] have gained traction for reducing operating system overheads

by merging the kernel and the application, and by eliminating kernel protection. The

motivation behind removing kernel protection is that because virtual machines implement

isolation between applications, kernel corruption can only affect the application using it.

However, their lack of IPC primitives prevents them from exploiting locality. Ambience

supports multiple isolated services running in the same VM (i.e. group) with efficient

communication among them. For deployment settings in which isolation is not desired,

Ambience also supports transparent placement of services inside kernel space.

[39, 95] employ strong types to enforce isolation of user provided programs inside priv-

ileged domains. Through safe user code inside the kernel, such systems allow the dynamic

introduction of efficient abstractions. However, for both systems, the type system is only

available in special programming languages, and does not extend to untrusted programs

written in arbitrary languages. Further, the type information is not used for performance

optimizations, and mainly exists to statically enforce safety. Alternatively, [150] embeds
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a JIT (Just-In-Time) compiler in the kernel to automatically and dynamically create

optimized codepaths, facilitating specialization. However, performing this specialization

dynamically precludes Synthesis from running on resource constrained devices. Ambi-

ence performs specialization using a variety of information available statically, making it

possible to run fully optimized images across resource tiers.

5.3 Design

We define and tailor Ambience abstractions to the microservice programming style,

thereby omitting many abstractions found in general purpose operating systems. In this

section, we overview our key design choices, their trade-offs, and our implementation

approach for Ambience.

5.3.1 Definitions & Abstractions

The primary abstraction of Ambience is a service. A service is a collection of pro-

cedures, each with a strongly typed interface, operating on a common, ephemeral state.

The procedures act as entry points which can be concurrently executed. A service inter-

face is a nominal abstract type consisting of procedure interfaces, defined in an interface

definition language (IDL). Ambience includes its own IDL for generating service interfaces

called lidl.

A node is an abstract entity that can host Ambience services. They can be physical

machines (e.g. servers, single board computers or microcontrollers) or they can be virtual

(e.g. cloud virtual machines, Linux processes, a webpage running webassembly [83], etc.).

Ambience provides different levels of service on different host types since it does not have

the same level of control in all physical and virtual devices. A cluster consists of a set of

nodes and networks that connect those nodes.
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All Ambience runtime abstractions are deployed via declarative manifests. Mani-

fests can instantiate services, set up dependencies, describe network topologies, define

groups, etc. Manifests are written in a Domain Specific Language (DSL) embedded in

Python3. Ambience manifests encapsulate more information than existing declarative

approaches [112, 59]. Specifically, they include service interface types and dependencies,

which Ambience uses to synthesize efficient code for communication, security and more.

Listing 5.1 shows a deployment manifest excerpt.

# Services file

instance(name="detection",

service=tflite_detection)

instance(name="camera",

service=dcmi_camera,

dependencies={"frame_handler": "detection"})

export(service="camera",

networks={"udp-internet": 4898})

# Deployment file

group(name="camera_group",

services=["detection", "camera"])

deploy(node="camera_microcontroller",

groups=["camera_group"])

Listing 5.1: A sample Ambience deployment manifest.

Ambience injects service depencencies using information within manifests during con-

struction, thereby precluding the need by each to perform service discovery. Ambience

enforces type-safety in the manifests and synthesizes code that brings up all services in

the correct order and passes dependencies to each service.
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5.3.2 Service Groups

Microservice design advocates for the proliferation of small, simple, isolated services.

In existing systems, this service decoupling is often a binary decision: two services are

either separate entities deployed in isolation, or they are part of the same service. This

poses an early design challenge. Developers must make design decisions about service

isolation that are difficult and costly to reverse or change once development begins, and

becomes more difficult to change as development matures. Further, the performance of

the resulting service mesh is not typically known until relatively late in the development

lifecycle and, often, isolation design decisions must be revisited to enhance performance.

Microservice design can also pose a deployment challenge in resource restricted set-

tings. Each isolated runtime entity (e.g. a process) consumes system resources: page

tables, thread structures, kernel entries, communication costs etc. Tying the allocation

of these resources to each service reduces deployment flexibility and portability. For

instance, deploying two related services in different address spaces may be desirable on

a cloud server but not on a microcontroller. Further, a developer may simply wish to

improve performance when all services can run in the same trust domain, by removing

the isolation boundaries.

Existing commodity operating systems do not support such flexibility directly: a

program becomes a process when executed and a process is not meant to be occupied by

multiple distinct programs. Moreover, each process has a non-trivial amount of global

state associated with it: file descriptors, signal handlers, file system root, quotas, etc.

To overcome these challenges, Ambience eliminates all global state associated with

a “process.” Instead, it defines protected regions of address space that can be occupied

by separate microservices. To enable this, we introduce groups as the unit of runtime

execution and deployment.
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Microservices assigned to the same group share address space and are not isolated

from one another. Microservices assigned to separate groups are isolated and must

communicate using fast Ambience interprocess communication (IPC) as described in

Section 5.3.3. Importantly, assignment of services to groups is not a design-time or

development-time decision with Ambience, but rather a deployment-time decision. That

is, the developer or operational manager (in a “DevOps” [55] context) can decide what

assignment of services to groups makes sense in each deployment, based on site-specific

trust policies, security policies, performance requirements, etc., without code modifica-

tions or duplication.

When microservices are assigned to separate groups in a deployment, Ambience auto-

matically incorporates IPC to facilitate communication between groups. It emits direct

function calls to optimize communication within a group. Note that it is not possible

to make a similar decision of whether to include two service components in the same

Linux process or different Linux processes at deployment time without having two sep-

arate versions of the code: one for conjoined deployment and the other for separate

deployment.

Services within a group share runtime resources: the queues as explained in Sec-

tion 5.3.3, event loop and associated system threads, heap and page tables. By default,

Ambience allocates a group per service. A developer is allowed to create explicit groups

and include the services they wish to couple.

Note that under the Ambience group resource abstraction, services do not receive

implicit resources and ambient privileges. For example, there is no global file system

inherited by each group in Ambience: if a microservice requires file system access, the

developer can explicitly assign a dedicated file system service to it or if two services

are meant to share a file system, the developer can assign both of them to use a single

file system service explicitly (either within the same group, separate groups, or in any
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combination.)

This flexibility is designed to support severely resource restricted devices as well as

more resource-rich servers. For example, on microcontrollers with a few kB of memory,

all services in a node can be placed in a single group, eliminating most of the Ambience

runtime isolation memory footprint. Key to this approach, is that services need no

changes when they are assigned to the same or different groups.

5.3.3 User Space Design

Microservices require the use of event driven and asynchronous programming, whereas

traditional systems mainly provide a synchronous programming environment, and the

user space code is expected to implement asynchrony [118, 10] on top of synchronous

abstractions provided by a kernel. Considering most kernels are themselves asynchronous

and event driven internally, this back and forth introduces friction and inefficiencies.

Instead, Ambience extends the asynchronous nature of the kernel to the user space.

Ambience provides and manages an event loop at the kernel level for each user space.

This event loop shares code with and is almost identical to the one used inside the

kernel to handle hardware events. The kernel issues user-space procedure calls directly,

instead of having the user space poll and route requests. This optimization reduces the

workload on each service, and provides centralized, dynamic configuration parameters

such as concurrency limits and a unified tracing and observability infrastructure.

Practically, groups use bidirectional asynchronous queues for communication with

the kernel. Specifically, queues implement dedicated, lock-free, single-producer-single-

consumer queues for both the kernel-to-user and user-to-kernel communication. Both

queues index into a per-group, shared array of queue elements. The allocation of these

elements is lock-free. Lock freedom here is necessary since multiple user or kernel threads
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may attempt to allocate an element concurrently. Unlike existing ring or queue based

interfaces [157], Ambience allows both ends of the interface to make and serve requests.

Ambience does not have any system calls in the conventional sense. All core OS

functionality is exposed and deployed as services that are accessed just like user provided

services, meaning such services can be individually omitted or deployed inside the kernel

or a user space. Such flexibility is unique to Ambience and allows deployments to con-

figure as a unikernel, monolithic kernel, a microkernel, or an entirely new class, with no

changes to the base system.

Ambience has a unique user space Application Binary Interface (ABI) in which the

user space does not communicate with the kernel via platform system call capabilities,

but instead, exclusively through asynchronous rings. This enables a binary program to be

transparently hosted in user spaces or inside the kernel. It also allows Ambience programs

to be potentially portable to other operating systems, provided the ring interface and

necessary core services are re-implemented. We make use of this feature for debugging

Ambience services using gdb on Linux, albeit with reduced performance, as we do not

yet have such a sophisticated native debugger.

One drawback of asynchronous runtimes is that such systems [118, 117, 137, 10] are

typically programmed using callbacks. Callbacks add program complexity and program-

mer burden as they require the creation of multiple related functions to implement a single

request handler. In addition, in languages which lack garbage collection, the lifetimes of

the shared variables among callbacks must be carefully managed by the programmer or

risk memory corruption.

User mode threads such as fibers [107] provide a compromise between callbacks and

system threads. However, fibers have sub-optimal memory requirements: each fiber must

allocate and retain enough stack memory for the worst case. Practically, the worst case

stack size use is not statically known, and each fiber almost assuredly over allocates its
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stack. This lack of memory efficiency can cause significant memory pressure in highly

concurrent settings. For example, the authors of [104] report stackful coroutines are up

to 93% slower than stackless coroutines on Windows.

Stackless coroutines provide the efficiency characteristics of callbacks while providing

the benefits of synchronous programming abstractions. At any time, a coroutine retains

only enough memory to store its working set of local variables. The disadvantage is they

require compiler support to transform the coroutines into resumable functions. However,

most programming languages now support coroutines. Indeed, 11 out of the 13 most

popular programming languages support them [168], with the exceptions being C and

Java.

Due to their superior efficiencies, wide spread availability, and ease of programming,

Ambience uses coroutines as its default programming model. It also supports fibers for

compatibility, with existing libraries expecting to be able to block in a deep call stack.

Our low level ring interface facilitates callback-style programming as well. We evaluate

the performance fibers and coroutines in Ambience in Sec. 5.8.5.

struct write_job;

write_job write(bytes);

auto op = write(some_data);

co_await op; // Use coroutines

sync_wait(op); // Use threads

fiber_wait(op, this_fiber); // Use fibers

bind(op, [](auto res) {}); // Use callbacks

Listing 5.2: Ambience’s concurrency design allows programmers to supply their own
concurrency primitives, preventing the combinatorial explosion of code.
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Implemented naively, using multiple concurrency models together requires the same

functionality to be duplicated. To avoid this, Ambience decouples concurrency prim-

itives from units of asynchronous work, called jobs. In Ambience, most asynchronous

operations set up the necessary state to realize a task, without starting it. Work starts

once a completion handler is provided to the job. The completion handler can be a

callback, coroutine, or fiber resumer. This allows us to implement 1 asynchronous API

(for instance, a network packet transmission), and allow users of the API to bring their

own concurrency model. Figure 5.2 demonstrates the developer facing API. Switching to

this design from the naive version reduced Ambience’s driver sizes by a factor of 3 while

adding more functionality.

Ambience also provides a library of high level concurrency algorithms, e.g. when all,

which takes a number of jobs and creates a new one that runs when all jobs finish. We

implement this with direct OS support, which allows user groups to remain unscheduled

until all requests complete.

5.3.4 Immutability and Specialization

Microservice deployment orchestration frameworks often employ immutable and declar-

ative languages to describe a deployment [112, 59]. These frameworks use this specifi-

cation to install and start services across the nodes in a deployment. In practice, these

frameworks deploy services as Linux containers. When a change is made to a service,

the platform kills the old containers and starts new ones with the updated image: the

containers are immutable.

Ambience employs and makes novel use of this declarative model. It generates a

potentially unique kernel image for each node in a deployment, optimized for the mi-

croservice workload the node will run. Specifically, it carries relevant type and deploy-
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ment information specified in an IDL and manifest files that are used for optimizations

at runtime.

Ambience also supports preallocation of resources for services at build time, to reduce

cold start times and to detect insufficient resources ahead of time. Currently, Ambience

can preallocate the following for each group: isolation structures, system thread stacks

and control blocks, queues, in-kernel group descriptors. For importers and exporters, it

also preallocates networking structures, for instance UDP control blocks. When possible,

these resources are initialized at compile time using constexpr [50] data structures and

algorithms. constexpr allows some stateless C++ code to execute at compile time.

Ambience also supports dynamic provisioning these resources: pages can still be allocated

and mapped dynamically, threads can be created and destroyed, and sockets can be

created at runtime, only with higher runtime cost and the possibility of failure.

5.3.5 Use of Interface Types

Microservices in Ambience communicate over statically typed interfaces defined in an

IDL. This information is used to reduce load on developers by auto-generating serializa-

tion code and performing compile time checks. In commodity operating systems, these

types are erased at the system call boundary by serialization: all the operating system

sees are bytes coming in and out.

In contrast, Ambience maintains interface type information for as long as possible.

Service interfaces are typed at deployment time and this type information is available and

used when the kernel is constructed. Type information is only lost when an Ambience

invocation crosses a network boundary.

Ambience makes extensive use of this information to implement efficient communi-

cation, enable compiler optimizations, gain observability, and to introduce additional
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functionality. Ambience queues are strongly typed: when a user space makes a request,

it does not perform serialization. Instead, it packs pointers to its arguments in a zero

copy data structure generated by the IDL. As far as the user space is concerned, all

Ambience requests are zero copy. If the request is to be handled in-kernel, nothing more

is done. If the request is to be handled off-node, Ambience performs serialization and

communication. If the request is to be handled by another user space service in the

same node, Ambience synthesises specialized code using the static type information to

implement efficient parameter passing. Scalar types and small vectors (strings, buffers

etc.) are passed by value, and large vectors are passed by read-only memory mappings.

With this design, user spaces need not manage complicated shared memory objects and

buffers. The kernel manages mappings automatically since it knows what the user space

needs through type information.

Finally, Ambience uses this information to synthesize a broad range of higher level

functionality. For instance, Ambience provides structured logging of requests, since it can

make sense of the bytes it receives, e.g., it auto-generates externally accessible REST [153]

end-points to be consumed by web applications, and automatically injects sophisticated

authorization code by inspecting parameters for correctness.

5.3.6 Networks

Ambience services that communicate over a network are not exposed to networking

details. Instead, Ambience automatically manages networking using node and network

manifests provided by developers. Moving the responsibility of network management to

the operating system simplifies service development and increases portability.

Ambience’s control plane constructs a graph from manifests, where networks and

nodes are vertices and importers and exporters are edges between networks and nodes.
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The edges are directed and weighted to allow for potential asymmetry in the connectivity

(e.g. firewall rules that control connectivity) and allow user feedback on forwarding paths

(e.g. by incentivizing a particular network or interface).

Specifically, Ambience constructs a high level communication overlay at the applica-

tion layer (i.e. in terms of typed service requests rather than routing of untyped packets)

rather than at the network layer as found on existing systems [112]. Working at the

application layer allows it to forward requests between services automatically across a

wide range of networks to achieve full connectivity for a deployed service mesh. That

is, it automatically and transparently joins public and private IP networks, low-power

networks such as XBee, as well as point-to-point links such as USB, SPI and UART.

5.3.7 Automatic Access Control

In typical microservice applications, most routes are publicly accessible and services

themselves are expected to implement access control via a selection of authorization

mechanisms such as role- or attribute-based access control, access control lists, or decen-

tralized, token-based authorization primitives [1, 41]. This approach introduces redun-

dant work, precludes a separation of concerns, and limits Ambience’s ability to specialize

services within the same trust domain.

Typically, access control implemented in microservices takes the form of sanitization:

they answer the question, ”Can the current subject call this procedure with these argu-

ments?”. In conventional systems, there is no other entity to perform this check other

than the service itself, since no other component can make sense of the messages until

they arrive at the service. Ambience, however, has visibility into individual service in-

terfaces, and can synthesize access control code where needed. All Ambience needs is a

formal specification of predicates to ensure per procedure.
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Synthesized access control code can be deployed inside the service’s group. It can

also be used inside the kernel to avoid unneccessary context switches, and it can be run

on another machine to early fail bad requests. If an Ambience service actually receives a

request, it is guaranteed that access control has been performed on the given arguments.

To implement this support, we leverage CAPLets [27], an open source, capability-

based authorization framework that runs on both microcontrollers and resource-rich ma-

chines. CAPLets requires policies to be defined as capabilities and constraints and written

manually by developers. Ambience extends this approach to automatically generate capa-

bilities and constraints from manifests, precluding the possibility of definition mismatch

and reducing programmer burden. For requests that take place on the same machine,

we employ CAPLets’ policy mechanism between groups. For requests that take place

across a network, we automatically inject CAPLets’ network protocol, which serializes

the request, signs it, adds replay protection, and optionally encrypts it. Once received

by the destination node, the same policy mechanism is invoked after passing signature

checks.

The keys for network requests inside the deployment are automatically managed by

Ambience with no user involvement. For externally made requests, Ambience generates

capability tokens that can be shared with other parties. These tokens are evaluated at

explicit ingress services, which again is automatically synthesized by Ambience.

This deployment-aware access control improves the pace of development by relieving

programmers from implementing access control, reducing bugs through automatic syn-

thesis of code, and improving runtime efficiency by optimizing away unneccessary checks.

It also simplifies administration by providing a uniform authorization infrastructure at

the operating system level.

Case Study: DeathStarBench To demonstrate the fit of Ambience’s design for

real world microservice applications, we investigated the DeathStar microservices bench-

87



Ambience Chapter 5

mark [71]. Given the assumption that the program is the unit of deployment, their

microservices are not easily decoupled from the test harness which implements the net-

working, dependency, and platform configuration. Thus, we use the suite to validate

Ambience’s design and not for performance comparisons. The microservices within the

benchmark suite all communicate with each other not through unstructured pipes or

sockets, but over strongly typed interfaces, either via gRPC [79] or Thrift [165]. Am-

bience extends the use of these interfaces to drive optimizations across address spaces.

Across the suite, we find that none of the 33 services make direct use of system calls

(only the test harness uses signal and exit). This finding, coupled with our experience

with microservice applications, leads us to believe that POSIX system call compliance is

not a requirement in this domain and thus we omit it from the Ambience to streamline

its design and specialize its implementation. To support system calls made by terminal

services, such as databases, we port these services to Ambience by replacing their system

calls with Ambience interfaces.
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5.4 Deployment Overview
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Figure 5.1: End to end overview of an Ambience deployment.

Figure 5.1 presents an end to end overview of an Ambience deployment.
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1 The Deployment Manifest node is the top level manifest provided by the cluster

owner. First, it specifies the nodes in the cluster and the networks. Second, it specifies

what services should be included as part of the deployment. Service manifests specify

the interface type of the service, as well as the interface types of all of its dependencies.

The types are described using a formal interface description language that Ambience can

understand at deployment time.

2 & 3 Using the type information associated with the service interfaces, Am-

bience automatically synthesizes code to perform authorization and optimal communica-

tion.

4 Each service manifest the artifact associated with the service. The artifacts can

be ahead of time compiled binaries, or source code. Ambience creates loadable groups

from the services by linking, and if necessary compiling the service artifacts.

5 & 6 Automatically synthesized programs are linked into each kernel image.

7 Metadata associated with each loadable group are linked into their host kernel

image. This metadata is used to pre-allocate certain runtime resources, such as page

tables and sockets.

8 & 9 & 10 Ambience bundles each kernel and group artifacts associated

with a specific node in bootable images. For x86 servers, Ambience generates a bootable

ISO, for microcontrollers, it generates a loadable image. Using the deployment manifest,

Ambience also generates memory layouts for all groups. While a global memory layout is

not necessary on hardware with paged virtual memory, microcontrollers operate directly

on physical memory and each group must be loaded at a suitable location. At this stage,

Ambience has all the information necessary to allocate regions and finally links each

group to their actual runtime addresses. This relieves the microcontroller kernels from

performing runtime relocations as well as avoiding use of position independent code to
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achieve maximum performance.

11 Bootable images generated by Ambience are delivered to their nodes through a

machine-dependent manner. For instance, by uploading the image to a cloud image reg-

istry for running on cloud virtual machines or by flashing the image to a microcontroller’s

ROM.

12 Services running inside groups on the same node communicate over Ambience’s

optimal, code synthesized, local Inter Service Communication mechanism. When com-

munication occurs over local-ISC, Ambience passes arguments and return values between

address spaces using the optimal strategy. It makes use of transparent memory mapping

to deliver large amounts of data across protection domains with very small overhead.

13 Ambience automatically synthesizes serialization and deserialization code for

communication taking place across the network as well as access control code for pro-

tecting these interfaces. The programmers do not have to write any code to support

this networking infrastructure, and as far as they are concerned, all calls to them appear

identical.

14 Deployment Manifests can specify explicit Exports to make a service available

outside the cluster. Exports can specify network protocols other than Ambience’s internal

protocol to interoperate with existing clients. For instance, Ambience supports exporting

any service over an HTTP REST endpoint with no involvement from the programmers.

15 Similar to Exports, Ambience manifests can also specify explicit Imports to

receive services that are running external to the cluster. Imports can run over protocols

other than Ambience’s to provide compatibility with existing services. However, the

services must provide an RPC style interface, since programmers will consume them as

if they are Ambience services. For instance, streaming APIs cannot be transparently

imported and may require manual programmer effort to use within Ambience, same as

existing operating systems.
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5.5 Memory Management

Unlike unikernels, Ambience supports multiple address spaces natively. Services run-

ning in isolated address spaces cannot communicate via direct function calls and must

involve the kernel to facilitate passing and returning of necessary information between

address spaces. Such communication is termed Inter-Process Communication (IPC).

Ambience’s memory management system is designed with support for low end micro-

controller hardware (which we refer generally as Memory Protection Units (MPU)) in

mind as well as supporting full-featured MMU hardware. The main difference between

MMUs and MPUs is that MMUs provide paged virtual addressing whereas MPUs only

provide memory protection on physical memory segments. Lack of virtual addressing on

MPUs mean that Ambience’s design must embrace the ability to work under a single

address space.

5.5.1 Memory Sharing

When Ambience provides transparent access to a service in another address space,

the kernel will automatically map memory segments from the caller’s address space to

the callee’s address space usually in a read-only fashion to achieve zero-copy calls.

Arbitrarily mapping pages across address spaces is a novel design of Ambience. On

existing systems, shared memory requires significant coordination across the parties of the

said memory. On Posix, memory can only be shared using MAP SHAREd anonymous pages

across a fork or using a shared file or shared memory objects. In all cases, programmers

of both the caller and the callee must explicitly setup the sharing and make sure all

arguments are in the shared area. Even the most efficient microkernels [93, 109] have to

resort to copying for large buffers.

While the traditional design simplifies memory management in the kernel, it prohibits
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the implementation of a true zero-copy transparent IPC mechanism.

5.6 Efficient IPC

Ambience’s efficient IPC is implemented by combining the highly flexible memory

management facilities described previously with the deep knowledge of what user spaces

do. Using traditional systems, processes can share information through allocating a large

buffer, enough to fit all parameters, copying all parameters to the buffer and passing the

buffer to the other process using IPC.

Ambience programs, on the other hand, merely set up a well-typed structure con-

taining scalars directly and pointers to large objects and passes a pointer to this object

to the kernel. As the kernel has a priori knowledge about the contents of the structure,

it replicates the structure on the receiving side by copying small scalars and directly

memory mapping the large buffers. The sender and the receiver are completely oblivious

to this sharing. Both sides see a normal, directly usable structure. Contrast this to usual

systems where the sender has to serialize a message and the receiver has to deserialize it

into a useable structure.

Since large objects are passed by pointer, the kernel will follow the pointers and ensure

the same data structure is replicated on the other side. Whether a zero-copy transfer for

a pointer is possible or not depends on the pointee’s is alignment and size. For instance,

if a user space attempts to share a string containing 100 characters, on a paged system

with 4k pages, it is impossible to directly map the page. However, if the string is big

enough and has well-aligned sections, parts of it will be memory-mapped. In the best

case, no copying needs to be performed.

Ambience supports partial-copy sharing on MMU-capable systems as well. For in-

stance, consider a string of size 8193 bytes, starting at address 4096 ∗ k + 4095 for some
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constant k. This means that except for 1 byte at the beginning, the whole string can

be mapped directly to the other address space. In this case, Ambience will allocate an

anonymous page, copy the single byte to the end and map this at address 4096 ∗ k in the

destination address space. The rest of the data will be mapped directly at 4096 ∗ (k+ 1).

This ensures no unintended data leaks to the destination service while using the optimal

strategy as much as possible.

However, on MPU systems, partial copying is not possible if a pointee is not well

aligned (and well sized!), and a total copy has to be made since it is impossible to supply

different physical memory for the beginning of the string without virtual memory support.

Zero-copy is still supported for buffers that are well aligned and well sized. However, as

MPU hardware are usually extremely limited, the microcontroller implementation has to

fall-back to total-copy frequently.

5.6.1 Implementation Details

Ambience’s IPC mechanism is implemented within the kernel and thus is implemented

in C++. Since the approach is fully type based, we make significant use of C++ templates

to synthesize the necessary functions.

Each type that is allowed to pass through the IPC interface needs to opt-in by pro-

viding a specialization of the primary tos::quik::sharer<T> template. The sharer in-

terface consists of two required static functions: size t compute size(const T& arg);

that returns how many bytes of extra data would arg need in the destination address

space. For instance, for small scalars, this function always returns 0 since such scalars

are always stored within the structure itself. For a string, it would be the size of the

string if a total-copy needs to be made, or 0 if the string can be memory mapped.

The next function is T do share(Share auto& share, const T& arg);. This func-
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tion performs the actual share. Notice that if T is a pointer, do share returns a pointer

as well.

Using these specializations, passing an entire struct can be achieved by copying the

struct verbatim to the destination address space and transforming each member through

tos::quik::sharer<T>::do share. The resulting code for sharers is very concise, and

the overall sharing code is easy to read and maintain.

Optionally, types can also opt-in to provide another function in their specializations

with the signature void finalize(Share auto& share, T& original, T& copy);, in

which the types can provide a finalization step, used for read+write operations. For

instance, while the backing store of a message builder is memory mapped between two

address spaces, how much data is written to that storage by the callee still needs to be

transferred back to the caller. Finalization handles this final metadata transfer.

As everything is implemented using static polymorphism, the compiler is able to

optimize away complicated, multi-step shares to a single memcpy and even to a single

SIMD copy instruction for smaller parameter packs.

Our memory subsystem generalizes the concept of a page in MMU systems to an

address space fragment. An address space fragment is a range of memory in one address

space that can be zero-copy shared with another address space. Naturally, fragments

are hardware dependent. On paged systems, a fragment maps to a page directly and

statically. On an MPU system, however, the fragments are dynamic. The rationale be-

hind this design stems from the limitations of MPU hardware. Typically, MPU hardware

requires the base addresses of the segments it protects to be aligned to the size of the

segment. For instance, if a segment is 128 bytes, the base address must be aligned to 128

bytes. Therefore, there is no single fragment layout in such systems.
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5.7 Lidl, the little IDL

Microservice frameworks facilitate communication between services through strongly-

typed interfaces. Since microservice architecture aims to provide freedom for the imple-

mentation language of services, such interfaces are described using a stand alone inter-

face description language (IDL) instead of using the features of a single programming

language. For example, gRPC [79] uses Protocol Buffers [149] to describe its interfaces,

and COM [49] uses MIDL [133]. Some frameworks come combined with their IDLs, for

instance Cap’nProto [160] and Thrift [165]. These frameworks are predominantly Remote

Procedure Call (RPC) protocols, and provide client and server stubs that automatically

serialize and deserialize network buffers into useful objects. This indiscriminate serialize-

deserialize approach makes applications topology-agnostic without any recompilation or

linking. For instance, a client accesses a server through the same messaging transport

regardless if the server is on another machine, another process or even within the same

process.

However, this careless serialize-deserialize approach is only optimal for the remote-

machine topologies. If the client and the server is in the same machine, a shared memory

approach would be much more efficient, and if they are in the same address space, well

it could be a direct function call. There are some RPC frameworks focused on IPC

efficiency. COM [49] and FIDL [68] claim to be such frameworks. FIDL focuses on IPC

as it has to manage capabilities, but at the time of this writing, it does not make use of

the shared memory and still serializes data across address spaces. It also is an IPC-only

framework, it does not work across a network in its current form.

In short, almost every IDL is focused on facilitating RPCs across a network, and

always serializes. The handful IPC focused RPCs still perform serialization, and only

exploit the IPC advantages to implement local authorization purposes. Lidl is an effort
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to provide an interface description language that is optimal for every use case. Lidl

interfaces can be transparently implemented by direct function calls, efficient zero-copy

shared memory for cross-address space calls or serialization for cross-machine calls.

5.7.1 View Types

To achieve efficiency in almost all situations, we have to rethink how service interfaces

are designed. Consider the case of passing potentially large buffers of data to/from a

service. For instance, a write file system API. What is the type for the buffer parameter?

If we were writing generic code in C++, the write function would ideally be generic

over the buffer type so that the caller can supply whatever they have without any

conversions. However, since interfaces are exposed over virtual functions, we cannot

have templates as these interfaces. We need some type erasure. Let’s consider using

std::vector<std::byte> as our byte buffer type. A std::vector<std::byte> is an

owning array of bytes and it has a very strict invariant: it has to call delete[] on the

pointer that it internally holds. Since it will unconditionally delete the buffer, it has to

ensure the buffer it points to is allocated properly, and its constructor will always allocate

buffer itself. This means that even if the caller already has a (potentially heap allocated)

buffer, another allocation must be performed and all the data has to be copied to the

new, managed buffer.

View types are an effort to alleviate these problems. An instance of a view type

is a non-owning reference onto an existing object. In one sense, view types are the

generalization of non-owning, non-null pointers.

While programming languages have started providing support for view types, RPC

frameworks still specify their interfaces using either owning types, or framework specific

types, usually resulting in unnecessary copies. For instance gRPC [79] uses std::strings
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Concrete Type View Type
T T*

T[N] span<T>
std::vector<T> span<T>

std::array<T, N> span<T>
std::string string view

const char[N] string view

Table 5.1: Common concrete types and their associated view types. Notice the view
types efficiently erase away the concrete type.

as its string representation and FlatBuffers [75] uses its own string type, necessitating

copies even if the callee is not a remote machine. It is also unclear how view types could

be supported in these existing RPC frameworks, as their main interface is about building

messages or serializeable objects.

To achieve efficiency within an address space, we designed Lidl with support for view

types in mind. Lidl procedures can have view types as parameter and return types, which

are reflected as correct view types, if available, in the target language. When the caller

and the callee is in the same address space, a view type will do the right thing by doing

nothing. A string view argument will be directly referring to the string passed by the

caller. If the caller and callee are in separate address spaces, the kernel will automatically

make the string view available on the destination address space since it has knowledge

about what a string view is. Finally, if the destination is on another machine, Ambience

will create a gather buffer1 from the string view directly, achieving true zero-copy in

all cases.

1Ambience’s network interfaces implement scatter-gather APIs, meaning that clients can specify
multiple disjoint buffers to be sent as a single packet. True zero-copy operation needs driver support as
well, and Ambience’s virtio-net driver implements support for it.
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5.7.2 Wire Format & View Types

While Lidl is primarily used to define service interfaces, we make use of it to define a

wire format to be used for inter-node communications as well.

Lidl’s wire format is rather simplistic compared to [79, 75, 160, 165, 68], with the

caveat of supporting view types. Each lidl value structure is mapped to a C-layout

compatible struct, and each lidl value union is mapped to a tagged C-layout compatible

union, which allows user programs to access lidl types as efficiently as they access regular

types. Value types, however, cannot contain any dynamically sized data. For instance,

integers, and fixed sized arrays of integers are value types, but a variable length string

is not. Lidl implements variable sized data using reference types, which are accessed

through relative offsets. Access through offsets is not as efficient as access via a direct

pointer, but having relative offsets rather than absolute pointers allows lidl messages to

be copied efficiently without any need to adjust pointers etc.

Each view type supported by lidl also has an associated wire type. If a view type is

being serialized, for instance at a network RPC boundary, lidl’s runtime will automati-

cally convert the view type object into the wire type object. At the other end, a view

type can be created from the zero copy message directly.

For example, consider an interface taking a string view as a parameter that is actu-

ally implemented on a remote machine. At the network boundary, lidl will automatically

create a lidl::string from the argument inside the message and transmit it to the

other machine. Once received, all the arguments, including the string are in a zero-copy

buffer in the memory. The wire layout of lidl::string is compatible with string view,

meaning that the string does not need to be copied out of the buffer, and can be used

by the server directly. In contrast, grpc,capnproto would have to make a copy of this

string before passing it on to the server, since they do not have a concept of view types,
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and their interfaces are defined in terms of owning types such as std::string.

5.7.3 Network & Zero Copy Interface

As mentioned before, all Ambience communication, networked or on the same node,

happens over typed RPCs. Networking is handled implicitly. If a dependency is not in

the same address space as the caller, the dependency will be provided using a stub. The

stub captures all arguments in a structure, that either holds each argument by value (for

scalars and small vectors), or by pointer (for large vectors). The exact definition of this

data structure depends on the interface types and platform, and since it holds pointers,

it cannot be just passed between address spaces and machines directly. The stub also

allocates space for the return value on the stack. It then passes the procedure identifier

(a unique number per interface), a pointer to the argument structure and a pointer to

the return value to its zero copy backend. Lidl stubs are class templates parameterized

over the zero copy backend type. Listing 5.3 shows an example stub generated by the

compiler.
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template<class Backend>

class alarm::async_zerocopy_client final

: public alarm::async_server

, private Backend {

public:

template<class... BaseParams>

explicit constexpr async_zerocopy_client(BaseParams&&... params)

: Backend(std::forward<BaseParams>(params)...) {

}

Task<bool> sleep_for(milliseconds dur) override {

auto params_tuple_ = ::lidl::make_params_tuple(dur);

using ret_t = bool;

std::aligned_storage_t<sizeof(ret_t), alignof(ret_t)> return_;

[[maybe_unused]] auto result_ =

co_await Backend::execute(std::integral_constant<int, 0>{},

&params_tuple_,

reinterpret_cast<ret_t*>(&return_));

co_return *reinterpret_cast<ret_t*>(&return_);

}

};

Listing 5.3: A sample zero-copy stub client generated by lidl.

The backend can either be a proxy, in which it merely passes through its arguments to

the next backend (which itself may be another proxy), or it can be a terminal, where the

request will be handled. Proxy backends need not know about the types involved, they

101



Ambience Chapter 5

can effectively treat the pointers as [const] void*. The terminal backends, however,

must have a priori knowledge about the incoming types, since the types involved are

not self describing. This is rather trivial on Ambience, since the terminal backends

are automatically generated. Lidl provides library functions to automatically execute

a procedure call on a given service implementation, given the procedure id, pointer to

arguments and pointer to the return value.

In the case of a client and server running on the same machine but different address

spaces, the following events will occur:

1. The caller service calls the stub implementation in the user space,

2. The stub implementation passes the arguments to the upcall backend,

3. The upcall backend places the index and pointers into the asynchronous ring and

suspends the caller,

4. Immediately or later, a user mode to kernel switch,

5. The kernel iterates over the ring and executes each request element,

6. If the callee is in the kernel, the request is served

7. If the callee is in another user space,

(a) A proxy within the kernel receives the parameters,

(b) The proxy knows about the types, and executes the type-aware fast IPC code

to pass the argument structure to the target address space, creating valid

pointers in the destination address space,

(c) The proxy places the new pointers in the destination group’s ring,

(d) Immediately or later, a kernel to user mode switch to the destination group,
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(e) The Ambience runtime iterates over the ring and executes each request ele-

ment,

(f) The request is handled by the actual service

8. If the callee is in another machine,

(a) A network proxy within the kernel receives the parameters,

(b) The proxy invokes lidl’s serialization routine using the given argument struct

(the kernel can dereference user space pointers),

(c) Since the proxy is implemented by a network device, it sends the serialized

buffer to the other machine

(d) A proxy running on the destination machine receives the buffer, and after

validation, treats it as a typed lidl object,

(e) The proxy executes the request, which will start from Item 6,

Hence, Ambience provides a high level, but efficient and versatile indirection interface

that can be transparently used to implement many communication strategies, including

fast zero copy transfers across address spaces as well as network transfers over IP, low

power radios, serial ports etc.

5.8 Evaluation

We evaluate Ambience in terms of its ability to deploy end-to-end microservice meshes

in different configurations without code modifications, and also in terms of its perfor-

mance, particularly with respect to microcontroller support. For the former, we have

developed an motion-triggered “camera trap” application used in wildlife monitoring
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settings that captures a digital images from a remote camera, processes them and per-

forms classification, and stores the results in a data repository. We use equivalent imple-

mentations for Ambience and the IoT software framework from Azure and report both

quantitative and qualitative productivity metrics associated with deploying each version

in different configurations.

To motivate the Ambience design decisions from a performance perspective, we then

use a set of microbenchmarks to provide isolated measurements of specific functional-

ity. We use other services than the wildlife-tracking application in our microbenchmarks

to expose the characteristics of different deployments, such as the effect of service call

depths. We focus on energy use, latency, portability, and scalability. In remote IoT

settings, sensor and actuator nodes often use battery power (recharged during daylight

hours using solar power) and operate on a duty cycle consisting of active periods and pe-

riods of low-power dormancy. The minimum duration of the active periods is defined by

execution speed and communication delay. Thus power consumption is often correlated

with execution duration and, hence, reduced execution duration implies less energy con-

sumption and the use of smaller batteries, a smaller solar array, more active periods per

unit time, etc., for the same communication duration. Latency measures the duration of

a specific operation or set of operations, and scalability plots the performance of a node

as a function of the load it hosts.

We perform the experiments on the following hardware:

Motion: nRF52840s microcontroller with an ARM Cortex-M4 core running at 64MHz,

256KB of RAM and 1MB of flash memory, a motion sensor [85], and a radio [185]

Camera: STM32F746 microcontroller with an ARM Cortex-M7 core running at 216MHz,

512KB of RAM, and 1MB of flash memory, an OV5640 CMOS image sensor [144], a mo-

tion sensor [85], a radio [185] and a 100-Mbit Ethernet,

Edge: A single core x86 64 virtual machine with 1GB of RAM running under QEMU-
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KVM on Linux Kernel 5.15.6 on an AMD 5950x processor running at 3.4GHz,

Cloud: Two DigitalOcean [57] single core VMs with 1GB of RAM on Intel Skylake

processors.

We run the Ambience prototype natively on Motion and Camera. Virtualized Am-

bience runs on the hypervisor using virtio devices with custom drivers. Unless otherwise

specified, we execute the microbenchmarks on Edge. All code is implemented using

C++.

5.8.1 Wildlife Monitoring Application

As a motivating application and to demonstrate the flexibility that Ambience makes

possible, we describe an end-to-end wildlife monitoring system designed for off-the-grid

locations (e.g. research reserves). Physical sensors and cameras employ embedded micro-

controllers. The application uses a mobile version of Tensorflow [172] to process images

either on-camera, or off-camera (possibly traversing a network link in the process) on an

x86 64 edge server device and posts the analysis results to the cloud over slow, cellular

internet.

In this application, the motion detector nodes run completely on batteries, making

battery life paramount. The camera nodes have solar power, but power usage is still

important since the camera uses a battery during nighttime operation that is recharged

during daylight hours. In the deployment we use, the edge servers also use batteries, but

they are from a large battery complex with a large solar array located in an open space.

The cameras communicate with the edge server via an Ethernet network, and the sensors

communicate with the camera via low-power Xbee radios.

We implement and deploy the following services:

Motion Sensor handles low level hardware events from the PIR motion sensors and
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Figure 5.2: Physical service architecture of the deployment. For brevity, we omit the
lower-level services such as logging, timers etc.

forwards them to its event handler. Implemented in 56 lines.

Camera manages the OV5640 camera using the STM32 DCMI peripheral, capturing a

full sized snapshot everytime it is called and passes the image data to the frame handler.

Implemented in 42 lines.

Detection implements an animal detection service using Tensorflow on a sub-sampled

image. If an animal is detected, the frame is passed to the recognition service. The model

used in this service takes up around 320KB and is fully portable across the Camera and

Edge nodes. Implemented in 94 lines.

Recognition implements an animal recognition service, using Tensorflow but on a higher

resolution version of the frame, and classifies the subject. The classification result is

passed to the database service. Implemented in 90 lines.

Database implements an append only log of classification events. Implemented in 120

lines.

The most distributed deployment sites the motion detector at the likely entrance of a

“stage” for the wildlife (e.g. a watering location) that is imaged by the camera. Thus it

spans four tiers. The motion detector (tier 1) communicates with the camera (tier 2) via

Xbee low power radio to trigger an image capture. The camera then communicates with

the edge server which has a public internet connection. This deployment, interfacing with
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Figure 5.3: Timeline of the events captured using a logic analyzer when the Detection
service is deployed on the Edge node and the Motion service is deployed on the Motion
node. Units are in milliseconds.

physical hardware, performing neural network inference, storing records in a database,

and communicating over 2 incompatible networks requires 402 lines of service code in

C++. It also requires 53 lines of Ambience configuration expressed as manifests.

We also test a second deployment in which multiple motion sensors guard the en-

trances to the camera stage so that image sequences are correct when animals approach

from multiple directions. Switching from the 1 motion detector per camera to multiple

motion detectors requires 5 lines of configuration change, and no change to the services

themselves. Ambience synthesizes the necessary XBee networking code with no addi-

tional input from the user.

We deploy the Detection service on the camera microcontrollers by default. However

if a camera is particularly active causing the battery to drain at a rate that could threaten

a shut down, the service can be transparently offloaded to the edge (reducing camera

battery load and allowing it to re charge) and then and moved back on-board once

the battery is recharged to then reduce load on the edge machine. Performing this

reconfiguration manually requires 2 configuration lines to change in Ambience, and no

change to the service code itself. While this application is not latency sensitive, latencies

on the battery powered nodes have a direct impact on battery life.
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5.8.2 Microcontroller Latency Analysis

Overall, microcontrollers’ work starting with the motion sensor interrupt to the com-

pletion of neural network processing, takes between 19 to 921 milliseconds, (including

network transfer) depending on where the Detection and the Motion services are de-

ployed. We show the breakdown of the spent on the microcontroller nodes in Figure 5.3.

Note that when the Motion service is deployed on the Camera node, the radio events in

the figure do not take place. Neural network inference takes up more than 95% of the

time the camera node is awake and we remove it from the trace to make the rest legible.

Offloading it to Edge reduces the power use of the node significantly, but increases the

load on Edge.

In Figure 5.3, 36 of the 50 milliseconds are devoted to serial communication with

radios on each microcontroller board. However, during this time, the microcontroller

processors are in low-power sleep and the transfers are made entirely using DMA hardware

to conserve power. In particular, the Motion node’s microcontroller processor is awake for

less than 3% of the entire operation and spends less than 20 µJ for the entire event with

the radio spending 4.32 mJ. Using a battery cell with 13Wh capacity [4], this energy

expenditure corresponds to approximately 10 million events detected and transmitted

over an XBee network. At reasonable event rates and quiescent current leakages, the

battery could last multiple years, demonstrating Ambience’s abstractions are efficient

and effective enough to support low power applications as well as high performance ones.

5.8.3 Edge Platform Overheads

To facilitate reuse and scaling, individual microservices often implement very nar-

row functionalities, which are composed to form higher level services. Such services

are deployed in separate trust domains (processes, address spaces) to achieve isolation.
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Figure 5.4: Exposition of communication overheads imposed by each platform. Overhead
is represented as the ratio of non-compute cycles to compute cycles. Azure has a hard
256KB limit, preventing larger message sizes for it in the IO graph. For the Compute
experiment, Concurrency is fixed at 16 and IO is fixed at 200KB. For IO, concurrency
is fixed at 1 and work is fixed at 0.25ms. For Concurrency, IO is fixed at 200KB and
Compute is fixed at 0.25ms.

Services then use the IPC mechanisms implemented by the operating system to commu-

nicate between domains. Previous work [71, 102] notes that microservices can have quite

large communication:computation ratios. From a performance perspective, cycles spent

for computation is “useful work” and cycles spent for communication is “overhead” –

a cost required to implement the useful work. Thus the ratio of communication cycles

(cost) to computation cycles (benefit) is a simple representation of the cost/benefit ratio

associated with a microservice deployment. We term this metric the Overhead ratio.

To study the overhead imposed by the platforms, we implement a pair of Camera

and Detection services 3 ways: natively on Ambience, and using Azure IoT SDK’s ab-

stractions as well as using Lidl on Linux over Unix Domain Sockets. To make sure all

platforms execute the same computation cycle-accurately, we provide parameterizable

“mock” versions of both services that allow the workloads to be set explicitly. We then

compare the same services across 3 platforms in different configurations. Our mock

Detection service allows us to specify an exact cycle count to spend accessing random

locations in the given frame. We also experiment with multiple concurrent requests to

try and amortize communication costs. Figure 5.4 presents our results.
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Our evaluation shows that for low compute, high communication scenarios, Linux

imposes significant overheads, spending as high as 61 times the processor cycles for

communication than for computation. Azure imposes even higher overheads, spending

as much as 1381 cycles on communication per cycle of computation. In comparison,

Ambience’s overhead ratio ranges from 0.008 to 0.59.

Part of the reason is that typical IPC mechanisms require copying to pass data back

and forth between processes. While it works fine for passing small amounts of data

between trust domains, it also creates significant overheads relative to the compute hap-

pening at individual services. For instance, the Detection service requires the entire

image to be passed between address spaces, which then executes quickly.

We note from the DeathStar benchmark suite [71] that sub-millisecond computation

times per request are common. Also of note is that all systems show improvements

as concurrency increases, as communication costs such as i-cache and TLB misses and

context switches amortize between concurrent requests, with Ambience improving the

most while being the best overall. We expand our analysis of IPC overheads below using

microbenchmarks. Note that Azure imposes a hard limit of 256KB [26] on message

size, preventing us from probing it for large messages. This experiment demonstrates

that Ambience’s type-aware, specialized IPC mechanism can dramatically reduce cross-

domain overheads for microservices.

5.8.4 Portability of Cloud IoT SDKs

We implemented as much of this system as possible using Azure’s SDK as well, as

it, like Ambience, features the ability to run on the cloud, edge and microcontrollers.

The embedded SDK for microcontrollers is not the same SDK as for the cloud or edge

devices, meaning that moving software written for one to the other requires substantive
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code changes, testing to make sure that both implementations are equivalent, etc. This

impediment is primarily due to divergent APIs, programming and deployment models

for the different tiers in a deployment. On the cloud and edge, programmers must make

use of Linux APIs, whereas on the microcontroller side, the developer has the choice of

FreeRTOS, AzureRTOS or bare metal, each of which provides a unique and incompatible

set of abstractions, making writing a piece of code that runs across the platform labor-

intensive and error prone.

Even with the equivalent service implementations for different configurations, the

communication infrastructure required by the Azure SDK makes use of MQTT for all

interservice communication. Thus co-locating two services on the same node incurs

MQTT communication overhead even for the local communication. The hard limit on

message sizes also makes certain applications impractical on the platform.

The available vendor software did not include support for Xbee radio communication.

To the best of the authors’ knowledge, the Azure SDK requires the use of IP networks

for communication. Thus, to implement the communication between microcontrollers,

we had to write a custom XBee driver for the SDK based on the one that is part of

Ambience.

Finally, the Azure SDK supports 2 microcontrollers models in the same “family”

that we used in the Ambience deployment. However, at the time of the comparative

implementation and writing, both of the specific microcontrollers models supported by

the vendor were unavailable due to supply-chain delays. We expected the vendor code

to be portable to our microcontroller model as well since they share a family but it was

not. Thus, qualitatively, since the vendor setup is not portable across 2 microcontrollers

that share the same processor core and peripherals, we anticipate that it will be even less

portable between platforms. For this reason, we were unable to compare the execution

performance of the application end-to-end. We have a comparative implementation from
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which we draw the productivity comparisons but the lack of portability prevents a fuller

comparison.

5.8.5 Microbenchmarks

IPC Microbenchmark – evaluating static, strongly typed interfaces: In this

microbenchmark, we evaluate our integration of the interface type information into the

kernel. We created a variety of interfaces to cover a representative set of results. Specif-

ically, we constructed workloads with scalars of a uniform type, scalars of mixed types

and relatively large strings and buffers. We executed the benchmarks while increasing

the sizes of the arguments to identify any potentially hidden overheads. For each inter-

face, we executed 10K requests using 3 strategies and measured the average latency and

overall throughput.

The User strategy represents typical interprocess communication (IPC) using byte-

wise copy between user spaces and the kernel (e.g. Linux pipes). All type serialization

occurs in the user space, the kernel copies the bytes from the client to the server and the

server deserializes the buffer. For Linux, we implemented the User strategy using pipes

on Linux 5.15.6 using the same serialization/deserialization code in each comparative

experiment.

In the Dynamic strategy, the user space sets up a vector of pointers to arguments

and tells the kernel the types of the pointers dynamically. The kernel then performs the

sharing to the other address space, and creates a new vector of pointers to arguments the

server address space can access. The advantage of this approach over the User strategy

is the kernel can automatically map pages for large buffers.

The Static strategy (the Ambience default strategy) is one in which the user space

sets up a tuple of typed arguments and passes a pointer to this tuple to the kernel. Since

112



Ambience Chapter 5

Uniform Mixed Uniform Mixed Uniform Mixed Uniform Mixed
0

500

1,000

T
h
ro

u
gh

p
u
t

(M
B

p
s)

Static User Linux Dynamic

0

500

1,000
4 Bytes 32 Bytes 64 Bytes 128 Bytes

Figure 5.5: Average throughput for passing varying number of scalars between two ad-
dress spaces. Each experiment is repeated 10,000 times. Static, User and Linux strategy
achieve similar results regardless of the argument types, while the Dynamic strategy loses
a substantial amount of throughput for mixed types.

the kernel has been compiled with the types information from the interface for the system

call it “knows” the structure of the data the tuple. It again creates the same structure

on the server address space by either copying the arguments or mapping pages.
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Figure 5.6: Average throughput for passing larger buffers across address spaces. User
and Linux fall short as they always perform copies.

We benchmarked our 4 strategies with 11 size classes across 3 clusters:

1. A number of uniform type scalar arguments. For instance (i64, i64, i64, i64)

for a 32 byte scalar parameter,

2. A number of mixed type scalar arguments. For instance (u64, i64, bool, i8,

f32, i16, f64) for a 32 byte mixed scalar parameter,

3. A larger byte buffer of sizes 1024, 4000 and 4096 bytes. As the 1024 and 4000 are not
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page aligned sizes, they have to be copied for all cases. However, the 4096 byte buffer

can be directly mapped if available.

Figures 5.5 and 5.6 show average throughput for the IPC benchmark for scalars and

larger input buffers, respectively. The results show that the Static strategy is superior to

both approaches, achieving 2.66x and 3.18x higher average and 4.08x and 2.29x higher

maximum throughput than Dynamic and User, respectively. As expected, Linux and

User results are almost identical results since they are implemented in a very similar

manner.

While Dynamic uses the same primitives as Static in a program, for Dynamic, Am-

bience must traverse a list and make an indirect function call for each argument. The

effects of this implementation is most apparent when there are many parameters of differ-

ent types (i.e. Mixed workload) causing substantial branch mis-predictions and I-Cache

trashing. Static, User, and Linux on the other hand have no virtual function calls and

there is no list to traverse: parameters are simply a packed, contiguous tuple. On top

of the cache-friendliness, the static type information unlocks inlining opportunities for

the compiler. For instance, when we are passing 16 scalar arguments, we emit a sin-

gle large memcpy as opposed to 16 small ones. For passing few, well aligned large buffers

(starting at around 100KB), Dynamic achieves similar results when its cache and inlining

disadvantages get shadowed by page table manipulation.

Because User and Linux need to perform multiple copies of large buffers (one for

in-process serialization, another for process to process), they cannot achieve the high

throughput afforded by direct page mapping. However, as they can make use of the

static types in user space, they still outperform Dynamic for the mixed-type workload.

Note that the automatic page-mapping support cannot be implemented in Linux as

it requires automatic support for mapping arbitrary pages from one address space into

another, temporarily, with shared ownership. Using mmap, two processes could dynami-
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cally share pages, however, the users would have to explicitly allocate memory in those

pages for the mapping to work, as mmap cannot map existing, anonymous pages to an-

other address space. Further, if the same page is supplied as an argument in multiple

concurrent requests, the page must be unmapped only when the last request completes.

Again, mmap does not support mapping the same page multiple times and perform unmap

using reference counting.

Scalability Microbenchmark: In this microbenchmark, we evaluate our use of asyn-

chronous programming and coroutines as the primary model. We consider another service

in this experiment, a recursive and caching, DNS-like, name resolving service where clients

make requests to resolve names to network addresses. We implement the service using

both coroutines and fibers to evaluate Ambience’s use of stackless coroutines. Specifi-

cally, we are interested in their scaling characteristics including the load on memory and

compute overheads, if any. To enable this, we deploy 2 terminal resolvers, each storing

half of the known domains. We implement one resolver using fibers and the other using

coroutines. We also implement one client for each. The clients then generate 10,000

requests for uniformly distributed domains, some of which are invalid.

For the fiber version, we use a stack size of 32KB which is moderate compared to the

many megabytes reserved by other systems. The coroutine version does not require such

a parameter as each coroutine frame is dynamically allocated.

Because the resolver is recursive, if the requested hostname is not cached, it will make

a request to one or more of its upstream resolvers and wait. If the result is in the cache,

it responds immediately. Once a request completes, all resources are freed. This means

that if a request completes without any blocking, it consumes memory for only a very

short time. Therefore, if the cache hit rate is N , only B ∗ (1 − N) requests consume

memory in a batch size of B. We aim for N = 0.5 in our loads for a realistic workload.

The first graph of Figure 5.7 shows the average throughput for each resolver imple-
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mentation for increasing concurrency levels. The results from this and the next graph

show that while coroutines improve the memory scalability substantially, they also almost

double the throughput for this workload. However, fibers and coroutines have dramati-

cally different memory allocation patterns which makes their performance characteristics

highly workload dependent.

The second graph of Figure 5.7 shows the average memory use in bytes for each

resolver implementation for increasing concurrency levels. Fibers have a constant per-

request memory cost of 32KB as expected, while coroutines need only allocate the bare

minimum memory associated with a given request, which in this experiment is 627

bytes. With fibers, it is not possible to precisely allocate enough memory with any

recursion/indirection. With the same amount of memory, coroutines can maintain more

than 50x requests.

Note that the top graph of Figure 5.7 shows an increase in throughput up to a con-

currency of 64 for coroutines, after which the throughput starts to decline. To investigate

this phenomenon in detail, we implemented kernel support for the Performance Monitor

Counters for the 5950x processor and gathered information on cache and TLB misses.

For fewer than 64 coroutines, the increase in throughput stems from a dramatic

reduction in the number of context switches and TLB and cache misses as shown in

the third graph of Figure 5.7. However, every additional concurrent request grows the

working set as individual, dedicated pages are created for each request and response, and

after a point, the increasing cache misses causes throughput to decline as shown in the

last graph of 5.7.

Group Microbenchmark: Using its group abstraction, Ambience is able to place

multiple logically isolated components in a single address space. To evaluate this design

choice, we placed the coroutine recursive resolver in the same group as the client. We

keep the backend resolvers in different address spaces as before. We show the throughput
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Figure 5.8: Request throughput as concurrency increases, when the resolver and the
client are deployed in the same (Within) and different (Cross) groups.

results of this experiment in Figure 5.8. Without any modification to either the resolver

or client, Ambience achieves up to an order of magnitude higher average throughput

when the services are placed in the same group and are optimized by Ambience.

Scheduling Microbenchmark – time to first instruction latency: Ambience al-

lows for extremely flexible deployment strategies, one of which is the opportunity to

place an unmodified service in either user space or directly in kernel. As context switch

costs grow, such an option becomes highly desirable for low-latency applications. In this

microbenchmark, we evaluate the benefits of this flexibility by measuring the time from

an interrupt handler that triggers a service to the execution of the first instruction of the

service.

When the service is in-kernel, Ambience can immediately schedule the service on

the kernel job queue, whereas when it is in user space, it must set up various protection

structures and enqueue the service for scheduling. Once scheduled after a context switch,

the service is finally jumped to.

We present the results (average microseconds) in Table 5.2. This Ambience optimiza-

tion reduces startup latency by 27x for the edge system and by 8x for the microcontroller.
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User Space Kernel
Edge PC 9.418 0.348
Motion MCU 58.765 7.265

Table 5.2: Time to first service instruction from a hardware interrupt on Edge and Motion
nodes when the service is deployed in user space or in kernel. Units are microseconds.

5.9 Summary

We present Ambience, an operating system for efficiently executing and deploying

microservices. It does so via a novel combination of abstractions for isolation with locality

control, asynchronous user space, statically typed interfaces, automatic networking and

access control and declarative deployment orchestration. This combination makes it

possible to optimize not only individual services but the kernels running those services

and reduce the overheads that hamper the use of general purpose operating systems on

resource constrained machines.

Ambience’s streamlined design and focus on footprint size and low resource use make

it possible to execute microservices portably across a wide range of resource types and

scales, e.g. microcontrollers, single board computers, edge systems, cloud computing

instances, and Linux systems.

Our end to end experiment demonstrates microservices’ viability to provide a unified

programming model for IoT and other heterogeneous hardware applications efficiently.

Our microbenchmarks show that Ambience’s divergence from the mainstream in user

space design and use of static information can provide significant performance gains.

Moreover, our results show that Ambience is able to scale down to very resource restricted

devices while scaling to cloud systems. Finally, Ambience is able to do so using identical

operating system abstractions across all tiers.

Ambience’s highly optimizable design and efficient implementation fully realizes our

Devices-as-services vision first presented in the introduction of this thesis, where the
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entirety of a distributed Internet of Things application, spanning vastly heterogeneous

hardware configurations and diverse networks can be built using the same set of abstrac-

tions.
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Conclusion and Future Work

In this thesis, we present Ambience, an operating system for efficiently executing and

deploying microservices. To meet the efficiency requirements necessitated by the porta-

bility requirement, Ambience diverges from mainstream operating system designs in key

areas. First, Ambience has a novel user space design tailored specifically for hosting event

driven microservices. Ambience’s user space - kernel space interfaces are strongly typed,

allowing Ambience to manage inter service communication automatically. Second, Ambi-

ence decouples isolation from deployment, allowing multiple, not-necessarily-cooperative

services to be hosted within the same address space to recover performance at deploy-

ment time. Third, the user space type information is also used to drive optimizations

of individual kernel images. Ambience automatically synthesizes optimal interservice

communication code to be embedded inside kernels. The optimal interservice commu-

nication achieves throughputs multiple orders of magnitude higher than the equivalent

Linux version of the same service.

Ambience services are secured using CAPLets, an efficient authorization framework

designed for resource constrained and rich devices. CAPLets uses an efficient crypto-

graphic construction based on Message Authentication Codes to enable execution on
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microcontrollers. Policies for CAPLets can be expressed in turing complete languages,

allowing the implementation of arbitrary, dynamic access control policies. Combined with

the decentralized nature of its design, CAPLets enables truly flexible and decentralized

authorization for the Internet of Things.

Ambience supports and provides the same programming environment and abstrac-

tions on microcontrollers and cloud servers alike, implementing the Devices as Services

model.

Work described in this thesis makes the following, non-exhaustive list of notable

contributions to their respective fields:

State of the art IoT programming frameworks and platforms [25, 98, 97, 78, 131]

treat microcontrollers as second class citizens, leaving performance, reliability and cost

improvements on the table. Devices as services, explained in Chapter 3, provides a

structured and principled method for programming IoT applications uniformly.

CSPOT, EdgePy and NanoLambda, discussed in in Chapter 3, implement this model

practically to allow the execution of C, C++ and Python programs on microcontrollers

and cloud servers alike. Previous work [78, 20, 130] cannot bridge the gap between the

edge and microcontrollers.

State of the art authorization mechanisms in IoT applications [65, 82] make use of

expensive cryptographic primitives based on web technologies. These primitives cannot

efficiently scale down to resource-poor devices. CAPLets, detailed in Chapter 4, is de-

signed and implemented with power aware primitives in mind to allow execution on even

the weakest microcontrollers.

Previous security primitives couple the arguably orthogonal concerns of security and

privacy [154]. CAPLets securely decouples the two to allow application developers to

pick the optimal approach given their specific resource and feature requirements.

Existing key exchange protocols always make use of costly public key cryptography
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identities to provide authentication of parties. CAPLets introduces a secure key exchange

protocol based on CAPLets tokens, only using cheap primitives to enable efficient appli-

cation on low end microcontrollers.

Elimination of overheads of general purpose operating systems for specific workloads

have been a research topic for as long as general purpose operating systems existed. Past

work includes exokernels [64], runtime code synthesis for specialization [151, 38] and more

recently unikernels [122, 44, 140, 113] and kernel bypass systems [34, 148, 60, 100]. The

common theme across this body of work is the elimination of kernel’s responsibilities

and moving them to user controlled code. Ambience acknowledges the problem, but

attempts to eliminate overheads by specializing the kernel for the task at hand, as the

kernel space is often the most efficient environment for implementing operating system

level abstractions.

Mainstream microservice platforms [112, 58, 131] converged on the use of immutable,

declarative manifests for configuring entire clusters. However, all these systems are built

on general purpose platforms, which cannot take advantage of the information within

these manifests. Ambience unlocks novel optimizations in services and inside the kernel

images by exploiting the information in static declarations.

Previous work [38, 94] on use of static type information in operating systems have

focused their efforts on making use of program verification using strong types to achieve

software fault isolation. Such use invariably prevents the use of arbitrary programming

languages, and often require the programmer to program in an unpopular research pro-

gramming language. Ambience makes novel use of types to drive performance optimiza-

tions inside services and the kernels that host the services. Ambience does not trust

the interfaces in any way, allowing the implementation of services in any programming

language.

In mainstream microservice systems, the unit of deployment is the process (in fact,
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it is the container), same as the unit of operating system provided isolation. This means

that once a service is decoupled from another, they have to be deployed separately with-

out code changes. This stiff deployment model creates design and efficiency challenges.

Ambience decouples isolation from deployment, where programmers can create flexible

isolation boundaries at deployment time to deploy multiple, non-cooperative services in

the same trust domain to recover performance.

Ambience can be extended in many ways. Currently, Ambience is too static. First,

while new services can be added to an Ambience node, the new services must have an

interface that the running kernel already knows about (i.e. compiled in at deployment

time). If not, then the service cannot be deployed at all without a kernel update, which

requires a reboot. To make Ambience more practical in real world uses and increase

its availability, some dynamism must be added. Second, currently, RPC style request-

response services are the only communication primitive, which can be limiting in certain

applications. Specifically, Ambience must support pub-sub style applications. While a

direct port of, for instance, MQTT to Ambience is possible, it would not fit well within

Ambience. A new design, or adaptation of an existing system that embraces Ambience’s

approach to efficiency and portability could open up new applications on Ambience.

Finally, Ambience needs to support more service topologies than static, acyclic depen-

dencies. The current design, for instance, precludes the implemenetation of common

distributed consensus algorithms as they require cyclical dependencies to work. With

these features designed and implemented, Ambience can support almost every real world

microservice and IoT application efficiently across all platforms.
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