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Abstract—In recent years, researchers have contributed
promising new techniques for allocating cloud resources in more
robust, efficient, and ecologically sustainable ways. Unfortunately,
the wide-spread use of these techniques in production systems has,
to date, remained elusive. One reason for this is that the state
of the art for investigating these innovations at scale often relies
solely on model-driven simulation. Production-grade cloud soft-
ware, however, demands certainty and precision for development
and business planning that only comes from validating simulation
against empirical observation.

In this work, we take an alternative approach to facilitating
cloud research and engineering in order to transition innovations
to production deployment faster. In particular, we present a new
methodology that complements existing model-driven simulation
with platform-specific and statistically trustworthy results. We
simulate systems at scales and on time frames that are testable,
and then, based on the statistical validation of these simulations,
investigate scenarios beyond those feasibly observable in practice.
We demonstrate the approach by developing an energy-aware
cloud scheduler and evaluating it using production and synthetic
traces in faster than real time. Our results show that we can
accurately simulate a production IaaS system, ease capacity
planning, and expedite the reliable development of its components
and extensions.

I. INTRODUCTION

Cloud computing, in the form of Infrastructure as a Service
(IaaS), has emerged as a new paradigm for Information Tech-
nology (IT) management of data center infrastructure. Under
the IaaS cloud model, users request that data center resources
be provisioned for their exclusive use via network-facing web
service interfaces (APIs). “The Cloud” advertises data center
resources as commodities, each described by a Service Level
Agreement (SLA). Thus, cloud users provision capacity that
meets SLA guarantees rather than specific resources. When
capacity is no longer needed, the cloud APIs allow users to
decommission the resources they have previously provisioned
and return them to the pool of commodities that are available
for general use. Often, some or all of the resources that are
available are “virtualized” making it possible for the cloud
to isolate under software control each user’s allocation, and to
share physical resources across users. Public clouds implement
this paradigm on a “for-fee” lease basis in which each user
is charged an advertised rate for occupancy based on either
time (e.g. rental of virtual machines) or space (e.g. storage
occupancy). Private clouds implement the same model using

accounting and quotas instead of for-fee leases within a single
“private” organization.

Because IaaS clouds allow automated, self-service user
provisioning of data center resources, they can reduce the
labor burden associated with both software development and
IT management, sometimes dramatically. For this reason, cloud
computing is currently the subject of considerable commercial
interest and investment. However, to achieve the optimization
benefits promised by the model, clouds must scale, both
in terms of the resources they manage and the number of
simultaneous users they can support. Moreover, for cloud
users, the IaaS platform plays the role that operating systems
play for individual machines: it is an abstraction layer that
must function as if it is part of “the hardware.” In particular,
when the cloud fails, it is as if the hardware has failed
leaving users with no remedial options other than to wait for
service to be restored. Thus an IaaS platform must implement
fully automated provisioning at the greatest possible user and
resource scales with the reliability at least as high as that of a
single-machine operating system.

These requirements make IaaS research and experimen-
tation particularly challenging. Production-quality IaaS plat-
forms are complicated, highly scalable, reliable distributed
systems. Public cloud service providers such as Amazon
AWS [1], Google Cloud Platform [2], IBM SoftLayer [3]
and Rackspace Cloud [4] hold the implementation details
associated with their respective platforms as trade secrets.
However private cloud platforms such as Eucalyptus [5], [6],
OpenStack [7], and CloudStack [8] implement some or all of
the same functionality at the data center level as production-
quality, open source.

Thus, it is possible to study new optimization techniques
for cloud computing using production-quality systems by
leveraging these private cloud technologies. To do so, however,
the research must take care not to violate the performance,
scale, or reliability constraints already engineered into the plat-
form. Indeed, the stewards of these open source projects often
reject code contributions that appear to function in prototype
form, but ultimately fail when subjected to production quality-
assurance testing.

In this paper, we outline a process for conducting cloud
scheduler research for private clouds that takes into account
the ultimate need for the engineering of a reliable, efficient,
and accurate implementation as part of a production-quality



platform. Cloud schedulers are central to the optimization
gains that the cloud makes possible. For this reason, cloud
administrators are reluctant to change them without convincing
evidence that a new scheduler will not negatively impact
reliability and stability, and that substantive benefit will result
from the adoption of a new optimizing scheduler. Similarly,
IaaS development engineers need to be able to trust that
a feature, which performs well in prototype form, can be
implemented subject to the reliability and scale requirements
associated with production computing. Thus our methodology
is designed to engender the trust necessary both, to ensure IT
adoption and also to justify the engineering effort required to
achieve production levels of performance and reliability for
cloud schedulers.

Fundamentally, our approach describes a process for devel-
oping a cloud scheduler from research conception to produc-
tion software development through the use of validated simula-
tion. For cloud computing, simulation systems to date [9], [10],
[11], [12], [13], [14] focus on ab initio techniques in which var-
ious low-level cloud components (machines, networks, storage
devices, etc.) are simulated and these component simulations
are then composed efficiently into a full system simulation.
This “bottom up” approach is both flexible and easily exten-
sible, and yields insights that stem from comparative ranking
(e.g. “this” configuration is better than “that” one). The value
of this approach cannot be underestimated, however, the scale
and reliability requirements for clouds present challenges for
ab initio methods with respect to accuracy that must be
addressed before they can be considered “trustworthy” from
an engineering perspective. This approach tends to produce
results at scales that are difficult to test empirically, and even
if evaluated on a public cloud, the component models may
be inaccurate because public providers do not reveal their
implementation details. Finally, the composed cloud model
may become so complex that the error interactions between
component models become untamable.

Our work explores an alternative approach rooted in per-
turbation theory [15] that focuses on validation of simulated
results against empirical measurement (at the cost of flexibility
and extensibility) as a way of addressing the engineering needs
that cloud developers and practitioners have. Specifically,
we build a parsimonious “top down” model of the end-to-
end system that derives from the implementation specifics
of the system. We then add “noise” (taken from statistically
sampled empirical measurements of the system) to “perturb”
this model. For validation, we analyze the perturbed model’s
outputs statistically over repeated runs (i.e. via a Monte-
Carlo [16] approach) and compare them to distributions of
measurements taken from repeated runs of the end-to-end
system. For cloud schedulers in particular, this approach has
proved fruitful because the models are quite parsimonious
(reducing the possibility of error propagation) and the system
measurements are easily gathered at scales that are feasible
for repeated measurement. Once validated, the model can then
be scaled up in any dimension characterized by independent
performance response. For example, if the performance of
the physical machines hosting user-allocated virtual machines
is independent (due to the isolation properties of the cloud
platform) then the physical machine count can be scaled
without introducing additional error.

We emphasize that our work is intended to complement ab
initio approaches in that it targets the development of a specific
component (schedulers in our case), that the component must
be amenable to a perturbation-based approach to modeling,
and that scaling is trustworthy only in the dimensions of
independence. Further, our approach is intended to produce
accuracy only in the parameters that are necessary for a
particular component’s operation as an isolated feature. That
is, the method is appropriate for clouds because (for reliability
reasons) component operation is isolated through internal
modularity techniques. Our method relies on this engineering
property, which is common to the cloud platforms, and access
to the source code so that the relevant parameters can be
identified.

Even with these restrictions it is possible to use our simu-
lation technique to explore scaling properties, etc. in a manner
similar to previous approaches. A key additional benefit of our
method is that the results are validated at scales that can be
tested and that there is evidence that their accuracy is preserved
at enterprise scales.

This paper describes our methodology in high-level terms
and illustrates its use to develop a new, power optimizing
scheduler for Eucalyptus [5], [6], a popular, open source
private cloud used for production by many commercial en-
terprises. We describe the model, its discrete-event simulation,
and its validation against a working implementation. We also
describe and detail the use of the simulation in various enter-
prise capacity-planning contexts using production cloud traces
as a way of demonstrating its utility.

In summary, this paper makes the following contributions:

• We outline a simulation approach that is designed
to support production-quality engineering of cloud
platforms by applying a new approach – perturbation-
based modeling – to cloud simulation.

• We demonstrate the use of this methodology in the
implementation of a new, power optimizing scheduler
for a production-quality private cloud platform.

• We evaluate the simulator’s utility for capacity plan-
ning in both, backtesting and forward-looking plan-
ning using synthetic workloads and recorded load
traces gathered from production private clouds.

In the sections that follow, we present our simulation
approach. We first describe the steps of our methodology for
top-down model development, discrete event simulation, model
fitting, and validation. As an example of this process, we
show how we use it to implement and evaluate a new power-
optimizing scheduler. We then present an empirical evaluation
of our approach that includes registration of our simulator
against a production-quality Eucalyptus private cloud, an eval-
uation of the scheduler, and an investigation into capacity
planning use cases using the system. We then present related
work and conclude.

II. METHODOLOGY

We outline a process for conducting cloud scheduler re-
search for private clouds in terms of a specific example in
which we seek an implementation of a new power-optimizing



scheduler for a private cloud. The scheduler uses on-line
machine learning methodologies to predict (in real time) when
machines should be powered on and off to avoid delays asso-
ciated with machine spin up. Before an expensive engineering
effort can be launched to implement such a scheduler or a
skeptical IT professional can be convinced to introduce a
new methodology, the reliability, performance, and efficacy
properties of a new scheduler must be verified. Our goal with
this process is to facilitate accurate, faster-than-realtime, end-
to-end testing via validated simulation.

1) Top-Down Approach: The goal of the methodology is
to use an, alternative, “top down” approach to simulation that
models only those parameters that are necessary to capture the
behavior of the component of interest with sufficient accuracy.
Identifying the parameters of this model requires an under-
standing of the fault isolation properties of the platform which,
in our example use case, comes from source code inspection.
The fault isolation properties establish the independence of our
model parameters which is required for trustworthy scaling of
our simulations.

The approach is to:

1) start with the most parsimonious model of end-to-end
behavior that is possible,

2) perturb the model using statistical sampling technique
to represent unmodeled behavior,

3) test the model by comparing its outputs generated
in simulation to measurements taken from the “real
world” system,

4) if the model is insufficiently accurate, add terms,
adjust the perturbation, and repeat.

Thus every addition of a variable to our model of the cloud
should be justified by a necessary increase in accuracy. Vari-
ables that only contribute marginally to the aggregate result
are omitted and modeled in aggregate as “perturbing” error
terms. The level of accuracy that is acceptable is ultimately
decided by the consumers of the simulation. In an engineering
context the error terms may serve as inputs to a risk analysis,
where variability is acceptably low when the difference in risk
that greater accuracy would engender is deemed insignificant
by those taking the risk.

2) Developing the Model: The first step in our approach is
a white-box inspection of the documentation and source code.
With information about the control and data flow in hand, we
are able to identify critical inputs, cloud components and their
interactions, and relevant output metrics.

In this research, we are interested in evaluating a new
cloud scheduler, which requires user requests, the physical
platform configuration, and the allocation algorithm as inputs.
The cloud model consists only of a set of independent nodes
with fixed resource capacities that hold a number of instances
with fixed requirements. Interactions between this model and
the scheduler take place when a request arrives or the life
time of an instance expires. Otherwise, scheduler and model
are isolated.

The outputs of the cloud scheduler that we can observe
are (i) request acceptance rate and (ii) the allocation of
“virtual machines” (VMs) to nodes over time. We quantify
this behavior by computing the aggregate CPU time for each

physical node devoted to work assigned to it by the scheduler.
Comparing node CPU time, both in simulation and actual
measurements, succinctly captures the end-to-end behavior of
the system under test for the cloud scheduler component.

Note that a new scheduler may require additional modeling
terms beyond those that capture the existing system’s behavior.
In our case, we wish to implement and test a power-aware
scheduler that predictively and pro-actively powers on and off
nodes based on recent load history [17]. To enable this, we
must extend the model to represent periodic polling of load
(the periods are called “epochs” in the scheduler algorithm)
and power states of the nodes (awake, waking, and asleep)
that the scheduler can manipulate via messages to the nodes.
We extend the output set of this scheduler to include the
aggregate power-up delay it generates and the amount of time
each node spends in the awake or waking state. We perturb the
model by representing the delay necessary to power a node up
as empirically determined distributions (so as to avoid their
simulation overhead).

3) Discrete Event Simulation: To simulate the system in
faster-than-real time, the next step is to develop a discrete-
event simulation that captures only the changes in the states
specified in the model. In our example, scheduler events are
triggered by

• the arrival of a new VM request from the input trace

• the acceptance and launch of a new VM assigned to
a node

• the termination and cleanup of a VM as reported by
the node running it

• the expiration of a timer marking epoch boundaries,

• the expiration of a timer marking the end of a node
power-up sequence

The simulation of the scheduler (either the existing or the
new power-optimizing scheduler) from these events takes a
trace of VM activity, which we represent as start-time and and
duration pairs for a set of VMs.

Note that this event list demonstrates the parsimony in our
approach. Through inspection, it is clear that Eucalyptus breaks
the VM start and termination sequence into a series of separate
“phases” for the purpose of error handling and fault tolerance.
We represent these in our simulator by the perturbation of VM
start-up and termination delays. Notice also that we can omit
the node power-down time as its addition does not change the
results in a way that we could detect.

At a high level, the simulation works as follows. User
requests consist of request time (arrival), instance lifetime
(duration) and instance type (size). The platform configuration
contains physical node IDs and capacity (cores, memory,
disk). The scheduler assigns requested instances to nodes, and
removes them as they expire based on a policy (the algorithm
implemented). Additionally, the scheduler is notified when
node power states or epoch times change in order to perform
power-budget accounting.

4) Measurements: To fit and evaluate the simulation model
we extract performance information from a live cloud. We
require two types of measurements: those we use to introduce



perturbations (e.g. VM start-up, termination, etc.) and those
that we use to validate the simulations (i.e. the aggregated
outputs of the scheduler).

To collect these measurements, we use a combination of
log analysis and instrumentation. Log analysis is preferable
since it avoids the possibility of disturbing system performance
through the introduction of instrumentation. In the case where
the existing logs do not carry the information with sufficient
resolution to drive the simulation, we take care to modify the
source code of the platform to introduce additional logging
information in a way that is unlikely to change execution
performance. For example, logging new events that require
synchronization of otherwise asynchronous activities must be
avoided.

5) Scheduler Operation: Both, the existing scheduler and
the power-optimizing scheduler must be implemented for the
simulator. The accuracy risk (and one of the reasons necessitat-
ing validation) comes from the observation that the simulated
and real implementations may differ. Ideally, both the discrete-
event simulation and the implementation for the real system
share the same source code. In our example, that sharing is
possible, but we opted instead to rely on validation so that
we might implement the schedulers in different programming
languages. The production system schedulers are written in C
and our discrete event simulation is written in Scala.

The existing production scheduler uses a “greedy’ schedul-
ing algorithm to maximize multi-tenancy. When a new VM is
to be assigned to a node, the scheduler considers the node list
in a fixed order and uses a first-fit assignment algorithm.

The power-optimizing scheduler uses load measurements
taken over discrete epochs to predict how many powered-
up machines will be needed in the “next” epoch to avoid a
power-on event with a specified probability. While a node
is being powered on, the VM start will be delayed by the
remaining duration of the power-up sequence. This delay is
experienced by the user directly. Thus the goal of the power-
optimizing scheduler is to minimize power usage, subject to
an SLA specified by the cloud administrator that limits the
probability of any given user experiencing a power-up delay.
As in the greedy scheduler, we order hosts by status (awake,
waking, and asleep) and ID. We place an incoming VM on the
first available awake host (followed by a waking host). If no
powered-up host can be found, the request will be enqueued
for a powered-down node, which is immediately sent a wake-
on-lan message. A start delay is incurred whenever a VM is
placed on a machine in waking or asleep state.

The power manager uses a fast, non-parametric quantile
predictor and makes conservative estimates about the number
of hot spares needed to fulfill the responsiveness (non-delay)
SLA. In fixed time steps - epochs - the current utilization of
the cluster and the size of request bursts in the past is used
to determine this target count of active nodes. Depending on
this target count and the current state of the system, additional
nodes are then woken up or powered down.

III. RESULTS

In this section, we evaluate our approach and its example
implementation. We first overview our experimental setup

TABLE I: Summary of Synthetic Workloads. Units are in
Seconds.

Name Total Duration VM Count Arrival Duration
Exponential 36305 443 λ = 0.0125 λ = 0.002
LogNormal 35646 420 µ = 3.8 µ = 4.5

σ = 1.0 σ = 1.0

TABLE II: Summary of Empirical Cluster Attributes collected

Attribute Description
VM start delay Instance start delay until boot sequence
VM teardown delay Instance termination delay until resources freed
Node wakeup delay Time required for node wake-on-lan

and then present the results that we achieve by statistically
registering our simulator with the actual target IaaS system
it simulates. Using registered simulation, we then evaluate
our power-aware scheduler and evaluate a number of different
capacity planning scenarios, using a number of different traces
(actual and synthetic) and cloud configurations.

A. Experimental Setup

For our empirical measurements we use a seven node
commodity hardware cluster. Each node runs on CentOS v6.5
and holds four cores, 8 GB ram, and a 500 GB hard drive
and is connected to the network via two 1 Gbit ethernet
links. We set up Eucalyptus v3.4.2 with a dedicated head and
storage node and six nodes serving as instance hosts. Since
we need control over the placement of instances and power
management of nodes, we install from source and inject a
small code modification that enables explicit node selection by
our scheduler. We implement the power manager to interact
with the cluster controller via its shared-memory interface.
Eucalyptus is a production-quality system and as such includes
a number of security features that are in place to prevent these
kinds of outside modifications. For this reason, we temporarily
disable message signature verification to make the injection of
load traces less labor intensive to implement.

We use a number of synthetic workloads and production
cluster traces [18] to evaluate the simulator and the power-
optimizing scheduler. The synthetic workloads are generated
from exponential and lognormal distributions for instance
arrival times and durations (details in Table I). We also have
access to anonymized traces from Eucalyptus installations
used in enterprise production (described later in Table VII).
Using these traces it is possible to “replay” the VM load and
scheduling activity that took place when they were gathered,
either in simulation or on a working Eucalyptus system.

B. Simulation Registration

For registration we execute a benchmark trace on a single
node which has been separated from the six node Eucalyptus
IaaS cluster. The trace contains 100 uniform instance start-
and stop-requests over a period of 10 hours. We collect the
empirical samples of instance startup, instance termination, and
power-up delays. The specific attributes that we profile in this
study are shown in Table II.

Eucalyptus uses a polling model so that it can control
message traffic internally. Thus, the nodes do not report these



TABLE III: Utilization per Node (Exponential Trace)

All A B C D E F
sim (mean) 0.4008 0.8727 0.7564 0.5195 0.2217 0.0346 0.0000
sim (sd) 0.0066 0.0033 0.0091 0.0085 0.0085 0.0047 0.0000
real (mean) 0.4033 0.8742 0.7551 0.5250 0.2311 0.0344 0.0000
real (sd) 0.0052 0.0053 0.0061 0.0062 0.0075 0.0024 0.0000

TABLE IV: Uptime per Node (Exponential Trace)

All A B C D E F
sim (mean) 0.8711 1.0000 1.0000 1.0000 0.9128 0.7766 0.5375
sim (sd) 0.0127 0.0000 0.0000 0.0000 0.0166 0.0235 0.0119
real (mean) 0.8758 1.0000 1.0000 1.0000 0.9312 0.7704 0.5529
real (sd) 0.0094 0.0000 0.0000 0.0000 0.0115 0.0174 0.0098

events to the rest of the system until they are polled. In order to
reduce modes in the observed distribution due to fixed polling
delays we introduce a small random variation in start- and
stop-times of instance requests. Separately, the latencies for
hibernation are obtained by manual execution of a script power
cycling the machine. We then configure the simulator to use
these empirical latency distributions and prepare for testing the
power manager with synthetic workloads.

We use synthetic workloads during the registration phase
so that we can ensure that the observed response of the system
is meaningful on a feasible time frame. That is, a replay of
the production traces described in Subsection III-A in real
time would span months. Alternatively, selective extractions
of tractable “busy” periods might skew the sample and the
attempt to “speed up” the trace (i.e. using a fitted probability
model as described in [19]) could introduce additional error.

Thus we choose two synthetic traces each having a duration
of 10 hours, with a mean utilization of 1/3 of the 6 node cluster
capacity. The first trace is generated from an exponential
distribution for arrival times and instance durations, whereas
the second trace uses a lognormal distribution for both. For
the exponential distribution, these values of λ correspond to a
mean inter arrival time of 80 seconds and a mean duration
of 500 seconds. For the lognormal distribution, the mean
inter arrival time is 81 seconds and the mean duration is 785
seconds. Note that there is a minimum lifetime of 360 seconds
to allow for instance startup and all VM requests issued are
single-core and uniform in memory and disk requirements.

In all test cases the power-optimizing scheduler is config-

TABLE V: Utilization per Node (Lognormal trace)

All A B C D E F
sim (mean) 0.3974 0.8555 0.7305 0.5140 0.1960 0.0665 0.0217
sim (sd) 0.0045 0.0024 0.0053 0.0082 0.0039 0.0001 0.0023
real (mean) 0.3985 0.8550 0.7223 0.5213 0.2025 0.0696 0.0202
real (sd) 0.0043 0.0022 0.0046 0.0059 0.0050 0.0037 0.0036

TABLE VI: Uptime per Node (Lognormal trace)

All A B C D E F
sim (mean) 0.8565 0.9851 0.9851 0.9637 0.9161 0.7192 0.5696
sim (sd) 0.0025 0.0000 0.0000 0.0020 0.0000 0.0042 0.0038
real (mean) 0.8605 0.9851 0.9851 0.9652 0.9178 0.7292 0.5805
real (sd) 0.0048 0.0000 0.0000 0.0000 0.0001 0.0112 0.0033

ured to guarantee a responsiveness SLA that at least 95% of all
start requests will not be affected by a delay due to waking a
node from hibernation. The epoch length is set to 300 seconds
with a minimum history length of 60 epochs, which triggers
activation of the power manager at the five hour mark in our
benchmark traces.

Our results show agreement between a-priori simulation
and a-posteriori observation. We repeat simulation and real
world runs 12 times (a total of 120 hours) for each trace
separately and compute the averages. For visualization, two
exemplar runs from the benchmarks are shown in the graphs in
Figure 1. The figures depict the activity of the power manager
over time. The y-axis represents the number of cores used,
normalized to maximum capacity. The x-axis represents time
in one hour (3600 seconds) intervals. The solid line shows the
number of cores occupied by instances in the cluster while
the dotted line shows the number of cores available on awake
nodes. The activation of the power manager can clearly be seen
at the five hour mark. With changes in utilization, a fluctuation
of the number of awake nodes can be observed. Due to the high
frequency of these changes in our registration traces, we expect
the impact of inaccuracies in the simulation to be exacerbated.

Tables III and IV show average utilization and uptime
(expressed as fractions, respectively) per node and their stan-
dard deviations using the synthetic exponential trace. The
counterparts for the synthetic lognormal trace can be found
in Tables V and VI. For this experiment, we are concerned
with numerical accuracy and do not adjusted the power savings
for the power manager’s warmup period. We find a good match
between simulation and real world observation, with the largest
per-node difference of 2%.

Note that in our initial runs (omitted for brevity) the regis-
tration of both, core utilization and up time between simulated
and measured exponential runs did not seem to match as
precisely as we had anticipated. In particular, the utilization
and uptime of nodes seemed to differ to a greater extent than
we had hoped. Investigating the cause of this inconsistency, we
discovered an implementation bug in the power manager that
we integrated into Eucalyptus. This discrepancy illustrates an
ancillary benefit to trustworthy simulation. By working with
a perturbative model we were able to anticipate the degree of
accuracy we could expect and thus launch a targeted debugging
effort when we did not achieve it.

C. Power-aware scheduler at scale

The results described in the previous section show that the
simulation of Eucalyptus with the power-optimizing scheduler
match the observations of an actual Eucalyptus implementation
of the scheduler to an error of less than 2% at scales that
are feasible to test. In this section, we use the simulator to
study the effects that the scheduler would have achieved in
production settings had it been available and deployed.

To do so, we run the simulator using traces gathered
from the logs generated by Eucalyptus when run in several
production settings. The commercial enterprises who donated
their Eucalyptus logs to the project asked not to be identified
specifically. Table VII summarizes the node and core counts
for each commercial trace, its duration, and a description of
the size of the business. We number the datasets as DS2, DS3,
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Fig. 1: Timeries showing synthetic exponential (left) and lognormal (right) workload trace with power-optimizing scheduler
activated at the 5 hour mark. The x-axis depicts time in one hour intervals, and the y-axis shows the fraction of the number of
cores occupied. The dotted line shows the fraction of cores that belong to nodes that are powered-up.

TABLE VII: Summary of Private Cloud Dataset Characteristics

Data Set Nodes Cores/Node Time Period Description
DS2 7 12 Aug. 2012 to Apr. 2013 Medium sized company with

2,000 to 5,000 employees
DS3 7 8 Aug. 2012 to May 2013 Small company with

50 to 100 employees
DS5, DS6 31 32 Nov. 2013 to Dec. 2013 Large company with

50,000 to 100,000 employees

DS5, and DS6 as they are part of a larger collection of data
sets. The anonymized traces from the collection are available
to the research community from [18].

We do not replay these traces through a “live” installation
of Eucalyptus because each of these traces spans several
months in real time. Further, in order to observe the power-
optimizations from a working system, it would have been
necessary to recreate the specific deployments that generated
each trace. Note, however, from Table VII, that the core
and node counts in these production deployments are modest.
Production enterprises are often partitioned into smaller units
both to enhance fault isolation and to allow resource expenses
to better track business unit organization.

Thus at these scales, the power-optimization results are
likely to be nearly as accurate as those shown in Subsec-
tion III-B. An inspection of the source code indicates that
any additional overhead introduced by the additional nodes
and cores would be covered by the perturbation terms in the
model with one important caveat. At the time these traces
were generated, the power-optimization scheduling algorithm
did not exist nor had we begun its development. Thus we lack
the specific hibernation and wake-on-lan response times that
are necessary to parameterize the model. In the absence of this
data, we use the empirical samples from our test cloud in its
place. The result is an accurate simulation of what the efficacy
would have been if the machine power-cycling performance
response were the same as it is in our laboratory.

Of the three production traces, two are nine months in
length with highly variable resource demand. The third trace is
one month in length and has a very regular workload. Further,
we set the power-manager epoch time to 1000 seconds, as
suggested by the original authors, and use the same 95%
responsiveness SLA as before. Also, the history length for
samples takes by the power-optimizing scheduler is set to 2000
samples.
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Fig. 2: Comparison showing power-efficiency of the power-
aware scheduler with bars representing baseline (left) and
power-aware (right) efficiency for three production traces
(DS2, DS3, and DS5).

To predict efficacy, we define power efficiency to be the
total CPU time for all nodes normalized to its theoretical
maximum possible, divided by the uptime of active nodes
normalized to its always-on baseline (as shown in Equation 1).

efficiency =
total cpu time/max cpu time

total uptime/max uptime
(1)

Recall from Subsection III-B that CPU time is the amount of
CPU time used by a node to run the VMs assigned to it and
uptime is the total duration that a node is in the powered-up or
waking state. As such, this formulation of efficiency captures
the degree to which the power used by the system is used to
run VMs.

We run a Monte-Carlo simulation 30 times for each trace,
once with power manager enabled, once without. The results
are shown in Figure 2. Error bars have been omitted due to
the minimal deviation of the averages between runs. For the



variable DS2 and DS3 the efficiency increases by a factor
of 1.5 and 2.6 respectively, and for the constant DS5 by
1.3. While the relatively small improvement for the constant
workload DS5 seems intuitive, the differences between DS2
and DS3 are not obvious at first. Close investigation shows that
DS2 contains requests that demand access to the whole cluster
after long periods of inactivity while DS3 has users demand
small batches several times before issuing a large request. With
this difference, the power manager becomes more conservative
in its predictions for DS2 compared to DS3, which results in
lower overall power-savings and efficiency.

Note that in our initial runs of the long-term traces (omitted
for the sake of brevity) we observed a large miss-percentage for
the first two traces with our implementation of the power man-
ager. The simulation and implementation agreed, but together
they did not meet the SLA guarantees that the scheduling
algorithm should have obtained. In communication with the
authors of the algorithm, we found a discrepancy with our
implementation when correcting for very long periods of
inactivity on the cluster. We corrected our implementation,
both in the simulator and for Eucalyptus itself, re-validated
on our test bed and then executed the long-term traces again.
This time the SLAs were met without exception. Due to faster-
than-realtime simulation the turnaround time for debugging,
updating and re-evaluation correspond to a fraction of the time
required for real-time testing alone.

By replaying real-world traces, the simulator helps to
determine the impact of subtle differences in the workload
before the production deployment of a new scheduler. This
is especially true when synthetic traces do not exhibit all the
properties of production workloads. This makes testing efforts
more robust and provides insights for planning the deployment
of a new IaaS resource manager.

D. Capacity Planning

Aside from software development and testing, trustworthy
simulation can inform capacity and business planning. So
far, we have solved one-dimensional, monotonic problems for
testing a power manager’s efficiency under a single SLA con-
straint. In contrast, stakeholders in enterprises have to consider
multidimensional problems with consideration given to capital
and operating expenses, ease of use, robustness of a system
and transition policies, among others. Using the simulator to
test different platform configurations against a recorded trace,
we find Monte-Carlo simulation provides additional insights to
inform trade-offs between cost and expected quality of service
and simplifies the decision-making process.

In this experiment, we use a 1-month section of a produc-
tion trace (depicted in Figure 3). Given this workload and our
use of the power manager, we investigate how many nodes we
can remove from the cluster while still meeting our chosen
SLAs (95% responsiveness and 99% start request acceptance).
To enable this, we run the simulation with the power manager
activated (PM) and without (base) and incrementally remove
nodes from the base configuration until SLA violations occur.
We use the same configuration of the power manager from
previous experiment and register the system via the logged
request delays of the real system. We conservatively assume
600 seconds for node power-up.
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Fig. 3: This production trace of an over-provisioned cluster
with a fixed workload is the foundation of the down-sizing
scenario.
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Fig. 4: Power-efficiency increases while request acceptance
rate decreases as node count goes down in the base case. The
power-aware scheduler guarantees constantly high efficiency.

Figure 4 depicts the aggregate power-efficiency and request
acceptance rate on the y-axis and the reduction in the number
of nodes over the baseline system on the x-axis. We omit
plotting misses due to wake-on-lan as the SLA is never violated
in this experiment. There are two interesting insights revealed
by the data. First, after a reduction by 8 nodes we cross the
threshold of diminishing returns for the non-power-aware case,
while the maximal reduction lies at 9 nodes before violating
the acceptance SLA. However, even guaranteeing a 99.9%
acceptance SLA would still allow for a reduction by 6 nodes
(about 20% of the cluster). Second, for the power-aware case,
we notice that the efficiency is almost constant and independent
of the node count for the cluster’s specific workload.

With this data about the non-parametric power-manager
in hand, decision-makers can focus their attention on other
aspects of the capacity planning problem. Furthermore, if
different levels of quality of service guarantees are being
considered, reliable estimates about their expected cost can
be obtained via simulation.

E. Capacity planning for scale-out workloads

Our final use-case is capacity planning for scale. Simula-
tion gives decision-makers the ability to make reliable forward-
looking estimates about the hardware requirements for an
expected workload without acquiring or renting all necessary



1.50 2.00 2.50 3.00 3.50 4.00
1 -‐ -‐ -‐ -‐ -‐ -‐
2 -‐ -‐ -‐ -‐ -‐ -‐
3 -‐ -‐ -‐ -‐ -‐ 0.42
4 -‐ -‐ -‐ -‐ 0.50 0.31
5 -‐ -‐ -‐ 0.66 0.40 0.25
6 -‐ -‐ -‐ 0.56 0.33 0.21
7 -‐ -‐ -‐ 0.48 0.28 0.18
8 -‐ -‐ 0.69 0.42 0.25 0.16
9 -‐ -‐ 0.62 0.37 0.22 0.14
10 -‐ -‐ 0.56 0.33 0.20 0.12
11 -‐ -‐ 0.51 0.30 0.18 0.11
12 -‐ 0.78 0.46 0.28 0.17 0.10
13 -‐ 0.72 0.43 0.26 0.15 0.10
14 -‐ 0.67 0.40 0.24 0.14 0.09
15 -‐ 0.63 0.37 0.22 0.13 0.08
16 -‐ 0.59 0.35 0.21 0.12 0.08
17 -‐ 0.55 0.33 0.20 0.12 0.07
18 -‐ 0.52 0.31 0.19 0.11 0.07
19 0.83 0.49 0.29 0.18 0.10 0.07
20 0.79 0.47 0.28 0.17 0.10 0.06

1.50 2.00 2.50 3.00 3.50 4.00
1 -‐ -‐ -‐ -‐ -‐ -‐
2 -‐ -‐ -‐ -‐ -‐ -‐
3 -‐ -‐ -‐ -‐ -‐ 0.42
4 -‐ -‐ -‐ -‐ 0.51 0.39
5 -‐ -‐ -‐ 0.67 0.48 0.38
6 -‐ -‐ -‐ 0.59 0.47 0.38
7 -‐ -‐ -‐ 0.58 0.47 0.37
8 -‐ -‐ 0.71 0.57 0.46 0.37
9 -‐ -‐ 0.67 0.57 0.46 0.36
10 -‐ -‐ 0.66 0.56 0.45 0.36
11 -‐ -‐ 0.66 0.56 0.45 0.35
12 -‐ 0.79 0.66 0.56 0.44 0.35
13 -‐ 0.75 0.65 0.55 0.44 0.35
14 -‐ 0.74 0.65 0.55 0.44 0.34
15 -‐ 0.73 0.65 0.55 0.43 0.34
16 -‐ 0.73 0.64 0.54 0.43 0.34
17 -‐ 0.72 0.64 0.54 0.43 0.33
18 -‐ 0.72 0.64 0.54 0.42 0.33
19 0.84 0.72 0.64 0.53 0.42 0.32
20 0.80 0.72 0.63 0.53 0.41 0.32

Fig. 5: Parameter-sweep predicts changes in power-efficiency
with increasing node count (y-axis) and workload intensity
(Lognormal arrival, µ on x-axis, σ = 1.0) at the baseline (left)
and with power-aware scheduler (right).

resources (i.e. servers and infrastructure) for testing ahead of
time.

In this set of scale-planning experiments, we run the
simulator as a “parameter sweep” varying both the number
of nodes in the simulation, and the intensity of the workload
(by changing the mean arrival time) independently. Thus each
simulation depicts the behavior of the cloud at a given size for
a given workload intensity. The simulator assumes a scale-out
workload, e.g. 3-tier web applications or MapReduce jobs, and
computes the expected power-efficiency for a given platform
size.

We configure a virtual cluster of nodes with properties
similar to the cluster used as our real-world test bed, but
double their core capacity. The workload is generated from
a lognormal distribution similar to the one we use in our
registration experiments (c.f. Table I). We also set the SLA for
not incurring a power-up delay to be 95% (and the scheduler
achieves this probabilistic SLA in each case). In addition,
because the number of nodes at some point in the parameter
sweep may be insufficient to run the offered load (the cloud is
out of resources), we only report results for the cases where at
least 99% of the simulated VMs were able to run. The power-
up delay for a node is again assumed to be 600 seconds.

Figure 5 shows the mean power efficiency (as computed in
Equation 1) for each combination of intensity and node count.
Node counts on the vertical dimension of the figure correspond
to the number of nodes the cloud has configured. The intensity
value (horizontal dimension) show the value of µ used in each
lognormal parameterization (σ = 1.0 in each case). Parameter-
combinations that fail to achieve the target SLAs are marked
“-” in the figure. Each entry covers a simulated time-frame of
60 days. The left-hand table in Figure 5 shows power efficiency
for different combinations of intensity and cloud size without
the power-optimizing scheduler and the right-hand table shows
the same with the scheduler activated. We use a heat map to
color the efficiency numbers (green for high, red for low) for
each combination.

For example, in the left-hand table, the entry for 19 nodes

with µ = 1.5 corresponds to a power efficiency of 0.83
(colored green). Thus a cloud with 19 nodes experiencing
a workload with lognormal inter arrival times (µ = 1.5,
sigma = 1.0) and lognormal durations (µ = 3.8, σ = 1.0
from Table I) for 60 days would achieve a power efficiency of
0.83 without the power-optimizing scheduler. The same entry
in the right-hand table shows that with 19 nodes and µ = 1.5
the power-optimizing scheduler achieves an efficiency of 0.84.

Unsurprisingly, these results indicate that as the inter arrival
time goes down (smaller values of µ) the efficiencies converge
to a high value both with and without the power-optimizing
scheduler. These extreme cases correspond to the cloud being
“full” almost all of the time leaving little efficiency to be
gained by powering nodes on and off. At the other extreme,
when inter arrival times are larger (large values of µ) the
power-optimizing scheduler has more of an opportunity to save
power. Indeed just looking at the heat map coloration of both
tables shows the trend in efficiency in both dimensions. All
green entries in the regular scheduler are green for the power
optimizing scheduler (it does no harm). In addition, the power-
optimizing is “greener” across all entries and never “red.”

With faster-than-realtime simulation we can perform pa-
rameter sweeps across large ranges of configuration param-
eters, such as cluster size and workload intensity. Due to
the embarrassingly-parallel nature of Monte-Carlo simulation,
parameter-sweeps can be performed anywhere, from a personal
laptop to a group of workstations, with a flexible trade-off
between accuracy and wait time. Initial results are available
within minutes, followed by increasing degrees of confidence
and minimal convergence. The results for this experiment total
at 450, 000 VM starts and 7, 200 days (about 20 years) of simu-
lated time, and were generated on commodity laptop hardware
within 8 hours. This demonstrates the practical ability of this
approach to quickly estimate the impact of different workloads,
additional hardware or new resource-allocation policies.

A core interest of cloud operators is the trade-off between
risking service disruption due to increases in load or the
introduction of new technologies, and unnecessary capital-
and operation-expenses. In our example, the data reveals that
the power manager can be used safely and without negative
impacts on availability, independently of the platform size and
workload intensity. At high levels of utilization its impact is
marginalized, however, which can inform decisions based on
the expected workload and cluster size.

Another insight that can be gained from the parameter-
sweep is the amount of resources required to achieve a
specific target utilization of the cluster (which equals cluster
efficiency of the non-power-aware baseline). In our example,
a mean utilization target of 50% demands 3 nodes for the
light workload (µ = 4.0) and moves up to 4, 7, 12, 19 and
further with increasing workload intensity. Depending on the
workload, the non-linear interactions between utilization and
SLA constraints are hard to estimate analytically or with rules-
of-thumb. Accurate simulation overcomes this limitation and
helps allocate resources efficiently inside and around the cloud.

Monte-Carlo simulation offers a high degree of flexibility
within its defined parameter space. Results can be gener-
ated quickly and refined iteratively. When registered to the
properties of a production cluster, accurate predictions about



efficiency and reliability become possible and help decision-
makers make better trade-offs.

IV. RELATED WORK

Empirical evaluation of distributed systems technologies
has a long tradition in Computer Science. Recently, Gustedt
et al. [20] has classified methodologies and recommends best
practices for performing experimental validation of large scale
systems using real-scale experiments, emulation, benchmark-
ing, and simulation. The authors discuss the importance of ab
initio (high-level, imprecise, easily composable, and extensible
simulation for use in comparative analysis and exploration) and
validated simulation (simulation that produces behavior that
matches that of a real system with low error). Grid research
has spawned multiple simulators, including SimGrid [21] and
GridSim [22]. The former provides validation for some sim-
ulation components, the latter is an ab initio approach. Such
systems are challenging to use for cloud systems since they
lack support for on-demand resource allocation, elasticity, and
other cloud features.

To facilitate cloud research on a broad scale, a se-
ries of domain-specific simulators have been developed by
the community. In particular, CloudSim [9] and Network-
CloudSim [12] allow simulation of large-scale clouds using
an ab initio approach. CloudAnalyst [11] extends CloudSim to
facilitate simulation of globally distributed applications such as
social networks. These simulators model system components
and workloads from the bottom up and compose them into
large-scale configurations. Their approach is very flexible
and extensible, but does not provide the accuracy guarantees
necessary for evaluating production-quality cloud components.
Alternatives allow for real-scale (in-situ) experimentation [23],
[24], but their use is limited for practical reasons (e.g. time,
available cluster size, budgetary constraints).

GreenCloud [10] is a simulator that focuses on exploring
the energy consumption of different datacenter network ar-
chitectures. It builds upon the NS2 [25] network simulator,
and estimates the efficiency of hibernation and power-stepping
strategies for servers and network components. Workloads and
hardware are modeled with differing compute and commu-
nication capacities and, similar to our approach, the authors
consider SLA requirements. GreenCloud inherits network level
accuracy from NS2, but does not consider accuracy of per-node
resource allocation or empirical validation of predictions.

EMUSIM [26] uses emulation of Bag-of-Task applications
to extract performance properties and simulate their behavior
at larger scale more accurately. An evaluation step ensures
that emulation and simulation agree at observable scales.
We similarly obtain empirical measurements at small scale
and scale them up in simulation. In contrast, our approach
focuses on cloud infrastructure components (not individual
applications) and makes predictions about the utilization and
resource-use of the cloud as a whole.

RC2Sim [27] is an integrated simulation and emulation
environment for testing of production-quality cloud manage-
ment code. It provides a compatible web API and emulates
distributed operations, such as file transfers and remote shell
access, on a single physical machine. This prior work focuses

on functional testing of code rather than, as we do in this paper,
on accurate simulation of resource-usage and execution time.

DCSim [13] simulates IaaS clouds with a specific focus on
dynamic power- and SLA-optimization. The authors use tiered
scale-out-type workloads and evaluate the advantage of VM
migration and replication strategies over static provisioning.
Similar to our work, they consider node power states and
transitions, but do not perform an empirical evaluation of the
simulation results.

GDCSim [14] addresses the thermal aspects of power-
management in data centers by integrating existing models.
Specifically, It investigates the interaction of workloads and
resource management policies with heat dissipation and fluid
dynamics of different physical data center layouts. Empirical
validation of predictions is left for future work.

MDCSim [28] uses detailed models and hardware speci-
fications to simulate the impact of networking infrastructure
on web applications. The authors augment their simulation
model with workload characteristics obtained from real-world
measurements and make accurate, empirically validated, pre-
dictions about latencies for the RUBiS benchmark. The work
is similar to ours in terms of allowing trustworthy capacity
planning, but targets 3-tier web applications instead of generic
IaaS cloud infrastructures.

Research in data center power-efficiency [29], [30], [31]
predates the call for power-proportional computing [32], but
has gained substantial traction and public interest since [33].
Recent work in datacenter power efficiency is surveyed by [34]
and illustrates the significant potential of energy- and cost-
savings via pro-active power-management. The power-aware
scheduler that we implement in this paper, was originally
proposed in [17]. It uses a quantile predictor to estimate
the number of hot spares needed to maintain a configurable
responsiveness SLA. We also gained insights about the specific
workloads in private clouds (which we use to drive our syn-
thetic workload generation) from our previous work described
in [19].

V. CONCLUSION

Simulation plays a key role in performing experimental
exploration into large scale systems. As such, simulation has
significant potential for facilitating research and experimen-
tation with cloud computing infrastructures. Cloud research
is important for advancing the state of the art in cloud per-
formance, scale, energy efficiency, and fault tolerance, among
other features. However, the wide spread use and commercial
viability of cloud computing requires that simulated results be
sufficiently trustworthy (accurate) to ensure adoption in pro-
duction settings and to justify the engineering effort required to
achieve production levels of performance and reliability. Extant
simulation systems typically trade off validation and accuracy
for configurability and exploratory power, through the use of
ab initio techniques that facilitate comparative evaluation of
cloud components and application behavior.

In this work, we present a new methodology for facilitating
trust in the simulation of cloud components through the use
of a tool employed in the physical sciences for simulation
called perturbation theory. Using this methodology, we derive



a parsimonious model from a real cloud infrastructure (in our
case a Eucalyptus private cloud) for the cloud component under
study (in our case a scheduler). We then perturb the model
using statistical sampling to represent unmodeled behavior to
facilitate simulation speed and scaling. We incrementally add
parameters (component inputs) to the model (incorporating key
unmodeled behavior) until we achieve an acceptable level of
accuracy for the component, relative to the real system. It
requires, however, that we have access to a production-quality
cloud that we can interrogate and validate against.

We find that this perturbation approach achieves high
accuracy for simulating an existing system and works well for
evaluating the resource efficiency of cloud schedulers. As such,
we use the derived simulation model to rapidly implement and
evaluate a new power-aware cloud scheduler and investigate its
performance in a number of scaled (larger size and faster than
real time) experiments for capacity planning.
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