
Inducing JIT-Based Side Channels
for Inferring Predicates about Secrets

Tegan Brennan, Nicolás Rosner and Tevfik Bultan
University of California Santa Barbara

{tegan, rosner, bultan}@cs.ucsb.edu

Abstract—Side-channel vulnerabilities in software are caused
by an observable imbalance in resource usage across differ-
ent program paths. In this paper we demonstrate that just-
in-time (JIT) compilation, which is crucial to the runtime
performance of modern Java virtual machines (JVMs), can
be leveraged to induce timing side channels. We present a
technique for creating dynamic, JIT-based side channels and
using them to learn values of predicates about secret inputs.
Our technique includes a mechanism for priming the state of the
JVM to trigger certain runtime JIT optimizations. The timing
of subsequent method calls then leaks information about the
values of predicates (branch conditions) on inputs. We define
two attack models and five vulnerability templates based on
the optimizations performed by state-of-the-art JIT compilers.
Applying these templates to Java methods gives rise to various
types of runtime-behavior-dependent side-channel vulnerabilities.
We use symbolic execution to automatically generate input values
that prime the JVM into states that foster such vulnerabilities.
We evaluate our technique on three widely used classes from
the Java standard library: java.lang.Math, java.lang.String, and
java.math.BigInteger. We show 18 attempts to induce JIT-based
vulnerabilities, including successful and unsuccessful ones, and
discuss the results in detail. The significant amount of information
leakage achieved demonstrates the viability and potential of this
class of attacks.

Index Terms—program analysis, side channel analysis, just-in-
time compilation.

I. INTRODUCTION

Cyber-attacks stealing confidential information are becom-
ing increasingly frequent and devastating as modern software
systems store and manipulate greater amounts of sensitive
data. Leaking information about private user data, such as
the financial and medical records of individuals, trade secrets
of companies and military secrets of states can have drastic
consequences. Although programs that have access to secret
information are expected to protect it, many software systems
contain vulnerabilities that leak information.

By observing non-functional side effects of software sys-
tems such as execution time or memory usage, side-channel
attacks can capture secret information. Though side-channel
vulnerabilities have been known for decades [1], they are
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public bool check(String guess) {
for(int i=0; i<guess.len; i++) {
if (guess[i] != password[i])
return false;

}
return true;

}

public bool check(String guess) {
bool flag=true, fakeFlag=true;
for(int i=0; i<guess.len; i++) {
if (guess[i] != password[i])
flag = false;

else
fakeFlag = false;

}
return flag;

}

Fig. 1: A naive password-checking method and a “fixed” one.

still often neglected by software developers. They are com-
monly thought of as impractical despite a growing number
of demonstrations of realistic side-channel attacks that result
in critical security vulnerabilities [2]–[4]. For instance, ex-
ploitable timing channel information flows were discovered
for Google’s Keyczar Library [5], the Xbox 360 [6], imple-
mentations of RSA encryption [2], and the open authorization
protocol OAuth [7]. These vulnerabilities highlight the need
for preemptive discovery of side channel vulnerabilities and
their removal from software.

In this paper we present a new type of side-channel vulnera-
bility that is due to optimizations introduced by Java’s just-in-
time (JIT) compilation mechanism. JIT compilation is present
in all modern Java Virtual Machine (JVM) implementations,
and is crucial to the performance of Java programs. We show
that, if an attacker is able to repeatedly execute a method on a
JVM, she can use this capability to trigger JIT optimizations
that reduce the execution time of certain execution paths in
the method. This enables the attacker to infer predicates about
secret inputs passed to the same method. In particular, the
attacker can infer values of predicates that correspond to
branch conditions in the method body.

Consider the naive password-checking algorithm shown in
Figure 1 (left). The guess and a secret password are compared
character by character. As soon as there is a mismatch, the
algorithm returns false. This early return results in a timing
side channel that enables an observer to correlate the execution
time of the method with the number of characters matched.

A security-conscious developer might decide that, since the
method handles sensitive data, it is worth sacrificing the early
return in exchange for a more secure function. They might
propose a method like the one shown in Figure 1 (right). In this
new version of check, an equal amount of work is performed
regardless of the length of the matching prefix.



(a) With JIT enabled (b) With JIT disabled

Fig. 2: Execution time of the “fixed” check method.

The side-channel vulnerability appears to have been fixed in
the new version of the code. However, the source code written
by the developer is not the only factor impacting the execution
time of program paths. The runtime environment itself can
introduce timing side channels into deceptively secure-looking
code fragments when it attempts to optimize paths that it
deems “hot”. For example, the JVM tracks how often each
branch of a conditional branch instruction is taken, and uses
this information when JIT-compiling a method to generate
native code favoring the more frequent branch. If an attacker
is guessing potential passwords randomly, the probability of
missing is much higher than that of matching something.
As a result, the then branch heats up, and JIT introduces a
timing side channel into the supposedly “fixed” version. Fig-
ure 2a depicts the clear separability of the method’s execution
time distributions when the first character misses (optimized
branch) and when it correctly guesses (non-optimized branch)
the first character of the password. Figure 2b shows how the
side channel disappears when JIT is disabled.

The art of inducing JIT-based timing side channels is not
easy to master due to the complex and subtle interactions
between different kinds of JIT optimizations, the presence of
noise in execution timing, and the imperfect control that an
attacker may have over the state of the JVM. In this paper
we present a systematic approach for inducing JIT-based side
channels that leak the value of a predicate on secret inputs.

Given a method m and a predicate φ in the body of m, our
approach consists of four steps:

1) Profiling: We repeatedly run m on an input value that
causes the φ branch to be taken, and on one that causes
the ¬φ branch to be taken. This enables us to measure
the effect of JIT optimizations on execution time.

2) Priming: We run m repeatedly with the same input
value to induce JIT optimizations.

3) Timing: We time the execution of m for a particular
input value.

4) Inference: Based on the timing profile learnt during the
profiling phase and the execution time value that we
observed during the timing phase, we infer the value of

the predicate φ for the secret input.

We demonstrate that this approach can be used to construct
two kinds of JIT-based side-channel attacks. In one class of
attacks that we call volatile-secret attacks, we assume that
we are able to repeatedly trigger execution of m on an input
of our choice, but we can trigger the execution of m on the
secret input only once. In another class of attacks that we
call persistent-secret attacks, we assume that we are able to
repeatedly trigger execution of m on the secret, and that we
can trigger its execution at least once on an input of our choice.

We induce the JIT attacks outlined above by leveraging
various JIT optimizations. We identify several vulnerability
templates, each one based on exploitable JIT optimizations.
These templates help us identify branch instructions in the
body of m that are amenable to JIT-based attacks, and provide
a recipe to find the right priming parameters for each case.

We implement the approach discussed above and apply it
to widely used classes from the Java standard library. We
use symbolic execution to generate suitable priming values
for our experiments. Since the timing distribution of different
execution paths can overlap, we may not always reach full
certainty about the value of the predicate, even if we induce a
strong side channel. We use the conditional entropy between
the timing information and value of the predicate to quantify
how much information is leaked about the predicate. Our
experiments demonstrate that JIT attacks are feasible for many
library functions from said classes, and show how a malicious
user can learn values of predicates about secret inputs using
JIT-based attacks.

Our contributions in this paper are:

• Definition and demonstration of a new class of timing
side-channels based on JIT optimizations.

• Two attack models for learning predicates about secret
inputs based on JIT-borne side channels.

• Five vulnerability templates to identify code fragments
amenable to JIT attacks and to guide the process of
inducing them.

• Techniques to induce JIT-based side channels and infer
predicate values based on them.

• Experimental evaluation of JIT-based side channels on
widely used methods in Java standard library.

The rest of the paper is organized as follows: In Section II
we review Just-In-Time compilation for Java. In Section III we
present our technique for inducing JIT-based side channels. In
Section IV we describe our implementation and experimental
setup. In Section V we discuss the results of our experimental
evaluation. In Section VI we discuss related work. In Sec-
tion VII we present our conclusions and ideas for future work.

II. JUST-IN-TIME COMPILATION OF JAVA BYTECODE

In this section we review the essential characteristics of the
Java Virtual Machine and its Just-In-Time compilation mecha-
nism. We describe the main JIT optimizations leveraged in our
work, and provide references to further technical information.



A. Java and the HotSpot Java Virtual Machine

The Java platform includes the Java Language Specification
and the Java Virtual Machine Specification [8]. The official
reference implementation of the JVM Specification is the
HotSpot virtual machine [9] that we use in this work. HotSpot
was started by Sun [10] and is now maintained by Oracle.
Since 2006, its codebase is open source through the OpenJDK
project [11]. There are only a few subtle differences between
the Oracle and OpenJDK development kits, and no significant
differences between Oracle HotSpot and OpenJDK HotSpot.

The javac tool compiles Java source code to Java bytecode,
which is then executed by the Java virtual machine. Executing
bytecode requires translating it to native machine code for the
platform at hand (e.g., Intel x86). The easiest way to achieve
this is interpretation, i.e., translating bytecode instructions to
native instructions as they are encountered, which is simple
but results in slow performance. When a method is costly and
executed often, it may make economic sense for the virtual
machine to take a moment and permanently compile it into
optimized, reusable machine code that will run faster.

B. Just-In-Time (JIT) compilation

Based on the general observation that most of the execution
time is typically spent executing a small fraction of the code,
the HotSpot JVM uses runtime profiling to detect “hot spots”
that are worth feeding into an optimizing compiler. In fact,
modern versions of the JVM attempt to dynamically adjust
the optimization level (and thus the compilation overhead) of
each method in order to maximize the return on investment.

The client-mode JIT compiler (C1) is a fast bytecode-to-
native compiler that only performs a small set of lightweight
optimizations. It thus minimizes compilation overhead at the
expense of runtime efficiency. It was originally designed for
the “client” flavor of the JVM, which favors fast launch times.

The server-mode JIT compiler (C2) is a slow, but highly
optimizing bytecode-to-native compiler that performs a wide
spectrum of costly optimizations. Originally designed for the
“server” JVM [12], it generates the fastest native code at the
expense of higher compilation time and memory overheads.

Starting with Java 7, the JVM supports tiered compilation
mode, which combines the best of both modes. In the server
mode, the VM used the bytecode interpreter to collect profiling
information about each method. In tiered mode, the VM uses
the C1 compiler to generate compiled versions of methods that
collect profiling information about themselves. Based on that
information, it may decide to recompile a method with the C2
compiler. C1-compiled code is much slower than C2-compiled
code, but substantially faster than interpreted code; thus, the
tiered VM runs the program faster during the profiling phase.
The tiered scheme offers quick startup times like client mode,
and can also achieve better peak performance than server-only
mode because the faster profiling phase allows a longer period
of profiling, which may result in better optimization [13]. In
tiered mode, the C1 and C2 compilers are used as the basis
of a scheme that includes five tiers (levels of compilation)
ranging from purely interpreted (L0) to fully optimized (L4).

C. Main JIT compilation techniques exploited in this work

The JIT compilation scheme includes many techniques and
optimizations. In this section we briefly describe those that
constitute the basis for the vulnerability templates that we will
present in Section III.

1) Method compilation: The HotSpot compilation policy
relies on runtime profiling metrics and makes runtime de-
cisions. One of the main factors that affect when and how
methods are compiled are the method invocation counters that
track how often each method is invoked. When the appropriate
thresholds are reached [14], the method may be scheduled
for compilation, or for recompilation at a higher tier. Another
factor that can promote the [re]compilation of a method are
back-edge counters that track how often backward jumps
(typically associated with loops) are taken.

2) Branch prediction: JIT branch prediction uses counters
to track how often each branch of a conditional branch instruc-
tion is taken. When a method is compiled, this information is
exploited to generate native code where the most frequently
taken branch appears first, thus avoiding a jump instruction.
The savings are amplified in the case of loops. Although this
optimization is independent of CPU-level branch prediction,
it can achieve positive synergy with it.

3) Optimistic compilation: When a method is C2-compiled,
if the counters show a heavy enough bias toward one side of a
conditional, the other branch is not compiled at all—its code
is simply removed. The resulting optimized code assumes that
the rarely-taken branch will never be taken, and the missing
code is replaced by a trap that is triggered if the rare branch
is taken. This is known as an uncommon trap. If and when
the rare branch is taken, the uncommon trap handler must de-
optimize the method and replace the optimistically compiled
version with a more conservative, slower version.

4) Method inlining: If a method is deemed small enough, it
may be inlined into its callers, thus avoiding the overhead of
a method call. This deceptively simple-looking optimization
is in fact one of the most complex ones in the scheme, as it
interacts with others in nontrivial ways. For instance, when m
calls m′, inlining m′ into m can impact ulterior optimizations
of m, and the same effect may cascade to deeper levels. While
none of our exploits is based solely on inlining, we do use this
optimization in combination with other ones (see Section V).

5) Other optimizations: HotSpot JIT compilation features
many other optimizations, e.g., loop unrolling, escape analysis,
dead code elimination, etc. Some are essentially akin to those
present in modern static optimizing compilers, while many
others are truly adaptive in nature and can only be performed
in a context where they may be de-optimized as needed. For
further details we refer the reader to the documentation [9].

III. ATTACK MODELS AND TEMPLATES

In this section we present our techniques for inducing JIT-
based side channels. We introduce the volatile-secret and the
persistent-secret attack models. Each model comprises a set
of assumptions that stipulate what actions can be triggered by



the attacker, which input arguments are controllable, and what
can be timed.

Given an attack model, JIT-based vulnerabilities could be
manually crafted in countless ways by exploiting peculiarities
of the code under test and complex combinations of multiple
optimization types. To systematize the process of inducing
vulnerabilities and render it more amenable to automation we
present several vulnerability templates. The templates capture
the necessary code patterns for each kind of vulnerability, and
provide a recipe for inducing it.

A. Branch instructions and associated predicates

Let m be a Java method that contains at least one condi-
tional branch instruction. In the simplest terms, selecting a
branch instruction for dynamic side-channel analysis amounts
to selecting an if statement. In practice, many Java constructs
give rise to branching behavior: conditional statements like if
and switch, expressions like c ? x : y, the guard conditions of
while and for loops, etc. When translated to bytecode, such
constructs give rise to conditional branch instructions.

A conditional branch instruction has an associated predicate
φ, which is the branch condition expressed in terms of the
input. The path of execution up to the branch instruction can
be characterized with a path constraint π. Thus, an input to
method m satisfies π∧φ if and only if it reaches the conditional
branch instruction and takes the then branch, and it satisfies
π ∧ ¬φ if and only if it reaches the instruction and takes the
else branch. In contexts where no ambiguity arises, we refer to
the conditional branch instruction by its associated predicate.
We address the problem of introducing JIT-based side-channel
vulnerabilities that enable an attacker to learn the value of the
predicate φ on an input to method m.

B. The volatile-secret attack model (VSAM)

The first model we introduce is the volatile-secret attack
model (VSAM). In this model, we assume that we can
repeatedly trigger m on an input value of our choice and
time a single subsequent call to m on a secret value s. Our
goal is to infer whether s does or does not satisfy φ. To
improve our chances of success, we leverage our ability to
repeatedly trigger m on a value of our choice to prime the
JVM. By priming we mean the action of repeatedly executing
m with inputs that exercise certain paths with respect to φ,
in an attempt to “heat up” the JVM. The goal of our priming
under VSAM is to encourage the JVM into a state where the
execution time of the call to m on s is correlated with the
value of the predicate φ on s. This is done by choosing a
priming value to induce heavier optimization on one branch.

Inferring the value of φ on s from the execution time of
the call to m requires developing a statistical profile of the
execution times of m for both values of φ after priming
with a chosen priming value. This in done in our profiling
phase. Developing a statistical profile also benefits us twofold.
First, time measurements are affected by nondeterminism from
various sources, from the inevitable system noise to minor
variations in runtime decisions made by the JIT compiler

as to which optimizations to apply and in what order. The
statistical nature of the profile allows us to effectively handle
such noise. Secondly, the assumption that the attacker has
complete control over the JVM is often unrealistic. When
we build a statistical profile, we can simulate an environment
where some proportion of triggers of m is outside the control
of the attacker. By priming with an α distribution (with respect
to φ) we mean priming m with inputs that will exercise one
branch (φ) with probability α, and the other branch (¬φ) with
probability 1−α. When we build a statistical profile, we will
prime with α < 1 to simulate an environment where m is
occasionally triggered on some input exercising the opposite
path to the one we have chosen to heat up.

Using this profile, we are able to make an inference about
the value of φ on s from the execution time of the call to m.

The pseudocode in Algorithm 2 outlines the above process.
Here, the two priming input values pφ, p¬φ are chosen such
that (a) both reach the conditional branching instruction of
interest and (b) pφ takes the φ branch whereas p¬φ takes the
¬φ branch. The test values tφ and t¬φ are chosen from the set
of possible secret values taking the φ branch and the ¬φ branch
respectively to generate representative timing information for
a secret value taking the corresponding branch. The priming
amount n is the total number of calls to the method m in
the PrimeAndTime subalgorithm (see Algorithm 1) and the
profiling amount N is the number of times the priming and
then timing subroutine is repeated during profiling in order to
generate a statistical profile robust to noise.

Choice of priming input: The choice of input used for
priming can greatly impact the success of correctly inferring φ
on s. In particular, choosing pφ, p¬φ, tφ, and t¬φ to satisfy the
same path constraint π leading to φ as s improves the chances
that our statistical profile accurately models the execution
time information we might receive from a call to m on s.
We describe in Section IV-B how we can choose values for
pφ, p¬φ, tφ and t¬φ intelligently if we assume we know the
path constraint π of s. Likewise, knowing certain properties of
the execution of m on s after φ has been passed and choosing
tφ and t¬φ to match those when possible also improves our
probability of determining the value of φ on s. Though both
of these seem to be strong assumptions, in our experimental
section we argue that they can often be satisfied in practice.

C. Vulnerability Templates for VSAM

We provide a series of vulnerability templates for the
purposes of easy identification of code susceptible to a JIT-
based side channel and for systematic understanding of the
parameters necessary for the side channel to be exploitable
under VSAM.

Each vulnerability template has

• a particular kind of optimization that it exploits (e.g.,
optimistic method compilation)

• a code pattern, e.g., that a method m′ must be called
somewhere in one branch of φ and may not be called in
the other branch



• a recipe that guides the search of suitable parameters for
priming: what distribution to use, how to determine the
number of iterations, etc.

1) Branch prediction (TBRAN): This template exploits the
JIT branch prediction mechanism, which generates slightly
more efficient native code by placing the branch that is taken
more often first, thus reducing the number of jump instructions
(see II-C2). This template can be applied to any conditional
statement, but the imbalance that it introduces is small, so
that it may only be observable in some kinds of methods.
This template works best in situations where the conditional
is enclosed in a loop (which amplifies the small difference),
or in small methods, where the small difference achieved is
significant w.r.t. the cost of the rest of the method. The amount
of priming must be sufficiently high that JIT deems generating
the more efficient native code a worthwhile effort. Additionally
we must control a high enough fraction of the calls to m to
ensure that the ratio of choices made at φ is biased in favor
of our priming input.

2) Optimistic method compilation (TOPTI): This template
exploits the optimistic compilation mechanism (see II-C3),
a much more aggressive flavor of branch prediction which
does not even generate the code for the uncommon branch.
More precisely, it exploits the fact that when the uncommon
branch is taken, the method is de-optimized. Our priming
needs to ensure that (a) the method is called enough times to be
compiled at the C2 level, and that (b) by the time that happens,
the conditional of interest has been taken in one direction the
vast majority of the times it has been executed. This template
is applicable to any branch conditional where the choice on φ
means that some instructions are never executed.

3) Method compilation (TMETH): This template exploits
the difference in speed of execution between interpreted and
compiled (or between C1-compiled and C2-compiled) code. It
requires that the selected conditional in method m performs
a call to some other method m′ in one of its branches, but
not in the other one. Priming must ensure that the branch that
calls m′ is executed a sufficiently high number of times, so
that m′ is compiled to a faster version. The speeding up of
m′ thus causes an observable imbalance in the timing of m.

D. The persistent-secret attack model (PSAM)

The second model we introduce is the persistent-secret
attack model. In this model, we assume that we can repeatedly
trigger m on a secret value s and time a single subsequent
call to m on a value t of our choice. Our goal is again to
infer whether s does or does not satisfy φ. As in VSAM,
we prime the JVM to increase the probability that we can
correctly infer the value of φ on s. In PSAM the priming
input is the secret value s. We choose a priming amount n
and a test value t such that the execution time of m on t after
priming with n triggers to m(s) will reveal information about
the value of φ on s. For this to be the case, the optimizations
induced by priming with a value taking the φ branch must be
different from those induced when priming with a value from
the ¬φ branch. Additionally, these differences must result in

observably different execution times of the m(t) call between
the two kinds of priming values.

We develop a statisical profile to reliably perform inference
when presented with the execution time of the method m
on t after priming with the unknown value s. We choose
two priming inputs pφ and p¬φ executing the φ and ¬φ
branches respectively and generate a statistical profile of the
execution time of m on t for both priming inputs. Once again,
we introduce the ratio α to simulate an environment where
some triggers to m are outside of the attacker’s control. The
profiling and subsequent inference specific to PSAM is given
in Algorithm 3. The strong assumption we make is that the
timing profile generated using pφ and p¬φ is representative of
what we can expect to see when priming using s. As in VSAM,
this assumption becomes more believable if we assume that
the path constraint π of pφ and p¬φ matches that of s.

input : n (priming amount), α (priming ratio),
pmore, pless (priming inputs), t (test input)

output: timing in nanoseconds of the last call to m

PrimeAndTime(n, α, pmore, pless, t)
numItersBothSides ← 2(n− n · α);
numItersRemaining ← (n − numItersBothSides);
for i← 1 to numItersBothSides do

if i is odd then
trigger m(pmore);

else
trigger m(pless);

end
end
for i← 1 to numItersRemaining do

trigger m(pmore);
end
timingOfTestInput ← time m(t);
return timingOfTestInput;

Algorithm 1: PrimeAndTime pseudocode

input : N (profiling amount), n (priming amount), α (ratio),
pφ, p¬φ (priming inputs), tφ, t¬φ (dual test inputs)

unknown: s (secret)

vφ, v¬φ ← two empty vectors to store timing profiles;
for i← 1 to N do

vφ.append( PrimeAndTime(n, α, pφ, p¬φ, tφ) );
end
for i← 1 to N do

v¬φ.append( PrimeAndTime(n, α, pφ, p¬φ, t¬φ) );
end
timingOfSecretInput ← PrimeAndTime(n, 1.0, pφ, null, s);
leakageEstimation ← InferPredicate(vφ, v¬φ, timingOfSecretInput);

Algorithm 2: VSAM attack pseudocode

E. Vulnerability Templates for PSAM

All vulnerability templates that apply to VSAM are appli-
cable to PSAM as well. Additionally:

1) Self-compilation via back-edge counters (TSELF): This
template exploits method compilation due to back-edge coun-
ters rather than method invocation counters (see II-C1). It
does not require m to call another method m′. Instead, m
itself is (or is not) compiled (or is compiled to a different
level of optimization) depending on whether the back-edge



input : N (profiling amount), n (priming amount), α (ratio),
pφ, p¬φ (profiling priming inputs), t (single test input)

unknown: s (secret)

vφ, v¬φ ← two empty vectors to store timing profiles;
for i← 1 to N do

vφ.append( PrimeAndTime(n, α, pφ, p¬φ, t) );
end
for i← 1 to N do

v¬φ.append( PrimeAndTime(n, α, p¬φ, pφ, t) );
end
timingOfSecretPriming ← PrimeAndTime(n, 1.0, s, null, t);
leakageEstimation ← InferPredicate(vφ, v¬φ, timingOfSecretPriming);

Algorithm 3: PSAM attack pseudocode

counters are sufficiently high. This method is exploitable when
φ impacts the number of back edges (jumps to previous code)
traversed. This is commonly due to φ impacting the number
of iterations of a loop. The priming amount must be chosen
to induce the difference between the optimization level of m
according to the two priming scenarios. The ideal test value t
for this vulnerability template is one for which the method m
is expensive – making the difference in execution time between
its differently compiled versions more apparent.

2) Method compilation with timing of the inner method
(TMETH-TI): This template is an extension of the TMETH
template of VSAM. This template applies to any branch
instruction where a method m′ is called more frequently in
one branch of φ than the other. The case where m′ is never
called in one branch is an extreme case of this scenario. The
priming amount is chosen so that the level of compilation of
m′ is different across the two priming scenarios. The ideal test
value for this case is one in which calls to m′ are expensive.
Under an additional assumption that the attacker can call and
directly time m′, she can obtain the execution time of m′

without interference from the rest of method m. This enables
more reliable inference.

IV. IMPLEMENTATION AND EXPERIMENTAL SETUP

In this section we describe our experimental subjects, setup,
and decisions made with respect to experimental evaluation.

A. Source of experimental subjects

We evaluated our technique on the java.math.BigInteger,
java.lang.Math and java.lang.String classes from the Java
standard library (JDK 8, rev. b132) [15]. We removed methods
with no conditional branches, native methods which are not
written in Java, duplicates except for minor type differences
(e.g., float vs. double), and some which, though not literal
duplicates, had essentially isomorphic control-flow structures.
For the remaining methods we applied our technique and chose
branch instructions that satisfied the most relevant templates.
In the following sections we present a selection of our results
featuring the cases (both successful and unsuccessful) that we
found most interesting and relevant.

B. Using symbolic execution to find priming inputs

Let m be the method under analysis. Suppose a conditional
branch instruction within m with predicate φ is selected per

TABLE I: Priming distributions used in our experiments

VSAM α-ratio PSAM α-ratio

TOPTI 0.998 0.998
TMETH 0.950 0.950
TBRAN 0.900 0.950
TSELF n/a 0.950

one of the templates. To evaluate our approach we need to
generate suitable priming input values for m that reach φ.

In particular, as explained in Section III, we want to generate
a pair of priming input values for m that share a common
execution path prefix until they reach φ. More precisely, we
want to find a path constraint π that leads to φ, and for which
there exists a pair of input values 〈pφ, p¬φ〉, both satisfying
π, such that pφ satisfies π ∧ φ, and p¬φ satisfies π ∧ ¬φ.

Finding these manually can be a tedious and error-prone
process. It is desirable to automate priming input generation,
which significantly speeds up the task of exploring multiple
methods and multiple predicates within them to find instances
of vulnerability templates. We use the Symbolic PathFinder
(SPF) [16] tool to symbolically execute the Java method under
analysis. The tool runs m on symbolic inputs that represent
multiple possible concrete inputs. Variables are represented
as constraints which are solved using the Z3 constraint solver
[17]. During SPF’s exploration of the symbolic execution tree,
we listen to the events as they occur and look for a path that
simultaneously satisfies the aforementioned conditions. Note
that this is not just a matter of reaching φ: backtracking may
be needed even after reaching φ, for instance, if a candidate
π is found for which one branch is satisfiable but the other
one is not. If a suitable path is found, we immediately end the
symbolic exploration and save the path constraint π, its two
extensions π∧φ and π∧¬φ, and a pair of witnesses 〈pφ, p¬φ〉
that can be used as input values for priming.

C. Computing information leakage via conditional entropy

For each experimental subject we ran 1000 iterations and,
on each iteration, we primed the system as described in each
of the next subsections and timed the subsequent call to the
method under test. From this data we computed the conditional
entropy between the value of the predicate and the observed
timing distribution. This tells us how many bits of information
about the value of φ(s) we can expect to be leaked from a
single time measurement. Since the value of φ encodes one bit
of information, a conditional entropy value of 0.0 means no
leakage, whereas 1.0 means that we can determine the value
of φ(s) from one timing observation with complete certainty.

D. Using priming distributions to simulate noisy triggering

As discussed in Section III-B, the α ratio is an experimental
parameter to account for the fact that, in a realistic scenario,
we may not have exclusive control over the state of the JVM.
Table I shows the distributions that we associated with each
template under each model.



E. VSAM experiments

For VSAM cases, we used SPF to generate two witnesses
for priming. We then generated two sets of possible secret
inputs satisfying the same path constraint π as the witnesses.
The secret inputs in the first set execute the π ∧φ path, while
those in the second set take the π ∧ ¬φ path. We primed the
JVM with the SPF-provided witnesses using the priming ratio
α indicated by the template.

For TMETH and TOPTI cases we determined the number of
priming iterations as follows: Starting with an initial guess, use
the JITWatch tool [18] to determine whether the optimization
has occurred. If not, increase the number of iterations until it
does. For TBRAN cases we tried priming {1000, 10000, 50000,
100000} times and kept the value that maximizes leakage.

For evaluation, we repeated the following 1000 times. We
primed the system as described above, then timed a call to
the method on a randomly chosen secret value executing the
φ branch. Then we performed another 1000 iterations of the
experiment, now timing a call to the method on a randomly
chosen secret value executing the ¬φ branch. From this data
we computed the leakage as explained in IV-C.

In addition to the aforementioned, we also re-executed all
experiments (and recomputed the leakage each time) for the
following three priming scenarios:

1) Reversed priming: We re-ran all experiments with a ratio
α = (1−α) instead of α. In other words, if the φ branch was
the one more heavily primed in the original experiment, the ¬φ
branch now is, and vice versa. This evaluates whether priming
more strongly in favor of that particular branch is critical to
the success of the technique for that experimental subject, or
whether either of the two branches would suffice.

2) Even priming: We re-ran all experiments with a fixed
ratio α = 0.5, i.e., the same amount of priming on both
branches. This evaluates the importance of the imbalanced
priming ratio in introducing side channel, as opposed to the
more general, overall heating up of the whole method.

3) No JIT: We re-ran all experiments with JIT disabled.
This evaluates the existence of a static (traditional, source-
code level) side-channel vulnerability, which our use of JIT
could augment or mitigate. We still used a fixed, very small
amount of even priming (50 calls on each branch) to avoid
artificial noise from initial class/method loading delays.

F. PSAM experiments

For cases evaluated under PSAM, we again used symbolic
execution to generate two witnesses for priming. We made the
assumption that the results of priming with a given witness are
representative of the results of priming with any value from the
same equivalence class as that witness, that is, any value that
satisfies the same path constraint as the witness and executes
the same branch of φ.

For each case, we determined the number of priming
iterations in the same way as for VSAM (see IV-E), starting
with an initial guess and using JITWatch to guide the search.

For evaluation, we repeated the following experiment. We
primed the system (with priming parameters obtained as

described above) in favor of the witness for the φ branch,
and then timed a subsequent call on a chosen test input t.
We manually chose t such that the difference between the
optimization levels after the two types of priming would be
observable. We experimented again by priming the system
with the same parameters as before, but in favor of a witness
for the ¬φ branch, and then timed a subsequent call on the
same test input t. Each experiment was repeated 1000 times.
From this data we computed the leakage as explained in IV-C.

G. Hardware setup

All experiments were run on a computer equipped with an
Intel i5-6600K CPU at 3.50 GHz and 32 GB of RAM running
Ubuntu Linux 16.04 (Linux 4.4.0-103) and the Java 8 Platform
Standard Edition, version 1.8.0_162, from OpenJDK.

V. EXPERIMENTAL RESULTS

Table II and Table III summarize our results for VSAM and
PSAM, respectively. For each set of experiments we report the
method name, location of the selected branch instruction in the
class source code [15] (rev. b132), the template that was used,
other templates (if any) that also arose accidentally, and the
priming parameters used. For VSAM and PSAM we report
the amount of information leaked about the predicate value.
For VSAM we also report the information leakage of three
additional experimental sets (reversed priming ratio α, even
priming, and JIT disabled) as described in Section IV-E.

A. Inferring the value of a predicate

Inferring the value of a single predicate about a secret may
seem less informative than extracting the whole secret itself.
Nevertheless, examples of the predicates that we inferred in
our experiments show how they pose real security threats. For
example, in BigInteger.min, Math.max, and Math.min, we
learn which of two inputs is larger. When one of these inputs
is secret and one is controllable, this enables a binary search
attack to find the value of the secret! Similarly, the predicate
in the String.equals, String.compareTo, and String.startsWith
cases denotes whether the first characters of two different
strings match. If similar code is used in a login module,
an attacker could exploit the side channels that we induce
to determine the first character of a secret password. The
side channel could then be iterated to continue inferring the
password character by character.

B. Assumptions on path constraints

We evaluate the VSAM cases with secret test values that
share the same path constraint as the priming values. In
general, the assumption that the secret will share the same path
constraint as the priming value is a strong one. However in our
experiments, this assumption often amounted to ensuring that
the input satisfies certain sanity checks. For example, that the
input is not null; that it is not an extreme value such as NaN,
positive or negative infinity; or that the length of two strings
being compared is equal. Satisfying such conditions was
commonly the only requirement for the inputs to have the same



TABLE II: Experimental results for VSAM

Method Branch Template Priming Priming Leakage Leakage Leakage Leakage
name instruction (applied, arisen) amount ratio (α) under α under α 0.5 | 0.5 w/o JIT

java.math.BigInteger
min line 3477 TOPTI 100,000 0.998 1.00 1.00 0.02 0.06
valueOf line 1085 TBRAN 10,000 0.900 0.52 0.16 0.10 0.03
shiftLeft line 2908 TMETH 10,000 0.950 0.99 0.95 0.75 0.79

java.lang.Math
max line 1316 TBRAN 10,000 0.900 0.28 0.25 0.04 0.03
ulp line 1443 TMETH 50,000 0.950 0.05 0.05 0.02 0.25
nextAfter line 1926 TOPTI 100,000 0.998 1.00 0.89 0.02 0.03
min line 1350 TOPTI 100,000 0.998 0.03 0.01 0.02 0.03

java.lang.String
equals line 976 TOPTI, TBRAN 100,000 0.998 0.44 0.04 0.12 0.04
compareTo line 1151 TOPTI 100,000 0.998 0.99 0.03 0.02 0.20
startsWith line 1400 TBRAN 1,000 0.900 0.46 0.16 0.21 0.25

TABLE III: Experimental results for PSAM

Method Branch Template Priming Priming Leakage
name instruction (applied, arisen) amount ratio (α) under α

java.math.BigInteger
mod line 2402 TMETH 10,000 0.950 0.33
mod line 2402 TMETH-TI 10,000 0.950 1.00
and line 3054 TSELF 500 0.950 1.00

java.lang.Math
scalb line 2287 TSELF 5,000 0.950 0.58

java.lang.String
trim line 2857 TSELF 5,000 0.950 1.00
replace line 2060 TSELF, TBRAN 2,000 0.950 0.92
replace line 2060 TBRAN 2,000 0.950 0.66
Constructor line 250 TMETH-TI 500 0.950 0.08

path constraint. This observation also makes more reasonable
the PSAM assumption that the values we choose for priming
during the profiling phase have the same path constraint as
the secret priming value. Even in the few cases where the
path constraint was more nuanced, such as String.replace, it
was still very reasonable (the character to be replaced must
not be the same as the one it will be replaced by).

C. Optimistic compilation (TOPTI)

When optimistic compilation could be induced, the uncom-
mon trap execution time was always at least two orders of
magnitude higher (e.g., see Fig. 3b), resulting in very reliable
learning of φ(s). Our high-leakage results for BigInteger.min,
Math.nextAfter, and String.compareTo were obtained in this
way. For the other two cases, Math.min and String.equals, our
priming did not succeed in inducing optimistic compilation.
In Math.min, this was due to inlining: Math.min is so small
that it immediately gets inlined into its caller (i.e., into
our experiment driver). Optimistic compilation could still be
induced into the inlined copy of Math.min, but would not be
exploitable in other inlined copies. For String.equals, we could
not induce optimistic compilation due to a combination of two
facts: (i) optimistic compilation requires an extremely lopsided
history at the time of C2-compilation, and (ii) String.equals

is triggered too frequently by other parts of our experiment
driver. Hence, this template is suitable for contexts where the
attacker has nearly-exclusive control over the triggering of
m. In constrast, the String.compareTo method, which has an
almost identical structure to String.equals with respect to the
selected predicate and its branches, was much more amenable
to an optimistic compilation exploit due to its less frequent
usage elsewhere.

Despite our inability to induce an optimistic compilation of
String.equals, we still achieved very sizeable leakage in this
method thanks to branch prediction, which does not require a
history as strongly lopsided as optimistic compilation.

Note that when an attacker succeeds in inducing optimistic
compilation, the first call to m that takes the uncommon branch
will trigger the uncommon trap, and de-optimization will only
take place once. This means that the attacker must trigger and
time m on the secret input before some other user triggers and
thus “spoils” the uncommon trap through their own calls.

D. Method Compilation (TMETH)

Our high-leakage result for BigInteger.shiftLeft exemplifies
the potential of TMETH under VSAM. In shiftLeft, each of
the two branches of φ calls a different method. With JIT
disabled, the execution time does leak information about which



(a) String.equals (b) String.compareTo

Fig. 3: Execution time distributions after priming for the
methods (a) String.equals and (b) String.compareTo.

branch was taken. This is not surprising, as it is expectable
that the unoptimized versions of two different methods would
be distinguishable. What we wish to emphasize is that any of
the two callee methods can be made observably faster than
the other through the appropriate priming. Moreover, both of
these priming versions result in stronger side channels than
those that occur with JIT disabled or with an even priming
distribution. This demonstrates how strongly the execution
time of a path can vary depending on how aggressively the
methods called along that path are optimized.

In Math.ulp, we observed a scenario in which a method was
called in one branch of φ but not the other, motivating us to
apply the TMETH template. We thought that by compiling that
method, we might significantly reduce the execution time of
its branch. This was not the case. The method that we aimed at
(and succeeded at) compiling was an extremely inexpensive,
constant-time method. Thus the timing of the branch contain-
ing it did not change significantly with compilation, and its
cost did not fall below that of the other branch. The degree
to which an application of TMETH can impact the execution
time is bounded by the degree to which compilation can speed
up the method called in the heated-up branch.

The difference between the two results that we report for
BigInteger.mod is due to the improved reliability of timing
data when the method whose execution we time is not m itself,
but rather its callee method m′ whose compilation we aimed to
induce (TMETH-TI). This requires stronger assumptions (the
callee method m′ must be triggerable and timeable by the
attacker), but it can substantially increase the leakage.

However, not even obtaining such isolated timing informa-
tion can enable a side channel when the computation done
by m′ is trivial. This is the case for the String constructor
we analyzed, which builds a string based on a sequence of
Unicode code points. Though we succesfully found priming
values inducing different levels of optimization in its callee
method m′, hardly any leakage resulted. This is due to
m′ performing extremely efficient constant time compuation,
making the difference in efficiency between its compiled and

un-compiled states indiscernible.

E. Branch Prediction (TBRAN)

Branch prediction introduces considerably smaller timing
differences than other templates (e.g., see Fig. 3a). Never-
theless, it can still sometimes be exploited to great effect.
BigInteger.valueOf, String.startsWith, and Math.max are ex-
amples of methods that are small enough that the effect
of branch prediction is observable over the computational
noise of the method. Whether or not the branch condition
is looped over can also impact the observability of the side
channel. In PSAM, where we can choose the test value, such
a looping construct may enable the choice of a test value for
which the effects of branch prediction are multiplied, i.e., the
branch prediction is repeatedly correct or incorrect across the
iterations of the loop. String.replace (discussed in the next
section due to its interaction with the TSELF template) is an
example of this scenario.

F. Self Compilation (TSELF)

The TSELF vulnerability template is specific to PSAM. In
all cases where we tried to apply TSELF, we were successful in
finding priming amounts such that the method was compiled to
different levels of optimization across the two priming options.
In the BigInteger.and and String.trim cases, it was easy to
find a test value that made the method call expensive enough
for differing levels of compilation to be observable. This is
due to the large number of potential loop iterations within
these methods. This was not the case in Math.scalb, where
the maximum possible number of loop iterations is four. The
strength of a side channel introduced by TSELF is thus linked
to how expensive the method is question can be made by
suitably chosen test values.

In the case of String.replace, we have an interesting example
of the interaction between side channels resulting from self
compilation and branch prediction. Once again, we succeeded
in inducing differing levels of optimization between the two
priming options for the same priming amount. However, while
priming with that aim in mind, we also induced a side channel
based on branch prediction. The execution time of m on t is
thus not only based on the compilation level of m but also
on whether the execution path of t is favored or hindered
by the branch prediction. Since the priming input from the
φ branch induced the higher level of compilaton of m, we
expected that the timing of the call to m on t would be faster
for this priming value. When we choose t to benefit from the
branch prediction induced by priming on the φ branch, this was
the case. This result in shown in the first of our two results
on String.replace. However, when we choose a priming value
that was hindered by the branch prediction induced through
priming on φ and favored by that induced when priming on
¬φ, the expected outcome was reversed. The timing of the
method call was actually faster under the ¬φ priming. The
unintended branch prediction thus interacted with our intended
optimization in a way that inverted our expectations. The



results for this experiment are given in the second of our results
on String.replace.

VI. RELATED WORK

To the best of our knowledge, the idea that JIT could impact
and potentially introduce timing channel vulnerabilities was
first put forth by Page [19]. Noting that compiled code can
differ from source code, he explores the impact of dynamic
compilation through a case study on his own Java imple-
mentation of a double-and-add-based multiplication program.
Because the doubling method is called more frequently than
the addition method, it is compiled sooner. If an attacker can
obtain a timing profile of the each method called within the
multiplication code, they can infer the order of the sequence of
doublings and additions performed. Page also proposes some
solutions at both the language level and the virtual machine
level for removing side channels of this kind.

Our work goes beyond the observation that dynamic com-
pilation may introduce side channels by demonstrating how to
systematically induce JIT-based runtime-behavior-dependent
side channels into the JVM state through controlling the input
distribution of a method. We show how to actively exploit JIT’s
focus on optimization to create side channels that enable an
attacker to learn predicates about secrets, and experimentally
evaluate it on methods from the Java standard library.

In work complementary to ours, Cleemput et al. [20]
propose leveraging the statistical profiling information used
in dynamic compilation to mitigate timing side-channel vul-
nerabilities. Starting from a developer-chosen root method,
profiling information about the number of back edges taken or
method call invocations is collected for each value in a training
input set. Based on this process, a set of methods potentially
vulnerable to a timing side channel is selected. Control-flow
transformations and data-flow transformations are then applied
to those methods to reduce their vulnerability to side channels.
The control-flow transformations, such as if-conversion, used
in their paper would aid in protecting sensitive Java functions
from the JIT-based vulnerabilities we introduce. In fact, there
is existing work on compiler based strategies for mitigating
side-channel vulnerabilities which might be germane to that
purpose [21]–[23]. However, none of the solutions that they
offer have been integrated into HotSpot, which remains both
vulnerable to the kinds of side channels we introduce and the
most widely used JVM.

Static Side-Channel Analysis: The problem of statically
determining the presence of side channels in software has
been widely addressed. Antopoulos et al. [24] and Chen
et al. [25] propose techniques to detect imbalanced paths
through the control flow graph of a method. More expensive
techniques requiring symbolic execution and model counting
enable quantifying the amount of information leaked [26] and
even synthesizing input so as to maximize the amount of in-
formation that can be extracted through the side channel [27],
[28]. These approaches rely on a cost model that statically
approximates the observable information (such as execution
time) along a program path. What our work demonstrates is

that such a cost model is insufficient. The execution time of a
path depends not only on the instructions along that path but
also, and to a great extent, on the state of the JVM. The state of
the JVM is in turn influenced by all previous invocations of the
code under test. Currently no static approach to side channel
detection even attempts to model this complex interaction.
In fact, many programs that would be pronounced “safe”
by all the static techniques above, including those claiming
soundness, would be vulnerable to a JIT-induced side channel
captured by one of our templates. Some approaches to side-
channel analysis include a dynamic component where runtime
information is collected and statistical inference performed
[29], [30]. However, none of these approaches consider the
space of possible states that the runtime environment might
be primed to when collecting this data.

Runtime-based CPU-induced side channels: Branch pre-
diction analysis (BPA) attacks and cache attacks are side-
channel attacks which leverage runtime-dependent behavior of
CPUs. Cache-based side-channel attacks [3], [31]–[35] have
been theorized for years and have increasingly been shown
as a powerful technique for recovering sensitive information
in practical scenarios. Acıiçmez et al. first demonstrated that
the CPU’s branch predictor could be leveraged to introduce
timing channel vulnerabilities in security-related code [36]–
[38]. Since then, the CPU’s Branch Prediction Unit has been
exploited to introduce various flavors of timing channel vulner-
abilities [39]–[41]. While these classes of side-channel attacks
focus on runtime behavior due to the state of the processor,
we focus on runtime behavior determined by the state of the
Java Virtual Machine.

VII. CONCLUSIONS AND FUTURE WORK

We introduced a new class of runtime-behavior-dependent
timing side channels based on execution time imbalances
introduced by JIT optimizations. We proposed two attack
models and five vulnerability templates, which we evaluated
on three well-known Java standard library classes. Our results
show that an attacker armed with this knowledge, in a setting
satisfying the assumptions of our attack models, can indeed
use these techniques to induce side channels that allow her
to successfully infer the value of predicates (associated with
branch conditions) on secret inputs.

In future work we plan to develop new attack models with
fewer assumptions. For instance, we can relax assumptions
about the path taken by the secret input to reach the selected
branch instruction by expanding our use of symbolic execution
to automatically consider all such paths up to a certain bound
and computing information leakage across them. We also plan
to extend our palette of vulnerability templates by considering
an even wider set of JIT optimizations and their combinations.
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