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Hypercubes and Fibonacci cubes are classical models for interconnection networks with

interesting graph theoretic properties. We consider k-Fibonacci cubes, which we obtain

as subgraphs of Fibonacci cubes by eliminating certain edges during the fundamental
recursion phase of their construction. These graphs have the same number of vertices

as Fibonacci cubes, but their edge sets are determined by a parameter k. We obtain

properties of k-Fibonacci cubes including the number of edges, the average degree of a
vertex, the degree sequence and the number of hypercubes they contain.

Keywords: Hypercube; Fibonacci cube; Fibonacci number.

1. Introduction

An interconnection network can be represented by a graph G = (V,E) with ver-

tex set V denoting the processors and edge set E denoting the communication

links between the processors. One of the basic models for these networks is the n-

dimensional hypercube graph Qn, whose vertices are indexed by all binary strings

of length n and two vertices are adjacent if and only if their Hamming distance is 1.

Hsu [4], defined the n-dimensional Fibonacci cube family Γn as an alternative model

of computation for interconnection networks and showed that they have interesting

properties. Γn is a subgraph of Qn, where the vertices are those without two con-

secutive 1’s in their binary string representation. For convenience, Γ0 is defined as

Q0, the graph with a single vertex and no edges.
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Numerous graph theoretic properties of Fibonacci cubes have been studied. In

[8], a survey of the some of the properties including representations, recursive con-

struction, hamiltonicity, degree sequences and other enumeration results are given.

The induced d-dimensional hypercubes Qd in Γn are studied in [9, 12, 3, 16, 17, 13]

and the boundary enumerator polynomial of hypercubes in Γn is considered in [18].

The number of vertex and edge orbits of Fibonacci cubes are determined in [1].

A Fibonacci string of length n which indexes the vertices of Γn is a binary string

b1b2 . . . bn such that bi · bi+1 = 0 for 1 ≤ i ≤ n − 1. The additional requirement

b1 · bn = 0 for n ≥ 2 defines a subgraph of Γn called Lucas cube Λn, which was also

proposed as a model for interconnection networks [14].

Other classes of graphs have also been defined along the lines of Fibonacci cubes.

For instance subgraphs of Qn where k consecutive 1’s are forbidden are proposed in

[5] and Fibonacci (p, r)-cubes are presented in [2]. The generalized Fibonacci cube

Qn(f) is defined as the subgraph of Qn by removing all the vertices that contain

some forbidden string f [6]. With this formulation one has Γn = Qn(11).

In this paper, we consider a special subgraph of Γn which is obtained by elim-

inating certain edges. These are called k-Fibonacci cubes (or k-Fibonacci graphs)

and denoted by Γkn as they depend on a parameter k. The edge elimination which

defines k-Fibonacci cubes is carried out at the step analogous to where the funda-

mental recursion is used to construct Γn from the two previous cubes by link edges.

The eliminated edges in Γkn then recursively propagate according to the resulting

fundamental construction which now depend on the value of the parameter k.

We obtain properties of Γkn including the number of edges, the average degree

of a vertex, the degree sequence and the number of hypercubes they contain.

2. Preliminaries

Fibonacci numbers are defined by the recursion fn = fn−1 + fn−2 for n ≥ 2, with

f0 = 0 and f1 = 1. Any positive integer can be uniquely represented as a sum of non-

consecutive Fibonacci numbers. This representation is usually called the Zeckendorf

or canonical representation. Here we note that this representation corresponds to

the Fibonacci strings. For some positive integer i assume that 0 ≤ i ≤ fn+2 − 1.

Then i can be written as i =
∑n
j=1 bj · fn−j+2, where bj ∈ {0, 1}. This gives

that the Zeckendorf representation of i is (b1, b2, . . . , bn) and it corresponds to the

Fibonacci string b1b2 . . . bn. Note that here we assume the integer 0 has Zeckendorf

representation (0, 0, . . . , 0). As an example, for n = 4, 7 = 5 + 2 = 1 · f5 + 0 ·
f4 + 1 · f3 + 0 · f2 gives that the Zeckendorf representation of 7 is (1,0,1,0) and this

corresponds to the Fibonacci string 1010.

The distance between two vertices u and v in a connected graph G is defined as

the length of a shortest path between u and v in G. For Qn and Γn this distance

coincides with the Hamming distance (dH) which is the number of different bits

in the string representation of the vertices. Let Qn = (V (Qn), E(Qn)) be the n-
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dimensional hypercube. Then its vertex set and edge set can be written as

V (Qn) = {0, 1}n = {b1b2 . . . bn | bi ∈ {0, 1}, 1 ≤ i ≤ n}
E(Qn) = {{u, v} | u, v ∈ V (Qn) and dH(u, v) = 1}.

Of course |V (Qn)| = 2n and |E(Qn)| = n2n−1. Similarly, we can write the vertex

set and the edge set of Γn = (V (Γn), E(Γn)) as

V (Γn) = {b1b2 . . . bn | bi ∈ {0, 1}, 1 ≤ i ≤ n with bi · bi+1 = 0}
E(Γn) = {{u, v} | u, v ∈ V (Γn) and dH(u, v) = 1}.

Note that the number of vertices of the Fibonacci cube Γn is fn+2.

The fundamental decomposition [8] of Γn can be described as follows: Γn can

be decomposed into the subgraphs induced by the vertices that start with 0 and 10

respectively. The vertices that start with 0 constitute a graph isomorphic to Γn−1
and the vertices that start with 10 constitute a graph isomorphic to Γn−2. This

decomposition can be written symbolically as

Γn = 0Γn−1 + 10Γn−2 .

In this representation the vertices are labeled with the Fibonacci strings. In Figure

1 the first six Fibonacci cubes are presented. The labeling of the vertices follows the

fundamental recursion. For n ≥ 2, Γn is built from Γn−1 and Γn−2 by identifying

Γn−2 with the Γn−2 in Γn−1 by what we can call link edges. The labels of Γn−1 stay

unchanged in Γn. The labels of the vertices in Γn−2 (which are circled in Figure 1)

are shifted up by fn+1 in Γn.

Fig. 1. Fibonacci cubes Γ0,Γ1, . . . ,Γ5.

Throughout the paper we use the Fibonacci string representation and integer

representation of the vertices interchangeably. For example, the first 8 vertices of Γ5
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are the ones with labels 0, 1, . . . , 7 whose string representations are 00000, 00001,

00010, 00100, 00101, 01000, 01001, 01010.

In terms of the adjacency matrix An of Γn, the link edges are the edges corre-

sponding to the identity matrices that appear in the matrix decomposition of An
as shown on the left in Figure 3.

3. k-Fibonacci cubes

In this section we introduce k-Fibonacci cubes, a special subgraph of Fibonacci

cubes. We will indicate the dependence on k by a superscript and denote these

graphs by Γkn.

For k ≥ 1, Γkn is defined for n ≥ 0 by removing certain edges of Γn. We let

Γk0 = Γ0 and Γk1 = Γ1. We define Γkn for n ≥ 2 in terms of Γkn−1 and Γkn−2, in a

manner that is similar to the fundamental decomposition of Γn. The difference is

as follows:

Instead of the fn link edges that exist between 00Γn−2 and its

copy 10Γn−2 in Γn−1, in our construction of Γkn from 00Γkn−2 and

its copy 10Γkn−2 in Γkn, we do not include the link edges past the first

k pairs of vertices in Γkn−2 in the binary ordering of the vertices

from the smallest to the largest.

As long as fn ≤ k, the construction for the k-Fibonacci cubes is identical to the

construction of the Fibonacci cubes with the same initial graphs, and therefore

for fn ≤ k; Γkn = Γn. Let n0 = n0(k) be the smallest integer for which fn0
> k.

For a given k, n0(k) is the smallest integer n for which Γkn 6= Γn. First few values

are n0(1) = 3, n0(2) = 4, n0(3) = 5, n0(4) = 5. Using the Binet formula for the

Fibonacci numbers, we calculate that n0 = n0(k) is given explicitly by

n0 = 1 +

⌊
logφ(

√
5k +

√
5− 1

2
)

⌋
(1)

where φ = 1+
√
5

2 is the golden ratio. This sequence starts as

3, 4, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, . . .

in which the lengths of the runs are the Fibonacci numbers.

We remark that an equivalent definition of the graphs Γkn could be made by

starting the construction from the two Fibonacci cubes Γn0−1 and Γn0
where n0 is

the smallest integer for which fn0
> k, and then constructing only k link edges for

the construction of the Γkn from the two previous ones after that.

In Figure 2 we show the construction of the k-Fibonacci cubes Γk4 from Γk3 and

Γk2 for k = 1, 2, 3.

Similar to the adjacency matrix An of Γn we can write the adjacency matrix

Akn of Γkn. In Γkn, we have k link edges instead of the fn link edges of Γn. Hence in
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Fig. 2. The construction of Γk
4 from Γk

3 and Γk
2 for k = 1, 2, 3.

Akn the link edges are the edges corresponding to the k × k identity matrices that

appear in the matrix decomposition of Akn shown on the right in Figure 3.

Fig. 3. Left: the structure of the adjacency matrix An of the Fibonacci cube Γn in terms of An−1

and An−2 in accordance with the fundamental decomposition. Here I is the fn × fn identity
matrix, and the remaining elements are zeros. Right: the structure of the adjacency matrix Ak

n

of Γk
n in terms of Ak

n−1 and Ak
n−2 where Ik is now the k × k identity matrix, and the remaining

elements are zeros.

Examples for small k

For k = 1, the graphs Γ1
n are all trees. If we think of them as rooted at the all

zero vertex, then the next tree is obtained by making the previous tree a principal
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subtree of the current one. Note that this is different from the usual definition of

Fibonacci trees, where traditionally the two previous trees are made left and right

principal subtrees of a new root vertex.

The number of vertices in Γ1
n is |Γn| = fn+2. The height hn of Γ1

n satisfies h0 = 0,

h1 = 1 and hn = min{hn−1, 1+hn−2}. Therefore the height is given by hn = dn/2e.
Figure 4 shows the first six k-Fibonacci cubes (trees) for k = 1. In the Appendix

we redraw these trees in another form (Figure 7). Note that our k-Fibonacci cubes

Fig. 4. The first six k-Fibonacci cubes for k = 1.

for k = 1 are the “Fibonacci Trees” as given in Hsu’s original paper on Fibonacci

cubes [4].

For n ≥ 3, Γ2
n consists of fn − 1 squares (Q2’s, or 4-cycles) glued by their edges

and fn−1 pendant vertices in the manner shown in Figure 8 in the Appendix.

For n ≥ 4, Γ3
n is constructed from fn+1 − 2 squares and for n ≥ 4, Γ4

n is

constructed from 2fn − 3 squares in the manner shown in Figure 9 and Figure 10

in the Appendix, respectively.

We consider the number of induced hypercubes in Γkn in Section 4.4 in more

detail.

To demonstrate the structure of Γkn for other values of n and k, the graphs of

Γ4
12 and Γ13

12 are depicted in Figure 11 in the Appendix.

4. Basic properties of k-Fibonacci cubes Γk
n

In this section, we present the basic properties of k-Fibonacci cubes. The results

include the number of edges, the average degree of a vertex, degree sequence and

the number of hypercubes contained.

By definition of Γkn we know that |V (Γkn)| = |V (Γn)| = fn+2.
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4.1. The number of edges of k-Fibonacci cubes

Let E(n) denote the number of edges of Γn and Ek(n) denote the number of edges

of Γkn. E(n) is given by (see, [4] )

E(n) =
1

5
(2(n+ 1)fn + nfn+1) . (2)

Clearly, Ek(n) = E(n) for n < n0 and Ek(n) satisfies the recursion

Ek(n) = Ek(n− 1) + Ek(n− 2) + min{k, fn} . (3)

For n ≥ n0 the recursion in (3) reduces to

Ek(n) = Ek(n− 1) + Ek(n− 2) + k. (4)

Then by induction on n and using the recursion (4), we directly obtain the following

result.

Proposition 1. The number of edges of Γkn is given by

Ek(n) = (k + E(n0 − 2)) ft+3 + (E(n0 − 1)− E(n0 − 2)) ft+2 − k,

where t = n− n0.

By using the classical identity Lt = ft−1 + ft+1, along with Proposition 1 and (2)

we obtain the following result.

Corollary 2. For n ≥ n0, Ek(n) is given in closed form by

Ek(n) =
1

2
(Lt + 3ft)E(n0 − 1) +

1

2
(Lt + ft)E(n0 − 2) + (Lt + 2ft − 1)k

=
1

5
(n0fn0−1Lt+1 + (n0 − 1)fn0

Lt+2) + (ft+3 − 1)k

where t = n− n0.

4.2. Average degree of a vertex in Γk
n

In [10] it is calculated that

lim
n→∞

2E(n)

nfn+2
= lim
n→∞

2
5 (2(n+ 1)fn + nfn+1)

nfn+2
= 1− 1√

5
.

It follows that the average degree of a vertex in Γn is asymptotically given by(
1− 1√

5

)
n ≈ 0.553n. (5)

Now we consider the analogous problem for the k-Fibonacci cubes Γkn for a fixed k

and prove that the average degree of a vertex in Γkn is independent of n.
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Proposition 3. For a fixed k the average degree of a vertex in Γkn is asymptotically

given by

1

5

(
3 +
√

5
)

+

(
1− 1√

5

)
logφ

(√
5k +

√
5− 1

2

)
≈ 1.047 + 0.553 logφ(

√
5k +

√
5− 1

2
),

where φ = 1+
√
5

2 is the golden ratio.

Proof. By the properties of the Fibonacci numbers we have

lim
n→∞

fn−n0+3

fn+2
= φ1−n0 , lim

n→∞

fn−n0+2

fn+2
= φ−n0 . (6)

For k fixed, using Proposition 1 and (6), the average degree of a vertex in Γkn is

given by

lim
n→∞

2Ek(n)

fn+2
= 2φ−n0 (k + E(n0 − 2))φ+ E(n0 − 1)− E(n0 − 2))

= 2φ−n0

(
φk +

n0
10

(5−
√

5)fn0−1 +
n0 − 1√

5
fn0

)
(7)

where we used the expression for E(n) in (2) for n = n0 − 1 and n = n0 − 2. To

obtain the rate of growth of the exact formula for the asymptotic average degree

given in (7), we further use the approximations

fn0 ≈
φn0

√
5
, n0 ≈ 1 + logφ(

√
5k +

√
5− 1

2
) .

Using these in the formula (7) gives the approximation for the average degree of a

vertex in Γkn as desired.

In Proposition 3 we show that the average degree of a vertex in Γkn is independent

of n, to illustrate this we compute asymptotic values of the average degree of a vertex

in Γkn for some values of k in Figure 5, where 1 ≤ k ≤ 300.

It is shown in [4] that Γn contains about 4
5 the number of edges edges of the

hypercube for the same number of vertices. The analogous ratio goes to zero with

increasing n for Γkn since the average degree is independent of n. We can calculate

the rate of convergence by using the asymptotic expressions that appear in the proof

of Proposition 3. For fixed k, the number of edges of Γkn is about

1
5

(
3 +
√

5
)

+ 1
5

(
5−
√

5
)

logφ(
√

5k +
√

5− 1
2 )

log2 fn+2

≈ 1

n

(
1.508 + 0.796 logφ(

√
5k +

√
5− 1

2
)

)
times the number of edges of Γn.
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Fig. 5. Computational asymptotic values of the average degree of a vertex in Γk
n as a function of

k, 1 ≤ k ≤ 300.

4.3. Degree polynomials of Γk
n

We start with the following known result for Γn that will be useful in our calcula-

tions. For the degree sequence of Γkn we need a refinement of this theorem.

Theorem 4 ([11]) For all n ≥ m ≥ 0 the number of vertices of Γn having degree

m is given by

fn,m =

s∑
i=d(n−m)/2e

(
n− 2i

m− i

)(
i+ 1

n−m− i+ 1

)
,

where s = min(m,n−m).

We first define the bivariate degree enumerator polynomial Dk
n(x, y) for Γkn in

which the degrees of the k vertices with labels 0, 1, . . . , k − 1 are kept track of by

the variable y, while the others are kept track of by the variable x.

More precisely

Dk
n(x, y) =

k−1∑
i=0

ydi +

fn+2−1∑
i=k

xdi , (8)

where di is the degree of the vertex labeled i. This polynomial can be seen as a

refinement of the boundary enumerator polynomial Dn,0 given in [18] .

As an example consider Γ2
4 = Γ2

3 + Γ2
2 as shown in Figure 6 in which the first

k = 2 vertices are circled. From (8), we have D2
2(x, y) = y2 + y + x and D2

3(x, y) =

y3 + y2 + 2x2 + x. Using D2
2(x, y) and D2

3(x, y) we can now develop D2
4(x, y) as

follows:

By the definition of Γ2
4 there are k = 2 link edges between Γ2

3 and Γ2
2. The first

one is the edge between the vertices labeled 0 ∈ Γ2
3 and 0 ∈ Γ2

2, whereas the second

one is the edge between the vertices labeled 1 ∈ Γ2
3 and 1 ∈ Γ2

2. Therefore, only the

degrees of these first 2 vertices in Γ2
3 and first 2 vertices in Γ2

2 increase by 1 in Γ2
4.
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Fig. 6. Construction of Γ2
4 from Γ2

2 and Γ2
3.

The degrees of the other vertices remain the same. The vertices labeled 0, 1 ∈ Γ2
4

are the vertices 0, 1 ∈ Γ2
3 whose degree information in D2

4(x, y) should be kept track

of by the variable y. Therefore we can write,

D2
4(x, y) = yD2

3(0, y) +D2
3(x, 0) + xD2

2(0, x) +D2
2(x, 0)

= y4 + y3 + x3 + 3x2 + 2x,

and this can also be seen from Figure 6 using (8).

By generalizing the above idea for fixed k, we have the following result on degree

enumerator polynomial Dk
n(x, y) for Γkn.

Theorem 5. Assume that Dk
n0−1(x, y) = pn0−1(y) + qn0−1(x) and Dk

n0−2(x, y) =

pn0−2(y) + qn0−2(x). Then the degree enumerator polynomial Dk
n(x, y) for Γkn sat-

isfies the recursion

Dk
n(x, y) = yt+1pn0−1(y) + ft+2qn0−1(x) + ft+1qn0−2(x)

+ft+1xpn0−2(x) + xpn0−1(x)

t∑
i=0

ft−ix
i

for n ≥ n0 with t = n− n0.

Proof. We know that Γkn = 0Γkn−1 + 10Γkn−2 and there are k link edges between

Γkn−1 and Γkn−2 for n ≥ n0. This means that the degrees of the first k vertices of

Γkn−1 and Γkn−2 increase by 1 in Γkn. But the degrees of the other vertices remain

the same. So the first k vertices of Γkn are the first k vertices of Γkn−1 whose degree

information in Dk
n(x, y) should be kept track of by the variable y. Therefore, for a

fixed k, Dk
n(x, y) satisfies the recursion

Dk
n(x, y) = yDk

n−1(0, y) +Dk
n−1(x, 0) + xDk

n−2(0, x) +Dk
n−2(x, 0) (9)

for n ≥ n0. Now, writing

Dk
n(x, y) = pn(y) + qn(x),

and using (9) we see that the polynomials pn(y) and qn(x) must individually satisfy

the recursions

pn(y) = ypn−1(y) (10)

qn(x) = qn−1(x) + qn−2(x) + xpn−2(x) (11)



November 29, 2019 11:13 WSPC/INSTRUCTION FILE
k-Fibonacci˙Cubes˙Egecioglu˙Saygi˙Nov29˙2019

k-Fibonacci cubes: A special family of subgraphs of Fibonacci cubes 11

for n ≥ n0 with initial values

pn0−1(y), pn0−2(y) and qn0−1(x), qn0−2(x).

From (10) we immediately obtain the formula for pn(y) for n ≥ n0 as

pn(y) = yn−n0+1pn0−1(y).

To solve the recursion for qn(x) from (11), we form the generating function

Q(z) =
∑
n≥n0

qn(x)zn .

Note first that∑
n≥n0

xpn−2(x)zn = xpn0−2(x)zn0 + x
∑
n>n0

xn−n0−1pn0−1(x)zn

= xpn0−2(x)zn0 +
xpn0−1(x)zn0+1

1− xz
.

Multiplying (11) with zn and summing both sides for n ≥ n0, Q(z) is found to be

Q(z) =
zn0

1− z − z2

(
(1 + z)qn0−1(x) + qn0−2(x) + xpn0−2(x) +

xpn0−1(x)z

1− xz

)
Using the expansions

1

1− z − z2
=
∑
n≥0

fn+1z
n,

z

1− z − z2
=
∑
n≥0

fnz
n

and

z

(1− z − z2)(1− xz)
=
∑
n≥0

(
n∑
i=0

fn−ix
i

)
zn

and setting t = n− n0, we finally obtain

qn(x) = ft+2qn0−1(x) + ft+1qn0−2(x) + ft+1xpn0−2(x) + xpn0−1(x)

t∑
i=0

ft−ix
i.

Using Theorem 5 with the initial conditions from Theorem 4 we obtain the

following special cases.

Corollary 6. For k ∈ {1, 2, 3} the degree enumerator polynomials Dk
n(x, y) for Γkn

are given by

D1
n(x, y) = yn + fn+1x+

n−1∑
i=2

fn−ix
i

D2
n(x, y) = yn + yn−1 + fn−1x+

n−1∑
i=2

fn−i+1x
i

D3
n(x, y) = yn + yn−1 + yn−2 + f1x

n−1 + Ln−1x
2 + 2

n−2∑
i=3

fn−ix
i

where Ln is the n-th Lucas number.
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4.4. Number of induced hypercubes in Γk
n

In this section we count the number of d-dimensional hypercubes induced in Γkn. We

know that for d = 0 and d = 1 these numbers are equal to the number of vertices

and number of edges in Γkn respectively.

We first consider the the number of squares (4-cycles) in Γkn. This is the case

where d = 2.

Definition 7. Let Z(i) denote the number of 1’s in the Zeckendorf representation

of i for i ≥ 0 and define for m ≥ 0, the partial sums

P (m) =

m∑
i=0

Z(i) . (12)

These sequences start as

0, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 3, 1, 2, 2, 2, 3, 2, 3, 3, 1, . . .

for Z(i) and

0, 1, 2, 3, 5, 6, 8, 10, 11, 13, 15, 17, 20, 21, 23, 25, 27, 30, 32, 35, 38, 39, . . .

for P (m).

Let S(n) denote the number of squares of Γn and Sk(n) denote the number of

squares of Γkn for k ≥ 2. From [7] we know that

S(n) =
1

50
((5n+ 1)(n− 2)fn + 6nfn−2) .

For n < n0 we have Sk(n) = S(n). By the fundamental decomposition of Γkn, the

number of squares in Γkn is the sum of three quantities: the number of squares in

Γkn−1, the number of squares in Γkn−2 and the number of squares that are created

by the addition of k link edges between Γkn−1 and Γkn−2 involving the vertices with

labels 0, 1, . . . , k − 1.

The number of squares of the last type above is equal to the number of edges in

the subgraph of Γkn induced by the first k vertices 0, 1, . . . , k − 1.

Lemma 8. The number of edges in the subgraph of Γkn induced by the first k vertices

0, 1, . . . , k − 1 is P (k − 1).

Proof. For a vertex i in Γkn with i ∈ {0, 1, . . . , k−1}, switching a 1 in the Zeckendorf

representation to a 0 gives an adjacent vertex to i in {0, 1, . . . , k− 1}. So i has Z(i)

neighbors in the subgraph induced by the vertices 0 through k − 1. Summing the

contributions over i gives the lemma.

It follows that Sk(n) satisfies the recursion

Sk(n) = Sk(n− 1) + Sk(n− 2) + P (k − 1) . (13)
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Using (13) and induction on n we directly obtain that for n ≥ n0
Sk(n) = (P (k − 1) + S(n0 − 2)) ft+3 + (S(n0 − 1)− S(n0 − 2)) ft+2 − P (k − 1),

(14)

where t = n− n0.

Numerical values of the number of squares for small values of k and n can

be found in Table 1, where the entries given in boldface are the number of

squares in the Fibonacci cube Γn itself. Note that this sequence for n ≥ 0 is

0, 0, 0, 1, 3, 9, 22, 51, 111, 233, 474, 942, . . . and these numbers are the triple convo-

lution of the Fibonacci numbers. Their generating function is x3

(1−x−x2)3 and the

closed formula is given explicitly in [7] as 1
50 ((5n+ 1)(n− 2)fn + 6nfn−2).

k\n 3 4 5 6 7 8 9 10 Closed form n0(k)

2 1 2 4 7 12 20 33 54 fn−1 + fn−2 − 1 4

3 1 3 6 11 19 32 53 87 3fn−2 + 4fn−3 − 2 5

4 1 3 7 13 23 39 65 107 4fn−2 + 4fn−3 − 3 5

5 1 3 9 17 31 53 89 147 8fn−3 + 12fn−4 − 5 6

6 1 3 9 18 33 57 96 159 9fn−3 + 12fn−4 − 6 6

7 1 3 9 20 37 65 110 183 11fn−3 + 12fn−4 − 8 6

8 1 3 9 22 41 73 124 207 19fn−4 + 31fn−5 − 10 7

9 1 3 9 22 42 75 128 214 20fn−4 + 31fn−5 − 11 7

10 1 3 9 22 44 79 136 228 22fn−4 + 31fn−5 − 13 7

11 1 3 9 22 46 83 144 242 24fn−4 + 31fn−5 − 15 7

12 1 3 9 22 48 87 152 256 26fn−4 + 31fn−5 − 17 7

13 1 3 9 22 51 93 164 277 42fn−5 + 73fn−6 − 20 8

14 1 3 9 22 51 94 166 281 43fn−5 + 73fn−6 − 21 8

Table 1. Counting squares in Γk
n.

LetQkd(n) denote the number of d-dimensional hypercubes in Γkn. Thus using this

notation, Qk1(n) = Ek(n) and Qk2(n) = Sk(n) as they appear in (3) and (13), respec-

tively. Furthermore, let Pd(k−1, n) denote the number of d-dimensional hypercubes

contained in the subgraph of Γkn induced by the vertices with labels 0, 1, . . . , k − 1.

Note that with this notation, P1(k−1, n) = P (k−1) as it appears in recursion (14)

and P0(k − 1, n) = k, as it appears as the nonhomogeneous part of recursion (4).

Proposition 9. Let Qkd(n) be the number of d-dimensional hypercubes in Γkn, then

Qkd(n) satisfies the recurrence relation

Qkd(n) = Qkd(n− 1) +Qkd(n− 2) + Pd−1(k − 1, n− 1)

where

Pd−1(k − 1, n− 1) =

k−1∑
i=0

(
Z(i)

d− 1

)
.
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Proof. There are three types of d-dimensional hypercubes that contribute to

Qkd(n): those coming from Γkn−1, those coming from Γkn−2, and the ones formed

by the k link vertices used in the construction of Γkn. The d-dimensional hypercubes

of the last type are counted by the number of (d− 1)-dimensional hypercubes con-

tained in the subgraph of Γkn−1 induced by the vertices with labels 0, 1, . . . , k−1. For

any of these vertices i we need to select d−1 ones among the Z(i) ones in i. Then by

varying these d−1 ones we obtain 2d−1 vertices with labels in {0, 1, . . . , k−1} each

giving a (d− 1)-dimensional hypercube in Γkn−1. Therefore, a simple generalization

of Lemma 8 gives the number of such hypercubes as

Pd−1(k − 1, n− 1) =

k−1∑
i=0

(
Z(i)

d− 1

)
,

which completes the proof.

Let Qd(n) denote the number of d-dimensional hypercubes in Γn. This number and

its q-analogue are determined in [9] and [16] , respectively. Using these result we

have the following.

Corollary 10. Let Qd(n) denote the number of d-dimensional hypercubes in Γn.

Then Qd(n) is given explicitly by

Qd(n) =

bn+1
2 c∑
i=k

(
n− i+ 1

i

)(
i

k

)
.

In particular, we have the formulas for the first few dimensions d as follows:

Q1(n) = E(n) =
1

5
(2(n+ 1)fn + nfn+1) ,

Q2(n) = S(n) =
1

50
((5n+ 1)(n− 2)fn + 6nfn−2) ,

Q3(n) =
n(n− 2)

150
(4(n− 4)fn−3 + 3(n− 3)fn−4) .

Using Corollary 10 and by solving the recurrence relation satisfied by Qkd(n) given

in Proposition 9 by induction, similar to the case of Proposition 1 and (14), we

obtain

Theorem 11. Let Qkd(n) denote the number of d-dimensional hypercubes in Γkn.

Then

Qkd(n) = (Pd−1(k − 1) +Qd(n0 − 2)) ft+3

+ (Qd(n0 − 1)−Qd(n0 − 2)) ft+2 − Pd−1(k − 1),

for n ≥ n0 with t = n − n0, where Qd(n) denotes the number of d-dimensional

hypercubes in Γn.
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5. Remarks

We end this work with three remarks. The first one is on a number of additional

graph theoretic properties of Γkn. After that we present an observation on the com-

putation of the partial sum P (k) defined in (12) for a given k. Finally we consider

a class of special subgraphs of Fibonacci cubes which are inspired by the Γkn.

Remark 12. The diameter and the radius of Γkn are directly related to the same

properties of the Fibonacci cubes themselves. We start by noting the following

nested structure of k-Fibonacci cubes.

For non-negative integers n and k we know that Γkn can be obtained directly

from Γn. It is either equal to Γn, or for n ≥ n0, it is obtained from Γn by removing

certain edges. Furthermore, for n ≥ n0, Γkn can also be obtained from Γk+1
n by

removing edges. Therefore

Γ1
n ⊆ · · · ⊆ Γkn ⊆ · · · ⊆ Γn. (15)

We know that Γ1
n is a tree with root 0n (the vertex with integer label 0). It follows

that for u, v ∈ V (Γ1
n)

d(u, v) ≤ d(u, 0n) + d(v, 0n) = wH(u) + wH(v), (16)

where wH denotes the Hamming weight. We have diam(Γn) = n as given in [4].

For n < n0 diam(Γkn) = diam(Γn) = n. For n ≥ n0, we know that Γkn is a subgraph

of Γn, the vertices of Γkn and Γn are the same and Γkn has fewer edges. Therefore,

diam(Γkn) ≥ diam(Γn) = n. On the other hand, using (15) and (16) for any u, v ∈
V (Γkn) we have

d(u, v) ≤ d(u, 0n) + d(v, 0n) = wH(u) + wH(v) ≤ n.

Therefore, we have diam(Γkn) = n.

By a similar argument one can show that the radius of Γkn is equal to the radius

of Γn, which is obtained in [15] as dn2 e.

Remark 13. To our knowledge there is no direct formula for the partial sum P (k)

defined in (12) for a given k. The trivial recurrence

P (k) = P (k − 1) + Z(k)

seems to require the computation of the Zeckendorf representation of every number

up to k. Interestingly, the structure of the edges in k-Fibonacci cubes allows for a

way to compute P (k).

Assume that k = fm. Then we know that the vertices of Γm−2 are labeled with

the Zeckendorf representation of the integers 0, 1, . . . , k − 1. From Lemma 8 we

observe that P (k − 1) equals to the number of edges of the Γm−2, that is,

P (k − 1) = P (fm − 1) = |E(Γm−2)| = 1

5
(2(m− 1)fm−2 + (m− 2)fm−1) .

Now we can easily generalize this idea. Assume that fm − 1 ≤ k < fm+1 − 1.

Then write k = fm + r for some non-negative integer r. This means that P (k − 1)
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is equal to the number of edges of the subgraph of Γm−1 induced by the first

k vertices labeled by 0, 1, . . . , k − 1 from Lemma 8. Using the decomposition of

Γm−1 = 0Γm−2 + 10Γm−3, this number is equal to the sum of the number of edges

in the subgraph of Γm−1 induced by the first fm vertices labeled by 0, 1, . . . , fm− 1

(which is the Γm−2), the number of edges in the subgraph of Γm−1 induced by the

vertices labeled by fm, fm + 1, . . . , k − 1 (which is equal to the number of edges

in the subgraph of Γm−3 induced by the vertices labeled by 0, 1, . . . , r − 1) and r

(which comes from the link edges between Γm−2 and Γm−3). Therefore, we have

the following result:

Assume that k − 1 =
∑r
s=1 fis is the Zeckendorf representation of k − 1, where fi

is the i-th Fibonacci number. Then we have

P (k − 1) =

r∑
s=1

P (fis − 1) +

r∑
j=1

(
1 +

r−j∑
s=1

fis

)

=

r∑
s=1

|E(Γis−2)|+
r−1∑
j=1

j · fis−j
+ r

=

r∑
s=1

1

5
(2(is − 1)fis−2 + (is − 2)fis−1) +

r−1∑
j=1

j · fis−j
+ r .

Using this expansion, one can easily compute P (k − 1) using the Zeckendorf

representation of k − 1.

Example:

Let k − 1 = 15. The Zeckendorf representation of 15 is (100010). Next we need

to find the number of edges of the subgraph of Γ6 induced by the first k vertices

labeled 0, 1, . . . , 15. By the fundamental decomposition Γ6 = 0Γ5 + 10Γ4. Now

we can partition the vertex set of this graph as {0, 1, . . . , 12} and {13, 14, 15}. The

subgraph with vertices {0, 1, . . . , 12} is isomorphic to the Γ5 ⊆ Γ6 and the subgraph

with vertices {13, 14, 15} is isomorphic to the Γ2 ⊆ Γ4 ⊆ Γ6. Note that there are 3

link edges between these subgraphs. Therefore, the total number of edges that we

are looking for is equal to

|E(Γ5)|+ |E(Γ2)|+ 3 = 20 + 2 + 3 = 25,

which directly gives that P (15) = 25.

Remark 14. In the construction of Γn there are fn link edges between Γn−1 and

Γn−2. In this paper, we considered k-Fibonacci cubes Γkn, in which the number of

link edges between Γkn−1 and Γkn−2 is a fixed number k for all n ≥ n0(k), where

n0(k) is as given in (1).

A simple variant of these graphs can also be defined by taking the number of

link edges between Γn−1 and Γn−2 as a variable instead of a fixed number k. Given

0 ≤ λ ≤ 1, we loosely define here a class of graphs Γλn for n ≥ 0, whose construction

closely resembles that of the Fibonacci cubes themselves. We start with Γλ0 = Γ0,
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Γλ1 = Γ1. For n ≥ 2, Γλn is defined in terms of Γλn−1 and Γλn−2, similar to the

fundamental decomposition of Γn but by taking only the first λfn link edges that

exist between 00Γλn−2 and its copy 10Γλn−2 in Γλn−1, instead of all fn of them like

we do for Γn or first k of them like we do for Γkn.

We have an explicit expression for the number of edges E(n) of Γn as given in

(2). Let Eλ(n) denote the number of edges of Γλn. Then Eλ(n) satisfies the recursion

Eλ(n) = Eλ(n− 1) + Eλ(n− 2) + λfn

for n ≥ 2 and therefore

Eλ(n) = (1− λ)fn + λE(n) .

Asymptotically, the average degree of a vertex in Γn is the expression in (5). By

taking limits and using (5), the average degree of a vertex in Γλn is found to be(
1− 1√

5

)
λn,

which reduces to the average degree in Γn for λ = 1, as expected.
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Appendix A. Figures of some k-Fibonacci cubes

Fig. 7. The first six trees in Figure 4 redrawn.
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Fig. 8. The first seven k-Fibonacci cubes for k = 2.
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Fig. 9. The first seven k-Fibonacci cubes for k = 3.
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Fig. 10. The first seven k-Fibonacci cubes for k = 4.
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Fig. 11. The structure of Γ4
12 (top) and Γ13

12 (bottom).


