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Abstract. In this paper we address the challenge of cross-language clone
detection. Due to the rise of cross-language libraries and applications (e.g.,
apps written for both Android and iPhone), it has become common for
code fragments in one language to be ported over into another language
in an extension of the usual “copy and paste” coding methodology. As
with single-language clones, it is important to be able to detect these
cross-language clones. However there are many real-world cross-language
clones that existing techniques cannot detect.

We describe the first general, cross-language algorithm that combines
both structural and nominal similarity to find syntactic clones, thereby
enabling more complete clone detection than any existing technique. This
algorithm also performs comparably to the state of the art in single-
language clone detection when applied to single-language source code;
thus it generalizes the state of the art in clone detection to detect both
single- and cross-language clones using one technique.

1 Introduction

The clone detection problem has long been recognized by the community, with
many existing papers exploring different techniques for finding clones amongst
code written in a single language |11L|16,/17.[22/23]. However, in recent years an
interesting twist has arisen due to the rising popularity of cross-language libraries
and applications: cross-language clones. Consider the parser generator ANTLR [1],
which has runtimes that are written in C#, C++, Go, Java, JavaScript, Python
(2 and 3), and Swift. Also consider multi-platform mobile applications, which
are often ported between Java and Objective-C or Swift, the languages used by
Android and iPhone applications. In these kinds of settings, clones can actually
cross language boundaries: a fragment of code in one language can be copied and
massaged to conform to the syntax and semantics of another language. Existing
single-language clone detection techniques are unable to effectively detect these
sorts of cross-language clones. In this paper we propose a method to detect
cross-language clones and demonstrate that it (1) finds cross-language clones that
no existing method can detect; and (2) performs comparably to existing single-
language clone detectors for finding clones within a corpus of single-language code
sources. Therefore, our technique generalizes the current state of the art in clone
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Trees._findAllNodes = function(t, index, findTokens, nodes) {
7/ check this node (the root) first
1f(f1ndTokens &t (t instanceof TerminalNode)) {
(t.symbol.type===index) {
nodes.push(t);

}
} else if(!findTokens && (t instanceof ParserRuleContext)) {
if (t.ruleIndex===index)
nodes . push (t) ;
}

// check children
for(var i=0;i<t.getChildCount();i++) {
Trees._findAllNodes(t.getChild(i), index, findTokens, nodes);
}
}

template<typename T>
static void _findAllNodes(ParseTree *t, size_t index, bool findTokens, std::vector<T> &nodes) {
// check this node (the root) first

if (findTokens && is<TerminalNode *>(t)) {
TerminalNode *tnode = dynamic_cast<TerminalNode *>(t);

if (tnode->getSymbol()->getType() == index) {
nodes . push_back(t) ;

} lee if (!findTokens && is<ParserRuleContext *>(t)) {
ParserRuleContext *ctx = dynamic_cast<ParserRuleContext *>(t);
if (ctx->getRuleIndex() == index) {

nodes . push_back(t) ;

¥

// check chlLdTen

for (size_t <_t->children.size(); i++) {
f1ndA11Nodes(t >ch11dren[1], index, flndTokens nodes) ;

}

Fig. 1: A JavaScript (top) and C++ (bottom) clone pair doing a pre-order search.

VerletParticle2D.prototype.setWeight = function(w){ public void setWelght<float w) {
this.weight = w; weight =
this.invileight = 1anelght =1f /W
(w1==0) 7?1/ w:0; //avoid divide by zero

}

Fig.2: A JavaScript (left) and Java (right) clone pair setting the weight and
inverse weight of a particle in a graphics application. A bug-fix has been applied
to the JavaScript clone but not the Java clone.

detection by extending it to allow for both single-language and cross-language
clone detection using a single technique.

To make this problem more concrete, consider Figure[I} which shows a real-life
case (found during our evaluation described in Section[B]) of code clones involving
C++ and JavaScript source code from the ANTLR parser generator . To
demonstrate the importance of finding cross-language clones, consider Figure 2]
which shows another real-life case (also found during our evaluation) of code
clones involving JavaScript and Java in which a bug-fix has been applied to
one of the clones but not the other. In addition, a quick search of the CVE
(Common Vulnerabilities and Exposures) database yields a vulnerability due
to incorrect message authentication checking that exists in multiple different
language implementations of the relevant code [2].

There are only four existing papers that we are aware of that introduce
new techniques for cross-language clone detection (discussed in more detail in
Section . That initial work has either focused on clones across languages that
share a common intermediate representation such as .NET or has deviated
from classical clone detection and taken a more restricted, natural language-
based approach sometimes relying on assumptions that may not be met in real
code [13] . None of that existing work would detect the clone examples given
in Figures [I] and [2] without extensive modification.
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The main reason for these restrictions in previous work is that the syntactic
structure (i.e., parse trees) of different languages can be extremely different even
for code that, at the source level, seems similar. We demonstrate this phenomenon
later in this paper. In order to overcome this problem, previous work has either
restricted itself to languages with a common intermediate representation (thus
enforcing that the syntactic structure is similar for similar code) or abandoned
structural matching entirely and looked only at the names of variables and other
user-defined abstractions (what we call nominal clone detection). We observe
that using purely structural or purely nominal matching is sub-optimal in a
cross-language setting, in that each can yield both false positives and false
negatives.

Our technique consists of (1) a method for enabling structural matching for
cross-language clones even in those cases where syntactic structure is different
(Section; and (2) a method for composing both structural and nominal matching
into a singular matcher, maintaining the strengths of each while mitigating
their individual weaknesses (Section [5). We have implemented our technique
in a tool called FET'IE| that works at the granularity of function pairs; we use
FETT to empirically compare our proposed technique against existing techniques
(Section |§[) We begin by describing related work and background information in
Section [2| and giving a high-level overview of our technique in Section

2 Background and Related Work

The concept of clone detection is not new, and the different techniques involved
have been surveyed extensively [11,[22]. Most existing non-semantics-based tech-
niques can be categorized into the classes of “structural,” “nominal,” or “hybrid,”
which we define below.

Before we begin, there is a bit of misleading terminology in the literature: there
exist many clone detection tools that are considered language-generic or language-
agnostic (e.g., [23]), but can only be configured to work for programs written in
a single language at a time. CCFinder [17], for example, can detect clones for
six different programming languages; however, the user cannot (outside of naive
text-only modes) truly cross language boundaries during a “language-generic”
clone detection phase.

2.1 What Exactly Is a Cross-Language Clone?

Intuitively, we consider a cross-language clone to be the same as any same-
language clone—two pieces of code that implement similar functionality—the
only difference is the setting. We highlight here what kinds of clones our tool
is able to find, and what kinds of clones we include in our evaluation based on
their classification (i.e., Type I, II, IIT or IV [25]).

! Our implementation is located at http://www.cs.ucsb.edu/~pllabl under the
“Downloads” link.


http://www.cs.ucsb.edu/~pllab

4 L. Nichols et al.

The usual code clone hierarchy does not translate well to a cross-language
setting: type I and type II clones [25] may not exist across languages because
of syntactic differences between languages (e.g., switch statements exist in C
but not in Python). In this paper, we present methods that discover syntactic
clones modulo the differences in language syntax, and we do this by creating
a correspondence between related but different constructs. We do not consider
semantic (type IV) clones that implement the same functionality in a different
way (e.g., quicksort vs. selection sort). Readers familiar with the standard clone
hierarchy can think of the clones that we find as type III clones generalized across
languages.

2.2 Structural Program Similarity

Intuitively, two programs (or subprograms) can be considered similar if they look
the same, disregarding identifier names—i.e., if their syntax trees have roughly
the same shape. We refer to structural clone detection as the process of taking
advantage of this similarity.

Same-language clone detection tools usually also consider identifier data,
and we are not aware of any purely structural cross-language clone detector. A
notable same-language tool that operates via structural similarity is Deckard,
which converts syntax trees into vectors for fast comparison [16].

Structural similarity is useful in all settings, but it is a hard problem in a
multi-language setting—all the hybrid structural /nominal methods we describe
below make some restriction on the languages involved. A major part of the
novelty of our technique is a method for purely structural matching across
languages (though the final algorithm then combines structural with nominal
(i.e., identifier-based) techniques for greater accuracy).

2.3 Nominal Program Similarity

Whereas structural similarity disregards identifiers and instead looks at code
shape, nominal similarity does the exact opposite. Nominal similarity relies on
the insight that similar code, especially copied and pasted snippets, will have the
same identifier names throughout, regardless of code structure.

Notable same-language clone detection tools that operate via nominal simi-
larity are CCFinder and SourcererCC, which compare program tokens [17,[26].

Across Languages. Cheng et al. describe CLCMiner |14, the first cross-language
clone detection tool that does not require the languages involved to translate to
the same intermediate form. It compares revision histories (diffs) in repository
logs for cross-platform C# and Java programs; the tokens inside commits are used
to compute similarity scores. CLCMiner is the basis for the Nominal algorithm
defined in Section (.1}

Cheng et al. study a different notion of nominal similarity in [13], where
they measure the effectiveness of token distributions in finding clones among
cross-platform mobile applications; they obtain a negative result for identifier
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names alone. Flores et al. use natural language processing techniques to discover
cross language clones at the function level.

2.4 Hybrid Program Similarity

It is logical to combine structural and nominal similarity methods, as the results
they provide are complementary. A notable same-language, hybrid clone detection
tool is NiCad, which performs its comparisons at the parse tree level [24]. Syntax
tree-based comparison is quite common [10}27].

Tree similarity is computationally expensive [12], and it is more efficient
to linearize programs in some way; sequence similarity algorithms can then
do the comparison. Existing same-language work compares the tokens in the
order in which they appear in the parse tree [15], and we also take advantage of
linearization of full parse trees in this work.

Across Languages. Kraft et al. present C2D2 [18], the first cross-language
clone detection tool, for C# and Visual Basic programs. This work requires
that the languages involved be compiled to the same intermediate representation
(IR)—NET IR in this case. From a graph derived from that IR, they create
sequences of tokens for subgraphs and use a Levenshtein distance-based token
similarity algorithm to compare them.

Al-Omari et al. build on Kraft et al.’s work and find clones by comparing
CIL intermediate code text [7]. Again, they are restricted to .NET languages.

This work. Our method is a hybrid method, works on any language with a gram-
mar definition, and relies on just the source code (in contrast to, e.g., CLCMiner
which requires the existence of revision history). We linearize preprocessed parse
trees at the function level and compare the linearized sequences in a novel way
that generalizes Kraft et al.’s work and incorporates features of Cheng et al.’s
work.

2.5 CLCMiner

Our main comparison is with the only tool designed for cross-language clone
detection and capable of handling arbitrary languages: CLCMiner [14]. We provide
further background on it here. CLCMiner is based on having the source code in a
version control system, and requires a revision history by design. Section [5.1] gives
a detailed explanation of our adaptation of CLCMiner. The original CLCMiner
algorithm works on diffs and lexes them, whereas our version works on function
parse trees.

We were not able to obtain access to the original CLCMiner source code
from the authors. In order to compare against this method, we implement our
own version which adapts CLCMiner to work with the entire text of a function
and have it calculate the distance metric above when given a function pair. Our
new implementation may perform better or worse than the original (which uses
revision history rather than function pairs) in certain cases.

We incorporate CLCMiner’s distance metric in a novel way in FETT, and
show that our combination of structural and nominal information produces better
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results. As we have adapted CLCMiner’s algorithm to work on functions instead
of diffs, it relies on having a parser to extract the functions and does not rely on
a version control system. We refer to our nominal-only adaptation of CLCMiner’s
algorithm as “Nominal” for the rest of the paper.

3 Overview

In this section we provide a high-level overview of FETT and provide justification
for some of our steps. We give an end-to-end example of our clone detection
process in Appendix [B] FETT’s pipeline is:

1. Take as input a corpus of source code (which may exist in multiple languages);

2. Using existing ANTLR grammars, parse and create a separate parse tree for

each function (we currently handle C++, Java, and JavaScript);

Simplify parse trees that have an unnecessarily large depth;

4. Abstract the multilingual parse trees into a common representation to

facilitate comparison;

Linearize the resulting trees using a preorder traversal;

6. Compare all linearized function pairs using a Smith-Waterman local sequence
alignment algorithm; and finally

7. Present the pairwise similarity scores to the user.

@

o

The following sections fill in the details of the structural and nominal aspects
of FETT’s cross-language clone detection process.

4 Structural Clone Detection

One key insight of our structural algorithm is that abstract syntax trees (ASTs),
which eliminate details in the concrete parse trees about how exactly the input
was parsed or what language it came from, tend to look more similar for similar
code even across languages. Unfortunately, ASTs are not part of a language’s
specification, and AST grammars and formats are implementation dependent.
We are not aware of any single compiler that has frontends for the variety of
languages that we compare. Our structural clone detection algorithm processes
reduced parse trees (Section to eliminate nonessential details about parsing
and obtain a structure similar to ASTs.

Another source of disparity between trees generated by two grammars is that
the nonterminals are different. The other key insight of our structural algorithm
is that abstracting reduced parse trees by putting nonterminals in equivalence
classes (Section strikes a balance between preserving necessary information
and smoothing out differences across languages.

Our structural algorithm proceeds by extracting functions from an abstracted
parse tree and then computes similarity scores between functions using the
Smith-Waterman local sequence alignment algorithm.

Flattening a tree using a preorder traversal helps smooth out most remaining
inconsistencies between inter-language reduced parse trees. To demonstrate the
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dissimilarities due to grammatical differences that preorder traversal removes, see
Figure [3} a grammar that uses nested if statements will have a parse tree like
Figure while a grammar that uses unnested if statements will look more like
Figure As the else if cases become more numerous in the first grammar
the nesting becomes more severe, emphasizing the differences in the resulting
parse trees.

if (exp ) block [else block] (G1)
if exp : block [elif exp : block]* [else block] (G2)

) Two different kinds of grammars for if statements.

ﬁgm 5

(b) An example parse tree using the (¢) An example parse tree using the
nested if grammar (G1). unnested if grammar (G2).

Fig.3: Grammars and parse trees for nested vs. unnested if statements.

4.1 Precedence woes

Some grammar definitions encode operator precedence into the grammarﬂ
whereas others use facilities provided by the parser generators to encode the
precedence. Direct encoding of precedence causes spurious chains of nonterminals
in the resulting parse tree, which would be removed when the parse tree is
converted to an AST. We collapse the chains of nonterminals encountered in a
parse tree for the direct encoding case to remove the chains and mitigate this
disparity between different styles of grammars. Figure 4| demonstrates the kinds
of issues that are apparent when a grammar hard-codes precedence—because
precedence in this case appears in the form of nested productions, we always see
“AdditiveExpression” even when there is only a multiplication expression present;
this will throw off any clone detector that is working directly on plain parse trees.

If precedence is handled indirectly through the parser generator, then the
resulting parse tree is much closer to an AST. This is an example of an issue that
only arises in a cross-language setting, and which makes cross-language clone
detection strictly more difficult than same-language clone detection. We condense
any chains of nonterminals, and we refer to the parse trees after this stage as
reduced parse trees.

4.2 Abstracting Parse Tree Nonterminals

Consider the two reduced parse trees for the expression
binarySearch(array, mid+1, high, x) in Figures[5a] and [Fb] Although they

2 We encountered this only in the C++ grammar during our evaluation.
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AssignmentExpression

ConditionalExpression
Y

.
AdditiveExpression

MultiplicativeExpression
MultiplicativeExpression ‘ \ PMExpression
PMExpression CastExpression
UnaryExpression
UnaryExpression PostfixExpression
PostfixExpression PrimaryExpression
PrimaryExpression

Fig.4: A subtree of the original C++ parse tree for the text “5%7”.

look similar to the naked eye, because the node names are different, even a tree
edit distance algorithm would say that the trees are not similar at all. We thus
need to abstract the nonterminal names while preserving essential information
about the tree structure. After performing this abstraction, we call the resulting
parse trees abstracted parse trees.

(a) Reduced parse tree (b) Reduced parse tree from a (¢) Abstraction of the trees in
from a Java parser. JavaScript parser. Figures [5a] and

Fig. 5: Reduced parse trees for expression binarySearch(array, mid+1, high,
x) in Java and JavaScript, and their abstraction. The terminals are omitted for
simplicity.

Our method instead groups node types with similar meanings across languages,
so that node types that “mean” similar things are in the same group. To do
this, we manually categorize node types into equivalence classes once per pair of
languages. For example, consider the equivalence classes ¢; = {FunctionCall, Ar-
gumentsExpression}, ¢o = {Primary, IdentifierExpression}, ¢ = {ArgumentList,
ExpressionList}, ¢4 = {NumericLiteral, Literal}, ¢5 = {AdditiveExpression} and
the set C' = {c1, ¢2, 3, ¢4, 5}, After replacing each node in Figures [5a] and
with its equivalence class in C, we end up with trees that are exactly the same
(Figure . In this specific example the abstracted trees are the same, though
this is not always the case in practice.

We define the abstraction algorithm in two parts: EqClassMapOf(C') produces
a map from each node to a symbol corresponding to its equivalence class.
Abstract(tree, map) does the abstraction by traversing the given tree bottom
up and applying the map. It removes the nonterminals which do not belong
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to any equivalence class. When the abstraction algorithm removes a node, it
connects any children of the removed node to the removed node’s parent.

4.3 Sequence Alignment for Clone Detection

Linearizing the trees via a preorder traversal of the nodes will remove most traces
of the structural differences demonstrated in Figure [3] Moreover, the state of
the art tree edit distance algorithms are not as scalable as sequence alignment
algorithmsﬂ These observations led us to explore sequence alignment algorithms
as an alternative to tree-edit distance. Levenshtein distance is a popular choice in
this category. Smith-Waterman is strictly more general than Levenshtein distance,
and it supports assigning weights to different elements in the sequence. Hence,
we use the Smith-Waterman algorithm on preordered trees to compute similarity
scores. We evaluate the precision and recall of both Smith-Waterman and tree
edit distance in Section [6] and observe that sequence alignment performs better
in terms of precision and scalability.

We convert function subtrees to sequences by computing the preorder traversal.
Finally, we execute Smith-Waterman using custom weights on each sequence pair
and normalize the resulting score using the normalization factor Z described
below. We chose the weights based on the hypothesis that certain nodes like
conditionals indicate important program structure, and should generally appear
in the same order in a cloned pair of functions; therefore, we assign higher
weights to penalize the function pairs in which this alignment does not occur.
In the algorithm, the function SmithWaterman(a, b, M, g) computes a similarity
score between two sequences a and b using the Smith-Waterman algorithm with
substitution matrix M and linear gap penalty coefficient g; a detailed explanation
of these parameters can be found in [9)].

Normalizing Smith- Waterman results. The result of the Smith-Waterman
algorithm depends on the size of the input, and longer sequence pairs have
higher scores. In order to find both short and long clones, we normalize the
resulting similarity score from the Smith-Waterman algorithm to neutralize the
bias towards longer clones.

We define the self-similarity score of a sequence a as the score assigned to the
pair (a, a) by the unnormalized Smith-Waterman algorithm; denote this score S(a).
We normalize score assigned to a pair (a,b) by £+ where Z = max {S(a),S(b)}.
Note that Z is an upper bound for the score obtained by Smith-Waterman, and
the score is equal to Z if and only if @ = b. Thus, using the normalization factor
% is useful if one is looking for similar whole functions rather than looking for a

small snippet in a larger piece of code.

3 APTED, the state of the art tree edit distance algorithm has a time complexity of
0O(n®) [21] whereas the variant of Smith-Waterman algorithm we use is O(n?) |9].
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5 Hybrid Algorithm

Combining nominal and structural clone detection in a cross-language setting
provides the best of both worlds, and mitigates any issues that running just one
detection method might have.

Identifier names carry some meaning about the programmer intent and give a
code snippet context. On the other hand, structure of code (conditionals, loops,
function calls etc.) also carry information about programmer intent. Without
this structural information, we might misidentify two pieces of code as clones.
Our hybrid algorithm is guided by structural information while consulting the
Nominal algorithm to use local context within structurally similar pieces of code.

5.1 Owur Nominal Algorithm

We have adapted CLCMiner’s algorithm to work on functions as our purely
Nominal algorithm. For a given pair of functions (f1, f2), our nominal matching
algorithm consists of two parts.

The first part takes a function f, removes the comments and splits the tokens
on each non-letter character (such as underscores or dashes). It then splits the
camel case tokens into words and converts them to lowercase—each function
becomes a bag of words that is represented by a characteristic vector, which holds
the number of occurrences of each word. We denote the resulting characteristic
vector as v(f).

The second part of the algorithm computes a normalized distance between the

| et (Y
loally +llv21l,
where ||-||; is the ¢; norm (i.e., the sum of the absolute values of every entry in
the vector). This algorithm computes a distance between two given functions; to
make it comparable to the other algorithms, we use 1 — d(vy,v2) as a similarity

score.

two characteristic vectors vy, vy according to the formula d(vy,vs)

5.2 Full Algorithm

Our full algorithm is shown in Appendix [A] It is a combination of the structural
and nominal algorithms: we linearize the parse trees, and consecutive terminal
nodes become bags of words. Nonterminals are compared using our structural
method, and bags of words are compared using our nominal method.

6 Evaluation

In this section we compare our work against existing work on both cross-language
and same-language clone detection.
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6.1 Implementation and Environment

We have implemented our tool FETT in Scala and used the ANTLR parser
framework as its front end, so that any language with an ANTLR grammar can
be easily connected.

To test whether FETT can handle same-language clone detection with similar
accuracy as specialized, language-specific tools, we configured NiCad 4.0 [24] to
work at the function-level granularity and experimented with configurations until
we found the best-performing one for our testsﬂ

Because we are comparing parse trees, we also want to determine how well
we compete against the state-of-the-art tree edit distance algorithms, thus we
compare one data set with APTED [20L21]. We normalize the similarities using
the method described in [19], and, as this normalization method requires a
metric distance, we could not introduce weights for matches. We can still weight
mismatches, though. We found that the parameters mismatch = 1, deletion =
insertion = 5, match = 0 gave us the best results overall.

We chose the threshold for ignored functions (defined in Section to be
0 = 35 for every experiment, and the exact tolerance parameters are given below
for each case. We used the same set of equivalence classes with the same weights
for all cases: conditional, loop, return, and function call were all weighted 5;
assignments were weighted 2; and all other considered nodes were weighted 1.

Our experiments were run on a computer with an Intel i7 4790 3.6 GHz
processor. FETT, Structural, Tree Edit Distance, and Nominal were given 8 GB
maximum heap size and were set to use 4 threads.

6.2 Methodology

We used the standard statistical metrics of precision, recall, and F-measure to
quantitatively assess the effectiveness of our different techniques.

Due to the sheer amount of possible clone candidates in large projects, it
is difficult to manually obtain complete ground truth for clones in real-world
programs. Hence, we created two separate data sets for evaluation:

Manual programs set (handwritten set). We implemented a set of small
programs in different languages to create a setting in which we have complete
knowledge of whether a pair of functions are clones. Statistics about the code
are in Table [II

Randomly sampled program set (large set). We chose four libraries that
have implementations in different languages and set the tolerance parameterﬂ

4 NiCad: threshold=0.5, minsize=4, maxsize=2500, rename=blind, filter=none, ab-
stract=none, normalize=none

For FETT: p1 = 6 (match coefficient) and g = —4 (gap penalty) for the case of compar-
ing Java and JavaScript, and (i, g) = (9, —1) for Java/C++ and JavaScript/C++,
and (8,—3) for Java/Java. The nominal multiplier was set to 2 for all but the
Java/C++ and JavaScript/C++ cases, where it was set to 3. For the Structural
algorithm: (7, —1) for JavaScript/Java, (8, —4) for Java/C++, (0.5, —2) for Java/Java,
and (9, —4) for JavaScript/C++.

5
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Table 1: Statistics of handwritten clones.
Language Pair LoC #Functions #Pairs #Clones

Java 201 12
JavaScript 177 11 132 1
Java 201 12
C++ 195 12 144 12
JavaScript 177 11 132 1

C++ 195 12

defined in Algorithm [I| to give the best results on a per-language pair basis.
We randomly sampled functions from the files with the same names (ignoring
extensions) and manually checked the pairs to create a sample with ground
truth—this is essentially the sampling strategy used by Cheng et al. [14] applied
to functions instead of diffs. We chose to reuse this sampling strategy due to
the manual nature of our evaluation, and because we only possess finite human
resources; it does not reflect the true distribution of clones, as function clone
pairs are unlikely to be chosen in a standard uniform random sample—had we
gone that route, our precision and recall scores would not have been meaningful.
We are not aware of a better solution to this problem.

The first three libraries considered for this set are: the ANTLR parser frame-
work, version 4 [1]; the toxiclibs computational design library [5]; and the ZXing
barcode image processing library [6]. We also considered two ports of the LAME
MP3 encoding library in different languages that were ported by different devel-
opers to assess the efficacy of clone detection tools in such a scenario: lamejs, a
JavaScript port |4]; and java-lame, a Java port [3]. Statistics about the libraries
are in Table 21

Table 2: Statistics of libraries considered for evaluation. LoC: non-blank non-
comment lines of code, Fun’s: # of functions found in each project, Nont’l (Nontrivial)
Fun’s: # of functions whose reduced parse trees are > 6 (the chosen threshold), Pairs:
the # of possible fun. pairs, Same-File Pairs: # of pairs of functions coming from files
with the same name (ignoring extensions), Sel’d: # of selected pairs, Runtime: total
time (H:M:S) to run our method.

Data set Library  Lang. Pair LoC Fun’s Nont’l Fun’s Pairs Same-File Pairs Sel’d Runtime Clones

Java 13,770 1,393 694

antlrj ANTLR Yo 15770 1,393 o1 240,471 4,942 505  0:56:18 14
antlrjsj ANTLR Javiz‘;“ript 12572730 1‘7?;23 Zgg 281,070 6,240 663  0:25:01 45
antlreppjs  ANTLR Javca;rctipt 175:"372535 1’72222 ﬁg 194,400 3,762 752 0:17:11 17
toxic toxiclibs .Javias\;aript 22:;;2 Zzgg gégf 5,004,076 11,637 1,060 3:01:12 63
zxing ZXing C]jr"i gg:ggi 2;2329 1;1%? 684,045 1,388 254 2:10:51 45
lame java-lame Java 20,950 575 436 101,152 4,645 o753 02737 24

lamejs  JavaScript 11,112 285 232
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6.3 Results

For our main set of tests, we compare FETT against (1) our purely Structural
algorithm (i.e., no token similarity), and (2) our Nominal algorithm. We also
apply the APTED tree edit distance algorithm combined with our abstraction
method on our handwritten data set; tree edit distance takes at least an order of
magnitude longer than the other tools, and we did not evaluate the large data
set using tree edit distance because of this and due to its poor performance on
the handwritten tests. We use NiCad on the Java-Java same-language case of
our large data set.

Cumulative clone ratios. We look at the graphs of cumulative clone distri-
butions to choose a good cut-off point for each of the three techniques. These
graphs were originally used in [14], and they are meant to give an intuition about
where a clone detector separates clones from non-clones.

Similarity vs. cumulative clone ratio graphs track the ratio of clones to non-
clones as the similarity score varies from 1.0 to 0. For example, at point 0.4
on the similarity axis, we plot the ratio of clones to non-clones of all samples
with similarity scores > 0.4. A successful clone detector would have a similarity
value at which there is a significant drop in this ratio, and that would create the
optimal cutoff point. A clone detector may not assign very high scores to any
pairs based on its similarity metric; in such cases, we start the plot from the first
nonempty bin. Figure [7] shows the cumulative clone ratios for antlrj and toxic;
graphs of other test cases are omitted because of space constraints, but they are
of similar overall shape. We chose a cutoff point for each clone detector based
on the drops from these graphs (e.g. we chose the cutoff point of 0.4 for FETT’s
Java/Java case). The relative shape of the graph is more important than absolute
scores—squishing or stretching the similarity scores only affects the choice of the
optimal cutoff point.

Handwritten test set. When evaluating the manually created (handwritten)
data set, we used the same parameters y = 7, g = —2 overall for all pairs of
functions in the data set and considered the combined results for both FETT and
the Structural algorithm. FETT had its nominal multiplier set to 2. Figure [f] shows
the clone distributions of different clone detection methods for the handwritten
program set; and precision, recall, and F-measure (harmonic mean of precision
and recall) for this set are given in Table|3| FETT and the Structural algorithm
had a cutoff of 0.5, and the Nominal algorithm’s cutoff was 0.6.

Handwritten test set discussion. The table and the figures paint a similar
picture. Both FETT and the Structural algorithm seem to perform the best on
this data set—the graphs for the higher similarity scores have a high clone ratio,
and there is a sharp decline visible in both graphs as the similarity score is allowed
to lower. The Nominal algorithm has a less sharp drop, and this indicates that
it is assigning mid-range similarity scores with low precision. It is also notable
that tree edit distance does so poorly; we believe that this is because we are not
allowed to give weights to matches, as described above.
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EOE I 1 \‘“\. Table 3: Precision, recall, and F-measure for handwritten
§°6 A\ program set.
?” S \\\ Data set Method  Precision Recall F-measure
Eo2 ETT ENN
S [be o8 N, FETT 1.000  0.970  0.985
10 09 08 07 06 05 04 03 02 01 00 . Structural 1.000 0.970 0.985
Similarity
Fig. 6: Cumulative clone ratio Handwritten Nominal 0.886 0.939 0.912
distribution for handwritten pro- Tree Edit Dist. 0.821 0.697  0.754

grams. Results of FETT and
structural coincide.

Large test set. We now present and discuss all the cross-language results for
our large test set. The same-language case is different from the cross-language
cases, so the reader is asked to consult Figure [7b] which is indicative of all the
cross-language cases, and not Figure [Tal

Cutoffs were chosen on a per-language pair basis that maximized a given tool’s
score. For FETT, for the three JavaScript/Java test cases and the Java/C++ test
case, we used a cutoff of 0.4, and the rest used a cutoff of 0.5. For the Structural
algorithm, we used a cutoff of 0.6 for JavaScript/Java, 0.5 for Java/C++ and
JavaScript/C++, and 0.4 for Java/Java. For the Nominal algorithm, we used a
cutoff of 0.5 for JavaScript/C++, and 0.6 for the rest.

Figure [§| shows precision, recall and F-measure of all the tools we compared
for each data set and provides a visual and quantitative assessment of efficacy of
all the techniques.

Large test set discussion. Clone ratios relate most closely to the precision
scores for each data set, and from the results it appears that the Structural
algorithm generally has the upper hand in this area—applying the intuition
described above, we see that the Structural algorithm seems to cut off at the
sharpest angle in most cases. It makes sense why this is the case, as pieces of
code that look similar across languages are generally prime candidates for clones.
Precision is of course not the whole story. It is clear that FETT is able to take
the best of both the nominal and structural worlds, and the F-measure is always
the highest. When it comes to Structural’s results, the toxiclibs case is an outlier,
where we found that there were more cases of the structural differences; FETT’s
hybrid structural/nominal algorithm was able to make up for this, though.

Same-language test case. To assess performance on same-language clones, we
compared our tool with NiCad on the Java version of ANTLR. Returning to the
same figures, the antlrj case is quite similar to the other language pairs in terms
of precision, recall, and F-measure, which demonstrates that our tool is capable
of holding its ground in a same-language setting.

FETT performs slightly worse (by one percentage point in terms of F-measure)
than NiCad. This result is not surprising because NiCad uses more information
about the code whereas we deliberately discard some information by abstracting
parse trees to work in a cross-language setting. Even with our filtering of parse
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Fig.8: Precision, recall and F-measure of clone detection tools on the large
program set.

trees, FETT’s F-measure score is very close, and this shows that our tool is
capable of producing similar results to a dedicated same-language tool.

Overall results. We observe that the FETT’s hybrid algorithm, in terms of F-
measure, outperforms both the Nominal algorithm and the Structural algorithm
consistently in our large test set experiments.

Limitations. FETT may have difficulty scaling to repositories with large numbers
of large functions—a run of FETT on the entire toxiclibs library (comparing
every function pair, not just same file pairs) takes 5.13 hours—and so further
improvements will be required to enable such a target. One possible future
direction for improvements could be to develop semi-automated solutions where
we have the user use her domain knowledge and pick out the files or functions to
compare beforehand, or the user can prune the search space by telling the tool
which modules are unrelated.

7 Conclusion

We have presented FETT, a hybrid structural/nominal clone detection method
that is capable of operating across programming languages and that is generic in
the sense that it does not require any languages involved to belong to the same
language family. It is syntax-based, uses ready-made grammar specifications, and
requires minimal manual effort—the keys to the process are syntax abstraction
and sequence alignment. We have provided a two-part evaluation of FETT, and
we empirically demonstrate on multiple test sets that FETT is accurate in terms
of the standard metrics of precision and recall. We also confirm that our method
is on a par with previous work when it comes to same-language clone detection,
thus proving that it is strictly more general than single-language methods.

& ZZ1 Nominal

£33 Structural
. NiCad

oxic  zxing
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Algorithm 1 Algorithm to find cross-language function clones.

1: procedure SIMILARITY (s,t,C, W, i, g,0)
input:
Two sets of parse trees s and t, a set of equivalence classes between nodes C,
an equivalence class weight function W, a match coefficient u to control overall
tolerance, a gap penalty coefficient g, a threshold 6 on function subtree size
output:
A similarity score map S from pairs of functions to scores between 0 and 1.

2: m < NodeToEqClassMap(C)
3: § < {Abstract(Preprocess(t),m) | T € s}
4: t « {Abstract(Preprocess(r), m) | T € t}
5: S < EmptyMap
6: for all f € {Functions(r)|7 € §A|f| > 6} do
6 for all g € {Functions(7) |7 € A |g| > 6} do
8: a < Preorder( f)
9: b <+ Preorder(g)
v (1 —d(v(i),v(3))) ¢i,J are bags of words
10: M « )i, j.{ uW(5), i=j
—max(W (i), W(j)), i # j
11: Compute Z according to Section |4.3
19: S « S[(f,g) — Sm|thWateeran(a,b,M,g)]
13: end for
14: end for

15: return S
16: end procedure

B End-to-End Example

B.1 Parsing Is Such Sweet Sorrow

For our running example, consider the two functions in Figure [9] Both are
implementations of binary search (one in C++, the other in Java), and they have
some structural, nominal, and semantic differences.

template <class T>

int binsearch(const T array[], int left, int right, T what) { public static int binarySearch(int[] nums, int check, int low, int high) {
if (right < left) return -1; if (high < low) return -1;
int mid = (right + left) / 2; int center = (high + low) / 2;
if (array[mid] > what) if (arrayl[center] > check)
return binsearch(array, left, mid-1, what); return binarySearch(nums, check, low, center-1);
if (array[mid] < what) { else if (array[center] < check)
return binsearch(array, mid+l, right, what); return binarySearch(array, check, center+i, high);
1
Loturn mid; S feturn center;
} }
(a) A generic C++ binary search imple- (b) A non-generic Java binary search
mentation. implementation.

Fig.9: Two cross-language clones for binary search.

We would like to systematically figure out that these two functions are indeed
similar—to do so we must get them into a common form. We begin by parsing
them.
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B.2 A Tale of Two Parse Trees

We use the ANTLR parser generator and open-source grammar definitions to
parse the two files and generate concrete parse trees. The original parse trees
generated by ANTLR are shown in Figures [T10a] and

(a) Original C++ parse  (b) Original Java parse
tree for the code in Fig-  tree for the code in Fig-

(¢) Reduced C++ parse
tree obtained from the

ure @ ure @ parse tree in Figure @

Fig. 10: Different forms of parse trees for the code snippets in Figure @

At a glance, it is obvious that the parse trees are vastly different; even though
the two functions look similar textually, the parse trees do not reflect this. Our
goal is to make these parse trees look more similar.

Some ANTLR grammars use hard-coded precedence—i.e., they have explicit
precedence levels defined using nonterminals. A common example of this is the
standard arithmetic expression grammar:

AddE = AddE + Term MulE ::= MulE * Number
| AddE — Term | MulE /| Number
| MulE | Number

Parse trees for multiplication expressions would contain addition expression
nonterminals, and this would confuse a cross-language clone detector when the
other language’s grammar does not encode precedence. We propose a simple
technique that converts ANTLR parse trees that have hard-coded precedence
into what we call reduced parse trees, resembling an abstract syntax tree. We
then abstract upon all trees to arrive at a good common approximation. We refer
to the process of creating reduced parse trees as parse tree reduction, and it is
described in Section [f] After reduction, we are left with a new, smaller parse tree
represented in Figure It is now both drastically smaller and more similar to
the Java parse tree in terms of structure and number of nodes.

B.3 Score and Peace

We now have trees that superficially look similar, but they are still arranged
differently and come from grammars with different nonterminals and levels of
granularity. We address this issue by categorizing nonterminals into equivalence
classes and comparing those classes. We call this process parse tree abstraction,
and the resulting trees abstracted parse trees.
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We must also find a way to compare the terminals. Before abstraction, we
combine any consecutive terminal nodes into bags of words, correcting for camel-
case, underscores, and capitalization. We can then compare the bags of words
using characteristic vector similarity.

Finally, we linearize the abstracted trees by performing a preorder traversal
of the two abstracted trees to minimize the remaining dissimilarities between the
two languages.

For our example function pair, we place each node in the parse tree into its
equivalence class, remove any “uninteresting” nonterminal nodes that do not
belong to any equivalence class, and split the terminals on word boundaries. After
linearization, this process yields the two final sequences to compare:

— C++ FunDef, {"int"}, Id, {"binsearch"}, {"comst"}, {"t"}, Id, {"array"}, {"int"}, Id, {"left"}, {"int"}, Id, {"right"},
{"t"}, Id, {"what"}, If, {"if"}, Relational, Id, {"right"}, Id, {"left"}, Return, {"return"}, Unary, Literal, Decl, {"int"},
Decl, Id, {"mid"}, Multiply, Add, ...

— Java;: runes, {"int"}, Id, {"binary", "search"}, {"int"}, Id, {"nums"}, {"int"}, Id, {"check"}, {"int"}, Id, {"low"},
{"int"}, Id, {"high"}, If, {"if"}, Relational, Id, {"high"}, Id, {"low"}, Return, {"return"}, Unary, Id, Literal, Decl, {"int"},
Decl, Id, {"center"}, Multiply, Id, Add, ...

We can now use a sequence alignment algorithm to compute the similarity of
the two sequences. A pair of bags of words is compared by converting to a charac-
teristic vector and calculating characteristic vector similarity, and these terminal
sets never match against nonterminals. A pair of nonterminals is compared by
checking the equivalence classes for equality. To incentivize aligning similar kinds
of nonterminal statements with each other, we assign higher weights to some
equivalence classes (such as those representing if statements). We also allow for
a weight to be applied to the bags of words.

We feed the combined terminal/nonterminal sequences and weights to the
Smith-Waterman local sequence alignment algorithm; this contrasts with Leven-
shtein distance, a global alignment algorithm that was used in Kraft et al.’s and
Al-Omari et al.’s work. Local alignment algorithms are better suited for finding
small pockets of similarity in sequences, whereas global alignment must consider
the entire length of each sequence pair [§]. Thus, we believe that local alignment
is a better choice for cross-language clone detection.

We normalize the result to get a similarity score between 0 and 1. These
similarity scores do not have an absolute meaning but instead have a meaning
relative to each other. In order to turn a score into a binary decision one can apply
a threshold score such that only function pairs with scores over the threshold are
considered possible clones.

For this particular example, when we run our scoring algorithm with the
parameters we chose for C++ and Java in Section [0} we get a score of 0.607; this
is greater than the cutoff value of 0.5 we chose in our evaluation section, so we
come to the conclusion that these two snippets are clones.
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