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Abstract

Fibonacci cubes and Lucas cubes have been studied as alternatives for the classical

hypercube topology for interconnection networks. These families of graphs have in-

teresting graph theoretic and enumerative properties. Among the many generalization

of Fibonacci cubes are k-Fibonacci cubes, which have the same number of vertices as

Fibonacci cubes, but the edge sets determined by a parameter k. In this work, we

consider k-Lucas cubes, which are obtained as subgraphs of k-Fibonacci cubes in the

same way that Lucas cubes are obtained from Fibonacci cubes. We obtain a useful de-

composition property of k-Lucas cubes which allows for the calculation of basic graph

theoretic properties of this class, such as the number of edges, the average degree of a

vertex, the number of hypercubes they contain, the diameter and the radius.
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1 Introduction

An n-dimensional hypercube Qn is the graph whose vertices are the all binary strings of

length n, adjacent when their string representations differ in exactly one position. Hyper-

cubes are one of the basic models for interconnection networks. In [3] and [12] Fibonacci

cubes Γn and Lucas cubes Λn were defined as alternative topologies for the interconnection

networks. Both of these networks are special subgraphs of Qn with interesting properties.
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A binary string b1b2 . . . bn such that bi · bi+1 = 0 for 1 ≤ i ≤ n − 1 is called a Fibonacci

string of length n. For n ≥ 1 the Fibonacci cube Γn is the subgraph of Qn induced by vertices

indexed by the Fibonacci strings of length n. By convention Γ0 = Q0. By removing all the

vertices that start and end with 1 from the vertex set of Γn, Lucas cubes Λn are obtained.

This additional requirement corresponds to the Fibonacci strings b1b2 . . . bn also satisfying

b1 · bn = 0 for n ≥ 2.

Graph theoretic and enumerative properties of Fibonacci cubes and Lucas cubes have

been extensively studied in the literature. A survey of the some of the properties of Γn is

presented in [7]. Basic graph theoretic properties of Λn appear in [12]. The average degree

of a vertex in Γn and Λn are computed in [9] and the induced d-dimensional hypercubes Qd

in Γn and Λn are studied in [8, 2, 13, 14, 10, 15].

There are also other variants of interest inspired by these families of graphs. In [4] and

[5], the generalized Fibonacci cube Qn(f) and the generalized Lucas cube Qd(
←−
f ) are defined

by removing all the vertices that contain some forbidden string f , and by removing all ver-

tices that have a circular rearrangement containing f as a substring, respectively. With this

formulation one has Γn = Qn(11) and Λn = Qd(
←−
f ). The matchable Lucas cubes and their

basic properties are studied in [16]. A new family of graphs akin to the Fibonacci cubes

called Pell graphs are introduced in [11]. The k-Fibonacci cubes Γkn which are obtained by

eliminating certain edges from Γn are considered in [1] (see, Section 2 also).

In this work, we consider the subgraph of Γkn which is obtained by removing all the

vertices that start and end with 1. The idea is analogous to the construction of Λn from Γn

and Qd(
←−
f ) from Qd(f). The graphs Λk

n we obtain from Γkn (called k-Lucas cubes) depend on

a parameter k just like k-Fibonacci cubes. We obtain graph theoretic properties of k-Lucas

cubes such as the number of edges, the average degree of a vertex, the number of induced

hypercubes, the diameter and the radius.

2 Preliminaries

Fibonacci numbers and Lucas numbers are defined by the same recursion fn = fn−1 + fn−2

and Ln = Ln−1 + Ln−2 for n ≥ 2, with f0 = 0, f1 = 1; L0 = 2 and L1 = 1. Using the

Zeckendorf or canonical representation, it is known that any positive integer can be uniquely

represented as a sum of non-consecutive Fibonacci numbers. For a given positive integer i

with 0 < i ≤ fn+2− 1 writing i =
∑n

j=1 bj · fn−j+2, where bj ∈ {0, 1} and no two consecutive

bj’s are 1. (b1, b2, . . . , bn) gives the Zeckendorf representation of i corresponding to the

Fibonacci string b1b2 . . . bn. We assume that 0 has Zeckendorf representation (0, 0, . . . , 0).
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The distance between two vertices u and v in a connected graph G is defined as the

length of a shortest path between u and v in G. For Qn, Γn and Λn this distance coincides

with the Hamming distance dH , which is the number of different bits in the binary string

representation of the vertices. Let G = (V (G), E(G)) where V (G) and E(G) denote the

vertex set and edge set of G, respectively. Then the vertex set and the edge set of Γn and

Λn can be written as

V (Γn) = {b1b2 . . . bn | bi ∈ {0, 1} with bi · bi+1 = 0, 1 ≤ i < n}
E(Γn) = {{u, v} | u, v ∈ V (Γn) and dH(u, v) = 1}

and

V (Λn) = {b1b2 . . . bn | bi ∈ {0, 1} with bi · bi+1 = 0, 1 ≤ i < n and b1 · bn = 0}
E(Λn) = {{u, v} | u, v ∈ V (Λn) and dH(u, v) = 1}.

Note that the number of vertices of Γn is fn+2 and the number of vertices of Λn is Ln.

Γn can be decomposed into the subgraphs induced by the vertices that start with 0 and

10 respectively. The vertices that start with 0 constitute a graph isomorphic to Γn−1 and

the vertices that start with 10 constitute a graph isomorphic to Γn−2. This can be written

symbolically as

Γn = 0Γn−1 + 10Γn−2 (1)

and usually referred to as the fundamental decomposition [7] of Γn. In (1), there is a matching

between 10Γn−2 and its copy 00Γn−2 ⊂ 0Γn−1. We call the fn edges of the matching between

10Γn−2 and 00Γn−2 link edges. Since reversal b1b2 . . . bn → bn . . . b2b1 is an automorphism of

Γn, the decomposition can also be written in the form

Γn = Γn−10 + Γn−201 .

Using these decompositions of Γn we can write

Γn = 0Γn−1 + 10Γn−2 = 0Γn−1 +
(
10Γn−30 + 10Γn−401

)
,

and consequently

Λn = 0Γn−1 + 10Γn−30 . (2)

Note that in the decomposition (2) of Λn in terms of Fibonacci cubes, there are fn−1 link

edges between 10Γn−30 and its copy 00Γn−30 ⊂ 0Γn−1.
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2.1 k-Fibonacci cubes

In this section we recall some of the basic properties of k-Fibonacci cubes introduced in [1].

Let Γk0 = Γ0 and Γk1 = Γ1. For n ≥ 2, Γkn is defined in terms of Γkn−1 and Γkn−2, in a

manner that is similar to the fundamental decomposition of Γn. The difference is as follows:

Instead of the fn link edges that exist between 10Γn−2 and its copy 00Γn−2 in Γn−1, in the

construction of Γkn from 10Γkn−2 and its copy 00Γkn−2 in 0Γkn−1, there are only k link edges

between the first k vertices with labels 0, 1, . . . , k − 1 in 00Γkn−2 and the vertices with labels

fn, fn + 1, . . . fn + k − 1 in 10Γkn−2. In Figure 1, we illustrate the constructions of Γ1
4 and

Γ2
4 from the previous k-Fibonacci cubes. Note that in Figure 1, there is only one link edge

between the vertices having labels 0000 and 1000 in Γ1
4 as k = 1 and there are two link edges

between the vertices having labels 0000 and 1000; 0001 and 1001 in Γ2
4 as k = 2.

Figure 1: Construction of the k-Fibonacci cubes Γ1
4 and Γ2

4.

By definition, we have Γkn = Γn for fn ≤ k. Let n0(k) be the smallest integer for which

fn0(k) > k. For a given k, n0(k) is the smallest integer n for which Γkn 6= Γn. It can be shown

that

n0(k) = 1 +

⌊
logφ

(√
5k +

√
5− 1

2

)⌋
where φ = 1+

√
5

2
is the golden ratio. This sequence starts as

3, 4, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, . . .

If k is clear from the context we will use n0 for n0(k).
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3 k-Lucas cubes

In this section we introduce k-Lucas cubes, a special subgraph of k-Fibonacci cubes. We will

indicate the dependence on k by a superscript and denote these graphs by Λk
n. Similar to the

definition of Λn as the subgraph of Γn obtained by eliminating the vertices with b1 = bn = 1,

we define the k-Lucas cube Λk
n from the k-Fibonacci cube Γkn by eliminating the vertices

with b1 = bn = 1. In other words, Λk
n is obtained from Γkn as the induced subgraph of Γkn in

which the binary labels of the vertices satisfy the additional requirement b1 · bn = 0.

For k = 1, the graphs Λ1
n are all trees. Of course the number of vertices in Λ1

n is

|E(Λ1
n)| = Ln. The height hn of Λ1

n satisfies h1 = 0, h2 = 1 and hn = min{hn−1, 1 + hn−2}.
Therefore the height of the tree with the 0 vertex as the root is given by hn = bn/2c. Figure

2 shows the first five k-Lucas cubes (trees) for k = 1.

Figure 2: The first five k-Lucas cubes Λ1
1,Λ

1
2, . . . ,Λ

1
5 for k = 1.

Recall that for a given k, n0(k) is the smallest integer n for which Γkn 6= Γn. By definition

of Λk
n and Γkn, n0(k) is again the smallest integer n for which Λk

n 6= Λn, except when k = 1.

From Figure 2 one can see that Λ1
n 6= Λn for n ≥ 4 = n0(1) + 1.

By removing the vertex having label 1001 from Γ4 and Γ2
4 shown in Figure 1, we obtain

the Lucas cube Λ4 and the 2-Lucas cube Λ2
4 given in Figure 3.

The first eight k-Lucas cubes Λk
1,Λ

k
2, . . . ,Λ

k
8 for the values k = 1, 3, 6 and 12 are presented

in the Appendix.

We start with a useful result that we need for the analysis of k-Lucas cubes.
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Figure 3: The Lucas cube Λ4 and the 2-Lucas cube Λ2
4. Λ4 is obtained from the Fibonacci

cube Γ4 by eliminating the vertex labeled 1001 and Λ2
4 is obtained from Γ2

4 of Figure 1 by

eliminating the vertex 1001.

Lemma 1. Given positive integers c and k, the number of integers N with c < N < c + k

whose Zeckendorf representation b1b2 . . . br satisfies br = 1 is given by⌊
k + 1

φ2

⌋
(3)

where φ is the golden ratio.

Proof. By a simple translation, it suffices to prove this for c = 0. The integers N > 0 with

br = 1 are those with “odd” Zeckendorf expansions. This sequence 1, 4, 6, 9, 12, 14, 17, . . .

forms the first column of the Wythoff array [6], and its mth term is given explicitly by

bφ2mc − 1 .

Therefore for the lemma we need to count the the number of m satisfying the inequalities

0 < bφ2mc − 1 < k .

The lemma follows immediately by the properties of the floor function.

For the rest of the paper for a given positive integer k we will always assume that

` = `(k) = k −
⌊
k + 1

φ2

⌋
. (4)

Next we consider a decomposition for Λk
n that will be useful in our calculations.

Theorem 1. Let ` be as in (4). The k-Lucas cube Λk
n has the decomposition

Λk
n = 0Γkn−1 + 10Γ`n−30

in which there are ` link edges between 10Γ`n−30 and its copy 00Γ`n−30 ⊂ 0Γkn−1.
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Proof. From the fundamental decomposition of k-Fibonacci cubes, we can write Γkn =

0Γkn−1 + 10Γkn−2 with k link edges between the vertices with labels 0, . . . , k − 1 in 0Γkn−1
and the corresponding vertices with labels fn+1, . . . , fn+1 +k−1 in 10Γkn−2. Now we consider

the effect of eliminating all vertices in Γkn which start and end with 1. This elimination has

no effect on 0Γkn−1, so all of these vertices are also in Λk
n. For 10Γkn−2, we need to consider

which vertices survive in this subgraph itself, how does the elimination change this graph,

and in addition the effect of this elimination on the original k link edges. Any link edge of

the original Γkn which has an end vertex in 10Γkn−2 which has been eliminated, is no longer

a link edge in Λk
n. From Lemma 1 with c = fn+1, we know that the number of the first k

vertices in 10Γkn−2 that end with 1 is given by (3). Therefore only ` of the original link edges

survive.

fn−1 of the vertices in 10Γkn−2 end with 0 and fn−2 of them end with 1. For Λk
n the fn−2

ending with 1 are removed. Now 10Γkn−2 ⊆ 10Γn−2 = 10Γn−30 + 10Γn−401. Therefore, after

removing the fn−2 vertices ending with 1 from 10Γkn−2, this has the effect of reducing the

number of the link edges that appear in the construction of this graph itself to `. In other

words, the resulting graph is 10Γ`n−30 ⊆ 10Γn−30. This completes the proof.

Example 1. Consider Λ2
6 obtained from Γ2

6. We have the decomposition of Γ2
6 as

Γ2
6 = 0Γ2

5 + 10Γ2
4 .

The link edges in Γ2
6 are between the vertices labeled 000000, 000001 in 0Γ2

5, and 100000,

100001 respectively in 10Γ2
4. Of these two link edges, the second one is eliminated because

the vertex 100001 is not in Λ2
6. We note that the vertices labeled 100001, 100101, 101001

are eliminated from 10Γ2
4 in the construction of Λ2

6. In this case ` = 1 and the subgraph

of 10Γ2
4 obtained after the elimination of these vertices is isomorphic to Γ1

3, which gives

Λ2
6 = 0Γ2

5 + 10Γ1
30.

Similar to the proof of Theorem 1, we obtain the following decomposition of Γkn which

we state here for the record.

Corollary 1. k-Fibonacci cube Γkn has the decomposition

Γkn = Γ`n−10 + Γk−`n−201

where ` is as in (4), Γ0
n−2 is the graph with fn vertices and no edges and there is a matching

between Γk−`n−201 and Γk−`n−200 ⊂ Γ`n−10.
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4 Basic properties of k-Lucas cubes Λk
n

By definition of Λk
n we know that |V (Λk

n)| = |V (Λn)| = Ln. Next we consider basic graph

theoretical parameters associated with k-Lucas cubes.

4.1 The number of edges

Let m(G) = |E(G)| denote the number of edges of G. It is shown in [12] that m(Λn) = nfn−1

for n ≥ 1. Since m(Λk
n) = m(Λn) for n < n0, we have m(Λk

n) = nfn−1 for 1 ≤ n < n0.

From Theorem 1 we observe that m(Λk
n) satisfies

m(Λk
n) = m(Γkn−1) +m(Γ`n−3) + min{`, fn−1} , (5)

and for n ≥ n0, (5) reduces to

m(Λk
n) = m(Γkn−1) +m(Γ`n−3) + `. (6)

Here we need the number of edges of Γkn which is obtained in [3] for n < n0 and in [1] for

n ≥ n0 as follows.

Corollary 2. [3, 1] The number of edges of Γkn is given by

m(Γkn) =

{
1
5

(
2(n+ 1)fn + nfn+1

)
for n < n0

1
5

(
n0fn0−1Lt+1 + (n0 − 1)fn0Lt+2

)
+ (ft+3 − 1)k for n ≥ n0

where t = n− n0.

By using (6), the number of edges of Γkn in Corollary 2 and the classical identity Ln =

fn+1 + fn−1 we obtain the following result.

Proposition 1. For n ≥ n0 = n0(k) the number of edges m(Λk
n) of Λk

n is given by

• m(Λk
n) = (n0 − 1)fn0−1 + ` if n = n0

• m(Λk
n) = 1

5

(
n0fn0−1Lt + (n0 − 1)fn0Lt+1 + (n − 3)Ln−2 + 2fn−3

)
+ (ft+2 − 1)k + ` if

n0 + 1 ≤ n < n0(l) + 3

• m(Λk
n) = 1

5

(
n0fn0−1Lt+(n0−1)fn0Lt+1

)
+(ft+2−1)k+ 1

5

(
n0(l)fn0(l)−1Lt`−2 +(n0(l)−

1)fn0(l)Lt`−1

)
+ ft`` if n ≥ n0(l) + 3

where t = n− n0 and t` = n− n0(`).
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4.2 The average degree of a vertex

In [9] the limit average degree of the Fibonacci and Lucas cubes are computed as

lim
n→∞

2m(Γn)

nfn+2

= lim
n→∞

2m(Λn)

nLn
= 1− 1√

5

which means that the average degree of a vertex in Γn and Λn is asymptotically given by(
1− 1√

5

)
n . (7)

The analogous problem for the k-Fibonacci cubes Γkn for a fixed k was considered in [1]

where it was proved that the limit average degree deg(Γkn) of a vertex in Γkn is independent

of n. Denoting this limit average degree by dk, we have

dk =
1

5

(
3 +
√

5
)

+

(
1− 1√

5

)
logφ

(√
5k +

√
5− 1

2

)
(8)

where φ is the golden ratio. For the limit average degree of k-Lucas cubes we obtain the

following result.

Proposition 2. For a fixed k the average degree of a vertex in Λk
n is asymptotically given by

1.047 + 0.4 logφ

(√
5k +

√
5− 1

2

)
+ 0.153 logφ

(√
5`+

√
5− 1

2

)
where φ is the golden ratio and ` is as in (4).

Proof. By the properties of the Fibonacci and Lucas numbers we have

lim
n→∞

fn+1

Ln
=

φ√
5
, lim

n→∞

fn−1
Ln

=
φ−1√

5
. (9)

For a fixed k, using (6), (8) and (9), the average degree of a vertex in Λk
n is computed as

lim
n→∞

2m(Λk
n)

Ln
= lim

n→∞

2
(
m(Γkn−1) +m(Γ`n−3) + `

)
Ln

= lim
n→∞

2m(Γkn−1)

fn+1

· fn+1

Ln
+ lim

n→∞

2m(Γ`n−3)

fn−1
· fn−1
Ln

= dk ·
φ√
5

+ d` ·
φ−1√

5
.

Using the expressions for dk and d` from (8) and simplifying with Mathematica gives the

desired result.
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Remark

We note that ` is a function of k and using the explicit expression in (4), for large k we

obtain the asymptotic value for the average degree in Λk
n as(

1− 1√
5

)
logφ

(√
5k +

√
5− 1

2

)
.

This is the main term that appears in (8). The factor 1 − 1√
5

is also the coefficient of the

limiting values for the Fibonacci and Lucas cubes as given in (7).

4.3 Number of induced hypercubes

Let Qd(G) denote the number of d-dimensional hypercubes induced in G. This number is

considered in the cube polynomials of Fibonacci and Lucas cubes in [8]. For k-Fibonacci

cubes, it is shown in [1] that Qd(Γ
k
n) satisfies the recursion

Qd(Γ
k
n) = Qd(Γ

k
n−1) +Qd(Γ

k
n−2) + Pd−1(k − 1) (10)

where

Pd−1(k − 1) =
k−1∑
i=0

(
Z(i)

d− 1

)
,

and Z(i) denotes the number of 1’s in the Zeckendorf representation of i. The idea behind

the proof of (10) is as follows. The first and the second term on the right hand side of the

equation (10) follow immediately from the fundamental decomposition Γkn = 0Γkn−1+10Γkn−2.

The term Pd−1(k − 1) counts the number of hypercubes that involve the k link edges used

in the construction of Γkn. In [1], these hypercubes are counted by the number of (d − 1)-

dimensional hypercubes contained in the subgraph of 0Γkn−1 induced by the first k vertices

with labels 0, 1, . . . , k − 1. The claim is that for any of these vertices i, the selection of

d− 1 ones among the Z(i) ones in the expansion of i gives one d− 1 dimensional hypercube,

since by varying any of these d− 1 ones we get 2d−1 vertices with labels in {0, 1, . . . , k − 1}
each giving a (d− 1)-dimensional hypercube in 0Γkn−1. Furthermore, there is a copy of this

hypercube in 10Γkn−2 and also a matching between these hypercubes due to the k link edges,

producing a d-dimensional hypercube in Γkn.

For k-Lucas cubes, we use a similar argument to find the number of d-dimensional hy-

percubes induced in Λk
n. From Theorem 1 we know that Λk

n = 0Γkn−1 + 10Γ`n−30. Therefore,

there are three types of d-dimensional hypercubes that contribute to Qd(Λ
k
n): those coming

from 0Γkn−1, those coming from 10Γ`n−30, and those that involve the ` link edges used in the

construction of Λk
n. It is enough to consider the d-dimensional hypercubes of the last type.

These can be counted by the number of (d − 1)-dimensional hypercubes contained in the

10



subgraph of 10Γ`n−30 induced by the ` vertices with labels in {0, 1, . . . , k− 1} having “even”

Zeckendorf expansions, that is, whose representations that end with 0. For any of these

vertices i again we need to select d−1 ones among the Z(i) ones in i. Then by varying these

d − 1 ones we obtain 2d−1 vertices with labels in {0, 1, . . . , k − 1} having even Zeckendorf

expansions themselves. Each one of these gives a (d− 1)-dimensional hypercube in 10Γ`n−30.

All of these (d− 1)-dimensional hypercubes also have a copy in 0Γkn−1 and there is a match-

ing between the two hypercubes due to the ` link edges. This produces a d-dimensional

hypercube in Λk
n that involves the link edges. We have the following result:

Proposition 3. Let Qd(Λ
k
n) and Qd(Γ

k
n) denote the number of d-dimensional hypercubes in

Λk
n and Γkn respectively. Then

Qd(Λ
k
n) = Qd(Γ

k
n−1) +Qd(Γ

`
n−3) + Pd−1(`− 1).

Proof. The bulk of the proof of the proposition has been given above, showing

Qd(Λ
k
n) = Qd(Γ

k
n−1) +Qd(Γ

`
n−3) +

∑
i∈S

(
Z(i)

d− 1

)
,

where S is the ` integers in {0, 1, . . . , k − 1} having even Zeckendorf expansions. To show

that ∑
i∈S

(
Z(i)

d− 1

)
=

`−1∑
i=0

(
Z(i)

d− 1

)
= Pd−1(`− 1) (11)

we argue as follows. The Zeckendorf expansions of the numbers {0, 1, . . . k − 1} can be

partitioned into the disjoint union of two sets of expansions of the form A·0 and B·01 where A

is the Zeckendorf expansion of the numbers {0, 1, . . . , `−1} and B is the Zeckendorf expansion

of the numbers {0, 1, . . . , bk+1
φ2
c−1}. Since the number of ones of the even Zeckendorf numbers

in {0, 1, . . . , k−1} does not change when we drop the last 0, the sums in (11) are identical.

4.4 Diameter and radius

Γkn has the nested structure

Γ1
n ⊆ · · · ⊆ Γkn ⊆ · · · ⊆ Γn.

as shown in [1]. Since we define Λk
n by removing certain vertices in Γkn, one can easily observe

that k-Lucas cubes have a similar nested structure,

Λ1
n ⊆ · · · ⊆ Λk

n ⊆ · · · ⊆ Λn. (12)

We know that Λ1
n is a tree with root 0n (the vertex with integer label 0). It follows that for

u, v ∈ V (Λ1
n)

d(u, v) ≤ d(u, 0n) + d(v, 0n) = wH(u) + wH(v), (13)

11



where wH denotes the Hamming weight. We always have

wH(u) + wH(v) ≤

{
n for n even,

n− 1 for n odd

for the vertices of Λn and it is shown in [12] that

diam(Λn) =

{
n for n even,

n− 1 for n odd.

Λk
n is a subgraph of Λn with the same vertex set and fewer edges for n ≥ n0. This directly

gives the inequality diam(Λk
n) ≥ diam(Λn). On the other hand, using (12) and (13), for any

u, v ∈ V (Λk
n) we have

d(u, v) ≤ wH(u) + wH(v) ≤

{
n for n even,

n− 1 for n odd,

which gives diam(Λk
n) ≤ diam(Λn). Therefore, for all n ≥ 1

diam(Λk
n) = diam(Λn) =

{
n for n even,

n− 1 for n odd.

By a similar argument we see that the radius of Λk
n is equal to the radius of Λn. Since

the latter radius was obtained in [12] as bn
2
c, this is also the radius of Λk

n.
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[7] S. Klavžar, Structure of Fibonacci cubes: a survey, J. Comb. Optim. 25 (2013), 505–522.
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A Figures of some k-Lucas cubes

Figure 4: The first eight k-Lucas cubes for k = 1.

14



Figure 5: The first eight k-Lucas cubes for k = 3.
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Figure 6: The first eight k-Lucas cubes for k = 6.
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Figure 7: The first eight k-Lucas cubes for k = 12.
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